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Abstract 1 

1. Process-based models describing biogeochemical cycling are crucial tools to understanding 2 

long-term nutrient dynamics, especially in the context of perturbations, such as climate and 3 

land-use change. Such models must effectively synthesise ecological processes and 4 

properties. For example, in terrestrial ecosystems, plants are the primary source of 5 

bioavailable carbon, but turnover rates of essential nutrients are contingent on interactions 6 

between plants and soil biota. Yet, biogeochemical models have traditionally considered 7 

plant and soil communities in broad terms. The next generation of models must consider how 8 

shifts in their diversity and composition affect ecosystem processes.  9 

2. One promising approach to synthesise plant and soil biodiversity and their interactions into 10 

models is to consider their diversity from a functional trait perspective. Plant traits, which 11 

include heritable chemical, physical, morphological and phenological characteristics, are 12 

increasingly being used to predict ecosystem processes at a range of scales, and to interpret 13 

biodiversity-ecosystem function relationships. There is also emerging evidence that the traits 14 

of soil microbial and faunal communities can be correlated with ecosystem functions such as 15 

decomposition, nutrient cycling and greenhouse gas production.  16 

3. Here, we draw on recent advances in measuring and using traits of different biota to predict 17 

ecosystem processes, and provide a new perspective as to how biotic traits can be integrated 18 

into biogeochemical models. We first describe an explicit trait-based model framework that 19 

operates at small scales and uses direct measurements of ecosystem properties; second, an 20 

integrated approach that operates at medium scales and includes interactions between 21 

biogeochemical cycling and soil food webs; and third, an implicit trait-based model 22 

framework that associates soil microbial and faunal functional groups with plant functional 23 

groups, and operates at the Earth-system level. In each of these models we identify 24 
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opportunities for inclusion of traits from all three groups to reduce model uncertainty and 25 

improve understanding of biogeochemical cycles. 26 

4. These model frameworks will generate improved predictive capacity of how changes in 27 

biodiversity regulate biogeochemical cycles in terrestrial ecosystems. Further, they will assist 28 

in developing a new generation of process-based models that include plant, microbial and 29 

faunal traits and facilitate dialogue between empirical researchers and modellers.    30 

 31 
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1. Introduction  32 

Recent improvements in computational power and co-ordinated research efforts into modelling 33 

ecosystem processes have advanced our understanding of biogeochemical cycles. However, a better 34 

understanding of the interactions between plants, microbes and animals is crucial to reduce 35 

uncertainty in carbon (C) cycling and the modelling of biogeochemical processes. Important aspects 36 

of these cycles include C turnover times (He et al. 2016), soil organic matter dynamics (Cotrufo et 37 

al. 2015), and soil carbon sink strength under a range of climate scenarios (Sofi et al. 2016). This 38 

will help address pressing challenges such as soil C loss and food security (Lehmann & Kleber 39 

2015). However, there is a gap between the requirements of modellers and the empirical data 40 

produced through experimental research. Empirical data related to the functional role of organisms is 41 

needed to parameterise models under a range of spatial and temporal scales, ecosystem types and 42 

abiotic conditions. The consideration of functional traits promises to generate data that can help 43 

inform biogeochemical models (Violle et al. 2007; Moretti et al. 2017). Functional traits are 44 

heritable, morphological, physiological or phenological attributes of organisms that affect their 45 

growth, survival or reproduction, and thus, indirectly, fitness (Reich 2014). Many traits are 46 

commonly categorised as ‘effect traits’ and/or ‘response traits’. Effect traits determine the effect of 47 

the organism on ecosystem processes, while response traits are characteristics that change in 48 

response to an external driver such as climate (Lavorel & Garnier 2002). Many traits may be both 49 

effect and response traits. Using functional effect traits instead of traditional diversity measures can 50 

generate more meaningful model predictions, because traits can offer mechanistic insight into the 51 

link between organisms and ecosystem function (Díaz et al. 2004; De Deyn, Cornelissen & Bardgett 52 

2008; Faucon, Houben & Lambers 2017).  53 

Traits have been widely used to predict how organisms influence ecosystem functioning, with a 54 

large focus on plant traits (Lavorel & Garnier 2002; Faucon, Houben & Lambers 2017). For 55 
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example, in tropical forests, stoichiometric traits of the tree canopy are strongly linked with nutrient 56 

cycling rates (Asner et al. 2015), while at local scales, physical and chemical traits of leaves and 57 

roots can affect soil C storage (De Deyn, Cornelissen & Bardgett 2008) and decomposition (Carrillo 58 

et al. 2017; Martin, Newton & Bullock 2017). One key advantage is that traits do not use taxonomy 59 

or numbers of species to infer function, which has previously been criticised (see the diversity-60 

stability debate; McCann 2000). The intense focus on plant traits has resulted in the discovery of 61 

resource-use and performance related strategies. For example, the ‘leaf economics spectrum’ uses 62 

three plant traits (leaf nitrogen content, specific leaf area and leaf lifespan) to describe a continuum 63 

ranging from ‘fast’ to ‘slow’ growing species that affects ecosystem functioning (Wright et al. 2004). 64 

The principles employed in this approach may also apply to microbes and fauna, and literature is 65 

beginning to emerge on this theme (Allison 2012; Krause et al. 2014; Aguilar-Trigueros et al. 2015).  66 

Soil microbes and fauna are key drivers of ecosystem processes, and contribute to ecosystem 67 

stability. However, frameworks to capture trait syndromes for soil organisms are in their infancy. 68 

Given the importance of soil microbes and fauna for biogeochemical cycles (Carrillo, Ball, Bradford, 69 

Jordan & Molina 2011; de Vries et al. 2013; Kardol, Throop, Adkins & de Graaff 2016), this 70 

represents a major hurdle when incorporating soil microbial and faunal traits into C and 71 

biogeochemical models. Furthermore, modelling ecosystem processes requires that traits must be 72 

constrained into the most parsimonious set of descriptors, so as not to overfit the model. Taking 73 

lessons learned from plant trait literature, it may be possible to identify microbial and faunal 74 

characteristics that are quantitatively linked to ecosystem processes to improve model 75 

parameterisation without exhaustive screening (Díaz et al. 2016; Kardol, Throop, Adkins & de 76 

Graaff 2016).  77 

Soil biogeochemical models have long been used to describe the processes of C and elemental 78 

cycling in soil, but plants and microbes, two of the key drivers of these processes, are typically 79 
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included only in reductionistic terms because of the difficulty of accurately characterising these 80 

groups of organisms (Wieder, Grandy, Kallenbach, Taylor & Bonan 2015). The increasing rate of 81 

collection of new data on plants, as well as soil microbes and fauna, offers an opportunity to build on 82 

the advances made by previous models  (e.g., CENTURY: Parton, Schimel, Ojima & Cole 1994; 83 

DAYCENT: (Parton, Hartman, Ojima & Schimel 1998); TEM: (Zhuang et al. 2011); CLM4: (Koven 84 

et al. 2013). Soil fauna have been included in biogeochemical models in broad terms, such as 85 

nematode and microarthropod biomass C (Grandy, Wieder, Wickings & Kyker-Snowman 2016; 86 

George et al. 2017). Increasingly, more nuanced models are possible due to better understanding of 87 

the role of faunal groups and availability of more comprehensive data on traits of these groups at 88 

different spatial and temporal scales. Evidence from soil food web models indicates that inclusion of 89 

plant, microbial and soil faunal traits and their interactions is imperative to improve the predictive 90 

power of biogeochemical models (Allison 2012; Wieder, Bonan & Allison 2013; Filser et al. 2016; 91 

Faucon, Houben & Lambers 2017; Funk et al. 2017). To move forward, we propose that gaps in 92 

knowledge of measuring and understanding functional traits must be addressed and general 93 

principles must be identified. 94 

Here we propose frameworks to incorporate plant, microbial and soil faunal traits in predictive 95 

models to better simulate the dynamics of biogeochemical cycles in terrestrial ecosystems. We use 96 

the decomposition of soil organic matter (SOM) as an example because it is a key driver of the 97 

terrestrial C cycle, and will likely be affected by global climate change (Davidson & Janssens 2006). 98 

Moreover, there are well-established mechanisms to suggest that plants, microbes and soil fauna 99 

interact in context-specific ways to influence decomposition (Swift, Heal & Anderson 1979; Allison 100 

2012; Filser et al. 2016), making them ideal candidates for inclusion in such models. First, we 101 

highlight knowledge gaps in the traits framework and the potential for sets of traits (e.g., 102 

stoichiometry, resource capture strategy) between plants, microbes and soil fauna to correlate. 103 
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Second, we seek to bridge the gap between modellers and experimental ecologists by outlining what 104 

types of data are feasible to collect and useful as inputs to models (Table 1). Finally, we discuss the 105 

uses and limitations of three types of commonly used models (explicit, integrated and implicit) and 106 

describe why incorporating traits from plants, microbes and fauna will help improve the predictive 107 

power of these models.  108 

 109 

2. The potential for using traits to describe biogeochemical processes  110 

Plant traits have been used extensively to understand the links between plant communities, 111 

ecosystem processes and environmental change (Funk et al. 2017). This approach has several 112 

advantages, including cost and time effectiveness, and the ability to scale trait distributions from the 113 

individual to the landscape level. For example, plant traits change predictably across climatic 114 

envelopes (Díaz et al. 2004), elevational gradients (Read, Moorhead, Swenson, Bailey & Sanders 115 

2014) and management regimes (de Vries et al. 2012). In fact, exploring plant traits across 116 

chronosequences (i.e., space-for-time substitution, as seen across successional gradients; Walker, 117 

Wardle, Bardgett & Clarkson 2010) has allowed for a better understanding of how traits can predict 118 

ecosystem processes at both temporal and spatial scales (Wardle, Walker & Bardgett 2004; 119 

Kumordzi et al. 2015). Arguably the most important aspect of functional traits is the strong links 120 

identified with biogeochemical processes. Soil C storage across biomes can be influenced by traits 121 

including leaf nitrogen (N) content and relative growth rate (De Deyn, Cornelissen & Bardgett 122 

2008), while similar traits drive decomposition (Carrillo et al. 2017). As such, aboveground plant 123 

traits have typically been considered to fall on a spectrum between those promoting fast and slow 124 

cycling of nutrients (analogous to r- and k-strategists in microbial commnuities), with plants with 125 

‘slow’ traits promoting the formation of more stable SOM than plants with ‘fast’ traits (De Deyn, 126 

Cornelissen & Bardgett 2008). Extending this paradigm to microbial and faunal groups may be 127 
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possible. For example, increasing leaf N is likely to increase palatability for soil fauna and microbes, 128 

and so N-rich leaves are likely to be preferentially decomposed by highly exploitative r-selected 129 

microbial and faunal groups. This suggests that plant, microbe and soil fauna traits might align in 130 

predictable ways (Box 1). However, the fast-slow decomposition paradigm has recently been 131 

challenged, with greater emphasis on the accessibility of SOM as opposed to the chemical 132 

composition (Lehmann & Kleber 2015). Therefore, relative resource use rates of the three groups 133 

may have important connotations for whether decomposable SOM is incorporated into microbial or 134 

faunal biomass. 135 

Recent literature has identified the most important microbial traits that can predict or be 136 

predicted by ecological processes (Aguilar-Trigueros et al. 2015; Treseder & Lennon 2015); (Table 137 

1). A key distinction has been drawn between free-living microbes and those dependent on host 138 

species. It is assumed that responses of the free-living species are more environmentally mediated, 139 

while microbes dependent on host species (e.g., mycorrhizal fungi, rhizobia) may respond primarily 140 

to cues from the host plant (Friesen et al. 2011; Crowther et al. 2014). Fungi can have mutualistic, 141 

pathogenic and saprotrophic life cycles, with accompanying variation in morphology, chemistry and 142 

resource use efficiency (Aguilar-Trigueros et al. 2015). This variation creates a major hurdle for 143 

those trying to find unifying principles across microbial groups. Additionally, the assembly of a free-144 

living fungal community is largely based on environmental gradients, with resource availability 145 

being a key determinant. This could mean a decoupling of plant and microbial community assembly 146 

processes under environmental stress (Box 1). Accordingly, Crowther et al. (2014) presented a 147 

continuum based on resource use, with highly competitive fungal taxa occurring in resource-rich, 148 

low-stress conditions, and stress-tolerant taxa occurring when resources are scarce or conditions are 149 

harsh. However, the problem herein is that many of these spectra account for ‘response traits’ not 150 

‘effect traits’, and are therefore potentially too variable or context-specific for models that aim to 151 
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predict ecosystem function. Further, resource availability for plants may not match resource 152 

availability for fungi, partly because of more conservative resource use, partly because of differing 153 

stoichiometric requirements (de Vries et al. 2012). A similar problem is likely to apply to bacterial 154 

distributions (Martiny, Jones, Lennon & Martiny 2015). Knowledge of abundances, or 155 

presence/absence of certain important bacterial groups with specific functional traits, such as 156 

methane oxidising bacteria and phosphate solubilising bacteria, is likely to be the most effective way 157 

of including bacteria in models, given the problems with dormancy (Fierer 2017) and defining 158 

bacterial species (Caro-Quintero & Konstantinidis 2012). 159 

Trait classifications for soil fauna are beginning to emerge. For example, Pey et al. (2014) 160 

suggest 20 trait measurements in five broad categories (morphology, physiology, feeding, life 161 

history, and behaviour) that can be utilised across invertebrates. Moretti et al. (2017) proposed 162 

standardized measurements for 29 traits known to be sensitive to global stressors and to affect 163 

ecosystem processes (Table 1). As fauna tend to be mobile, community weighted mean (CWM) traits 164 

may be useful to predict ecosystem processes. Traits such as feeding habit or body size are 165 

particularly responsive to environmental changes (Farská, Prejzková & Rusek 2014), and functional 166 

diversity metrics based on these traits are effective in describing decomposition (Milcu & Manning 167 

2011). We need to identify traits that can encompass the structure of the food web to be able to 168 

include several trophic groups and their interactions. Taken together, plant, microbial and soil faunal 169 

traits offer a way to improve the accuracy of biogeochemical models, but for the latter two groups, a 170 

crucial first step is to disentangle the role of response and effect traits.  171 

There are some issues concerning the integration of plant, microbe and soil fauna traits into 172 

biogeochemical models. One major consideration is the turnover rate of microbial and faunal 173 

communities. In contrast to plants, microbes and soil fauna often have a high turnover rate, and they 174 

can adapt their metabolism or feeding strategies quickly to new conditions. Additionally, faunal 175 
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composition may rapidly change. Resource use and turnover are likely useful traits to describe these 176 

groups, because they correlate directly with biogeochemical processes, with relative biomass of each 177 

group dictating the importance of that group in the system (Crowther et al. 2014; Fierer 2017). 178 

Further, we need to find a set of easily measurable descriptors for traits across all three groups that 179 

will describe key soil functions, such as decomposition, robustly across a range of conditions and 180 

biomes. There are potential shortcuts using prior knowledge obtained from the plant trait literature. 181 

The biomass ratio hypothesis states that the influence of an individual or species on a function is 182 

proportionate to its biomass in the ecosystem (Grime 1998). Therefore, it is possible that rather than 183 

measuring complex, continuous traits, categorical data such as feeding group could be constrained to 184 

an ordinal scale and weighted by abundance (i.e., CWM) (Fierer et al. 2014). Assessing activity of 185 

the whole community could offer a solution, and there are numerous methods, including the 186 

measurement of enzyme activities involved in decomposition and respiration rates, to achieve this. 187 

We also need to include interactions between plants, microbes and soil fauna into models 188 

because these interactions can have large effects on C fluxes (Johnson et al. 2005; Kanters, Anderson 189 

& Johnson 2015). Of primary consideration is the level of organization within soil food web 190 

communities. There are extensive data regarding the assembly of soil food webs associated with 191 

particular plant species that can inform explicit models (Yen et al. 2016), but such data needs to 192 

demonstrate quantitative correlations with biogeochemical cycling. However, it remains uncertain as 193 

to when, how and why these associations form and deteriorate across larger scales (Nilsson & 194 

McCann 2016). Furthermore, transfers of C and N between plants, microbes and soil fauna are 195 

relatively well characterized and have been used in models examining food web energy flows 196 

(Pausch et al. 2016). The next step is to apply this knowledge to test broader hypotheses (Table 2). 197 

Ideally, we need to know whether plant, microbial and faunal groups respond in the same direction 198 

under a given scenario. For example, under a drought event, plants may temporarily stop 199 
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photosynthesizing, thereby reducing root exudation, which leads to a reduction in bacterial biomass 200 

and thereby soil fauna (Box 1). There are likely to be other scenarios where one group can capitalize 201 

on the decline of the others, and these scenarios are likely to be unpredictable and thus difficult to 202 

include in models. Therefore, in order to create unifying principles across plants, microbes and soil 203 

fauna, it is imperative to identify traits that have robust relationships with function (e.g., nutrient 204 

requirements) and avoid highly plastic traits in order to be able to use them across large spatial scales 205 

and contrasting environmental conditions. 206 

 207 

3. Incorporating a trait-based approach into biogeochemical models 208 

Models require several data formats, depending on their scope. For example, an explicit 209 

decomposition model can use raw data from field experiments, such as CWM leaf traits or 210 

abundance of soil fauna. Integrated and implicit models, however, may need data in the form of 211 

correlation coefficients between the drivers of decomposition, as well as reasonable a priori 212 

parameter values. These requirements make it difficult to acquire appropriate data for such models. 213 

For the microbial and faunal traits, an ideal starting point would be to assemble databases of traits 214 

across ecosystems, climates and land use types (Burkhardt et al. 2014) that resemble the TRY 215 

database for plants (Kattge et al. 2011). However, as such databases are assembled for microbes and 216 

soil fauna, caution must be taken to account for variability in the data that might be due to inherent 217 

factors such as intraspecific variability, and the use of different methods to measure microbial and 218 

faunal traits. 219 

Recently, there has been considerable effort to develop working trait-based models, although 220 

at the time of writing, models are yet to include all three taxonomic groups (i.e., plants, microbes 221 

and fauna). For example, there are models based on plant community assembly (Xu, Medvigy, 222 

Powers, Becknell & Guan 2016), microbial processes (Allison 2012; Wieder, Bonan & Allison 223 
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2013; Wieder, Grandy, Kallenbach & Bonan 2014; Hararuk, Smith & Luo 2015), and certain faunal 224 

groups (van Bodegom, Douma & Verheijen 2014; Yen et al. 2016). However, model generalisation 225 

remains challenging due to their complexity, limited data availability and scalability. Uncertainty 226 

in modelling biogeochemical processes has two components, namely that arising from detail and 227 

precision in the data, and from the model itself (Keenan, Carbone, Reichstein & Richardson 2011). 228 

Quantification of data and model uncertainties is therefore imperative to determine the accuracy 229 

and interpretability of model predictions. Regardless of the type of model, it is important that they 230 

are continually tested using appropriate data, and that they are used in ecosystems where they have 231 

been developed and validated. The evaluation of a process-based model depends strictly on the 232 

quality, type and frequency of the measured values used to test the model. 233 

In order to construct an effective model for linking biological communities with decomposition 234 

rates across multiple trophic levels, there is a need for robust trait data that incorporates spatial and 235 

temporal elements. Although there have been numerous case studies exploring individual response or 236 

effect traits, little is known about interactions between traits (e.g., trade-off), association between 237 

response and effect traits across and within trophic levels, and variation of traits within and between 238 

species across space and time (i.e., trait plasticity) (Ackerly & Cornwell 2007; Krause et al. 2014). 239 

Belowground biotic traits, such as specific root length or microbial growth efficiency, have not been 240 

properly quantified in terms of their optima, intra- and interspecific variation, trade-offs, and 241 

functionality (Bardgett 2017; Laliberté 2017). Quantifying which traits affect which processes and 242 

how such relationships vary across space and time is vital for process-based models. As a first step, 243 

well-coordinated data collection efforts are needed on trait correlations along trophic and 244 

environmental gradients (Wieder et al. 2015). To achieve this, there is an urgent need to identify 245 

traits that are relatively easy to measure yet informative so that they strongly interact with 246 

environmental gradients and/or are crucial for fitness (McGill, Enquist, Weiher & Westoby 2006) 247 
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(Table 1). Once links between traits and ecosystem function have been established across contrasting 248 

spatial and temporal scales, it will be important to evaluate if their inclusion improves the predictive 249 

power of models. 250 

 251 

Types of models that will benefit from incorporating plant, microbial and soil faunal traits 252 

Depending on the complexity and the predictive power needed, microbes and soil fauna can be either 253 

explicitly or implicitly represented in an ecosystem model (Figure 1). Below we outline three 254 

possible frameworks to incorporate belowground organism traits and processes in biogeochemical 255 

models: 1) an explicit trait-based model framework that operates at the small scale (space or time, or 256 

both) and uses direct measurements of ecosystem properties 2) an integrated approach that operates 257 

at a medium scale and includes interactions between a model component on biogeochemical cycling 258 

and that on the soil food web, either of which could be populated with measured data; and 3) an 259 

implicit trait-based model framework that operates at a large scale (i.e., Earth system) and associates 260 

microbial and soil faunal functional groups with plant functional groups. To fit with the focus of this 261 

manuscript, we separated the models based on how microbes and soil fauna are represented in the 262 

models, as well as the spatial or temporal scale at which each model is best equipped to operate 263 

(Figure 1). The scope of this separation is to discuss possible frameworks to incorporate 264 

belowground traits into soil process based models. It should be noted that the classification system 265 

proposed here is not the only way such models can be grouped or defined.  266 

 267 

Explicit models 268 

Explicit models seek to parameterise relationships between variables, typically known as the 269 

dependent and independent variables. Such models in the context of biogeochemical cycling 270 

explicitly include microbial biomass. The goal of these models is to predict the dependent variable 271 
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(e.g., decomposition) (Parton, Schimel, Cole & Ojima 1987). Explicit trait-based models, such as 272 

those developed for the simulation of microbial communities (e.g., Allison 2012) and faunal 273 

communities (Filser et al. 2016), require extensive knowledge of the intra- and interspecific trait 274 

variation along environmental gradients and their effects on ecosystem pools and fluxes. Two major 275 

advantages of this approach are: (1) the explicit parameterization of traits allows for measured values 276 

as direct model input; and (2) complex interactions between organisms are allowed and may lead to 277 

emergent properties, such as top-down or bottom-up regulation of food web structure. For example, 278 

in Figure 1a, microbial communities could be represented by r-selected (Rmic) and K-selected (Kmic) 279 

groups, with Rmic defined by traits that exhibit fast-growing attributes that compete with plants for 280 

easily available nutrients, and Kmic as slow-growing, but able to utilize recalcitrant materials (e.g., 281 

Wieder et al. 2015). To simulate these processes, we need to determine the growth and nutrient 282 

uptake efficiencies of Rmic and Kmic, and the trait-function and trait-abiotic relationships. Further, the 283 

relationship between Rmic and Kmic and soil fauna (i.e., grazers, predators) will need to be better 284 

understood. This framework explicitly simulates trait trade-offs of different belowground biotic 285 

groups, which is useful for understanding fine-scale, non-linear system dynamics. Understanding of 286 

how belowground traits should be incorporated into the mathematical equations of such models has 287 

shown promising development (McCormack et al. 2017) (e.g., specific root length, Table 1). In 288 

addition, models incorporating this level of complexity may exhibit unrealistic simulation behaviours 289 

(e.g., Hararuk, Smith & Luo 2015). Explicit trait-based models will benefit from efforts that quantify 290 

how the traits of different biotic groups affect ecosystem processes across different ecosystems, 291 

which may be achieved through meta-analysis and enhancement of trait databases (Table 2; Funk et 292 

al. 2017). 293 

 294 

Integrated models 295 
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Integrated models are a mix of measured and inferred variables. These process-based models have 296 

been developed from an understanding of how soil is affected by its abiotic and biotic properties, 297 

land management and climate (McGill 1981; Smith et al. 1998). This approach integrates 298 

biogeochemical and soil food web (i.e., microbial and soil faunal interactions driven by inputs from 299 

plants) models (see Table 2 for examples of potential research questions). Here, mass and C are 300 

recycled in the former model, and plant, microbial and soil faunal functional traits affect the rate of 301 

mass transfer as a consequence of simulation in the latter (Figure 1b). These two models operate at 302 

different timescales and spatial resolutions, as the biogeochemical model does not directly simulate 303 

population demography and community assembly. The level of complexity of the soil food web 304 

model varies depending on the research question and data availability, with soil food webs either 305 

condensed into a metric of biodiversity or explicitly represented by their respective plant, microbial 306 

and soil faunal groups. A metric of community diversity could be calculated for the soil food web 307 

model and used to modify the rate of decomposition in the biogeochemical model (dashed arrows in 308 

Figure 1b). For this integrated model to work, however, connections on how soil food webs affect 309 

elemental transfers, and how plant ecophysiology affects competition and demography must be 310 

quantified. Additionally, the ability to track changes in vegetation functional trait composition 311 

through time and space without tracking species composition along different trophic levels is 312 

necessary.  313 

 314 

Implicit models 315 

Finally, implicit models are often used to attempt to predict functions or processes at the global scale. 316 

Well-known examples of implicit models include the CENTURY model, which predicts soil C, N 317 

and nutrient turnover based on SOM turnover and plant functional type (Parton, Schimel, Ojima & 318 

Cole 1994). Implicit trait-based models (Figure 1c) incorporate belowground biotic traits by making 319 
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the assumptions that microbial and soil faunal functional traits have clear associations with plant 320 

functional traits, and their responses to environmental perturbations are similarly predictive (see Box 321 

1; Table 2). Such an approach would allow Earth system models to maintain the basic structure of 322 

their simulation of decomposition. Implicit models assume that plant attributes exhibit top-down 323 

control on processes such as decomposition. Therefore, microbial and soil faunal groups are 324 

expected to be adapted to such controls. This means that relationships between diversity, disturbance 325 

and productivity are well established in a given location. Most of the existing land surface models 326 

operating at large spatiotemporal scales have adopted this approach (e.g., CLM: Yang et al., 2014; 327 

CABLE: Wang et al., 2010; O-CN: Zaehle & Friend, 2010). 328 

While this approach enables Earth system simulations at coarse spatial resolutions, at the time of 329 

writing, such simulations cannot incorporate intraspecific trait variation of microbes and soil fauna 330 

and their potential consequences for ecosystem processes. The possibility that plant, microbial and 331 

faunal traits do not respond similarly to stress, and are not subject to the same spatial or temporal 332 

patterns, are also beyond the scope of the current models because of limitations in data (Box 1). One 333 

solution could be the integration of statistical tools such as Bayesian hierarchical modelling to 334 

estimate intraspecific trait variation and species interactions (Funk et al. 2017). However, this only 335 

provides a probabilistic estimate of the consequence of multiple ecosystem processes. Nevertheless, 336 

this approach represents a compromise among factors such as data availability, scalability and 337 

predictive power, and is practical based on existing Earth system models.  338 

 339 

The way forward  340 

Ultimately, without improved communication between those who collect empirical data and those 341 

who model biogeochemical cycles, efforts to close the knowledge gaps are doomed to fail. Here we 342 

suggest five important steps to unite research efforts: 343 
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1. Determine standardised approaches to measure microbial and soil faunal traits. Plant 344 

traits are typically easier to measure than microbe and soil fauna traits (Table 1), but this 345 

hurdle must be overcome in order to successfully populate models with traits from all three 346 

groups.  347 

2. Determine which plant, microbial and soil faunal traits are the best predictors. Traits 348 

that are associated with resource economy and stoichiometry are strong contenders, but traits 349 

linked to morphology and longevity cannot be overlooked, as they potentially infer links with 350 

amount of resources added to the system and turnover rate (Table 1). This stage will require 351 

that models are run and their validity checked by comparing predicted outputs to real data.  352 

3. Acquire knowledge about the interactions between traits, between individuals (within 353 

and between taxonomic groups), and trade-offs that might affect the model’s predictive 354 

ability. For example, increasingly, alignment between mycorrhizal fungi and plant hosts are 355 

known and can be included in models. Including data on habitat filtering of various 356 

taxonomic groups from a trait based perspective would be extremely useful. 357 

4. Determine whether plant, microbe and fauna traits align in a predictable way, 358 

particularly in response to stress and trophic and environmental gradients. Assessing 359 

the plasticity and inherent intraspecific variation of traits and also including “extended 360 

phenotypes” (e.g., pathogen susceptibility, rhizosphere community composition), as traits 361 

themselves would help achieve this goal.  362 

5. Determine how to generate the best data for the different model types (i.e., explicit, 363 

integrated, explicit). This aim requires close dialogue between modellers and field 364 

ecologists to determine which questions can be answered using different models (Table 2).  365 

 366 
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More generally, when designing large scale or long-term empirical studies, we recommend including 367 

the expertise of a modeller, in order to ensure the data is appropriate for use in models. Only through 368 

integration of plant, microbial and soil faunal traits, as well as a more robust dialogue between 369 

modellers and empiricists, will the next generation of biogeochemical models more accurately 370 

represent Earth system processes. 371 
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Figure 1. 378 

 379 

  380 

Figure 1. Three biodiversity-biogeochemical model types that could be developed to incorporate 381 

biotic traits of plants, microbes and soil fauna. A) An explicit small-scale trait model that simulates 382 

plant traits (e.g., root and shoot stoichiometry, quality) and microbial traits (e.g., r- versus K-383 

selected, carbon use efficiency) and trade-offs, with the transfer of carbon between the soil food web 384 

(including trophic cascades) and soil biogeochemical cycling (e.g., decomposition) explicitly 385 

simulated. B) An integrated small-scale model through the connection of a biogeochemical model 386 
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and a soil food web model. Carbon moves through the biogeochemical model, whereas the soil food 387 

web model simulates functional trait attributes or community metrics of different plant functional 388 

types (PFT), r- and K-selected microbes and soil fauna such as grazers and predators. Such models 389 

only provide output to influence the rate of carbon movement in the biogeochemical model, here 390 

decomposition. C) An implicit large-scale model, with microbial functional types (MFT) coupled 391 

with PFT. Traits are used to parameterise the association and trade-offs among MFT and PFT. 392 

Therefore, the traditional decay rate constant for soil organic matter is replaced by MFT-specific 393 

functions that account for the size and type of the target MFT and abiotic factors (e.g., temperature, 394 

energy transfer, soil pH). Soil organic matter that is decomposed is partitioned into fast, slow and 395 

passively cycling pools to better account for variability in soil residency time. Scalability is enabled 396 

through this approach, making such models more useful for Earth system modelling. Boxes represent 397 

different physical and biological pools, and lines represent different coupling relationships (i.e., 398 

explicit, integrated, implicit).  399 
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Table 1. Hypothetical a priori usefulness and measurability of plant, microbial and faunal traits to our proposed explicit, integrated and implicit 400 

biogeochemical models. Note that the measurability designations of easy, medium and hard in this table are approximations and may vary across 401 

ecosystems and focal species. 402 



 23 

Taxa Trait Measurability of trait Usefulness for model References 

  Easy Medium Hard 
Explicit 

model 

Integrated 

model 

Implicit 

model 
 

Plant Morphology Growth form  

Height  

Leaf area  

Rooting architecture 

 Root diameter 

Root area 
 

  

(Cornelissen 

et al. 2003) 

Longevity Relative growth rate 

Life span 

Seed mass 

Seed number  

Seed bank longevity 

Dispersal 

  

   

Stoichiometry Leaf/root C, N, P 

content/ratios 

 

  

   

Resource economy Leaf dry matter  

Leaf toughness  

 

Specific leaf area 

Photosynthetic/ 

respiration capacity 

Regulation of 

stomatal 

conductance (g1) 

Specific root length 

   

Microbe Morphology Fungi: Hyphal 

exploration type 

Bacteria: Gram 

negative or Gram 

positive  

Fungi: Mycelial 

architecture 

Hyphal length 

Maximal hyphal 

growth rate 

 

 

  

(Aguilar-

Trigueros et 

al. 2015; 

Buchkowski, 

Bradford, 

Grandy, 

Schmitz & 

Wieder 2017) 

Longevity All:  Growth rate  

 

All:  Death rate 

Predation 

Competition  

 

 

 

 
 

Stoichiometry 
 

All: C:N:P ratios   
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403 

Resource economy Fungi: Hyphal 

diameter  

Chitin wall thickness 

Free-living to symbiotic 

Bacteria: Feeding 

substrate  

Substrate affinity Free-

living to symbiotic  

Fungi: Production 

of non-enzymatic 

substances 

(antibiotics) Enzyme 

activity 

Bacteria: C use 

efficiency 

Community 

dynamics  

 

 

 

 
  

Fauna Morphology Mode of movement 

Aggregation 

/gregariousness  

 

  

 
 

 

(Pey et al. 

2014) 

Longevity Egg size  

Clutch size  

Age at maturity 

Population density  

Growth rate  

Life span 

 

 
 

 

Stoichiometry C:N:P ratios   
 

  

Resource economy Feeding substrate 

 

Activity time  
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Table 2. Questions that can be addressed by different trait-based ecosystem models. Explicit, 404 

integrated and implicit models are best equipped to answer ecological questions across fine, medium 405 

and large spatial and/or temporal scales, respectively, and therefore the questions are organised to 406 

reflect this hierarchy. 407 

Type of model Potential questions 

Explicit model  

How can a particular trait be incorporated into an ecosystem model? 

How do different ecological strategies that are represented by different 

combinations of traits affect ecosystem fluxes and pools? 

What emergent processes arise from introducing complexity into soil C 

cycling? 

Integrated model 

How do alterations to the soil food web influence soil C storage? 

Is soil C storage differentially affected by ‘top-down’ vs. ‘bottom-up’ 

control of soil food webs? 

How does drought influence soil C storage? 

How does an increase in productivity change food webs? 

How does land management influence CO2 emissions? 

How does earthworm invasion influence soil organic matter dynamics? 

How do changes in diversity affect soil organic matter composition? 

Implicit model 

What is the effect of land use or management change on soil C stock? 

How does spatial variation in the projected changes of climate drivers 

influence soil C storage? 

How does global warming affect soil C stocks? 

408 
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Box 1. Connecting traits across groups: plants, microorganisms and animals  409 

A number of paradigms have been proposed to classify organisms within groups according to their functional traits. For example, 410 

 Grime (1977) proposed the competitor/stress tolerator/ruderal (C-S-R) framework to explain how plants with different traits adapt under 411 

different environments. Wright et al. (2004) built upon this concept, suggesting that plants can be globally classified along a spectrum 412 

from those that are fast growing and promote fast nutrient cycling, to those that grow more slowly and promote slower nutrient cycling, 413 

known as the ‘leaf economics spectrum’. It would be desirable from a modelling perspective to align functional effect traits across plants, 414 

microbes and soil animals using one of these existing paradigms, but this presents challenges. Microbes have generally been classified 415 

along an r-selected to K-selected continuum, which has been the main framework for including microbes in models (Figure 1; Wieder et 416 

al. 2015). Further, soil animals exhibit ‘behavioural traits’ (Pey et al. 2014), adding additional complexity, and allowing them to readily 417 

move between resource patches. Attempting to create such frameworks for soil animals is still in its infancy, though recently there has 418 

been growing interest in attempting to describe the patterns (Grandy, Wieder, Wickings & Kyker-Snowman 2016). Certain links among 419 

groups of organisms are relatively well established, particularly between plants and microbes. For example, out of 30 commonly measured 420 

plant functional traits (Cornelissen et al. 2003), 14 have been identified as microbial mediated (Friesen et al. 2011). One way to further 421 

develop these known links is to consider a ‘bottom up’ scenario, where plants influence microbes, which influence fauna in a simple 422 

hierarchy. This is likely to select for different characteristics (i.e., different sectors of the C-S-R framework) for each group. For example, 423 

a stressed plant (S) is likely to offer an increased resource pool due to root sloughing and exudation, which would favour the ruderal-424 

selected microbial community (R), which could offer opportunities for competitive groups of soil fauna (C). This is depicted in a 425 

conceptual diagram showing C-S-R triangles rotated accordingly across taxonomic groups (see inset a). Krause et al. (2014) adapted the 426 
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C-S-R framework to explain microbial community functional traits, arguing that microbial communities employ similar strategies to those 427 

used by plants. We suggest that on small or local scales, they often do not. This is because plants, microbes and animals operate at 428 

different spatial, temporal scales and resource requirements, and a catastrophic event for one group could lead to an opportunity for 429 

another (e.g., Birch 1958). Conversely, overall patterns of resource economy have been identified across larger landscape scales that 430 

indicate that there are general patterns that may align with management intensity or climate. Intensive management often increases 431 

nutrient availability, which selects for ‘competitive’ plant species (C) and bacterial-dominated food webs. Nutrient poor ecosystems select 432 

for stress-tolerant (S) species, which leads to fungal-dominance (de Vries et al. 2012; de Vries et al. 2013, see inset b). This may therefore 433 

be an appropriate assumption for larger scale implicit models, and thus plant functional type may be sufficient to infer the activity of the 434 

rest of the soil food web (but see van Bodegom et al. (2012)). Please note that the C-S-R framework highlighted here is only one possible 435 

scenario under which plant, microbial and soil faunal trait spectra may align. Alternative alignments of trait spectra between plants, 436 

microbes and soil fauna that could help inform the creation of models are certainly possible. 437 
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