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ABSTRACT 14 

The Jan Mayen Microplate Complex (JMMC) in the NE Atlantic is interpreted to mostly consist 15 

of continental fragments with possible interstitial embryonic oceanic crust. A complex Cenozoic rifting 16 

history accompanied by extensive extrusive and intrusive volcanism have made the geological 17 

characterization of the JMMC challenging especially due to poor seismic imaging beneath the breakup 18 

basalt succession. The presence of continental crust in the JMMC is inferred by seismic and magnetic 19 

data, but ground truthing evidence have yet to be provided. Here, we present the results from a seafloor 20 

sampling campaign undertaken in 2011 on the Southern Jan Mayen Ridge complex. Seabed samples 21 

were recovered using a gravity corer and a dredge along 1000 m high escarpment with a 19° slope. 22 

Sampling locations were selected based on the interpretation of seismic profiles that suggest the 23 

presence of possible pre-breakup successions outcropping along this steep escarpment. Results include 24 

a sequence of samples with age diagnostic palynomorph assemblages ranging from Permian/Triassic 25 



to Eocene, and including igneous samples related to the Early Eocene breakup volcanism. Importantly, 26 

samples were retrieved from hard substrate in an erosional gully lacking overburden sediments and 27 

have ages arranged in younging upward sequential order, supporting their in-situ position. The 28 

sampling results were integrated into a lithostratigraphic pseudo-well that can be used to constrain the 29 

evolution and breakup of the JMMC. Additionally, evidence for active migration of Jurassic sourced 30 

hydrocarbons comprise the first indication of a working hydrocarbon system, with important 31 

implications for the petroleum prospectivity of the Dreki area. Finally, these results confirm that the 32 

Southern Jan Mayen Ridge is indeed a sliver of continental crust. 33 
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INTRODUCTION 36 

Background and aims 37 

Jan Mayen is an island in the NE Atlantic located between Iceland and Svalbard, and along with 38 

the surrounding ~550-km-long and 100-250 km-wide platform, is interpreted to mostly consist of 39 

continental fragments with possible interstitial embryonic oceanic crust  (Auzende et al., 1980; Grønlie 40 

et al., 1979; Gudlaugsson et al., 1988; Myhre et al., 1984; Nunns, 1982; Skogseid and Eldholm, 1988; 41 

Torsvik et al., 2015). This enigmatic province is currently referred as the Jan Mayen Microplate 42 

Complex (JMMC; Gernigon et al., 2015; Schiffer et al., in press). Seismic mapping of the JMMC suggests 43 

the possibility of significant stratigraphy and basement structures beneath breakup-related volcanic 44 

rocks. The oldest penetrated sediments in DSDP (Deep Sea Drilling Program) Hole 349 from leg 38 on 45 

the Jan Mayen Ridge were post-breakup Middle Eocene (Figure 1; Talwani et al., 1976). The other 46 

direct indications for the presence of pre-breakup succession on the JMMC come from seafloor 47 

sampling conducted in 2010 and 2012 by the National Energy Authority of Iceland (NEA) and 48 

Norwegian Petroleum Directorate (NPD) in which an ROV (remotely operated underwater vehicle) 49 

collected late Permian-early Triassic to Oligocene-Miocene samples (Sandstå et al., 2012). However, 50 



the presence of the pre-breakup successions is still debated because the Permian-Triassic samples 51 

were collected in the scree at the base of the escarpment, suggesting that these samples may not 52 

represent the in situ local geology of the ridge. 53 

Without any borehole intersecting the sub-basalt stratigraphy on the JMMC, many questions 54 

remain as to the nature and age of the pre-Eocene stratigraphy, and in particular, whether the pre-55 

breakup succession contains a working hydrocarbon system (Vis, 2017). In this contribution, we 56 

present the results from a seafloor sampling campaign (JMRS11, Jan Mayen Ridge Sampling 2011) 57 

along seismic line JM-17-85 (Figure 1D) where a 1 km high escarpment dipping by 19° offered the 58 

unique opportunity to recover pre-breakup in situ sub-cropping sediments and breakup related 59 

volcanic rocks using a gravity corer and dredge. The recovered material was mostly from truncated 60 

sequences outcropping at the seafloor for stratigraphy studies, and sampling concentrated below the 61 

basalt reflection to target pre-breakup strata (see Figure 1). In addition clay samples were collected 62 

for hydrocarbon seep studies to test for the presence of a possible working hydrocarbon system in the 63 

survey area. The goals of this manuscript are to describe the pre-breakup stratigraphic succession 64 

outcropping in the survey area, and to characterize the petroleum system identified in the Southern 65 

Jan Mayen Ridge. 66 

Geological settings 67 

The JMMC is a structural entity encompassing a segmented ridge complex, basins and a 68 

through (see Figure 1; e.g. Blischke et al., 2017; Gaina et al., 2009; Peron-Pinvidic et al., 2012). The 69 

JMMC is surrounded by oceanic crust, and may also extend towards Iceland to the south (see Figure 70 

1; Blischke et al., 2017; Foulger, 2006; Torsvik et al., 2015). The JMMC is bounded to the north by the 71 

Jan Mayen Fracture Zone (JMFC), to the southeast by the Ægir Ridge, and to the northwest by the 72 

Kolbeinsey Ridge (Figure 1). 73 

The JMMC is interpreted to have been part of the Møre Basin (e.g. Theissen-Krah et al., 2017) 74 

probably as a continuation of the south Gjallar and Rån ridges (Gernigon et al., 2015) prior to breakup 75 



between Norway and Greenland in the earliest Eocene (e.g. Gaina et al., 2009). Fragments of the JMMC 76 

fringed the East Greenland margin until 52 Ma (Early Eocene) when the Reykjanes Ridge propagated 77 

northwards and detached the earliest fragment of the southern part of the JMMC from East Greenland 78 

after 47 Ma (Larsen et al., 2013; Torsvik and Cocks, 2016). During the Eocene and Oligocene, the JMMC 79 

is thought to have drifted westwards with the Greenland plate relative to the Eurasian plate. The 80 

complete separation of the JMMC from East Greenland took place after final ridge relocation in the 81 

late Oligocene to early Miocene, with the abandonment of the Ægir Ridge and the onset of spreading 82 

along the Kolbeinsey Ridge (Blischke et al., 2017; Vogt et al., 1970). 83 

Extensive volcanic activity associated with continental breakup and the North Atlantic Igneous 84 

Province (Saunders et al., 1997) blanketed much of the region with extrusive basalts during the Late 85 

Paleocene - Early Eocene, whilst extensive intrusive sill complexes are also known (Blischke et al., 86 

2017). Poor imaging below the volcanic cover caused early interpretations of seismic stratigraphy on 87 

the Jan Mayen Ridge to be largely limited to post-breakup reflections (Åkermoen, 1989). However, it 88 

is now accepted that the Jan Mayen Ridge in the northern part of the JMMC is underlain by continental 89 

crust (Breivik et al., 2012; Gaina et al., 2009; Grønlie and Talwani, 1978; Gudlaugsson et al., 1988; 90 

Kuvaas and Kodaira, 1997; Mjelde et al., 2007; Myhre et al., 1984; Skogseid and Eldholm, 1987). Today, 91 

improved imaging in reprocessed seismic data combined with deep seismic profiles and 92 

gravity/magnetic anomaly interpretations across the JMMC have revealed a complex system of crustal 93 

blocks which record up to six main phases of Cenozoic tectonism linked to regional unconformities 94 

(Blischke et al., 2017; Gaina et al., 2009; Gernigon et al., 2015). These interpretations are also 95 

consistent with observations from the conjugate NE Greenland and mid-Norway margins where pre-96 

breakup sediments are imaged beneath the breakup basalt sequence (e.g. on the Vøring Marginal 97 

High; Abdelmalak  et al., 2015; Abdelmalak et al., 2016a; Abdelmalak et al., 2016b; Planke et al., 2017). 98 

METHODS 99 



Seafloor sampling of the JMMC was undertaken by VBPR and TGS during a cruise in September 100 

2011. The 55 m long Sermilik II trawler was used for the operations, with the site located across a steep 101 

escarpment along the seismic line JM-17-85 (see Figure 1 for location). The Southern Jan Mayen Ridge 102 

was sampled and the recovered material was analyzed using the methods described below. 103 

Sampling equipment and sample handling 104 

A gravity corer and a dredge were both deployed during the sampling operations, and both 105 

were built and designed by Prof. Yngve Kristoffersen at the University of Bergen. The gravity core has 106 

a lead weight of 800 kg attached to a 3 m long carbon steel core barrel (Figure 2A and 2B). A 107 

transparent liner was inserted into the core barrel, and secured in place using a core catcher and 108 

cutting shoe (bit). The gravity corer was dropped in free fall from 50 m above the seafloor to maximize 109 

penetration into the seabed (Figure 2C). The contents of the bit were routinely sieved through a 1 mm 110 

mesh for identification of rock fragments enclosed in soft sediments (Figure 2D). The dredge consisted 111 

of an 80x50x40 cm steel frame with a chain bag lined with nylon netting (Figure 2B). The dredge was 112 

dragged along two overlapping 1.5 km-long profiles and allowed the recovery of rock fragments that 113 

would otherwise not be picked up by gravity coring (Figure 2E). 114 

The GPS system on the ship was a Trimble NavTrac system, with antennae for GPS mounted 115 

on the monkey island. Correction signals ensured that the GPS was differential with error in position 116 

below 10 m. The position was logged in the coordinate systems WGS84, UTM31 in 10 km intervals 117 

during transit, and in navipack files during sampling. The recorded position of the sampled sites 118 

corresponds to the position of the trawl block used for coring at the moment of impact, while the 119 

dredging start/end points correspond to positions of the same trawl block when the ships 120 

started/stopped to follow the dredge profile (Tables 1 and 2). 121 

Biostratigraphy 122 

Biostratigraphy studies included seven gravity core and 15 dredge samples for palynology 123 

(Tables 1 and 2). Gravity core samples were initially selected for palynology if the contents of the bit 124 



consisted of a lithified lithology, and if the sieved contents of the bit were dominated by one lithology. 125 

Dredge rock fragments were selected for palynology studies when they belonged to a lithological 126 

group. 127 

Palynomorphs were identified using an Olympus BH-2 microscope equipped with a 128 

conventional camera. The palynological analyses were quantitative, and where possible, based on a 129 

minimum of 200 pollen counts. A general description of the kerogen composition for each sample 130 

included thermal alteration values according to a modified Thermal Alteration Index (TAI). TAI values 131 

were based on assessments of resistant organic material in the samples including pollen/spores, 132 

dinoflagellate cysts, and other algae and kerogen particles. 133 

Organic geochemistry 134 

The Applied Petroleum Technology (APT) laboratory follows the standard procedures from 135 

NIGOGA (Norwegian Industry Guide to Organic Geochemical Analysis), which defines analytical 136 

procedures, notation, and reporting guidelines (Weiss et al., 2000). 137 

Rock fragments - Source rock evaluation 138 

The 22 sedimentary rock fragments analyzed for biostratigraphy were also selected for total 139 

organic carbon (TOC) content (wt%), Rock-Eval pyrolysis, and for vitrinite reflectance analyses at the 140 

APT lab. Rock-Eval analysis by pyrolysis using a Rock-Eval 6 instrument (Vinci Technologies) provided 141 

hydrocarbon (HC) source characteristics and maturity levels of kerogen in the samples (Lafarge et al., 142 

1999). Hydrogen Index (HI, mg HC/g TOC), Oxygen Index (OI, mg CO2/g TOC) and Tmax (expressed in 143 

°C) were determined. Tmax is the temperature at maximum pyrolytic hydrocarbon generation. It varies 144 

as a function of the natural thermal maturity of the organic matter (Espitalié et al., 1986). The vitrinite 145 

reflectance measurements analyses were performed on kerogen concentrates prepared following the 146 

kerogen isolation procedures outlined in Weiss et al. (2000) using a Zeiss Universal MPM03 147 

photometer microscope. 148 

Can samples - Seep studies 149 



Four can samples were initially analyzed for headspace gas, followed by gas chromatography 150 

on extracted organic matter (GC of EOM). The two samples 13GC and 15GC with gas chromatograms 151 

displaying a thermogenic signature were further analyzed by gas chromatography mass spectrometry 152 

(GC-MS) on saturated and aromatic hydrocarbons. 153 

Headspace gas was measured using a flame ionization detector (FID) for hydrocarbons, and 154 

two thermal conductivity detectors (TCD) for CH4, H2, CO2, N2 and O2/Ar. The GC of EOM was 155 

measured using a HP5890 II instrument, and the GC-MS with a Micromass ProSpec high-resolution 156 

instrument, both following standard temperature programs. 157 

Petrography and igneous geochemistry 158 

Hand samples were cleaned and cut for examination. A set of three polished thin sections of 159 

basaltic rocks were prepared at APT. The textures were described and mineral phases identified using 160 

a standard optical microscopes at the University of Oslo. Hand specimens were also examined in detail 161 

using a binocular microscope. Geochemical analyses of chosen samples were also undertaken to help 162 

classify the igneous section. Analyses were carried out using an ARL 8420+ dual goniometer 163 

wavelength dispersive XRF spectrometer at the X.R.F. laboratory at the Department of Earth Sciences, 164 

Open University, Milton Keynes, UK. In addition, rare earth elements were also measured by ICP-MS 165 

at Royal Holloway, University of London, UK. 166 

RESULTS 167 

Sampling 168 

A total of 11.11 m of sediment cores was retrieved from the 15 sampling stations. The majority 169 

of the cores were shorter than 1 m, except at stations 01GC, 02GC, 06GC, 13GC and 15GC (Table 1). At 170 

station 10GC the barrel was found empty and the core bit was damaged, probably indicating impact 171 

with a large clast preventing penetration of the gravity corer into the sediments. In two other instances 172 

(03GC, and 05GC) the gravity corer was retrieved with empty liners. The typical penetration depths of 173 

the gravity corer into soft recent seafloor sediments and drift range from ca. 1.5 to 3 m. 174 



Three sites (01GC, 02GC, and 13GC) had the sieved contents of the bit consisting of a few grains 175 

of igneous and metamorphic rock fragments. In contrast, sites 04GC, 06GC, 09GC, 11GC, 12GC, 14GC, 176 

and 15GC had core recovery characterized by an upper unit consisting of soft sediment, and a bottom 177 

unit comprising lithified to semi-lithified rock fragments displaying variable degrees of alteration. 178 

These altered fragments were characterized by the presence of sedimentary laminations and organic-179 

rich layers with abundant mica crystals (except at stations 06GC, 12GC, and 15GC). 180 

Two dredge profiles were completed along the escarpment (Table 2). Profile 07D targeted the 181 

lowermost part of the ridge, and profile 08D covered the lower and mid-upper part of the escarpment 182 

(see Figure 1). The uppermost part of the escarpment, probably covered by recent sediments, was 183 

deliberately avoided as the seismic profile did not show any clear reflector intersecting the 184 

escarpment. The two dredge profiles provided a wider range in lithologies across the escarpment when 185 

compared to the gravity cores. The material recovered in both dredges is comparable in terms of 186 

lithological types. Dredge 08D was recovered full, and provided a larger amount of samples than 187 

dredge 07D (1/10th full). The combined recovery from the two dredges can be summarized in the 188 

following lithological groups. 189 

• Group 1 (07D and 08D: 40%): Altered light brown to yellowish and often laminated shaly, silty, 190 

and sandy subcrops. The large majority of these lithotypes had significant amounts of 1-2 mm 191 

long muscovite crystals in their matrix. This lithology was similar to that recovered from gravity 192 

core sites 04GC, 06GC, 11GC, and 14GC. 193 

• Group 2 (07D: 35%, 08D: 10%): Siltstone, some poorly cemented, others more lithified. 194 

• Group 3 (07D and 08D: 10%): Different types of sandstone commonly laminated and poorly 195 

cemented. Some of the sandstones have carbonate cement and are very porous, while the 196 

large majority are dominated by a clay rich matrix. 197 

• Group 4 (07D: 3%, 08D: 10%): Breakup volcanic rocks. These include freshly broken subaerial 198 

basalt, altered basalt, brecciated volcaniclastic and dolerite lithologies. 199 

• Group 5 (07D and 08D: 1%): Carbonates and flint samples. 200 



• Group 6 (07D: 1%, 08D: 5%): Shale fragments ranging in color from black to greenish were 201 

collected. Most samples reveal the presence of organic rich lenses along laminations 202 

emphasized by mica crystals. Commonly a silty fraction is also present. The specimens from 203 

this group are more indurated than those observed in Group 1, likely due to thermal alteration. 204 

• Group 7 (07D: 10%, 08D: 24%): Heterogeneous mixture of high-grade metamorphic and 205 

igneous rocks consisting of sub-rounded and coarse grained gneisses and granitoids with 206 

occasional glacial striations. 207 

Biostratigraphy 208 

From the 22 sediment samples selected for palynology studies, 15 of the samples were dated 209 

based on their fossil content and/or organic facies (Tables 1 and 2, and Figure 3). The remaining seven 210 

samples were barren, very poor, and/or contained organic materials without any preserved 211 

microfossils, and hence could not be dated. 212 

 The immature Middle Eocene sample (14GC-Bit) in the upper portion of the ridge yielded a 213 

sparse but well preserved marine/oceanic Middle Eocene palynomorph assemblage, with numerous 214 

Wetzeliella articulata pentagona, Systematophora placacantha and Areosphaeridium michoudii 215 

(Eldrett et al., 2004; Nøhr-Hansen, 2003). The age can further be refined to the Lutetian (lower middle 216 

Eocene at 46-47 Ma; Figure 4). This sample also contained a reworked and mature (TAI 3-4) Albian to 217 

Barremian foraminifera assemblage. 218 

The Late Paleocene samples collected by dredging are rich in mature organic matter. However, 219 

identified palynomorphs are generally in a poor state of preservation, but were derived from a 220 

relatively narrow time interval in the earliest late Paleocene (Selandian, c 59 Ma). Isabelidinium 221 

viborgense (Figure 4) is a key fossil that is a marker for the sandy Våle Fm. in the North Sea, and is also 222 

one of the marker fossils for the Egga Member of the Tang Fm., deposited in the western parts of the 223 

Mid-Norway area (Lyck and Stemmerik, 2000). The samples are also relatively rich in reworked Late 224 

Cretaceous marine and terrestrial palynomorphs similar to the Egga Member. The depositional 225 



environment is inferred to be marine with reworking of older Cretaceous strata likely derived from 226 

exposed highs or faults. 227 

In addition, samples with Cretaceous, Jurassic and Permian-Triassic intervals have been 228 

identified in cores collected below the breakup basalt succession (Figures 3 and 4). The Cretaceous 229 

samples (Maastrichtian-Campanian, Albian-Abtian and Barremian-Hauterivian) contained abundant 230 

and well-preserved microfossils (Bjærke, 1980; Dypvik et al., 2002; Håkanson et al., 1981), both for 231 

palynology and micropaleontology, but also contain a rich assemblage of reworked Jurassic and older 232 

elements suggesting a coastal depositional environment (Engkilde and Surlyk, 2003). The Middle 233 

Jurassic samples contained a few well-preserved key fossils from the Aalenian-Toarcian (Figure 4), but 234 

alternatively Nannoceratopsis gracilis might instead be interpreted as reworked into fossil-barren Early 235 

Cretaceous beds. 236 

Finally, the two gravity core samples 11GC and 12GC from the base of the escarpment (Figure 237 

3) are nearly identical with respect to organic content, with a high proportion of inertinitic particles, 238 

cuticles and common fresh/brackish water alga Botryococcus spp (Figure 4). Botryococcus spp is a long 239 

ranging fossil, from the Permian or older and up to present, therefore the samples could not be dated 240 

based on their fossil content. However, the general organic facies is comparable to that often seen at 241 

the transition from the Permian and into the Triassic, perhaps on the Permian side because of the lack 242 

of marine elements (Mørk et al., 1990). 243 

Overall, the four dated gravity core samples (Table 1) were arranged in the correct 244 

stratigraphic order, with post-breakup ages from samples recovered above the breakup basalts, 245 

Cretaceous age below the basalts, and Permian-Triassic age at the base of the escarpment. The results 246 

from the gravity corer were used to constrain the position of the dredge samples within the profile, 247 

and thus allowed the construction of a pseudo-well (Figure 3). 248 

Petrography and igneous geochemistry 249 



The igneous rocks sampled during the survey provide insights into the volcanic/igneous section 250 

exposed along the Jan Mayen Ridge. The recovered rock types include vesicular basalt, volcaniclastic 251 

breccias, and dolerite fragments (see Figure 5). Some of these rock fragments are particularly fresh.  252 

The vesicular basalt samples (e.g. Figure 5A and B) display varying degrees of alteration. The 253 

most altered specimens display vesicles invariably filled with secondary minerals (amygdales) that 254 

display alignment and stretching in some of the samples. Areas of micro-crystalline groundmass and 255 

larger crystals can be seen in the weathered/altered examples, but no quenched glass was identified. 256 

One remarkably fresh example, as studied in thin section, shows olivine and plagioclase crystals (up to 257 

2 mm) in a fine grained matrix. The olivine and plagioclase crystals are found as both individual 258 

phenocrysts and glomerocryst aggregates.  259 

The dolerite fragments (Figure 5C) are medium grained and rich in olivine. The texture 260 

observed in these olivine dolerite specimens is an interlocking crystal framework of olivine and 261 

plagioclase crystals between 0.5 and 1 mm in size, with minor amounts of opaque minerals (possibly 262 

magnetite). Miarolitic cavities were observed in the samples; this texture highlights some exsolution 263 

of gases and indicate a possible shallow level of emplacement.  264 

Volcaniclastic breccias (Figure 5D) are characterized by their dominant reddish color, and by 265 

their mixture of coarse- and fine-grained crystalline clasts set in a mixed sand grade matrix. The angular 266 

clasts consist of coarse-grained plagioclase-rich lava and fine-grained basalt fragments. Quenched 267 

glassy material was not observed in the clast rims or matrix precluding any evidence for rapid 268 

quenching.  269 

Geochemical analysis was undertaken on four basalt samples. Three of the four sample 270 

analyses gave loss on ignition (LOI) of < 0.7 wt.% and major element totals > 99 wt. %, whereas the 271 

fourth sample (JMRS11-08D-Basalt), gave LOI of 3.8 wt.% due to alteration and the presence of 272 

interstitial hydrous minerals. Overall, we deem these to be acceptable values for weakly to moderately 273 



altered basaltic rocks, however, we note the possibility that the more mobile elements may have been 274 

re-distributed in the most altered sample. 275 

Geochemical analysis of the basaltic rocks shows a relatively high-magnesium content of ca. 276 

7.43-11 wt.%, all plotting in the basalt field of the TAS classification (Figure 5E; Le Maitre, 1989). At 277 

least two suites of basalt, including a low TiO2 (<1 wt.%) group and a high TiO2 (<2 wt.%) group have 278 

been sampled. ICP-MS analyses for one sample in each of these groups reveals separate REE signatures 279 

(normalized to primitive mantle after McDonough and Sun, 1995), with the low TiO2 sample recording 280 

depleted LREE e.g. La/SmN of 0.58, MORB-like signatures, whilst the high TiO2 sample has a LREE 281 

enriched signature of e.g. La/SmN 3.02 (Figure 5F). These high and low TiO2 samples, along with their 282 

equivalent REE signatures are broadly similar to the pre- and syn-rift magmas, respectively, recorded 283 

from the Faroe Islands and East Greenland (Larsen et al., 1989; Millett et al., 2017). Due to the limited 284 

number of analyses, we refrain from attempting further comparisons in this study. However, it is an 285 

important observation that both large and small fraction melts have been sampled in the study area.  286 

Organic geochemistry 287 

Four canned sediment samples were subjected to headspace gas analysis. The compositional 288 

analysis of the headspace gas shows that all samples are virtually barren in hydrocarbons and the 289 

relative proportions of nitrogen (N2), oxygen (O2) and carbon dioxide (CO2) suggest air contamination. 290 

The four shallow core samples were solvent-extracted. The yields were very low in all these 291 

cores, between 40 and 80 mg EOM/kg of extracted sediment. The gas chromatograms (Figure 6) 292 

typically display hydrocarbon distributions consistent with major contributions of bitumen from 293 

immature recent organic matter (ROM) in the C27-C33 range. In addition to the overall ROM signature, 294 

samples 13GC and 15GC have chromatograms displaying a smooth n-alkanes distribution on top of a 295 

small hump of unresolved complex mixture (UCM) in the nC18 to nC26 range (30 and 50 min retention 296 

time). This combination of a UCM hump with a thermogenic envelope above suggest that traces of 297 

biodegraded thermogenic hydrocarbons are present in the sediment samples. 298 



The distribution of n-alkanes can help differentiating between ROM and petrogenic 299 

(thermogenic) migrated hydrocarbons. An odd or even C-number preference is invariably an indication 300 

of immaturity, whereas a smooth n-alkane distribution with a carbon preference index (CPI) value close 301 

to unity is characteristic of petrogenic hydrocarbons. Odd C-number n-alkane distributions (CPI >>1) 302 

are caused by decarboxylation in oxic environments, and even C-numbered n-alkanes (CPI<<1) by 303 

reduction (via alcohols) in anoxic settings. Samples 13GC and 15GC have the lowest CPI values, while 304 

samples 01GC and 02GC CPI values are higher (Table 3). 305 

The thermogenic signal identified in the gas chromatograms of samples 13GC and 15GC could 306 

represent a) the contribution of ice-transported mature and immature organic matter, b) the mature 307 

organic matter from the sub-cropping shales, or c) migrated thermogenic hydrocarbons. If the 308 

thermogenic signal was from ice-transported organic matter, all four chromatograms should have 309 

displayed the similar gas chromatogram patterns. Instead, the patterns are different depending on the 310 

sample location, thus supporting a local origin for the thermogenic signal. The possibility that the 311 

thermogenic signal is related to sub-cropping strata can be rules out since the TOC and Rock-Eval 312 

results indicate that all of the outcropping rock fragments have a very poor source rock potential 313 

(Tables 1 and 2). Therefore the slightly increased UCMs, thermogenic envelopes and low CPIs values 314 

in samples 13GC and 15GC are evidences tentatively consistent with a minor petrogenic contribution 315 

in sediments that are otherwise dominated by algal and higher plant sources. The other samples 01GC 316 

and 02GC have their geochemical signatures characteristic of ROM source of indigenous bitumen with 317 

very small UCM, no thermogenic envelopes, and relatively high CPI values. 318 

The two samples 13GC and 15GC were selected for further analysis by GC-MS for both 319 

saturated biomarkers and aromatic hydrocarbon distributions. The visual inspection of the mass 320 

chromatograms (Figure 7) indicates that the samples contain only low yields of biomarkers and 321 

aromatic hydrocarbons. Chromatograms of the triterpanes, however, show that the tricyclic terpanes 322 

(cheilanthanes) occur relatively prominently compared to the pentacyclic terpanes (Figure 7a). 323 



Summary and appraisal of results 324 

High-resolution bathymetry maps of the Jan Mayen Ridge imaged clear erosive gullies 325 

distributed along the escarpment (Figure 1). These gullies suggest that erosional processes are active 326 

in the steep slopes where deposition of thick hemipelagic clays, capping subcropping strata, is 327 

effectively prevented. The presence of gullies further suggests that much of the dislodged material 328 

would be transported to the base of the escarpment. The short recoveries of the gravity cores 329 

consisted mainly of poorly lithified silty muscovite-rich shales interpreted as altered in situ strata. 330 

These altered rocks display well-preserved sedimentary structures and laminations that would not 331 

have formed in this present dynamic slope environment. These altered subcrop lithologies were also 332 

recovered in the dredge profiles, together with additional rock types including altered sediments, 333 

breakup related volcanic rocks, shales, siltstones, sandstones, carbonate rocks, and ice-rafted debris.  334 

Critically, the rock fragments interpreted to be in situ are arranged in a sequential order, with 335 

the oldest sediments recovered at the base and the youngest at the top of the ridge. This normal age 336 

progression, hard nature of the substratum, and truncated seismic reflectors at the seabed collectively 337 

provide strong evidence supporting that the majority of the sampled rocks consist of in situ 338 

sedimentary strata outcropping at the seabed. The igneous units provide additional support for in situ 339 

sampling as many samples are extremely fresh, and have clearly not undergone significant weathering 340 

and transport. 341 

We cannot entirely exclude that some of the gravity core samples have incorporated ice-rafted 342 

material. However, the lack of a random age distribution of samples along the profile does not support 343 

glacial transport from distant areas. In the Jan Mayen sub-marine slope system, ice rafted material 344 

along with locally mass wasted deposits will accumulate as wedges at the base of the slope on the 345 

basin floor. Therefore, the risk of sampling rocks that are not fully in-situ naturally increases towards 346 

the base of the slope. Finally, and of critical importance, the evidence supporting ongoing hydrocarbon 347 



migration cannot be related to ice-rafted debris, and hence highlight that pre-breakup source rocks in 348 

the oil window are present in the JMMC. 349 

DISCUSSION 350 

Pre-breakup section 351 

The presence of pre-breakup rocks on the JMMC is supported by the Cretaceous, Jurassic and 352 

Permian-Triassic biostratigraphic ages obtained from the gravity corer and dredge samples (Figure 3). 353 

Therefore the sampling reveals a highly condensed pre-breakup Mesozoic sequence (Figure 3), unless 354 

the lowermost Permian-Triassic samples were instead transported by local and/or ice-rafted debris 355 

and deposited at the base of the escarpment. Although drilling would be the ultimate test to confirm 356 

the presence and nature of the Mesozoic sequence, hydrocarbon migration and stratigraphic studies 357 

support the presence of pre-breakup strata along the sampling profile below the top basalt reflection 358 

(red line in Figure 3). 359 

The study of the geochemical parameters and biomarkers from the samples 13GC and 15GC 360 

with a thermogenic signature can further characterize the depositional environment, maturity, and 361 

age of the source for the migrated hydrocarbons. Despite the low biomarkers abundance and yield, 362 

their pattern support an anoxic depositional environment for the source (type II or II/III kerogen). 363 

These conditions are interpreted from the Pr/Ph ratio, the Pr/nC17 versus Ph/nC18, CPI, and relative 364 

abundance of C27, C28 and C29 steranes and of C29, C30 and C31 hopanes (Table 3). The hopane and 365 

sterane maturity suggests that the hopane isomerization is near equilibrium, whereas sterane 366 

isomerization is incomplete, tentatively suggesting that the samples contain hydrocarbons from a 367 

source that have reached a vitrinite reflectance equivalence of about 0.6%. The maturity level is 368 

supported by observations from the aromatic hydrocarbon calculated from MPI1 values (after Radke 369 

and Welte, 1983; Table 3). This maturity level is also consistent with early maturity/onset of the oil 370 

window. 371 



The age of the source can be determined by using the C28/C29 sterane ratio and the extended 372 

tricycle terpane (ETR) ratio. The Palaeozoic classification results from consideration of the C28/C29 373 

sterane ratio (Grantham and Wakefield, 1988). The extended tricyclic terpane ratio  (ETR; Holba et al., 374 

2001) is based on the abundance of C28 and C29 cheilanthanes relative to 27Ts: 375 

ETR = (28/3R + 28/3S + 29/3R + 29/3S) / (28/3R + 28/3S + 29/3R + 29/3S + 27Ts) 376 

The ETR ratio is based on m/z 191 responses and is most useful for distinguishing Triassic from 377 

Jurassic marine-sourced oils. In general, Triassic sourced oils have ETR ≥0.67 and Early Jurassic oils have 378 

ETR ≤0.67. Middle to Late Jurassic oils exhibit ETR values ≤0.67 and mostly <0.55. 379 

The sharp drop in the ETR at the end of the Triassic corresponds to a major mass extinction 380 

that may have had an impact on the principal biological sources of cheilanthanes and possibly 381 

Tasmanites. A subsequent lesser extinction in the Toarcian may have further adversely impacted upon 382 

these source organisms, resulting in low ETR for oils generated from Middle-Upper Jurassic source 383 

rocks. Abrupt positive excursions in ETR values over geological time occurred in the Precambrian, 384 

Silurian, Devonian, Permian-Triassic, Late Cretaceous and Miocene. However, high ETR values can also 385 

be the result of marine upwellings (especially the Permian and younger episodes) rather than being 386 

specific to the Triassic (Holba et al., 2003). 387 

The cross plot of [28ββ/ (28ββ+29ββ)] vs. ETR (Holba et al., 2001) shows that both 13GC and 388 

15GC fall within the “maximum Jurassic range” zone of the plot (Figure 8). Although the shallow core 389 

extracts are slightly skewed towards post Jurassic values of the sterane parameter, the apparently 390 

significant humic contribution in these samples is expected to lower the 28ββ/(28ββ+29ββ) ratio. 391 

Therefore, the most likely age of the hydrocarbon source is Jurassic. In addition, the presence of 392 

17α(H)-28,30-dinorhopane (although in low yields) in samples 13GC and 15GC further support an 393 

anoxic source equivalent to the Upper Jurassic in the Barents and Norwegian Sea (Draupne and 394 

Hekkingen formations). The anoxic Triassic Kobbe/Steinkobbe source rock is considered unlikely here 395 



as, if present in the Southern Jan Mayen Ridge, it may be too deeply buried to generate hydrocarbons 396 

at a vitrinite reflectance equivalence of 0.6 %. 397 

Breakup section 398 

The age of the breakup volcanic section is constrained by the enclosing formations that were 399 

sampled and dated, with the thermally mature Late Paleocene samples (Selandian at 59.2 Ma; time 400 

scale from  Gradstein et al., 1994) at the base and the immature Middle Eocene samples (Lutetian at 401 

47 Ma) above (Figure 3). The position of the breakup-related volcanic samples within the profile is 402 

interpreted from the seismic data as a characteristic high amplitude reflection (red line in Figure 3) 403 

representing the extension of the SDRs towards the escarpment. 404 

The vesicles observed in the basalt samples indicate active magma degassing due to pressure 405 

release near the surface. The alignment and stretching of vesicles are similar to those typically found 406 

in modern pāhoehoe lava crusts. Furthermore, the absence of any quenched glass is also consistent 407 

with the sub-aerial emplacement of lava flows without any interaction with water. The occurrence of 408 

glomerocrysts indicates that the lava flows were sourced from shallow magma chambers where olivine 409 

and plagioclase crystals were incorporated into cumulate aggregates  (e.g. Jerram et al., 2003). 410 

The presence of volcaniclastic rocks can have significant implications if they are the result of 411 

direct fragmentation of juvenile magma such as hyaloclastites or ignimbrites, or the result of reworked 412 

fragments of volcanically derived material (e.g. Millett et al., 2015; Watton et al., 2013). The lack of 413 

glassy material and the mixed nature of the clasts suggest that the volcaniclastic breccias are likely the 414 

reworked product of nearby exposed volcanic edifices and not primary fragmentation.  415 

The relatively fine-grained nature of the olivine dolerite specimens supports the notion that it 416 

is likely to be a small volume intrusion. The presence of miarolitic cavities, which form due to exsolution 417 

of a fluid phase under low confining pressure, provides further evidence of crystallization occurring at 418 

a shallow depth possibly in the region of < 1-2 km. 419 



In summary, the breakup volcanic section is interpreted to be approximately 100 m thick, and 420 

consists of stacked lava flows with hiatuses in volcanic activity marked by the deposition of 421 

volcaniclastic breccia units (Figure 9). Depending on the nature of the lava facies e.g. compound 422 

braided or simple tabular, it may be inferred that somewhere in the region of five to a few 10’s of lava 423 

flows make up the sampled volcanic sequence based on observations from similar plateau sequences 424 

(e.g. Jerram, 2002). Olivine dolerite samples likely represent the sub-volcanic portion of the flows and 425 

may have acted as feeder dykes and/or sills. 426 

Regional implications 427 

The results of this study provide important new insights into the complex breakup history of 428 

the NE Atlantic (Blischke et al., 2017; Gaina et al., 2009; Gernigon et al., 2015). This contribution is also 429 

highly relevant for evaluating the hydrocarbon prospectivity of the JMMC but also of the conjugate 430 

outer Mid-Norwegian Margin (e.g. outer Møre Basin; Nirrengarten et al., 2014; Theissen-Krah et al., 431 

2017). Furthermore, the sampled stratigraphic information provides a valuable calibration for mapping 432 

and interpreting seismic data within this area. 433 

The igneous samples we retrieved can also be used to interpret and map more confidently the 434 

different volcanic facies imaged in the seismic data along the JMMC. In addition, these results can help 435 

constrain the volume, style and distribution of magmatism during continental breakup within this 436 

relatively under-investigated region of the North Atlantic Igneous Province (e.g. Abdelmalak et al., 437 

2016a; Håkanson et al., 1981; Jerram et al., 2009; Planke et al., 2017). Furthermore, these magmatic 438 

processes and deposits have a direct influence on the petroleum system in the JMMC area (e.g. 439 

Reynolds et al., 2017; Senger et al., 2017). 440 

CONCLUSIONS 441 

This contribution presents new data from seafloor samples collected with a gravity corer and 442 

a dredge along a steep escarpment on the Southern Jan Mayen Ridge. The results document breakup 443 

and pre-breakup successions and a working Jurassic petroleum system. 444 



In detail, the breakup volcanic succession consists of alternating layers of volcaniclastic breccia 445 

and olivine basalt flows. This extrusive package was fed by shallow level intrusions of olivine dolerite. 446 

These shallow intrusions increased the thermal maturity of recovered late Paleocene sediments in 447 

their contact metamorphic aureoles. The 59-47 Ma age range of the volcanic is constrained by the 448 

biostratigraphic age of the enclosing Selandian and Lutetian strata. The sub-basalt pre-breakup 449 

succession consists of Mesozoic and possibly Paleozoic strata. Cretaceous and Jurassic sediments were 450 

identified in the stratigraphic samples based on their palynomorph assemblages, and Permian-Triassic 451 

samples on their organic facies. This Mesozoic succession may be condensed if the Permian-Triassic 452 

sediments sampled at the base of the escarpment are in situ. Active migration of thermogenic 453 

hydrocarbon was identified in seabed sediments using organic geochemistry. Geochemical parameters 454 

and biomarkers extracted from the migrated hydrocarbons indicate a source rock equivalent in terms 455 

of age and anoxic depositional environment to the upper Jurassic Draupne Fm. in the Northern North 456 

Sea-Norwegian Sea, and Hekkingen Fm. in the Barents Sea. 457 

The recovered pre-breakup successions and identified working Jurassic petroleum system in 458 

the central part of the JMMC confirm that a sliver of continental crust is present in the Southern Jan 459 

Mayen Ridge. Furthermore, these results have implications in terms of paleogeography and petroleum 460 

systems for the conjugate Møre Marginal Plateau and Rån Ridge in the outer Møre and Vøring basins, 461 

respectively. Finally, this study shows that seafloor sampling is a robust and simple method well 462 

adapted for frontier basins where geological data are scarce and greatly needed. 463 
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Figure 1. Regional setting and targeted area. A. Onshore and offshore distribution of the breakup related 2 

volcanics and sill intrusion in the North Atlantic Igneous Province (e.g., Abdelmalak et al., 2017). The map shows 3 

the location of the Jan Mayen Microplate Complex (JMMC) and additional VBPR/TGS sampling sites in the NE 4 

Atlantic (VTMS00, EGS11-12-16, BSS14, VS16), and scientific wells. B. Location of the JMRS11 and NPD 5 

(Norwegian Petroleum Directorate) seabed samples, scientific wells, and seismic data (GEBCO_2014 Grid 6 

bathymetry/topography http://www.gebco.net). The yellow box outlines the Jan Mayen Agreement Area. C. 7 

High-resolution bathymetry (A8-2008 multibeam dataset from http://www.landgrunnsvefsja.is/vefsja/icsp.html) 8 

of several segments forming the Southern Jan Mayen Ridge, with JM-85 surveys and location of the JMRS11 sites. 9 

D. 3D view of the JMRS11 sampling profile along seismic line JM-85-17 in erosive gully, and sampling area of NPD 10 

2012 survey. AR: Aegir Ridge; COB: continent ocean boundary; JM: Jan Mayen Island; JMB: Jan Mayen Basin; 11 

JMBS: Jan Mayen Basin South; JMMC: Jan Mayen Microplate Complex; JMM-E: Jan Mayen Microplate Complex 12 

Extension; JMR: Jan Mayen Ridge; JMT: Jan Mayen Trough; KR: Kolbeinsey Ridge; MR: Mohn's Ridge; SJMR: 13 

Southern Jan Mayen Ridge; VMH: Vøring Marginal High. 14 
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Fig. 2. Seabed sampling equipment used in this study. A. Handling of the gravity corer. B. Handling of the dredge 2 

on deck. C. Gravity coring is a point sampling method used for both stratigraphic and seep sampling. D. The semi-3 

lithified sediments at the base of core recovery JMRS11-09GC were interpreted to represent altered subcropping 4 

strata and have a biostratigraphic, scale at the base is 5 cm interval. E. A dredge was used to sample rock 5 

fragments from outcropping strata along steep escarpments where the thickness of the overburden is limited. 6 
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Figure 3. Interpretative geological cross-section along seismic line JM-85-17 (Åkermoen, 1989), and seismic 2 

section showing the location of the samples, biostratigraphic ages and results, and location of hydrocarbon 3 

seeps. NPD sites are shown, and include in situ Oligocene reservoir sandstone (NPD#6). 4 



 1 

Figure 4. Microphotographs showing the key microfossils with their corresponding names and assigned 2 

biostratigraphic ages. Permian-Triassic ages were assigned based on the organic facies rather than age-diagnostic 3 

palynomorphs. 4 



 1 

Figure 5. Petrology and classification of the igneous section. A. Binocular view of vesicular basalt. B. Thin section 2 

view in XP light of vesicular basalt sample. C. Detailed view in XP of dolerite. D. Example from the volcaniclastic 3 

sample.  E. Total Alkali Silicate (TAS) classification showing the low alkali basalt composition of the analyzed 4 

samples. F.  Rare Earth Element (REE) spider diagram normalized to primitive mantle (after McDonough and Sun, 5 

1995) showing the Jan Mayen samples compared to data from the Enni Fm. of the Faroe Islands (Millets et al., 6 

2017). 7 
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Figure 6. Gas chromatograms of the four analyzed samples. Samples 01GC and 02GC have a background 2 

signature while samples 13GC and 15GC display an apparent UCM and small thermogenic envelope. Peak 3 

identification follows NIGOGA procedures (Weiss et al., 2000). 4 



 1 

Figure 7. Examples of mass chromatograms (A. m/z191 and B. m/z 217) suggesting that the samples contain 2 

petrogenic hydrocarbons. Peak identification follows NIGOGA procedures (Weiss et al., 2000). 3 



 1 

Figure 8. Cross plot of [28ββ/(28ββ+29ββ)] vs ETR as an age indication for sourcing of hydrocarbons. For the 2 

convenience of using a standard template, we use the x/(x+y) form of the ratio with values between 0 and 1 3 

(although Holba et al. (2003) used x/y). The plot shows that the samples do not plot in the area that would be 4 

associated conclusively with a Paleozoic source, but within the range observed for the most common Jurassic 5 

sources. 6 



1 

Figure 9. Schematic stratigraphic section interpreted from integrated sampling results. 2 



 

Site 01GC 02GC 03GC 04GC 05GC 06GC 09GC 10GC 11GC 12GC 13GC 14GC 15GC 
68.494044 68.495690 68.497421 68.497910 68.498957 68.498953 68.500054 68.500571 68.500296 68.501364 68.500640 68.496937 68.495169 
8.234310 8.241399 8.253604 8.253758 8.259683 8.260343 8.266562 8.270674 8.269619 8.272428 8.275467 8.248262 8.237614 

1170 1300 1500 1500 1600 1550 1715 1691 1739 1737 1900 1370 1370 
Latitude 

Longitude 
Water Depth (m) 
Recovery (cm) 190 156 0 39 0 105 46 0 48 63 215 45 208 

Sieved Bit brownish  
sandy clay  
with micas 

yellowish  
clay/altered  

shale 
brown shale with  

muscovite 
yellowish brown  

shale with  
muscovite black shale brown shale  

with  
muscovite black shale 

TOC (wt%) 0.18 0.2 0.27 0.36 0.14 0.26 0.16 

Vitrinite  
Reflectance (%) Barren 0.53 Barren 0.39 Barren 1.47 Barren 
Biostratigraphic  

Age Pleistocene Cretaceous Jurassic Permian/Triassic Permian/Triassic Eocene Barren 
TAI 0 3-(4) 3-2 2 2 1 

- - - 
- - - 

- - - 
- - - 
- - - 

Tmax (°C) 
HI (mg HC/g TOC) 

OI (mg CO/g TOC) 2 
- 
- 
- 

- 
- 
- 

- 
- 
- 

611 
494 
247 

604 
1178 
650 

467 
539 
618 

472 
410 
524 

609 
1846 
2266 

498 
584 
748 

611 
1242 
1820 

- 



 

 

 

 

07D-1 
TOC (wt%) 1.02 

Vitrinite  
Reflectance (%) 4.41 
Biostratigraphic  

Age Jurassic 
TAI 3-2 

07D-3 
0.15 

Barren 
Barren 

07D-4 

Barren 

0.22 

Barren 

8D-1 
0.47 

Barren 
Barren 

08D-2 
0.15 

0.55 
Barren 

08D-2A 
0.27 

Barren 
Barren 

08D-4A 
0.13 

0.65 
Barren 

07D-2 
2.14 

1.02 
Cretaceous 

4-5 

07D-6A 
0.65 

0.63 
Cretaceous 

4-5 

7D-11A 
0.47 

0.61 
Cretaceous 

4-5 

08D-1A 
0.75 

0.62 
Cretaceous 

3-(4) 

08D-4 
0.87 

4.93 
Jurassic 

3-2 

08D-5 
0.38 

Barren 
Jurassic 

3-2 

08D-8A 
0.68 

Barren 
Cretaceous 

3-(4) 

08D-9A 
0.26 

0.96 
Late Paleocene 

4-5 

Site 

Dredge 07D 
Dredge 08D Latitude:  SOL:68.500334 EOL:68.497467 Longitude:  SOL:8.267352 EOL:8.250918 Water Depth (m):  SOL:2550 EOL:1463 Recovery (cm):  1/10 of dredge 

Latitude:  SOL:68.499291 EOL:68.494406 Longitude:  SOL:8.261019 EOL:8.232916 Water Depth (m):  SOL:2475 EOL:1188 Recovery (cm):  full dredge 

Tmax (°C) 
HI (mg HC/g TOC) 
OI (mg CO/g TOC) 2 

526 
8 
47 

611 
10 
51 7 

617 
360 475 

9 
245 

461 
40 
93 

446 
66 
98 

612 
73 

985 
439 
37 
77 

475 
298 
470 

492 
94 
26 

608 
55 
59 

602 
146 
222 

611 
56 
53 

439 
41 
75 

497 
101 
70 



 

Sample CPI Pr/ Cn 17 Ph/ Cn 18 (Pr/ C )/(Ph/ C ))n n17 18 Pr/Ph n n nC /( C + C )17 17 27

01GC 1.67
02GC 2.38
13GC 1.36
15GC 1.37
NSO-1 1.02

0.63
0.53
0.69
0.61
0.59

0.59
0.54
0.6

0.56
0.46

1.07
0.98
1.14
1.09
1.29

0.51
0.95
0.45
0.52
1.51

0.35
0.38
0.46
0.18
0.78

MPI1

0.50
0.42
0.60

%C27Iso

45.63
42.92
34.11

%C28Iso

27.38
27.09
30.24

%C29Iso

26.98
29.99
35.66

%C29Hops

0.48
0.50
0.24

%C30Hops

0.75
0.63
0.95

%C31Hops

0.33
0.39
0.47

Steranes m/z 218: % C27Iso = 100*(27 R+27 S)/(27 R+27 S+28 R+28 S+29 R+29 S)ββ ββ ββ ββ ββ ββ ββ ββ

Steranes m/z 218: % C28Iso = 100*(28 R+28 S)/(27 R+27 S+28 R+28 S+29 R+29 S)ββ ββ ββ ββ ββ ββ ββ ββ

Steranes m/z 218: % C29Iso = 100*(29 R+29 S)/(27 R+27 S+28 R+28 S+29 R+29 S)ββ ββ ββ ββ ββ ββ ββ ββ

Hopanes 29Hops = C  Hopane/ (C  + C  +C  22S and C  22R)Hopanes29 29 30 31 31

Hopanes 30Hops = C  Hopane/ (C  + C  +C  22S and C  22R)Hopanes30 29 30 31 31

Hopanes 31Hops = C  (S+R) Hopane/ (C  + C  +C  22S and C  22R)Hopanes31 29 30 31 31

MPI1 = 1.5(2MP + 3MP) / (P + 1MP + 9MP) P: Phenanthrene; MP: Methylphenanthrene
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