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18 Abstract

19 The Krafla geothermal area in northern Iceland comprises one of the best studied examples of 

20 a high temperature geothermal field associated with an active volcanic rift zone. Of key importance to 

21 improved resource exploration and development in volcanic areas such as Krafla, is the interpretation 

22 and understanding of the subsurface geology. Within this study we present results from an integrated 

23 analysis of the downhole volcanic stratigraphy from the K-18 borehole within the Krafla caldera based 

24 on combined wireline, ditch cuttings, and zero-offset VSP (vertical seismic profile) analyses. This study 

25 presents the first published sonic log velocity data from a high temperature geothermal borehole in 

26 Iceland and clearly demonstrates the importance of borehole velocity data for improving volcanic facies 

27 interpretations. The shallow subsurface geology of the K-18 site from c. 0-380 m comprises an inter-

28 layered sequence of sub-aerial basaltic lavas, hyaloclastites and tuffaceous lithologies of both felsic and 

29 basic composition, which are progressively replaced by basaltic sheet intrusions with increasing depth. 

30 An interval of variably basic to more evolved mixed tuffaceous facies is identified based on cuttings 

31 analysis, gamma and sonic velocities between c. 790-1120 m depth. Discrete high sonic Vp units cut 

32 the lower c. 100 m of this interval and are interpreted as either sheet intrusions or lava interiors. At c. 
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33 1800 m, a sharp increase in P-wave velocity from c. 4.5 to c. 5.5 km/s, represents the transition from a 

34 mixed lava and sheet intrusion dominated sequence, into a dense basic intrusion forming the local 

35 basement that persists to the bottom of the borehole at c. 2215 m. Reduced travel time analysis of 

36 processed zero-offset VSP results reveal good correspondence with the major stratigraphic boundaries 

37 in the borehole, supporting the potential for VSP studies to robustly characterize complex volcanic 

38 stratigraphy in high temperature geothermal fields. Finally, the application of percentage-based ditch 

39 cuttings analyses methods for volcanic facies analysis in geothermal boreholes is tested and assessed to 

40 have future potential.

41

42 1. Introduction

43 Geothermal resources form a critical component of the global energy budget, and are

44 extensively exploited within a wide range of geological settings for production of clean and often 

45 relatively cheap energy globally (Fridleifsson, 2001; Lund et al., 2005). Understanding and experience 

46 relating to the commercial development of high temperature geothermal systems has been pioneered in 

47 countries such as Iceland over the past few decades (Ármannsson et al., 1987; Guðmundsson, 2005; 

48 Flóvenz and Steingrímsson, 2009) with geothermal energy providing around 90% of Iceland’s buildings 

49 (Flóvenz and Steingrímsson, 2009), and approximately 25% of its electrical production. In Iceland, high 

50 temperature geothermal fields are associated with volcanic settings, often including systems closely 

51 linked to still active volcanic systems, such as along the Reykjanes peninsula and at the Krafla caldera,

52 both located above onshore extensions of the Mid-Atlantic Ridge. One of the more spectacular 

53 demonstrations of this linkage was observed during the IDDP (Iceland Deep Drilling Program) at 

54 Krafla, where the IDDP-1 borehole intersected a molten rhyolitic intrusion at c. 2.1 km depth (Elders

55 et al., 2014). One of the key objectives of the IDDP program was to investigate the potential for 

56 economically exploiting supercritical hydrous fluids at drillable depths (Fridleifsson and Elders, 2005). 

57 The critical point for pure water occurs at 374°C and 22.2 MPa (increasing with dissolved components), 

58 and it has been estimated that the power output for a borehole utilizing supercritical fluids may produce 

59 an order of magnitude more energy than from a sub-critical conventional high temperature borehole 

60 (Fridleifsson and Elders, 2005; Elders et al., 2014; Scott et al., 2015).

61 An important aspect of improving exploration for high temperature and supercritical 

62 geothermal reservoirs in volcanic settings is the sub-surface sampling, imaging and interpretation of the 

63 geological conditions that host geothermal reservoirs. Imaging problems associated with heterogeneous 

64 basaltic sequences are well known from the reflection seismic and borehole literature (e.g. Pujol and 

65 Smithson, 1991; Planke, 1994; Planke et al., 2000; White et al., 2003; Nelson et al., 2009). Where 

66 possible, any seismic interpretation through volcanic successions can be further informed with other 

67 remote sensing techniques e.g. gravity, magnetics, resistivity, MT, etc. (e.g. Hautot et al., 2007; Jerram 
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68 et al., 2009; Abdelmak et al., 2016). Where boreholes are available, further information from e.g. 

69 wireline, VSP, borehole imaging (e.g. Planke and Eldholm, 1994; Christie et al., 2006; Watton et al., 

70 2014a; Millett et al., 2015), cuttings data (e.g. Millett et al., 2014), and in some cases core material (e.g. 

71 Watton et al., 2014b) can be incorporated. In the majority of cases, however, only some of these data 

72 will be available to base interpretations on.

73 Down borehole VSP (vertical seismic profile) investigations provide a potentially valuable 

74 technique for characterizing sub-surface volcanic sequences due to their resolution and depth of 

75 investigation lying in between that of surface seismic (moderate to low vertical resolution, wide lateral 

76 coverage) and wireline logging (high vertical resolution with very limited horizontal depth of 

77 investigation away from borehole). VSP experiments have been demonstrated to yield valuable 

78 information when applied within basaltic volcanic sequences including facies boundaries, faults, 

79 alteration variations, volcaniclastic and interbed lithologies, and the presence of intrusions etc. (Pujol 

80 and Smithson, 1991; Planke and Eldholm, 1994; Planke and Flóvenz, 1996; Shaw et al., 2008; Christie 

81 et al., 2006; Petersen et al., 2015). VSP techniques therefore, provide a potentially highly valuable 

82 exploration tool for volcanic geothermal fields but have, to date, not been widely tested or applied, 

83 especially for high temperature volcanic settings such as at Krafla. The Larderello geothermal field in 

84 Italy (Santilano et al., 2015), forms one notable exception where VSP has been extensively used to 

85 image deep structures (Vanorio et al., 2004).

86 As part of the European Union funded IMAGE project (Integrated Methods for Advanced 

87 Geothermal Exploration: http://www.image-fp7.eu), a series of zero- and far-offset vertical seismic 

88 profile (VSP) experiments were conducted within two wells, K-18 and K-26, at the Krafla high 

89 temperature geothermal field in May and June 2014 (Halldórsdóttir et al., 2014; Planke et al., 2016; 

90 Kästner et al., this volume). These experiments comprise the first of their kind for high temperature 

91 geothermal boreholes on Iceland. The goal of acquisition was to investigate the applicability of the VSP 

92 technique for imaging features such as lithological boundaries, intrusions, fracture zones and fluids to 

93 aid exploration within the heterogeneous basalt dominated subsurface sequence at the Krafla high 

94 temperature field and other similar settings. 

95 Sonic log data was also collected within K-18 as part of the IMAGE project, comprising the 

96 first results of its kind for a high temperature geothermal borehole on Iceland (Hersir et al., 2016). Sonic 

97 log data is used extensively in volcanic borehole studies around the world and forms a vital link to lower 

98 vertical resolution VSP and seismic data (Planke, 1994; Planke et al., 1999; Nelson et al., 2009; Millett 

99 et al., 2015). Additional to wireline data, high quality ditch cuttings data is routinely utilized to inform 

100 the geological interpretation of geothermal boreholes on Iceland (Guðmundsson, 2005). As part of this 

101 study we undertook a re-evaluation of the K-18 ditch cuttings data, to test the applicability of recent 
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102 developments in off-shore volcanic ditch cuttings analysis (e.g. Millett et al., 2014; 2015) for 

103 geothermal fields.

104 Within this study we present analyses of new processed zero offset VSP data, borehole sonic, 

105 borehole televiewer (BHTV), pre-existing wireline data (calliper, gamma, neutron and resistivity logs) 

106 and new ditch cuttings analysis for the K-18 borehole. The objective of this study is to create a robust 

107 integrated geological interpretation of the K-18 borehole. Developments in volcanic ditch cuttings 

108 analysis are presented and discussed along with an appraisal of the importance of sonic log velocity 

109 data for volcanic borehole analysis. Importantly, our study demonstrates that zero-offset VSP data can 

110 effectively image complex volcanic sequences in high temperature geothermal settings. Our results lend 

111 strong support for further testing and the future deployment of the VSP technique as an exploration 

112 technique in high temperature volcanic geothermal settings on Iceland and elsewhere. 

113

114 2. Geological setting

115 The Krafla high temperature geothermal area is situated in Iceland’s northern volcanic zone, 

116 which comprises the on-land extension of the Kolbeinsey Ridge (Figure 1). The Kolbeinsey Ridge in 

117 turn represents a segment of the Mid Atlantic Ridge and the centre of spreading between the NW 

118 European and E Greenland conjugate rifted continental margins. The Krafla area is believed to have 

119 been active for at least the last 200,000 years and is dominated by an active central volcano with two 

120 associated caldera structures, which is intersected by a NE-SW to N-S oriented fault and fissure swarm 

121 system with different rift opening directions, due east, north of the caldera, and due SE, south of the 

122 caldera (Sæmundsson, 1991). The fissure swarm crossing the centre has widened by some tenths of 

123 meters every ten thousand years, resulting in the oblique-elliptical shape of the caldera (Sæmundsson, 

124 1991). 

125  The volcanic activity at Krafla is episodic and basalt dominated although more evolved 

126 eruptions and magmas are also well documented (Sæmundsson, 1991; Tuffen and Castro, 2008; Elders 

127 et al., 2014). Eruptions occur at 250-1000 year intervals, each episode lasting 10 to 20 years 

128 (Ármannsson et al., 1987). The magma chamber and source for the geothermal system, was identified 

129 at c. 3-8 km depth by geophysical analyses during the 1975-1984 ‘Krafla Fires’ volcanic activity 

130 (Einarsson, 1978). The oldest exposed rocks in the Krafla central volcano are hyaloclastites from the 

131 2nd to last glaciation (e.g. younger than 190,000 years) that probably overlay complex lava flow series 

132 (>190,000 years) that are exposed at Reykjahlíðsheiði and Grímsstaðaheiði (Sæmundsson, 1991). 

133 During the following interglacial period, the Eem interglacial (126,000-115,000 years), extensive areal 

134 lava flows and terrestrial land topography were typical, which is covered by explosive rhyolitic deposits 

135 caused by large scale eruptions during the early stages of the Weichsel ice age (115,000-60,000 years) 
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136 (Sæmundsson, 1991). These events are believed to have caused the formation of the inner caldera of 8 

137 by 10 km width around 80,000 years ago. 

138 During the last glaciation, the caldera was dominantly filled with sub-glacial volcanics and 

139 subsided c. 100 m (Ármannsson et al., 1987). The dominant features within the caldera fill are 

140 hyaloclastite ridges oriented parallel to the fissure swarm and finally by post-glacial lava flows 

141 (Ármannsson et al., 1987). The Víti explosive crater formed in 1724 at the beginning of the Mývatn 

142 Fires eruptive episode and is the youngest volcanic feature within the Geothermal field area 

143 (Sæmundsson, 1991). Approximately 1500-2000 m of subsurface volcanic strata within the inner 

144 caldera have no surface expression. An extensional WNW-ESE low gravity lineament described by 

145 Árnason et al. (2008), and Weisenberger et al. (2015) is believed to have been mostly filled with 

146 hyaloclastites prior to the events observed at the surface present day. 

147 Numerous fumaroles along with extensive surface alteration within the Krafla caldera triggered 

148 systematic geothermal exploration of the area in 1970 with surface followed by subsurface exploration 

149 (Ármannsson et al., 1987). Exploration drilling started in 1974 and led to the development of the field 

150 and today a 60 MW power plant is operated from the Krafla geothermal field (Nielsen et al., 2000; 

151 Flóvenz and Steingrímsson, 2009).

152 A mixed sequence of lavas and hyaloclastites are encountered below surface of the Krafla field 

153 down to ca. 1.5 km, which are progressively replaced by a dominantly intruded sequence below this 

154 depth. The subsurface sequence is also dominated by basaltic compositions but occurrences of more 

155 evolved intrusive granophyres and felsites are also recorded within the intruded sequence (Mortensen 

156 et al., 2014). Scientific deep drilling in the Krafla caldera (IDDP Iceland Deep Drilling Project) was 

157 undertaken in 2008 to investigate the existence and production potential of zones of super critical fluids 

158 (Friðleifsson et al., 2013). The well encountered rhyolitic magma at a depth of c. 2.1 km (Mortensen et 

159 al., 2014). Magmatic gas influxes to the geothermal system during the Krafla Fires and at other times 

160 have significantly contaminated the water compositions of parts of the geothermal system causing 

161 deposition and corrosion in production wells (Ármannsson et al., 1987). 

162

163 3. Data and methods

164 The K-18 borehole is located within the Krafla caldera (Figure 2) and was drilled in the eastern 

165 part of the geothermal field in 1981. The borehole is c. 2215 m deep and cased to 663 m. K-18 was 

166 drilled with deviation not exceeding 1-2° from vertical, resulting in <20 m total horizontal shift between 

167 the top and bottom of the well (Árnadóttir, 2014). The borehole did not encounter any productive feed 

168 zones, testing only smaller scale feed zones (Guðmundsson, 1981). The temperature of the K-18 well 

169 is also significantly lower than in neighbouring wells (e.g. K-17) suggesting a barrier to fluid 
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170 connectivity between these sites. For these reasons, the K-18 well was never brought online as a 

171 production well. The geology encountered within the well comprises a mixture of lava flows and mixed 

172 volcaniclastic/hyaloclastite facies that becomes increasingly dominated by intrusions with depth 

173 (Ármannsson et al., 1987).

174 Washed and dried ditch cuttings, sonic log P-wave velocity, resistivity (deep 64” and shallow 

175 16”), gamma ray, caliper, neutron counts and acoustic televiewer logs, along with zero offset VSP 

176 velocity data were available for this study (Table 1). Throughout this paper we have defined sections of 

177 stratigraphy with similar properties for each of the separate methods in, order to aid discussion in the 

178 text. Cuttings intervals with similar properties are divided into cuttings Groups 1-8, wireline log 

179 intervals are referred to as Units 1-5 along with sub-units, and VSP RTT (reduced travel time) intervals 

180 are referred to as Intervals L1-L10. The basis for these divisions are outlined in detail within the results 

181 section. In the remainder of this section, a description of the specific analysis and methodologies used 

182 to inform this contribution are presented.

183

184 3.1 Ditch cuttings analysis

185 Washed and dried ditch cuttings (small rock chips from the drill bit returned to the surface via

186 the drilling fluid), collected at 2 m intervals during drilling, were available for assessment for the entire 

187 borehole. Cuttings analysis was undertaken during drilling of the original well in 1981 (Guðmundsson 

188 et al., 1981), as is standard practice on Iceland. The purpose of reanalysing the well was to appraise the 

189 applicability of recent developments in volcanic ditch cuttings analysis (e.g. Millett et al., 2014; 2015), 

190 developed from offshore boreholes, to K-18 and volcanic geothermal wells in general. The focus of the 

191 study was to investigate the volcanic facies encountered in the borehole. The wide range of temperature 

192 diagnostic alteration minerals, used to identify the sub-surface thermal conditions of geothermal fields, 

193 is not investigated in this study, and for these, the original report is consulted (Guðmundsson et al., 

194 1981).

195 Ditch cuttings samples may incorporate many artefacts during the drilling and recovery process 

196 relating to drill bit variations, rate of penetration, differing competency of lithologies, cavings, mixing 

197 and time lags in transport etc. (Figure 3). In order to account for some of these challenges, the 

198 classification scheme of Millett et al. (2014) is utilized within this study which involves a non-genetic 

199 percentage based recording system based on the ternary diagram presented in Figure 4. Recovered 

200 cuttings assemblages are divided into the broad end-members: 1. crystalline/scoriaceous, 2. volcanic 

201 glass, and 3. epiclastic / bole, which at the basic level should include all cuttings populations derived 

202 from a volcanic sequence. One key advantage of this system of recording is that log style outputs can 

203 be generated and compared to associated wireline log signatures prior to a genetic interpretation of the 

204 assemblage. This basic form of analysis can then be complemented by more detailed observations 
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205 (texture, mineralogy, alteration, etc.) and associated interpretations, as permitted by time during 

206 operations and / or cuttings quality. Importantly, the system reduces the dependence on an interpretation 

207 based method of recording primary observations/data, which can limit the potential for later reappraisal 

208 and inter-well correlation.

209 Within the present study, the crystalline and volcanic glass end members have been sub-divided 

210 into three components each to better inform the facies assessment based on the recovered material. The 

211 crystalline end member is divided into crystalline basalt, vesicular and leucocratic, and the glass end 

212 member is split into glass, vesicular, and tuffaceous/pumice. Leucocratic crystalline material within this 

213 study refers to pale coloured cuttings relative to fresh basalt properties and at the basic level includes 

214 both more evolved compositions along with samples that may have been chloritized or leached, the 

215 distinction potentially requiring petrography depending on the case. Figure 4 displays an example 

216 interval of the raw output from the K-18 cuttings analysis. For the purposes of this study a subjective 

217 0-5 scale (zero to complete alteration) was also included for each assemblage but it is noted that the 

218 scheme is flexible and any feature or index can be added easily such as index alteration minerals, 

219 detailed crystal size assessment or oxidation percent. The detail and scope of analysis and data recording 

220 possible for each depth interval are intimately linked to time, and therefore, the strategy for analysis 

221 must be tailored differently e.g. for real-time ROP (rate of penetration) dependent analysis compared to 

222 post-well less time pressured analysis. The cuttings analyses presented within this contribution, 

223 although undertaken post-drilling, included only five days of analysis, making the depth of investigation 

224 restricted accordingly.

225 3.2 Wireline data

226 A range of wireline log data, both from the initial logging of K-18 in 1981, and from the 

227 IMAGE funded VSP experiments in 2014, were made available for this study (Table 1). Wireline profile 

228 analysis through the K-18 borehole facies was undertaken with reference to the extensive literature on 

229 volcanic wireline responses (e.g. Planke, 1994; Planke and Cambray, 1998; Helm-Clark et al., 2004; 

230 Bartetzko et al., 2005; Nelson et al., 2009; Watton et al., 2014a; Millett et al., 2015). Of key focus was 

231 the newly acquired sonic log data for K-18, acquired using a Robertson Geologging (RG-LSS) Slim 

232 Full-Waveform Sonic tool which continuously logged the open-hole section (c 660-2170 m) (Hersir et 

233 al., 2016). During acquisition, transit times were derived from automatically picked travel times using 

234 a first-arrival edge detection based on a standard threshold method. In subsequent processing, a depth-

235 derived borehole compensation yielded the compensated transit times of the compressional first arrivals 

236 (μs/ft), which were converted to seismic P-wave velocities (km/s), which will be presented throughout 

237 this contribution. 

238 Neutron log data was recorded in the upper section above c. 663 m prior to casing, but no sonic 

239 log data was collected within that interval, therefore to gain insight into the likely velocity structure of 
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240 the shallow borehole, the relationship between neutron and sonic data from the open hole section was 

241 used to predict the sonic response for the cased section of the borehole. The neutron log measures the 

242 attenuation and capturing of emitted high-energy neutrons, between a source and receiver, by the 

243 formation. Hydrogen has the greatest effect on neutron capture hence the volume of H2O within a 

244 formation has a predictable effect on the resulting neutron count (API) for known matrix compositions 

245 and can be calibrated to give porosity. However, neutron log data cannot be used to estimate porosity 

246 directly for altered volcanic rocks, where many alteration and secondary mineral species contain bound 

247 or structural water, e.g. clays and zeolites, which would require comprehensive XRD data analysis for 

248 neutron log calibration (e.g. Broglia and Ellis, 1990). The neutron data is therefore presented as API 

249 counts within this contribution and the general relationship that API counts reduce with increasing 

250 porosity and hydrous alteration products. 

251 Figure 5 displays compressional velocity Vp (km/s) versus neutron (API) for the open hole 

252 section of K-18, with a clear positive correlation, albeit with significant scatter between the two 

253 properties. A manually fitted composite linear function gives a closer fit to the data spread than a single 

254 logarithmic fit, especially at the lower and higher API ranges (Millett et al., 2016a). The use of a manual 

255 fitting approach to the data is justified due to the wide range of facies with different intrinsic properties 

256 and data ranges along with the alteration effects described above (Figure 5a), that are incorporated 

257 within the open borehole section. This was then then used to give an indication of the Vp response of 

258 the cased interval for comparison to the VSP.

259 The gamma ray logging tool measures the natural radioactivity of the formation, which is 

260 dependent on the abundance of the naturally occurring elements K, Th, and U. In volcanic rocks the, 

261 gamma response is linked to composition whereby, in general, the more evolved a volcanic rock is 

262 along the path from basalt to rhyolite, the higher the gamma response (Steffanson et al., 2000). This is 

263 due to these elements being generally incompatible with early mineralizing phases in a basaltic melt, 

264 and therefore, become enriched in the residual liquid. Basalt has a generally very low gamma response, 

265 but may increase slightly due to alteration (e.g. Planke, 1994).

266 The resistivity log measures how resistive a formation is to an applied electrical current. In 

267 general, hydrous pore fluids comprise conductors whilst many silicate minerals associated with a rocks 

268 matrix comprise resistors. In the same way that mineral bound water complicates the neutron log 

269 signature, bound water may also reduce resistivity readings especially for the deep resistivity log. 

270 Shallow (16 inch spacing) and deep resistivity (64 inch spacing) measurements from a dual-spacing 

271 normal-electrode tool were used for this study. Time-lapse resistivity measurements were also made in 

272 the K-18 borehole as it heated up naturally in the weeks after being cooled for the VSP experiment as 

273 part of the IMAGE project (Vilhjálmsson et al., 2016). The results of this study clearly demonstrate the 
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274 temperature dependence of resistivity and form a promising provisional guide for calibrating bedrock 

275 resistivity tool measurements in variable temperature geothermal borehole investigations.  

276 Finally, as part of the IMAGE project the effect of the cation exchange capacity (CEC) on 

277 resistivity of rocks in geothermal systems was measured in well K-18 (Weisenberger et al., 2016). The 

278 CEC measurements show that the low resistivity in the electrical resistivity logs coincide with high 

279 CEC values (> 5 meq/100 g). At the facies boundary between the mixed-layer clay and epidote-chlorite 

280 zone the CEC drops below ~ 5 meq/100 g and decreases slowly with increasing depth. The facies 

281 boundary overlap with the transition where resistivity logs show an increase in resistivity.

282 3.3 Borehole televiewer

283 Acoustic borehole image logging was performed in the K-18 borehole between 470–2180 m 

284 measured depths (MD) with the API-43 (ALT) Borehole Televiewer (BHTV) tool on October the 10th 

285 in 2014 as a part of the IMAGE project (Árnadóttir, 2014; Blischke et al., 2016). BHTV logging can 

286 provide high resolution acoustic images of open borehole sections making it a highly valuable tool for 

287 conducting structural and facies analysis by revealing fractures, formation boundaries, bedding or 

288 foliation of lithological units, facies types, along with estimates of the formation tightness. The 

289 identification of possible fracture systems is performed by a qualitative characterisation of the 

290 orientation and inclination of natural fracture and fault systems that are observed in the borehole. 

291 Drilling induced fractures (tensile fractures) and borehole break-outs can also be imaged, which may 

292 reveal the orientation of principle active stresses around the borehole (Zoback et al., 1985).

293 Data processing and interpretation were performed in the petro-physical and borehole data 

294 analysis program WellCAD (version 4.4 build 3303). The image data were oriented at import time to 

295 magnetic north and subsequently rotated by 12.52°W, to correct for the magnetic declination applicable 

296 for the logging date. The BHTV logging operations were challenging due high downhole temperatures 

297 and the rapid re-heating of the borehole. Subsequently data quality was not optimal due to the 

298 requirement to run the log quickly, requiring a lower tool resolution setting (72 pixels per rotation), in 

299 order to attempt to keep the tool within its operational temperature limits (< 125 °C). A detailed 

300 summary of the tool settings and logging operations can be found in Blischke et al. (2016). 

301 3.4 Zero offset vertical seismic profile

302 Vertical seismic profiling (VSP) is a borehole seismic method combining seismic sources at 

303 the surface with receivers (e.g., geophones) placed inside a borehole. Depending on the survey 

304 geometry, different processing schemes are applied. It can provide both elastic and structural properties 

305 of the subsurface (around the borehole) with, compared to surface seismic, higher spatial resolution.

306 The VSP survey at the Krafla geothermal field encompassed a set of test experiments including 

307 zero-, far-, and multi-offset three-component VSP data recorded from within two boreholes (K-18 and 
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308 K-26, Planke et al., 2016; Kästner et al., this volume) located in the geothermal field. Within this study,

309 only the zero-offset VSP data measured utilizing specially constructed air-gun pits at the K-18 borehole 

310 are investigated. 

311 Detailed information regarding the survey setup (see Halldórsdóttir et al., 2014) and processing 

312 of a subset of the VSP experiments at Krafla are included within the contribution by Kästner et al. (this 

313 volume), and also within the processing report (Vakulenko and Buryak, 2016), delivered as part of the 

314 IMAGE project (see also Planke et al., 2016). In this paper we only consider the zero-offset VSP data 

315 recorded in well K-18 (Figure 6). The air-gun source pit was located 29 m away from the well head of 

316 the K-18 borehole. For the purposes of this study, first-break arrival times (FB in ms) were picked for 

317 the P-wave and S-wave first arrivals and, along with the offset corrected horizontal source to borehole 

318 distances (D), provided by Deco (Vakulenko and Buryak, 2016). P- and S-wave velocity profiles were 

319 calculated along the well and are used for all subsequently presented VSP data.

320

321 4. Results

322 4.1 Ditch cuttings 

323 Figure 7 displays a summary of the percentage based cuttings analyses for the K-18 borehole 

324 alongside the original cuttings analyses. The percentage logs display clear variations in the abundance 

325 of glass, crystalline and epiclastic material throughout the penetrated borehole interval, along with 

326 extensive mixing of these end members in many cases. From these curves, intervals dominated by one 

327 or a combination of characteristic cuttings populations have been separated into eight broad groups 

328 (Figure 7). A summary geological interpretation, based solely on the cuttings assemblages is also 

329 presented.

330 The K-18 borehole is dominated by basaltic crystalline cuttings, which comprises the main 

331 lithology for c. 1500 m of the c. 2200 m well penetration. Glass or alteration products of glass comprise 

332 a significant proportion of the retrieved material over three main intervals (beginning at c. 50, c. 800 

333 and c. 1590 m respectively; Figure 7) which account for the remaining stratigraphy. Epiclastic material 

334 is only present at percentages above c. 25% in three short (<10 m) intervals in the upper 385 m of the 

335 borehole. The presence of intervals dominated by alteration products, with no remaining primary 

336 constituents, forms a key challenge for any classification scheme in geothermal boreholes. In the present 

337 study, alteration products dominantly in the form of clays were assigned to the ‘glass’ column, where 

338 some remnant textures of e.g. glass shards or pumice textures were identified within the assemblage. 

339 However, in cases where limited to no remnant facies textures could be deduced, especially from more 

340 extremely altered examples deeper in the borehole (below c. 400 m), assignment of an end member in 

341 the facies scheme incorporates undesirable interpretation into the raw data generation. At the time of 
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342 analyses, these constituents were included within the glass end-member, however, a possible future 

343 solution may be to incorporate an additional percentage group for altered cuttings of undefined textural 

344 origin. 

345 Depth interval 0-385 m 

346 The cuttings response over the first c. 385 m of K-18 comprise high resolution alternating 

347 sequences of crystalline, glass, and epiclastic dominated units. The first c. 70 m of the borehole 

348 comprises fresh to weakly altered very fine to medium crystalline basalt in blocky to sub-angular 

349 cuttings with minor restricted intervals of increased glass e.g. c. 50 m. The cuttings are mostly weakly 

350 to non-vesicular but become highly vesicular in places and display dispersed oxidation reddening. This 

351 interval transitions abruptly into a mixed glass and crystalline assemblage below 70 m, with the dark 

352 black bright lustre glass dominated by weakly vesicular glass cuttings. Both glass and crystalline 

353 cuttings display variable alteration from minor to complete but are in general relatively fresh (Figure 

354 8a). At c. 110 m a sharp increase in the abundance of blocky to shard-like consolidated volcaniclastic 

355 silt to fine sand grade cuttings is encountered for c.10 m (Figure 8b). This in turn is followed by a return 

356 to a crystalline dominated sequence with minor glass before a return to a similar thin volcaniclastic unit

357 at c. 140 m.

358 At c. 145 m a distinct cemented tuffaceous interval comprising highly vesicular pyroclastic 

359 shards in blocky to sub-angular cuttings occurs (Figure 8c). Intricate interstitial original pore space is 

360 filled with secondary precipitates. This sequence is replaced at c. 190 m depth by a short variably 

361 vesicular crystalline basalt dominated sequence prior to a heterogeneous mixed glass and basalt 

362 sequence from c. 208-260 m. In some instances, hyaloclastite, comprising fresh blocky tachylitic glass 

363 shards within a dull lustre altered glass/palagonite matrix is identified (Figure 8d). Within this interval, 

364 the first occurrence of highly vesicular crystalline scoriaceous cuttings occur in two short intervals 

365 (Figure 8e). This sequence is in turn replaced by a highly vesicular glass dominated sequence from c. 

366 260-282 m.

367 From 282 m to 340 m the section is dominated by crystalline scoriaceous material with smectite 

368 clay coatings on most vesicle walls. This sequence is in turn replaced by a further mixed glass and 

369 crystalline sequence with two minor volcaniclastic intervals at c. 356 m and c. 376 m. Throughout this 

370 upper sequence, very short excursions of either glass or vesicular crystalline cuttings (or both) were 

371 recorded as thin boundaries (Group 3 in Figure 7), but it should be stated that in many of these cases, 

372 the cuttings facies type had been encountered higher in the borehole and so a contribution from cavings 

373 cannot be excluded.

374 Depth interval 385-800 m
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375 The K-18 interval between 385-800 m is relatively uniform and largely comprises fresh to 

376 weakly altered fine to medium crystalline basalt. Within the interval, a small number of horizons with 

377 slightly increased percentages of vesicular basalt and/or alteration are observed which may represent 

378 lava flow boundaries. Increased volumes of pale green grey crystalline material are also common but 

379 in most cases appear to relate to alteration. At c. 574 m however, a different type of leucocratic material 

380 is observed which is pale, finely crystalline and includes evenly distributed small dark oxides and may 

381 represent a more evolved composition.

382 Depth interval 800-1120 m

383 The interval between 800-1120 m of the K-18 well comprises a sequence of pale leucocratic 

384 volcanic material punctuated with layers of increased percentages of fresh dark crystalline basalt in the 

385 lower half of the interval from c. 965-1120 m (Figure 8f-h). The pale material comprises a 

386 heterogeneous mixture of pale crystalline to clay grade cuttings with clear evidence for remnant glass / 

387 pumice textures in places (Figure 8f). In some instances, remnant zoned glass shards may be identified 

388 typical of altered hyaloclastite, however, the majority of the material is either deeply altered with no 

389 primary textures or leucocratic crystalline. In the cases where remnant pumice textures are observed, 

390 there is no discernible difference in terms of matrix composition/appearance between these cuttings and 

391 the pale clay dominated cuttings with no clear primary textures (Figure 8f). These cuttings were, 

392 therefore, all included in the pumice percentage log for the purposes of this study, as a best estimate of 

393 their original nature. This assumption is plausible due to the much higher susceptibility of volcanic 

394 glass to complete and pervasive alteration compared to crystalline units (Franzon et al., 2001; 2010), 

395 however, this incorporates a high degree of uncertainty as discussed above.

396 Depth interval 1120-1590 m

397 The transition out of the leucocratic sequence is gradual and comprises a return to a sequence 

398 dominated by fine to medium crystalline basalt showing variable degrees of alteration from fresh to 

399 pervasive. The degree of alteration is recorded both in the subjective alteration index and by inference 

400 in the abundance of leucocratic crystalline material (Figure 7). Within the sequence minor evidence for 

401 altered glass is observed in a small number of cases, however, these cuttings are never observed in 

402 abundances above that which could easily represent cavings from higher in the borehole (Millett et al., 

403 2014). Some leucocratic crystalline material is observed, however, the majority of instances are inferred 

404 to represent alteration aside from one example at c. 1480 m, which may again represent potentially more 

405 evolved compositions similar in character to that identified higher in the borehole (c. 574 m). A distinct 

406 lack of vesicular crystalline basalt suggests that the sequence is dominated by intrusions as opposed to 

407 lavas, however, some lava host rock probably exists within the sequence. 

408 Depth interval 1590-1690 m 
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409 The interval between 1590-1690 m comprises a sequence of pale highly altered cuttings 

410 punctuated by cyclical percentage increases of fresher crystalline basalt cuttings. The cuttings comprise 

411 green grey to grey mottled clays with irregularly dispersed darker spherical blebs. In some cases, weak 

412 traces of pumice type textures may be seen, however, the degree to which secondary mineral growth is 

413 the cause of these features remains poorly constrained due to the pervasive and complete replacement 

414 of the original minerals or glass within these cuttings. The non-crystalline cuttings are recorded in the 

415 glass column, similar to the approach outlined for the interval 800-1120 m.

416 Depth interval 1690-2200 m

417 The remainder of the borehole penetration from 1690-2200 m comprises a relatively uniform 

418 sequence dominated by fresh to weakly altered crystalline basalt. There are indications of increased 

419 crystal size ranging from medium up to coarse, potentially suggesting the presence of dolerite or 

420 gabbroic bodies. At the beginning of this section at c. 1700 m, a short interval of distinct leucocratic 

421 crystalline material is encountered. The fresh medium crystalline material displays a brighter lustre than 

422 the surrounding basaltic rocks and appears to potentially contain free quartz. Again, a lack of any 

423 vesicular basalt remnants appears to preclude any significant lava flow component within this interval, 

424 supporting a densely intruded nature of the interval.

425

426 4.2 Wireline logs

427 A composite log of selected wireline data for K-18 is presented in Figure 9. Six broad 

428 stratigraphic units along with sub-groups have been defined for the K-18 borehole, each comprising 

429 intervals of similar properties (Figure 9). Units 4,5,6 and the lower part of Unit 3 have been defined 

430 based on full wireline log suite characteristics supported by cuttings inferences, whilst units 1, 2 and 

431 the upper part of Unit 3 from the cased section of K-18 (0 - 660 m) are based on resistivity and neutron 

432 counts in conjunction with the cuttings analysis, where gamma ray and sonic velocity data are not 

433 available. 

434 Unit 1 (0 – 80 m)

435 Almost no log data exists for the upper 80 m of the well and therefore the variably vesicular 

436 basalt nature of the cuttings provide the only real inference as to the volcanic facies. Resistivity data is 

437 deemed poorly constrained due to the interval being above the water table.

438 Unit 2 (80 – 380 m)

439 Unit 2 also has very limited log data. The data that is present displays variable but relatively 

440 low resistivities and consistently higher apparent porosities (low API) from the neutron counts data. 

441 Variable calliper responses in the upper part of the unit also suggest unstable formation and cavings 
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442 which may have added to the variability in the log data. The lower limit has been defined from the 

443 neutron counts curve which display a decrease in apparent porosity (increase in neutron counts) 

444 consistent with the denser crystalline lithology of the underlying Unit 3. The upper limit is defined 

445 based on the cuttings description, as limited wireline data is available at this depth. It is noted that wide 

446 lithological heterogeneity is encountered within the cuttings for this section and therefore the log unit 

447 does not define a simple facies association.

448 Unit 3 (380 – 790 m)

449 Unit 3 is defined largely based on the sonic velocity and the neutron count curves, both of which 

450 show a distinct and sharp relative decrease to define the lower limit of the unit. Unit 3 is interpreted to 

451 comprises a sequence of lavas, intruded by non-vesicular sheet intrusions towards its base. The upper 

452 limit is defined by a prominent peak in the resistivity and neutron curves representing a denser flow 

453 interior or possible sheet intrusion. A general increase in resistivity with depth is observed over the Unit 

454 3 interval whereas the neutron values display a serrated profile dominated by relatively low apparent 

455 porosity. The increase in average resistivity with depth may relate to a higher proportion of the well-

456 being intruded in the lower part of this sequence, as is inferred from the cuttings analysis, with the 

457 closure of fractures due to combined overburden and secondary mineralization also potentially 

458 contributing factors. Velocity data only exists for the lower portion of Unit 3 which displays relatively 

459 high velocities, with an average velocity of 4.9 ± 0.5 km/s.

460 Unit 4 (790 – 1120 m)

461 Unit 4 corresponds to the mixed leucocratic interval identified from the cuttings analysis, for 

462 which there is a very close correspondence. The lower limit of Unit 4 has been defined based on the 

463 sonic velocity log, where the average values show a distinct increase from c. 3.5 up to c. 4.2 km/s. Unit 

464 4 has been sub-divided into two sub-units, 4a and 4b, based on Vp and gamma data. The boundary 

465 between the two sub-units is defined by the base of a prominent high gamma interval within sub-unit 

466 4a (c. 880-960 m). 

467 Sub-unit 4a displays a relatively uniform low Vp with an average of 2.7 km/s, with 

468 correspondingly uniform moderate resistivity and high neutron porosity. Two distinct gamma intervals 

469 including an upper low gamma interval (c. 790-880 m, average 17 API) overlying a moderate to high 

470 gamma interval (c. 880-960 m, average c. 39 API) are present. A lack of any correspondence between 

471 the gamma and velocity data appears to preclude an intrusive origin for the high gamma interval 

472 (Delpino and Bermúdez, 2009). Sub-unit 4a is therefore inferred to comprises a compositionally zoned 

473 highly altered tuffaceous sequence.

474 Sub-unit 4b displays significantly more variable velocity with c. 6 distinct higher velocity 

475 intervals (up to 5.5 km/s), inter-layered with background values similar to sub-unit 4a. Resistivity 
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476 remains relatively constant but at slightly higher values compared to sub-unit 4a, whilst neutron count 

477 values show little variation. One major exception to this trend occurs near the top of the sub-unit (c. 

478 980 m) where the highest velocity interval corresponds very clearly to increased resistivity and 

479 significantly lower neutron porosity. The majority of sub-unit 4b displays low gamma values (average 

480 c. 20 API), similar to the upper part of sub-unit 4a, however, a small number of short gamma peaks are

481 recorded in the lower half of the unit. The velocity characteristics of sub-unit 4b specifically highlight 

482 the utility of the sonic log, whereby the other logs only clearly identify one of the high Vp layers. The 

483 identification of multiple high Vp layers within the section is consistent either with intrusions or the 

484 presence of dense lava flow interiors. A lack of either clear asymmetric log profiles (lavas; Planke, 

485 1994) or box-like profiles (sheet intrusions, Planke et al., 2000), makes further distinctions challenging, 

486 with a distinct lack of vesicular basaltic cuttings potentially preferentially supporting an intrusive origin.  

487 Unit 5 (1120 – 1880 m)

488 Unit 5 comprises a crystalline basalt dominated sequence with its base defined by a distinct 

489 increase in average velocity at c. 1880 m. The unit has been sub-divided into 7 sub-units, based on a 

490 combination of wireline data and associated ditch cuttings inference. The velocity of Unit 5 ranges from 

491 2.4 to 5.9 km/s with an average velocity of 4.5 km/s. Intervals dominated by crystalline basalt (5a, 5b, 

492 5e and 5g) have high average velocities, ranging from c. 4 to 4.7 km/s average sonic velocities. Sub-

493 unit 5c comprises mixed crystalline basalt and highly altered leucocratic cuttings inferred to be 

494 tuffaceous in origin. Somewhat surprisingly, there appears to be very little change in the character of 

495 the velocity (average 4.5 km/s) or other log data for sub-unit 5c compared to sub-unit 5b. A very minor 

496 reduction in velocity at the top of the section is significantly less pronounced than in the overlying 

497 altered tuffaceous sequence. We interpret this interval to comprise a densely compacted and highly 

498 altered hyaloclastite or tuffaceous facies interval. A combination of burial compaction, and pervasive 

499 alteration including precipitation of high density and Vp minerals such as epidote and actinolite (both 

500 observed within this section), during high temperature alteration of the interval, appear to have 

501 increased the Vp of the interval, similar to results identified by Frolova et al. (2005) for densely altered 

502 hyaloclastite. 

503 Sub-units 5d and 5f comprise two thin layers (c. 15 m) showing a sharp decrease in sonic 

504 velocities (average sonic velocities are respectively 3.4 and 3.9 km/s) which are tightly correlated to 

505 two of the highest gamma ray peaks of the well penetration. Neither unit corresponds to a clear cuttings 

506 response, although, due to the depth of penetration and transport mixing, thin layers such as these may 

507 commonly have very little to no representation, especially if the facies is soft (Millett et al., 2014). The 

508 low velocities appear at odds with an evolved intrusive origin, unless perhaps the intrusions were 

509 subsequently completely altered. The intervals are therefore inferred to represent either altered / highly 

510 mineralized fracture zones or thin evolved tuffaceous layers. 
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511 Sub-unit 5e comprises crystalline basalt cuttings and lies between high gamma sub-units 5d 

512 and 5f. It displays uniform low gamma, high resistivity and low neutron log characteristics similar to 

513 the underlying sub-unit 5g. Both of these sub-units are interpreted as basaltic composition intrusive 

514 facies.

515 Unit 6 (1880 – 2200 m)

516 Unit 6 is composed of crystalline basalt material and shows relatively limited alteration from 

517 the cuttings data. The upper boundary is marked by a clear increase in the sonic velocities (average c. 

518 5.6 km/s) and resistivity coupled with a decrease in neutron porosity. A small number of lower velocity 

519 troughs most likely represent fractures within the intrusive complex. The low gamma responses, 

520 coupled with other logs and the cuttings data suggest that this interval comprises a dense basaltic 

521 composition intrusion of either dolerite or potentially gabbro. 

522 4.3 Borehole televiewer

523 Figure 10 displays a summary of key results from the BHTV structural analysis of the K-18 

524 borehole. The BHTV caliper log reveals generally good hole conditions, aside for a section directly 

525 below the casing at c. 700 m and below the crystalline basalt section that ends at c. 795 m. The structural 

526 interpretation shows a good correlation of small fractured and broken zone between 700-900 m, with 

527 several small feed zones and a lower neutron log response. Overall small scale and non-transmissive 

528 fracturing can be seen for most of the borehole, except for the depth interval c. 1200-1450 m, which 

529 yielded poor quality data. No major open fractures were observed within the logged interval, which is 

530 consistent with the generally low permeability in the borehole. However, two broken zones were 

531 encountered at c. 768 and c. 1253 m, both dipping due NW with a NE-SW strike. The former possibly 

532 indicating a small fault intersection that is not connected to an intrusion complex, while the latter lies 

533 within an intrusion complex. The interpreted closed fracture network dips near vertical to the ESE and 

534 partially to the NW, whereas the partially open aperture fractures strike near N-S and dip due E. 

535 The bulk of the logged joints and fractures are tight or closed by alteration minerals, dipping 

536 primarily in an E to ESE direction, which fits well with the inferred NNE (17° ± 39°) direction of the 

537 maximum horizontal stress (Ziegler et al., 2016). Drilling induced break-outs and joints are identified 

538 within K-18 and reveal a σh (max.) orientation of 15.5° ± 14° and are therefore consistent with the 

539 analysis by Ziegler et al. (2016).

540 Bedding boundaries and interfaces were also identified primarily dipping towards the SW albeit 

541 with a large multi-directional scatter. Identified intrusive contacts primarily strike NE-SW, dipping sub 

542 vertically towards the NW and SE and are inferred to represent dikes, however, a small number of sub-

543 horizontal events, striking c. WSW-ENE and dipping c. S-SSE, possibly indicate the presence of sill 

544 intrusions. The latter are in some cases non-planar, which may suggest that magma intruded a still 
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545 unsolidified intrusive material. Sub-horizontal interfaces that were observed towards the base of the 

546 borehole at c. 2150 m, generally dip c. 30° towards SSW and appear related to sill intrusions.

547

548 4.4 VSP results (RTT/VSP facies)

549 The processed zero-offset VSP data for the K-18 borehole are presented in this section. First 

550 break arrival times (FB in ms) representing the P-wave and S-wave first arrivals are used along with 

551 offset-corrected source to receiver distances (D) as outlined in the methods section.

552 Figure 11 displays a plot of reduced travel time (RTT) for the VSP Vp first break data which 

553 aids in highlighting velocity variations within the borehole. A reduction velocity of 4 km/s is used and 

554 the reduced travel times were calculated as (FB1-FB2)/4 for FB intervals corresponding to D= 5 m for 

555 the offset corrected Vp FB picks. RTT versus depth plots are useful as they reveal the following 

556 information: 

557 1. Constant RTT values with depth: interval with reduction velocity

558 2. Linear gradient increasing with depth: interval slower than reduction velocity

559 3. Linear gradient decreasing with depth: interval faster than reduction velocity

560 4. Curved gradients: increasing or reducing velocity within interval

561 5. Inflections, scatter or short wavelength variance: strong impedance boundaries, local 

562 heterogeneity and dipping features such as dikes or fractures

563 In K-18, the RTT displays a number of clear transitions between intervals with largely linear 

564 average velocity trends, along with a number of narrow intervals of inflection and scattering points. 

565 Based on these variations in Vp RTT, ten broad VSP intervals (L1 to L10) have been defined for well 

566 K-18 (Figure 11). These intervals are interpreted to correspond to lithological successions with 

567 relatively consistent average velocities (Table 2). The transitions between these intervals vary from 

568 strong gradient changes, as for example between L1 to L2 and L6 to L7, to less pronounced changes as 

569 for L5 to L6. Interval L8 comprises a short heterogeneous interval with a rapid +/-/+ shift away from 

570 the background decreasing gradient.

571 Using the intervals defined from the VSP RTT, averaged interval velocities are calculated for 

572 Vp, Vs along with the Vp/Vs ratios and compared to the sonic log and neutron derived sonic interval 

573 velocities (Table 2). The average sonic velocity in the uncased interval of K-18 (660-2165 m) is 4.43 

574 km/s, whereas the velocity of the first P-wave arrival from the VSP is 8.2 % higher (4.82 km/s). Interval 

575 velocities in layers interpreted from reduced travel time plots give up to 24 % higher velocities from 

576 the VSP data compared to the sonic log data. The velocity difference is likely due to the increased 

577 borehole condition dependency of the sonic log data, whereby strength and fracturing variations 

578 associated with different volcanic facies can lead to strong borehole variability (e.g. Millett et al., 



Acc
ep

ted
  

Man
us

cri
pt

18

579 2016b), such as is seen in the softer logging Unit 4 borehole sections. Dikes may also potentially act as 

580 high-velocity wave-guides for the lower frequency VSP data as suggested by synthetic modelling 

581 (Planke and Flóvenz, 1996). The neutron derived average velocities also shows a close fit to the VSP 

582 data +/- c. 0.6 km/s. RTT from VSP S-wave data was also calculated using a reduction velocity of 2.35 

583 km/s for comparison to the Vp RTT results (not shown) which shows generally good correspondence 

584 to the Vp RTT inflections.

585 The majority of the main interval transitions derived from the VSP RTT analysis correspond 

586 very closely to the major wireline log unit boundaries interpreted for the K-18 borehole. These logging 

587 units in turn correspond to major lithological boundaries based on the geological model for K-18. 

588 However, not all the interval boundaries from the VSP RTT analysis correspond to clear boundaries 

589 from the geological model, as for instance the lower boundary of L5 and L9, which both occur c. 80 m 

590 and c. 30 m above the nearest major boundaries observed from the geological model. The integration 

591 of the VSP data with the borehole geological model will be discussed further in the following section.

592

593 5. Discussion

594 5.1 Borehole volcanic stratigraphy

595 Understanding the sub-surface geology of complex volcanic sequences is challenging due to 

596 the wide ranging physical properties of common volcanic facies, which very often overlap significantly 

597 (e.g. Bartetzko et al., 2005; Nelson et al., 2009). This complexity is expanded further in active volcanic 

598 systems and those which have undergone extensive sub-surface hydrothermal alteration, such as at

599 Krafla, where geothermal exploration efforts attempt to identify and tap into feeder zones for high 

600 temperatures fluids. Alteration can have a major effect on the physical properties of different primary 

601 volcanic facies (Planke et al., 1999; Franzon et al., 2010; Marks et al., 2010). The distribution of fluid 

602 pathways and alteration are strongly affected by the distribution of volcanic facies (e.g. Thien et al., 

603 2013), the presence of fractures and faults (Walker et al., 2013), along with the effects of hydrothermal 

604 venting associated with magma intrusion and pressure increase (e.g. Fournier, 1999; Ankasa et al., 

605 2017) within volcanic systems. Within this study we have undertaken detailed analysis of ditch cuttings 

606 and wireline log data for the K-18 borehole incorporating new sonic log and televiewer analysis. 

607 The application of a modified percentage based cuttings classification scheme has yielded 

608 promising results for wider application in volcanic geothermal settings, generally with good agreement 

609 between the results of the original cuttings analysis and the present study. The quantification and 

610 recording of altered cuttings that maintain limited to no vestiges of the original facies textures is an area 

611 which requires development in order to remove a priori interpretation. Even with the requirement for 

612 development in these scenarios, the non-genetic percentage based system of recording differing cuttings 
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613 populations (e.g. Millett et al., 2014) is regarded as a potentially important step in improving inter-well 

614 correlation and repeatable cuttings mixing appraisal in volcanic geothermal settings, and can be 

615 integrated into conventional analysis at real-time drilling rates. Alongside the ditch cuttings study, the 

616 acquisition of sonic log data and BHTV data has been demonstrated to be of important utility for 

617 characterizing volcanic facies, facies boundaries, intrusions, and fracture zones. Volcanic facies 

618 interpretation from down borehole imaging logs is somewhat in its infancy, but where high resolution 

619 data is acquired detailed intra-facies variations can be clearly imaged from both BHTV and FMI 

620 imaging logs (Watton et al., 2014a), promoting an important role for high resolution acquisition in the 

621 future. Given the sonic log has, until now, rarely been deployed in geothermal boreholes on Iceland, 

622 this study lends strong support for its wider application.  

623 From the basis of these integrated analyses, a geological interpretation of the K-18 borehole 

624 was enabled which forms a robust stratigraphic basis from which to appraise the zero offset VSP data 

625 collected from the K-18 borehole. The uppermost c. 380 m of the K-18 borehole is composed of a mixed 

626 sequence of hyaloclastites, scoria, volcaniclastic units and sparse lava flows which indicate the location 

627 underwent a number (up to four) of submergent to emergent cycles. The location was either covered by 

628 ice or a fluvio-lacustrine environment, periodically becoming sub-aerial either by volcanism breaking 

629 through the ice cover or the fluvio-lacustrine system being displaced. This complex facies sequence is 

630 underlain by a sequence of basaltic lavas and basaltic intrusions down to a depth of c. 800 m. A clear 

631 change from basalt intrusions to much lower velocity mixed leucocratic tuffaceous to crystalline 

632 lithologies at c. 800 m depth is closely matched in both cuttings and wireline data. Primary textures are 

633 sparse due to pervasive alteration and replacement, however, based on gamma log data responses, at 

634 least two compositional units including a mafic dominated and more evolved sequence are present. In 

635 the lower part of this interval (logging Unit 4b), a number of high velocity basic intrusions (some could 

636 be lava flows) are inter-layered with the tuffaceous lithologies. 

637 Beneath this tuffaceous sequence, mixed lava flows and intrusion dominated crystalline basalt 

638 dominates down to c. 1600 m at which depth a thin c. 80 m interval of highly altered cuttings is identified 

639 from which primary textures are not decipherable. The unit is thought to comprise a layer of completely 

640 altered densely compacted tuffaceous or hyaloclastite material, but could also potentially represent a 

641 completely altered fracture zone where leaching has destroyed any original crystalline or facies textures. 

642 Two prominent high gamma peaks below this unit are associated with low sonic velocities and are 

643 therefore provisionally interpreted as either thin tuffaceous layers or possibly highly fractured and 

644 altered felsic intrusions. Below this altered sequence from c. 1680 m, crystalline basalt and dolerite to 

645 gabbroic intrusions are recorded uninterruptedly down to the bottom of the borehole at c. 2215 m 

646 supported by high NN and sonic Vp values. A clear increase in Vp, NN and resistivity data at c. 1880 

647 m is inferred to represent the transition from minor sheet intrusions and lavas into larger more uniform 

648 intrusive basement.
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649

650 5.2 Application of VSP for high temperature geothermal exploration

651 A primary objective of the current study was to appraise the applicability of the VSP technique 

652 for imaging complex sub-surface volcanic geology in a high temperature geothermal field setting. It has 

653 been demonstrated in Figure 11 that key transitions and intervals of the subsurface geology within the 

654 K-18 borehole are clearly represented as changes in the zero offset VSP FB data. In Figure 12, the

655 synthetic seismogram derived from the VSP P-wave corridor stack is presented and interpreted in terms 

656 of VSP reflectivity facies alongside the main borehole wireline and RTT intervals. The interpretation 

657 of the VSP reflectivity has focused on:

658 1. VSP facies: broad intervals with similar amplitude and frequency characteristics

659 2. Major transitions between intervals with different reflectivity characteristics

660 3. Isolated reflections

661 By comparing the geological model, wireline data and relative amplitudes of the VSP corridor 

662 stack, reflections have been identified and rated in terms of relative prominence in Figure 12. A key 

663 observation is the fact that significant and coherent seismic energy is recorded throughout the borehole, 

664 even at c. 2.2 km depth, supporting previous studies findings that intrinsic attenuation is not a major 

665 problem for volcanic sequences (Pujol and Smithson, 1991). It is also clear, that a generally strong 

666 correspondence between the broad VSP facies and the borehole geological model exists, demonstrating 

667 that the VSP technique can image key aspects of the complex volcanic stratigraphy. 

668 However, in a number of cases, clear boundaries from the geological borehole model (e.g. 

669 logging Unit 3 to 4a and 5g to 6 transitions), appear relatively offset in the VSP reflectivity. It should 

670 be remembered that the corridor stack reflectivity is a summation of a 200 ms window corresponding 

671 to approximately c. 130 interval below the first break pick. In these cases, potential explanations could 

672 include the facies boundaries dipping or being very heterogeneous or uneven along the borehole path 

673 promoting scattering and ringing, and a subsequently low signal to noise ratio. Dipping and irregular 

674 volcanic facies boundaries are very commonly observed in various field analogues (e.g. Watton et al., 

675 2013; Ebinghaus et al., 2014; Ankasa et al., 2017). Another possibility, especially given the highly 

676 intruded nature of the borehole, is that sub-vertical dike intrusions may be acting as wave-guides 

677 intersecting the borehole but also altering the velocity structure surrounding the borehole (e.g. Planke 

678 and Flóvenz, 1996). In the case of the basement transition in K-18 it is possible that the intrusive 

679 basement boundary from Unit 5g to Unit 6 is highly irregular in three dimensions, and therefore might 

680 relate to an intrusion scenario where tongues of magma invade into the roof rock (e.g. Bédard et al., 

681 2012; Muirhead et al., 2014). The short high Vp sonic log response at c. 1760 m could for example 
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682 represent an apophysis of the basement intrusions, connected outside the borehole path causing 

683 significant scattering or focusing effects on the VSP derived seismic waves.

684 In general, this study has clearly demonstrated the potential utility of the VSP technique for 

685 imaging complex sub-surface volcanic geology in the high temperature geothermal field at Krafla. Due 

686 to a lack of a steam cap, super-critical domains or major feed zones in the K-18 borehole, the ability of 

687 the zero-offset VSP to image such features could not be tested within this study. In scenarios where 

688 these features are present (e.g. in other boreholes and regions within the Krafla geothermal field), the 

689 utility of VSP techniques (especially far-offset and look ahead applications) to characterize and / or 

690 potentially be deployed for time-lapse monitoring (e.g. Khatiwada et al., 2012), remains to be tested. 

691 With the data acquired during the IMAGE project, additional techniques such as coda wave 

692 interferometry or attenuation tomography could potentially be applied in the future in order to further 

693 assess the utility of the VSP data for field characterization in volcanic settings (Khatiwada et al., 2012; 

694 De Siena et al., 2014).

695

696 6. Conclusions

697 Within this study, we have presented a comprehensive appraisal of the volcanic facies and 

698 stratigraphy within the K-18 borehole from the Krafla high temperature geothermal field on Iceland. 

699 We have developed and tested analytical approaches for the interpretation of volcanic ditch cuttings in 

700 geothermal boreholes, highlighting the potential of a percentage based classification approach along 

701 with presenting to our knowledge the first published borehole sonic log data for a high temperature 

702 geothermal field on Iceland. The sonic log velocity data has been demonstrated to improve the 

703 interpretation of volcanic facies in the K-18 borehole, especially for intruded and tuffaceous intervals, 

704 strongly supporting its wider deployment for geothermal boreholes in volcanic settings. Integration of 

705 processed zero-offset VSP data for K-18, with the borehole geological model has been undertaken to 

706 appraise the applicability of the VSP technique for imaging sub-surface geology in high temperature 

707 volcanic geothermal fields. The results of the integrated analysis clearly support the ability of the VSP 

708 technique to characterize complex volcanic geology in the sub-surface, including key stratigraphic 

709 boundaries and intrusions, along with giving important insights into the internal reflectivity 

710 characteristics of different volcanic facies intervals. Some offsets in the depth of transitions are 

711 encountered between the borehole geology and the VSP reflectivity. These offsets are interpreted to 

712 result from complex and dipping intrusion geometries acting as wave guides, along with potentially 

713 irregular facies boundaries outside of the well path, all comprising features commonly observed in field 

714 analogues. No major fluid injection zones, super-critical domains or steam caps are known from the K-

715 18 borehole, and thus the imaging of such zones could not be accomplished by the zero-offset VSP in 

716 this study. However, given that these features are known to be present within the wider Krafla 
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717 geothermal field, our findings provide a base line for appraising the results of far offset and look-ahead 

718 VSP imaging of such features at the Krafla site. Imaging of these zones along with regions with molten 

719 magma, also known to exist at Krafla, form key goals for wider geothermal exploration, especially in 

720 the pre-drilling or shallow test borehole stage.
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731 Figure captions

732 Figure 1. Summary bedrock geological map of Iceland showing the location of the Krafla high 

733 temperature geothermal area (Hjartarson and Sæmundsson, 2014).

734 Figure 2. Krafla Geothermal field and location of production wells. Well tracks and roads are

735 shown with green and brown respectively and the K-18 study borehole is indicated with a blue oval. 

736 Selected surface geological features including faults (ticked black lines) and crater rows/spatter/scoria 

737 (red lines and circles) are also shown.

738 Figure 3. a. Schematic diagram highlighting some of the main features that may affect ditch 

739 cuttings quality and representativeness (modified after Brister and McIntosh, 2004). b. Conceptual 

740 diagram highlighting the effect that annulus mixing may have on retrieved cuttings assemblage 

741 percentages for the same collection interval.

742 Figure 4. a. Volcanic ditch cuttings ternary classification, after Millett et al. (2014). b. Example 

743 of expected response through an intruded hyaloclastite sequence from southern Iceland. c. Example of 

744 the detailed percentage based output for the K-18 borehole (this study) plotted next to the original 

745 borehole cuttings interpretation (Guðmundsson et al., 1981).

746 Figure 5. a. Sonic log P-wave velocity (km/s) versus neutron API for all K-18 data. The best 

747 trendline fit is derived from a log function regression. Separate fields within the data array are broadly 

748 linked to different facies groups but large overlap is also present. b. Manually fitted composite linear 
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749 function for the data which better represents the different facies variations on the low and high Vp/API 

750 ranges.

751 Figure 6. Processed VSP P-wave data for K-18. a. Full stack. b. Corridor stack comprising a 

752 summation over a corridor of 200 ms below first breaks (dashed line) to exclude multiple reflections. 

753 c. NMO P-wave section. The corridor stack emphasizes the loss of reflectivity below 850 m, 

754 corresponding to 700-1200 ms two-way time (TWT). See Planke et al. (2016) and Vakulenko and 

755 Buryak (2016) for further details.

756 Figure 7. Summary of the K-18 cuttings analysis groupings and interpretation packages 

757 derived from cuttings data alone. The original cuttings analysis incorporating the interpretation scheme 

758 commonly utilized on Iceland (key as in Figure 4) is also presented for comparison along with alteration 

759 zones (modified after Guðmundsson et al., 1981). Major intervals from the current Petrel model for the 

760 Krafla geothermal field are also presented. 

761 Figure 8. Key cuttings examples from the K-18 borehole. a. Highly vesicular individual cuttings 

762 of glass and crystalline basalt, showing variable alteration from fresh to near complete replacement. 

763 b. Volcaniclastic silt to fine grained sandstone. c. Highly vesicular to pumice like intricate pyroclasts 

764 in blocky cemented tuffaceous cuttings. d. Tachylitic fresh glass shards in altered dull lustre 

765 palagonite/clay matrix. e. Highly vesicular scoriaceous crystalline cuttings with early onset of clay 

766 precipitation at vesicle rims. f. Remnant pumice texture in highly altered and recrystallized assemblage. 

767 g. Very pale leucocratic mixed crystalline to altered tuffaceous cuttings. h. Cuttings assemblage with 

768 fresh basalt cuttings mixed within a leucocratic dominated section.

769 Figure 9. Composite wireline logs for the K-18 borehole along with the broad wireline units 

770 compared to the cuttings log. Feed points (blue arrows) along with the borehole dimensions are also 

771 annotated. 

772 Figure 10. Summary of BHTV structural analyses for the K-18 borehole, modified after 

773 Árnadóttir (2014) and Blischke et al. (2016). The structural log shows two classes of interpretation 

774 certainty, where CL1 indicates a higher certainty compared to CL2.

775 Figure 11. VSP P-wave velocity Reduced Travel Time (RTT) along with interval Vp, Vs, Vp/Vs 

776 and sonic Vp plotted against depth for the K-18 borehole.  Interval averages including neutron derived 

777 Vp data are indicated by a dashed line. Arrows display the main RTT gradient breaks and intervals 

778 with similar average velocities are interpreted based on the RTT versus depth gradient and labelled 

779 L1-L10. Borehole logging units and the VSP P-wave outer corridor stack are shown for reference.

780 Figure 12. VSP seismogram reflectivity character and facies assessment compared to the 

781 borehole wireline and geological model.
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782 Table 1. Summary of K-18 borehole data available for this study. Abbreviations: OS 

783 (Orkustofnun / National Energy Authority) and LV (Landsvirkjun / National Power Company of 

784 Iceland).

785 Table 2. Summary of the reduced travel time RTT VSP Vp interval velocities for K-18 borehole 

786 compared to sonic log velocity (VpL). *Log velocities for intervals L2-L4 include estimated values 

787 derived from neutron log data (NN) as outlined in the methods section.
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