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Abstract

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated
with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose
homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role
of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-
deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass
regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B2/2) were generated using the
adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B2/2 mice display enlarged adipocytes,
despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-
crePTP1B2/2 mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating
glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated
with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased
hypoxia-induced factor-1-alpha (Hif-1a) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate
signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover,
PTP1B does not appear to be the major negative regulator of the IR in adipocytes.
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Introduction

Caloric excess and a sedentary lifestyle are major contributors to

epidemic obesity levels in Western society. Obesity is associated

with complex disorders, including cardiovascular disease and type

2 diabetes [1]. This rising burden of metabolic disease requires the

development of new therapeutic strategies.

White adipose tissue (WAT) is the main site for storage of excess

energy from food intake, and plays a key role in sensing and

coordinating adaptations in whole body glucose metabolism [2,3].

White adipose tissues function as endocrine and paracrine organs

by secreting various adipokines. These bioactive molecules,

including leptin, adiponectin, visfatin, omentin, tumor necrosis

factor-a (TNF-a), resistin, retinol-binding protein 4 (RBP4) and

many others influence metabolic processes such as food intake,

glucose- and lipid-metabolism, inflammation and insulin resistance

[4]. Insulin resistance precedes the development of type 2 diabetes,

and is characterized by reduced insulin-dependent glucose uptake

into muscle, adipose tissue and other insulin-sensitive peripheral

tissues, inadequate suppression of hepatic glucose production, and

accumulation of hepatic lipids [5].

The mechanism(s) leading to insulin resistance remain unclear

[6,7]; however, it is generally agreed that impaired post-insulin

receptor (IR) signal transduction is involved [8]. Insulin is

secreted from pancreatic b-cells in response to nutrients and

transported to target tissues via the circulatory system. Insulin

signaling is activated when insulin binds to the IR, located on the

plasma membrane. The IR is a heterodimeric complex

containing two a-subunits, which enable insulin binding, and

two b-subunits, which have inherent tyrosine kinase activity.

Once the a-subunits are bound by ligands, the b-subunits can

transphosphorylate, which enhances their kinase activity [9]. The
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activated IR phosphorylates substrates including the insulin

receptor substrate (IRS) proteins 1–4, Shc, Cbl and Gab-1 [10].

Upon phosphorylation, the IRS proteins act as docking sites for

several src homology region 2 (SH2) domain containing proteins,

including the p85 regulatory subunit of phosphatidylinositol 3-

kinase (PI3K), which results in PI3K activation [11]. PI3K

activation subsequently leads to activation of protein kinase B

(Akt/PKB), which has diverse intracellular targets, including

glycogen synthase kinase 3 (GSK-3) and the mammalian target of

rapamycin (mTOR). Importantly, Akt/PKB is required to

promote translocation of GLUT4 to the plasma membrane,

and consequently, increase glucose uptake [12].

Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously

expressed non-receptor tyrosine phosphatase and a key negative

regulator of leptin and insulin signaling [13]. PTP1B has a

catalytic (PTP) domain, followed by a regulatory region and a

membrane localization domain, which tethers the enzyme to the

cytoplasmic face of the endoplasmic reticulum (ER) [14,15].

Global PTP1B2/2 mice exhibit reduced adiposity, enhanced

tyrosine phosphorylation of the IR in muscle and liver – but not

adipose tissue – and display improved glucose homeostasis as a

consequence of increased systemic insulin sensitivity [16,17]. The

increased insulin sensitivity in PTP1B2/2 mice is tissue-specific, as

glucose uptake is elevated in muscle, but not in adipose tissue [16].

PTP1B tissue-specific knockout mice with deletions in brain, liver

or skeletal muscle were generated to investigate the site(s) and

mechanism(s) of PTP1B action in the regulation of insulin

sensitivity and body mass/adiposity [5,18,19]. Neuronal-specific

PTP1B knockout mice, despite increased leptin levels, exhibit

reduced body mass and adiposity due to leptin hypersensitivity,

resulting in reduced food intake and increased energy expenditure

[18]. Furthermore, mice lacking PTP1B specifically in pro-

opiomelanocortin (POMC) neurons display reduced adiposity,

improved leptin sensitivity, increased energy expenditure and

improved glucose homeostasis on a high-fat diet (HFD) compared

with wild-type mice [20]. Muscle- or liver-specific PTP1B

knockouts have comparable body weight and adiposity to controls.

However, they exhibit improved insulin sensitivity and glucose

tolerance [5,19]. Mice with an adipose-deficiency of PTP1B were

also generated by using the adipocyte protein 2 (aP2)-promoter

cassette to drive Cre recombinase expression. These aP2-

crePTP1B2/2 mice showed increased body weight on a HFD

compared with littermate controls [18]. However, whether

adipocyte-PTP1B was the sole cause of the observed weight gain

in these mice is unclear, as the aP2 promoter is known to delete in

cell types other than adipocytes [21,22].

Although the negative regulatory effects of PTP1B activity on

insulin action have been well documented in the muscle and liver,

studies on the role of PTP1B in adipocytes have provided

ambiguous results. Insulin-stimulated IR phosphorylation is

unchanged in the adipose tissue of PTP1B2/2 mice [17].

However, over-expression of PTP1B in 3T3-L1 adipocytes inhibits

insulin-stimulated phosphorylation of the IR and IRS-1, and

decreases PI3K activation [23,23,24]. Ruffolo et al. [25] demon-

strated increased basal (ad libitum fed/non-insulin stimulated)

phosphorylation of p70S6K at site Thr-389 in isolated adipocytes

from global PTP1B2/2 mice, compared with controls. They

suggested that the enhanced basal phosphorylation of p70S6K,

which decreased IRS-1 levels, was the cause of reduced glucose

uptake into isolated adipocytes from PTP1B2/2 mice and that

adipose-PTP1B deletion causes tissue-specific insulin resistance. By

contrast, antisense oligonucleotides, which lower PTP1B levels

only in adipose tissue and liver, reduce diet-induced obesity and

improve insulin signaling in obese (ob/ob) and diabetic (db/db) mice

[26,27]. It is not clear whether these effects reflected loss of PTP1B

in adipose tissue or liver (or both). Here we used mice expressing

Cre recombinase under the control of an adiponectin-promoter

cassette [28] – which is exclusively expressed in adipocytes [29] –

to delete PTP1B, and thereby definitively establish the physiolog-

ical and molecular consequences of adipocyte-specific PTP1B

deletion in vivo.

Materials and Methods

Ethics statement
All animal procedures were approved by the University of

Aberdeen Ethics Review Committee Board and performed under

a project license approved by the Home Office under the Animals

(Scientific Procedures) Act 1986 (PPL60/3951).

Animal studies
PTP1Bfl/fl mice [18] and mice expressing Cre recombinase

(Cre) under the control of the adiponectin promoter [28] were

described previously; the latter were generously provided by Dr

Evan Rosen, Beth Israel Deaconess Medical Centre, Harvard

Medical School, Boston, USA. To generate adipocyte-specific

PTP1B2/2 mice, PTP1Bfl/fl mice were crossed with adiponectin-

cre mice. DNA extraction and genotyping for the PTP1B floxed

allele and the presence of Cre by PCR were performed as

described previously [18]. Sequences of primers used for PCR are

provided in the appendix (Table S1). Mice studied were age-

matched littermates, which had been backcrossed to pure C57BL/

6 mice for seven generations. For most studies, mice were housed

in groups and maintained at 22–24uC on a 12-h light/dark cycle

with free access to food and water. To measure food intake, mice

were caged individually and the weight of food consumed was

measured over a four-week period. For insulin signaling

experiments, 25-week old chow- or HFD-fed mice were fasted

overnight and then injected intraperitoneally with saline or insulin

(10 mU/g body weight). After 10 minutes, mice were sacrificed by

cervical dislocation. Tissues were dissected immediately and frozen

in liquid nitrogen.

Body composition
At weaning (21 days), mice were placed on standard 3.4% fat

chow pellet diet (Rat and Mouse Breeder and Grower, Special

Diets Services, DBM, Scotland) or HFD (Adjusted Calories Diet,

55% fat, Harlan Teklad, USA) and weight was recorded weekly.

The approximate fatty acid profile of Adjusted Calories Diet (%

total fat) was 28% saturated, 30% trans, 28% monounsaturated

(cis) and 14% polyunsaturated (cis), as described previously [30].

Adiposity was measured at the end of the study by individually

weighing dissected fat pads.

Isolation of peritoneal macrophages
Mice were sacrificed by cervical dislocation. DMEM (Gibco,

Paisley, UK) was injected intraperitoneally, mice were agitated,

and medium containing macrophages was collected. Peritoneal

macrophages were maintained for 24–48 hours at 37uC in a

humidified atmosphere with 5% CO2.

Isolation and maturation of bone marrow derived
macrophages

Mice were sacrificed by cervical dislocation. Bone marrow

derived macrophages were obtained by flushing out femurs and

tibiae with DMEM (Gibco). Cells were passed through 19 G

needles to disrupt the bone marrow plugs and centrifuged at 900 g
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for 5 min. Bone marrow mononuclear phagocyte precursor cells

were matured for seven days in culture medium (DMEM (Gibco),

10% FBS (Invitrogen, Paisley, UK), 100 U/ml penicillin (Gibco)

and 100 mg/ml streptomycin (Gibco)) supplemented with 20%

L929-cell conditioned medium in untreated polystyrene Petri

dishes. Bone marrow derived macrophages (BMDM) were

maintained at 37uC in a humidified atmosphere with 5% CO2.

Histology
Epididymal, subcutaneous and peri-renal adipose tissue was

fixed in formaldehyde, embedded in paraffin, sectioned, and

stained with hematoxylin and eosin. Average adipocyte diameter

was quantified by measuring 50 adipocytes at 206magnification,

as described previously [31]. Scale bars were determined by

measurement with a scale calibrator (Stage Micrometer, Grati-

cules Ltd, Kent, England).

Metabolic measurements
Tail blood glucose from fasted (5-h or 16-h) mice was measured

by using glucometers (Accu-Chek, Burgess Hill, UK). Serum

insulin, leptin (CrystalChem, Downers Grove, USA), adiponectin

(Millipore) and TNF-a levels (R&D Systems, Minneapolis, USA)

were determined by ELISA. Serum RBP4 was determined by

immunoblotting. Glucose and insulin concentrations were used to

calculate the homeostasis model assessment of insulin resistance

(HOMA-IR), a reliable marker of insulin sensitivity [32], which is

defined as: fasting glucose (mg/dl)6fasting insulin (mU/ml)/405.

Serum glucose and triglycerides were determined using appropri-

ate kits (Sigma, Gillingham, UK). Glucose tolerance tests (GTT)

were performed as described previously [16,33]. Insulin tolerance

tests (ITT) were performed on fasted (5-h) mice by measuring

blood glucose values immediately before and at 15, 30, 60, and

120 min after intraperitoneal injection of insulin (chow 0.6 mU/g

body weight and HFD 1.1 mU/g body weight; Humulin R, Eli

Lilly Corp., Indianapolis, USA).

Leptin sensitivity
Mice were caged individually with free access to food and water.

Food intake and body weight were monitored daily throughout the

study. Mouse leptin (R&D Systems) was administered to chow-

and HFD-fed adip-crePTP1B2/2 and control littermates intra-

peritoneally twice daily for three days (morning and evening dose,

0.5 mg/g; total dose for 24-h period, 1.0 mg/g).

Positron emission tomography (PET) scanning
PET scanning was carried out using the glucose analog, 2-

deoxy-2-(18F)fluoro-D-glucose (FDG), a marker of glucose metab-

olism, which was manufactured in the radiochemistry facility at

the University of Aberdeen. FDG administration was performed in

conscious, fasted (8-h) mice which had free access to water. Mice

were kept at 35uC by placing cages on a heating pad. Warming

started at least 30 min before FDG injection and continued during

the FDG uptake period. Mice were conscious during the FDG

uptake with cages kept in the dark. In the pre-imaging period,

FDG (range: 17.8–22.1 MBq) was intraperitoneally injected

(injected volume 0.5 ml). The uptake occurred outside the scanner

(in the cage) for 45 min, during which time the mice were placed

on a running wheel. Running was voluntary and the time that

each mouse exercised was recorded. Mice were anesthetized with

isofluorane (1.5–2.0% with 2 l/min O2), and were placed on the

bed of the scanner in the supine position (head first). The body and

the head of the mouse were secured to the bed with tape. A CT

scan was obtained first, followed by a 40 min PET. Emission data

was collected using a SEDECAL Argus dual-ring PET scanner

(Madrid, Spain), in a temperature-controlled room. A complete

performance evaluation of the SEDECAL Argus dual-ring PET

scanner has been performed, as described previously [34].

Corrections for attenuation, random coincidence and photon

scatter were applied and the images were reconstructed using

Fourier Rebinning and a 2D ordered subsets expectation

maximization algorithm, supplied by the manufacturer. The

images were converted into semi-quantitative units (SUVs) by

dividing the uptake by the injected activity and multiplying by the

weight of mice. Analysis was performed by drawing regions of

interest on the registered PET and CT images and calculating the

ratio of activity in the brain, muscle and brown adipose tissue. For

each tissue, the region of interest (ROI) was defined in a single

mouse and copied to the scans from the other mice.

Adipocyte isolation
All chemicals were from Fisher Scientific (Loughborough, UK)

(unless stated otherwise). Mice were sacrificed by cervical

dislocation. Fresh epididymal adipose tissue was digested at

37uC in a shaking water bath (100 rpm) for 60 minutes in

Krebs-Ringer-Hepes (KRH) buffer pH 7.4 which contained

125 mM NaCl, 5 mM KCl, 1 mM KH2PO4, 2.5 mM MgSO4,

2.5 mM CaCl2 2H2O, 2 mM glucose, 25 mM HEPES, 3.5% BSA

(Cohn Fraction V), 200 nM adenosine (Sigma) and 1 mg/ml type

I collagenase (244 U/mg) (Worthington Biochemical, Lakewood,

USA). The digest was filtered through cotton mesh to remove

debris and washed three times in KRH buffer without collagenase.

At the final wash, 2 ml of dinonyl phthalate oil (Sigma) was added

to the adipocytes, which were then centrifuged for 5 min at

800 rpm. The top layer of adipocytes were transferred to micro-

centrifuge tubes and centrifuged for 1 min at 3000 rpm. The

infranatant was removed with 19 G61 1/2 syringes. Adipocyte

lysates were then prepared in radioimmunoprecipitation assay

(RIPA) buffer containing fresh sodium orthovanadate and protease

inhibitors, as described previously [19].

Lipogenesis assay
The assay was performed as described previously [35].

Adipocytes were digested in KRH buffer pH 7.4 and filtered,

as described above, but washed three times and resuspended in

a low glucose variant of KRH buffer containing 0.55 mM

glucose. The adipocytes were resuspended at a 2% packed cell

volume, which was determined as described previously [36].

The assay was performed in quadruplicate. 700 ml of the 2%

adipocyte cell suspension was added to each tube and incubated

for 1-h at 37uC with 14 ml of 22 mCi/ml tritiated glucose (D-[6-

3H]-glucose, Perkin Elmer, Cambridge, UK) and 0, 1, 3, 10, 30

and 100 nM insulin concentrations. After the incubation, the

assay was stopped by adding 3.5 ml of 2,5-diphenyloxazole

(Sigma) and 1,4-bis(5-phenloxazol-2-yl)benzene (Sigma) toluene-

based scintillation liquid (Sigma). A zero sample was also

included in the experiment to measure how much glucose ends

up in the lipid phase during extraction without having been used

for lipid synthesis. This was done by adding 700 ml of the 2%

adipocyte cell suspension to scintillation tubes containing 14 ml

of 22 mCi/ml tritiated glucose which was then stopped

immediately by adding 3.5 ml PPO-POPOP toluene-based

scintillation liquid.

Immunoblotting
Tissue lysates were prepared in RIPA buffer containing fresh

sodium orthovanadate and protease inhibitors, as described

previously [19]. Proteins were separated by 3–8%, 10% or
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4–12% SDS-PAGE and transferred to nitrocellulose membranes.

Immunoblots were performed using antibodies from Cell Signal-

ing (Cell Signaling by NEB, Hitchin, UK) (unless stated otherwise)

against pIR Y1158, pIRS-1 S636/639, total IRS-1, pAkt/PKB

S473, total Akt/PKB, pERK1/2 MAPK T202/Y204, pS6

ribosomal protein S235/236, pS6 ribosomal protein S240/244,

p-p70S6K T389, total p70S6K, p-mTOR S2448, total mTOR

(Santa Cruz, Insight Biotechnology, Wembley, UK) pGSK-3a
S21, pGSK-3b S9, pAMPK T172, total AMPKa, pIR Y1162/63

(Invitrogen), total IR (Santa Cruz), SHP2 (Santa Cruz), pIRS-1

Y608 (CalBiochem), RBP4 (Dako, Cambridgeshire, UK), TC-

PTP (R&D Systems) and PTP1B (Millipore, Chandlers Ford, UK).

Immunoblots were developed with horseradish peroxidase-conju-

gated secondary antibodies, visualized using enhanced chemilu-

minescence, and quantified by densitometry scanning with Image

J or Bio1D software (PeqLab, Fareham, UK).

Immunoprecipitations
Tissue lysates were prepared in RIPA buffer containing fresh

sodium orthovanadate and protease inhibitors as described

previously [19]. IR was immunoprecipitated by adding 1 mg of

IR antibody (Santa Cruz) to each 200 mg sample of epididymal

adipose tissue lysate, and then incubated overnight in an

Eppendorf Thermomixer (Eppendorf UK Ltd, Cambridge, UK)

at 4uC with constant shaking at 550 rpm. Protein-A Sepharose

beads were washed 4 times in buffer containing 50 mM Tris/HCl

pH 7.5 and 150 mM NaCl before being resuspended in RIPA at

1:1 (beads/buffer, v/v). Thirty (30) ml of bead slurries were added

to each immunoprecipitation sample, which was then incubated

with gentle end-over-end mixing for 2-h at 4uC. Proteins from the

immunoprecipitates were resolved by 10% SDS-PAGE, trans-

ferred to nitrocellulose membranes, and immunoblots were

performed as described above, using mouse anti-phospho tyrosine

antibodies (Cell Signaling).

Ex vivo insulin signaling
Adipocytes were digested in KRH buffer pH 7.4 and filtered,

as described above, and then resuspended in a 10% cells/KRH

buffer suspension. The 10% adipocyte suspensions were aliquoted

into 1.5 ml tubes containing a final concentration of 0 nM,

1 nM, 10 nM or 100 nM insulin. Adipocytes were incubated in a

water bath for 10 minutes at 37uC with gentle shaking.

Infranatant was removed from adipocyte cell suspensions and

the remaining adipocytes were lysed in RIPA buffer containing

fresh sodium orthovanadate and protease inhibitors, as described

previously [19].

Gene expression analysis
Total RNA was isolated from mouse epididymal adipose tissue

using TRI Reagent (Ambion, Warrington UK), according to the

manufacturer’s protocol. First strand cDNA was synthesized from

1 mg of total RNA employing the Bioline BioscriptTM Pre-

amplification System and oligo(dT)12–18. Four (4) ml of diluted

cDNA (1:100) was used to amplify target genes by real-time RT-

PCR (20 ml), using GoTaq qPCR Master Mix (Promega, South-

ampton, UK). The Roche LightCyclerH 480 System (Roche

Diagnostics, Burgess Hill, UK) was used for analysis. Relative gene

expression was calculated using the comparative Ct (22DDCt)

method. The relative copy numbers of mouse hypoxanthine-

guanine phosphoribosyltransferase (Hprt) mRNA was used for

normalization. PCRs were followed by melting curves (60–95uC).

Sequences of primers used real-time quantitative PCR are

provided in the appendix (Table S1).

Data analysis
Data are expressed as mean 6 SEM. Statistical analyses were

performed using one-way ANOVA with Tukey’s multiple

comparison post tests, two-way ANOVA with Bonferroni multiple

comparisons post tests, and two-tailed Student’s t tests, as

appropriate. P#0.05 was considered statistically significant.

GraphPad Prism 5 and SPSS Version 17 statistical software were

used for analyses.

Results

Adipocyte-specific deletion of PTP1B increases adipocyte
cell size but does not affect body mass, adiposity or food
intake

Mice with an adipocyte-specific deletion of PTP1B (hereafter

termed adip-crePTP1B2/2 mice) were generated by crossing

PTP1Bfl/fl mice (hereafter termed fl/fl mice) to transgenic mice

with a knock-in of Cre into the adiponectin locus [28]. To

account for potential effects of adiponectin gene dosage or Cre

expression, mice heterozygous for adipocyte-specific PTP1B

deletion and adiponectin-cre-alone mice (hereafter termed adip-

crePTP1B+/2 and adip-cre mice, respectively) were included in

the study. Adip-crePTP1B2/2 mice lack PTP1B in brown

adipose tissue (BAT), WAT and isolated white adipocytes but

not in other tissues (Figure 1A). WAT from adip-crePTP1B+/2

mice also had decreased PTP1B levels (,50%) as expected from

a heterozygous deletion (Figure S1). PTP1B levels were normal

in fl/fl and adip-cre mice (Figure 1A and Figure S1).

Importantly, there was no deletion of macrophage-PTP1B in

adip-crePTP1B2/2 mice (Figure 1A), which is a potential

concern in studies that use aP2-cre mice to achieve deletion in

adipocytes [21]. All groups of mice were placed onto either

chow (3.4% fat) or HFD (55% fat) after weaning. Adip-

crePTP1B2/2 and fl/fl control mice displayed similar body

weights (Figure 1B) and lengths (data not shown) on chow diet.

All groups of mice gained more weight on HFD than on chow,

but body weights (Figures 1B and C) and lengths (data not

shown) were comparable between genotypes. Adiposity

(Figure 1D) and food intake (Figure 1E) were also similar in

all groups of mice on chow and HFD. Interestingly, hematoxylin

and eosin staining of epididymal adipose tissue sections revealed

significant increases in adipocyte cell size in chow- and HFD-fed

adip-crePTP1B2/2 mice compared with their respective

controls (Figures 1F, G and H). The increased adipocyte cell

size appears to be depot specific as there were no cell size

differences in subcutaneous or peri-renal fat pads between

HFD-fed adip-crePTP1B2/2 and fl/fl control mice (Figure S4).

The increased size also appears to be dose specific as adip-

crePTP1B+/2 mice only displayed a slight trend towards

enlarged adipocytes on a HFD (Figure 1G and H).

Mild glucose intolerance/insulin resistance in HFD-fed
adip-crePTP1B2/2 mice

Compared to fl/fl controls, adip-crePTP1B2/2 mice dis-

played significantly higher fasted glucose levels at 8 and 14 weeks

HFD, with no differences in fasted serum insulin (Table 1). The

homeostasis model assessment of insulin resistance (HOMA-IR)

was significantly higher in adip-crePTP1B2/2 mice compared

with fl/fl controls after 14 weeks of HFD (Table 1). Glucose

(GTT) and insulin (ITT) tolerance tests were performed on

chow- and HFD-fed adip-crePTP1B2/2 mice to assess whole

body glucose homeostasis. There were no significant differences
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Figure 1. Adipocyte-specific deletion of PTP1B has no effect on body mass, adiposity or food intake. A: Deletion efficiency of PTP1B in
fl/fl controls (FL) and adip-crePTP1B2/2 mice (KO), as detected by immunoblotting. Tissues shown, (left to right) are brown adipose tissue (BAT), white
adipose tissue (WAT), isolated adipocytes (Adips), muscle, liver, brain, bone marrow derived macrophages (BMDM) and intraperitoneal macrophages
(Perit MQ). B: Weight curves for fl/fl (n = 14), adip-cre (n = 6), adip-crePTP1B+/2 (n = 5) and adip-crePTP1B2/2 mice (n = 4) on chow diet for 21 weeks
from weaning. C: Weight curves for fl/fl (n = 13), adip-cre (n = 6), adip-crePTP1B+/2 (n = 5) and adip-crePTP1B2/2 mice (n = 4) on HFD diet for 21 weeks.
D: Fat pad weight of mice on HFD for 21 weeks. Tissues shown, (left to right) are epididymal (EPI), peri-renal (RENAL) and brown adipose tissue (BAT).
Fl/fl (n = 13); adip-cre (n = 6); adip-crePTP1B+/2 (n = 5); adip-crePTP1B2/2 (n = 4). E: Daily food intake of mice on chow or HFD. fl/fl (FL) (chow n = 5, HFD
n = 7); adip-crePTP1B2/2 (KO) (chow n = 4, HFD n = 5). F: Increased epididymal adipocyte cell size in chow-fed adip-crePTP1B2/2 mice (KO) compared
with adip-crePTP1B+/2 mice (HET), fl/fl (FL) and cre-alone controls (CRE). G: Increased epididymal adipocyte cell size in HFD-fed adip-crePTP1B2/2

mice (KO) compared with adip-crePTP1B+/2 mice (HET), fl/fl and cre-alone controls (FL/CRE). H: Hematoxylin and eosin stained epididymal white
adipose tissue of mice on chow or HFD diet for 21 weeks. n = 4 mice/group. White circles = fl/fl; white squares = adip-cre; black circles = adip-
crePTP1B+/2; black squares = adip-crePTP1B2/2. White bars = fl/fl; diagonally striped bars = adip-cre; horizontally striped bars = adip-crePTP1B+/2;
black bars = adip-crePTP1B2/2. Data are represented as mean 6 SEM. Data were analyzed using two-tailed Student’s t test (**P,0.01).
doi:10.1371/journal.pone.0032700.g001
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in glucose tolerance or insulin sensitivity between adip-

crePTP1B2/2 mice and fl/fl controls on chow (Figures 2A and

C) or HFD (Figures 2B and D). The area under the curve of

Figure 2B was also not significantly different (Figure S3); in

addition, there were no significant differences in glucose-

stimulated insulin secretion between adip-crePTP1B2/2 mice

and fl/fl controls during the GTT (Figures 2E and F). Serum

adiponectin, RBP4 and triglyceride levels were comparable in

adip-crePTP1B2/2 mice and fl/fl controls (Table 1). Serum

TNF-a concentrations were below the level of detection of the

mouse ELISA in most control and adip-crePTP1B2/2 mice on

both chow and HFD (data not shown). To further determine the

flux of glucose in various insulin-sensitive tissues including brain,

muscle and BAT, PET scans were performed on fl/fl and adip-

crePTP1B2/2 mice using 2-deoxy-2-(18F)-fluoro-D-glucose

(FDG). In agreement with other in vivo metabolic tests, there

were no significant differences in the uptake and metabolic

activity of glucose in brain, muscle or BAT between fl/fl and

adip-crePTP1B2/2 mice (Figures 2G and Table 2).

Increased serum leptin levels and reduced leptin
sensitivity in HFD-fed adip-crePTP1B2/2 mice

At eight weeks HFD, leptin levels were three- to seven-fold

higher in adip-crePTP1B2/2 mice compared with adip-cre and

fl/fl controls, respectively (Table 1), suggesting increased leptin

secretion with adipocyte-PTP1B deficiency and potential

development of leptin resistance. Since brain-specific

PTP1B2/2 mice also exhibited increased leptin secretion but

remained leptin sensitive [18], we directly assessed leptin

sensitivity in these mice. Adip-crePTP1B2/2 and fl/fl control

mice were injected twice a day with saline or leptin for three

days and food intake and body weight were monitored.

Compared with controls, chow-fed adip-crePTP1B2/2 mice

displayed no significant differences in response to leptin

administration (Figure 3A), but HFD-fed adip-crePTP1B2/2

mice were significantly more resistant than controls to leptin

administration, which was most apparent on day two and three

of leptin injections (Figure 3B). There were no significant effects

Table 1. Metabolic parameters in fasted fl/fl, adip-cre, adip-crePTP1B+/2 and adip-crePTP1B2/2 mice.

Parameter fl/fl adip-cre
adip-cre
PTP1B+/2

adip-cre
PTP1B2/2

Blood Glucose (mg/dl)

Chow 14 Weeks 63.567.9 51.267.7 71.867.1 63.667.3

HFD 8 Weeks 99.966.1 115.868.8 114.665.6 148.4621.9 *

HFD 14 Weeks 64.768.9 96.5611.9 90.7619.3 118.4613.1 *

Serum Insulin (ng/ml)

Chow 14 Weeks 0.160.02 0.1760.03 0.1660.03 0.0860.02

HFD 8 Weeks 1.5660.22 2.160.31 1.5660.05 1.2960.37

HFD 14 Weeks 2.4260.5 2.960.51 2.3460.28 3.2361.02

HOMA-IRa

Chow 14 Weeks 0.3760.08 0.4460.07 0.6260.14 0.2460.06

HFD 8 Weeks 8.361.1 12.9362.15 10.1160.9 11.2960.53

HFD 14 Weeks 7.8761.57 15.1463.61 11.8763.44 19.5165.38 *

Serum Leptin (ng/ml)

Chow 14 Weeks 0.9360.16 1.4660.58 1.2760.53 1.9560.55 {

HFD 8 Weeks 0.6860.18 1.8560.58 1.5260.31 4.6061.16 *

HFD 14 Weeks 2.6161.05 6.4661.59 4.8260.51 6.8162.21

Serum Adiponectin (mg/ml)

Chow 21 Weeks 15.6762.11 11.9260.99 15.1061.73 16.8461.55

HFD 21 Weeks 15.5061.86 13.9961.26 16.9561.46 15.5361.13

Serum RBP4 (AU)

Chow 21 Weeks 1.060.03 ND ND 1.0260.05

HFD 21 Weeks 0.9460.07 ND ND 0.8260.07

Serum Triglycerides (mg/dl)

Chow 21 Weeks 82.269.1 78.4612.0 91.6622.6 95.0622.4

HFD 21 Weeks 128.6613.2 106.6619.4 123.9620.4 97.9614.2

Serum Free Fatty Acids (mM)

Chow 21 Weeks 1.3460.1 1.1360.14 0.9660.25 0.860.18

HFD 8 Weeks 1.8260.18 1.3760.15 1.9660.21 1.4560.17

aHOMA-IR, homeostasis model assessment of insulin resistance. Data are means 6 SEM and were analyzed by one-way ANOVA with Tukey’s multiple comparison post
tests or two-tailed student’s t test.
*P,0.05;
{= 0.09 for the indicated genotype compared with PTP1B fl/fl control littermates. n = 4–14 mice/group.
doi:10.1371/journal.pone.0032700.t001
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of saline control injections on food intake in chow fed adip-

crePTP1B2/2 and fl/fl control mice (Figure S2).

Adipocyte-specific PTP1B deletion increases the basal
lipogenic rate but does not affect insulin-stimulated
lipogenesis in HFD-fed adip-crePTP1B2/2 mice

Since insulin and leptin are known to regulate lipogenesis [37–

39], we performed lipogenesis assays in our mice to directly

determine whether adipocyte-PTP1B deletion affects adipocyte

insulin sensitivity, and to investigate the underlying cause(s) of

increased adipocyte cell size. To evaluate the ability of adip-

crePTP1B2/2 and fl/fl control and mice to basally metabolize

glucose into fatty acids, and subsequently triglycerides, (giving an

indication of the level/activity of lipogenic enzymes) basal lipogenic

rates were determined. On a chow diet, basal lipogenesis was not

significantly different between adip-crePTP1B2/2 and control mice

(Figure 3C). However, on a HFD, adip-crePTP1B2/2 mice

Figure 2. Glucose homeostasis in adipocyte-specific PTP1B knockout mice. A: GTT (2 mg/g glucose) of mice on chow diet for 20 weeks
from weaning fl/fl (n = 6); adip-cre (n = 6); adip-crePTP1B+/2 (n = 5); adip-crePTP1B2/2 (n = 3). B: GTT (1.5 mg/g glucose) of mice on HFD for 19 weeks.
fl/fl (n = 7); adip-cre (n = 6); adip-crePTP1B+/2 (n = 5); adip-crePTP1B2/2 (n = 4). C: ITT (Insulin 0.6 mU/g body weight) of mice on chow diet for 21
weeks from weaning. fl/fl (n = 8); adip-cre (n = 6); adip-crePTP1B+/2 (n = 5); adip-crePTP1B2/2 (n = 4). D: ITT (Insulin 1.1 mU/g body weight) of mice on
HFD for 20 weeks fl/fl (n = 8); adip-cre (n = 6); adip-crePTP1B+/2 (n = 5); adip-crePTP1B2/2 (n = 4). E: GTT (1.5 mg/g) of mice on HFD. fl/fl (n = 5); adip-
crePTP1B2/2 (n = 5). Glucose-stimulated insulin secretion of HFD-fed mice during GTT. fl/fl (n = 5); adip-crePTP1B2/2 (n = 5). G: Representative PET
scan image from fl/fl (top panel) and adip-crePTP1B2/2 (bottom panel) mice. White circles = fl/fl; white squares = adip-cre; black circles = adip-
crePTP1B+/2; black squares = adip-crePTP1B2/2. White bars = fl/fl; black bars = adip-crePTP1B2/2. Data are represented as mean 6 SEM.
doi:10.1371/journal.pone.0032700.g002
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displayed significantly higher basal lipogenesis compared with fl/fl

controls (Figure 3C), consistent with the increase in adipocyte size

(Figures 1F, G and H). To evaluate the insulin-sensitivity of

adipocytes, a radioactive insulin-stimulated lipogenesis assay was

performed on isolated adipocytes from fl/fl and adip-crePTP1B2/2

mice, on chow and HFD. On both chow and HFD, isolated

adipocytes from adip-crePTP1B2/2 mice displayed no differences

in the insulin-stimulated lipogenic response compared with

adipocytes from fl/fl control mice (Figures 3D and E), suggesting

no differences in glucose uptake.

Table 2. PET scan average standardized uptake values from
fl/fl and adip-crePTP1B2/2 mice.

Genotype Brain (SUV) Muscle (SUV) BAT (SUV)

fl/fl 0.2060.02 0.3960.02 0.6260.34

adip-crePTP1B2/2 0.1860.02 0.3560.02 0.6460.27

Data are means 6 SEM. n = 3–4 mice/group.
doi:10.1371/journal.pone.0032700.t002

Figure 3. Decreased leptin sensitivity and increased lipogenesis in HFD-fed adip-crePTP1B2/2 mice. A: Leptin sensitivity, as measured by
the percentage change in food intake after leptin administration in chow-fed adip-crePTP1B2/2 (n = 5) and fl/fl control mice (n = 5). B: Leptin
sensitivity in HFD-fed adip-crePTP1B2/2 (n = 3) and fl/fl control mice (n = 3). C: Basal lipogenesis in chow and HFD-fed adip-crePTP1B2/2 (n = 3) and fl/
fl control mice (n = 3). D: Insulin-stimulated lipogenesis of chow-fed adip-crePTP1B2/2 (n = 4) and fl/fl control mice (n = 4). E: Insulin-stimulated
lipogenesis of HFD-fed adip-crePTP1B2/2 (n = 3) and fl/fl control mice (n = 3). White squares = chow fl/fl leptin; white triangles = HFD fl/fl leptin; black
squares = chow adip-crePTP1B2/2 leptin; black triangles = HFD adip-crePTP1B2/2 leptin. White bars = fl/fl; black bars = adip-crePTP1B2/2. Data are
represented as mean 6 SEM; Data were analyzed using a two-way ANOVA with Bonferroni multiple comparisons post-tests (*P#0.05; ***P,0.001).
doi:10.1371/journal.pone.0032700.g003
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Decreased in vivo insulin signaling in adipose tissue from
HFD-fed adip-crePTP1B2/2 mice

To investigate the molecular consequences of adipocyte-specific

PTP1B deletion in WAT and BAT, mice were injected with either

saline or insulin (10 mU/g body weight), and various components

of the insulin signaling pathway were analyzed in epididymal-

WAT (E-WAT), subcutaneous-WAT (SQ-WAT) and BAT. HFD-

feeding of fl/fl controls led to significantly higher PTP1B levels in

E-WAT (Figures 4A and B) and BAT (Figure 5C) compared with

chow-fed fl/fl controls. In chow-fed mice, insulin-stimulated

phosphorylation of the IR at sites Y1162/63 and Y1158, as well

as total IR tyrosyl phosphorylation (measured following immuno-

precipitation of the IR and anti-pY blotting) were comparable in

E-WAT from both groups of mice (Figures 4A, C, D). However,

phosphorylation of IRS-1 at site Y608 and Akt/PKB at site S473

trended to be higher in E-WAT from chow-fed adip-crePTP1B2/

2 mice compared with controls (P = 0.06 and P = 0.08, respec-

tively) (Figures 4A, E and F). Notably, relative to HFD-fed

controls, insulin-evoked IR tyrosyl phosphorylation in E-WAT was

significantly diminished in adip-crePTP1B2/2 mice on HFD

(Figures 4A and C). There was a similar trend towards decreased

phosphorylation at IR site Y1158 and pAkt/PKB site S473 in

adip-crePTP1B2/2 mice (P = 0.07 and P = 0.08, respectively)

(Figures 4A, D and F). There were no differences in the

phosphorylation of the IR on site Y1162/63, IRS-1 (S636/639)

ERK1/2 (T202/Y204), GSK-3a (S21), GSK-3b (S9), AMPK

(T172), S6 ribosomal protein (S235/236), S6 ribosomal protein

(S240/244), p70S6K (T389) or mTOR (S2448) on chow or HFD

between adip-crePTP1B2/2 and control mice (Figure 4A). Total

protein levels of other tyrosine phosphatases, such as TC-PTP and

SHP2, were comparable in E-WAT of adip-crePTP1B2/2 and

control mice on both diets (Figure 4A). In SQ-WAT the

phosphorylation of Akt/PKB (S473) was similar on chow, but

significantly decreased in HFD-fed adip-crePTP1B2/2 mice

compared with controls (Figures 5A and B). However, there were

no differences in SQ-WAT phosphorylation of the IR (Y1162/63)

or S6 ribosomal protein (S235/236) between groups on both diets

(Figure 5A). Furthermore, BAT phosphorylation levels of the IR

(Y1162/63), Akt/PKB (S473) and S6 ribosomal protein (S235/

236) were comparable between adip-crePTP1B2/2 and control

mice on both diets (Figure 5C).

No effect of adipocyte-PTP1B deletion on insulin
signaling in isolated adipocytes

To investigate whether the decreased insulin signaling observed

in epididymal white adipose tissue in vivo was directly due to

PTP1B deletion in adipocytes, insulin signaling stimulations were

performed ex vivo on isolated adipocytes from control and adip-

crePTP1B2/2 mice. Isolated adipocytes were stimulated with

0 nM, 1 nM (data not shown) 10 nM or 100 nM of insulin, and

key components of the insulin signaling pathway, which were

affected in vivo, were analyzed. There were no differences in the

phosphorylation of the insulin receptor, Akt/PKB or S6 ribosomal

protein between genotypes on either chow or HFD (Figures 6A

and B).

Increased lipogenic markers in HFD-fed adip-crePTP1B2/

2 mice
The sterol regulatory element-binding proteins (SREBPs)

coordinately activate the expression of over 30 genes involved in

the uptake of fatty acids, triglycerides and phospholipids [40].

Expression of Srebp-1c and its target gene fatty acid synthase (Fas)

were significantly higher in HFD-fed adip-crePTP1B2/2 mice

compared with fl/fl controls (Figures 7A and B), consistent with

increased basal lipogenesis (Figure 3C) and an increase in

adipocyte size (Figure 1G and H). Srebp2 and peroxisome

proliferator-activated receptor gamma (Ppar-c) expression levels

were comparable between groups on both chow and HFD

(Figures 7C and D). Phosphoenolpyruvate carboxykinase (Pepck)

expression levels were comparable between groups on a chow diet

but there was a trend (P = 0.06) on a HFD towards higher Pepck

mRNA levels in adip-crePTP1B2/2 mice compared to fl/fl

controls (Figure 7E). Hypoxia-inducible factor-1 alpha (Hif-1a)

expression levels were significantly higher in adip-crePTP1B2/2

mice compared to fl/fl controls on a chow diet. As expected, HFD-

feeding increased Hif-1a mRNA levels in both groups of mice,

however there was a trend (P = 0.07) for HFD-fed adip-

crePTP1B2/2 mice to have higher Hif-1a mRNA levels compared

to fl/fl controls (Figure 7F). The mRNA expression of the

adipokine leptin was significantly higher in adipose-tissue from

HFD-fed adip-crePTP1B2/2 mice compared with fl/fl controls

(Figure 7G), consistent with increased circulating serum leptin

levels in these mice (Table 1). Adiponectin and Tnf-a gene expression

were comparable between adip-crePTP1B2/2 mice and controls

on both chow and HFD (Figures 7H and I).

Discussion

Adipose-PTP1B2/2 mice were generated previously using the

aP2-promoter in an attempt to evaluate the effect(s) of PTP1B on

body mass control in adipose tissue. Despite only ,50% reduction

of PTP1B levels in white adipocytes, aP2-crePTP1B2/2 mice

displayed significantly increased body weight on a HFD compared

with PTP1Bfl/fl littermate controls [18]. However, whether

adipocyte-specific PTP1B was the true cause of increased weight

gain in these mice is unclear as the aP2-promoter cassette is also

active in other cell types, such as macrophages, osteoblasts and

cardiomyocytes [21,22]. Here we used adiponectin-cre mice,

which express Cre selectively in adipocytes [28] (Figure 1A).

As with muscle- and liver-specific PTP1B deletion, adipocyte-

specific PTP1B deletion did not affect body weight or adiposity in

mice fed chow or HFD. This would suggest that PTP1B deletion

in other cell types might be the cause of the body weight effects

observed in aP2-crePTP1B2/2 mice. It is also possible that the

disparate weight differences between aP2-crePTP1B2/2 and adip-

crePTP1B2/2 mice are partly due to different mouse back-

grounds, as the aP2-crePTP1B2/2 mice were on a mixed 129Sv/J

X C57BL/6J background whereas the adip-crePTP1B2/2 mice

were backcrossed to C57BL/6 background for several generations.

Chow and HFD-fed adip-crePTP1B2/2 mice were found to

have larger epididymal adipocytes than fl/fl controls. However,

smaller adipocytes were observed in mice with a global PTP1B

deletion compared with controls [16,25]. This suggests that

adipocyte-PTP1B deletion did not contribute to the previously

observed decrease in fat mass and adipocyte size observed in

global PTP1B2/2 mice; the latter most likely was caused by

neuronal-PTP1B deletion [18].

Intriguingly, PTP1B has been shown to be involved in adipocyte

differentiation. One study has shown that inhibitors resulting in

PTP1B deficiency in fat, decreased genes involved in adipocyte

differentiation [41]. Furthermore, a more recent study demon-

strated that inhibition of PTP1B in 3T3-L1 adipocytes inhibits

adipogenesis [42]. However, this does not appear to be the case in

BAT. Two studies have demonstrated that PTP1B-deficiency in

BAT promotes adipocyte differentiation and adipogenesis and

protects against apoptosis-inducing stimuli [43,44]. Therefore, in

the current study, it is possible that PTP1B deletion has led to an
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Figure 4. Reduced in vivo insulin signaling in epididymal white adipose tissue from HFD-fed adip-crePTP1B2/2 mice. A: Epididymal
white adipose tissue immunoblots of insulin signaling components in chow- and HFD-fed fl/fl and adip-crePTP1B2/2 (KO) and fl/fl (FL) mice after
injection with saline or insulin (10 mU/kg). B: PTP1B levels and deletion efficiency of fl/fl (n = 4–5) and adip-crePTP1B2/2 mice (n = 4) in epididymal
white adipose tissue under chow- and HFD-fed conditions. Graphs C to F show phosphorylation levels of the indicated proteins in epididymal white
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inhibition of adipocyte differentiation in WAT, resulting in cells

which have become enlarged to compensate for storing excess

energy from both chow and HFD.

However, the mechanism causing this increase in adipocyte size

is not clear. Another possibility for the increased cell size could be,

at least partly, due to increased basal lipogenesis and elevated

expression of Srebp-1c and Fas. Given that adip-crePTP1B2/2

mice have decreased insulin signaling on HFD, and that leptin

normally inhibits lipogenesis by stimulating fatty acid oxidation via

negative regulation of Srebp-1c [37,38], it is surprising that Srebp-1c

and Fas gene expression are increased compared with controls.

Interestingly however, an opposite and similarly paradoxical

phenotype was observed in liver-specific PTP1B knockout mice:

they displayed increased hepatic insulin signaling and decreased

expression levels of hepatic Srebp-1c, Fas and other lipogenic

markers [5,45]. In the liver, PTP1B may regulate Srebp-1a and

Srebp-1c mRNA expression via phosphatase 2A (PP2A) activity

[46]. It is suspected that PTP1B may affect Srebp-1 gene expression

via a non-insulin signaling pathway in the liver [47], which might

also be the case in adipocytes.

Interestingly, in vivo over-expression of Pepck in adipose tissue

was shown to increase glyceroneogenesis and fatty acid re-

esterification, leading to increased adipocyte size and fat mass

[48]. Mice with an adipocyte-PTP1B deletion displayed increased

expression of Pepck on a HFD compared with fl/fl controls,

suggesting that the increased adipocyte size may also be partly due

to increased glyceroneogenesis and fatty acid re-esterification in

these mice.

During the early stages of obesity, hypoxic conditions cause an

increase in the level of Hif-1a expression in mice on a HFD and in

genetically obese ob/ob mice [49]. Hif-1a over-expression in vivo has

been shown to lead to increased adipocyte cell size and it has been

proposed that Hif-1a upregulation represents one of the earliest

events in adipose tissue expansion and dysfunction [49]. Indeed,

HFD-feeding led to increased Hif-1a expression in both groups of

mice. Interestingly however, we found that Hif-1a expression was

higher in chow and HFD-fed adip-crePTP1B2/2 mice compared

with fl/fl controls, suggesting that these mice are more prone to

hypoxia-induced adipose tissue expansion, which may have also

contributed to enlarged adipocytes and increased leptin secretion.

Furthermore, a recent study which demonstrated that HIF binds

to the PTP1B promoter and reduces PTP1B expression, and

proposed that there was a HIF-regulated VHL-PTP1B-Src

signaling axis in renal cell carcinoma (RCC) cells, suggests that

there is a relationship between HIF-1 expression and PTP1B

signaling [50].

The expression and release of leptin have been shown to depend

on adipocyte cell size in rodents and humans [51,52]. In HFD-fed

mice, adipocyte-specific PTP1B deletion increased serum leptin

levels seven-fold and leptin mRNA expression six-fold in compar-

ison to fl/fl controls, which may be due to the increased volume of

adipocytes in these mice, as body weight and ad libitum food intake

were comparable between HFD-fed adip-crePTP1B2/2 and

control mice. An increase in leptin secretion was also observed

in neuronal-specific PTP1B knockout mice, which displayed

increased serum leptin levels but remained leptin hypersensitive

[18]. Reduced suppression of food intake in response to exogenous

leptin in HFD-fed adip-crePTP1B2/2 mice suggests that they

were more leptin resistant than their HFD-fed controls. PTP1B

clearly appears to play an important role in leptin secretion but the

pathways involved remain to be determined.

Adipose tissue has been shown to play an important role in

glucose homeostasis via secretion of adipokines and accounts for

Figure 5. Reduced in vivo insulin signaling in subcutaneous
white adipose tissue from HFD-fed adip-crePTP1B2/2 mice. A:
Subcutaneous white adipose tissue immunoblots of insulin signaling
components in chow- and HFD-fed fl/fl and adip-crePTP1B2/2 (KO) and
fl/fl (FL) mice after injection with saline or insulin (10 mU/kg). B: Akt/PKB
S473 phosphorylation levels normalized to total Akt/PKB in subcutane-
ous white adipose tissue after saline or insulin (10 mU/kg) injection of
chow- or HFD-fed fl/fl (FL) and adip-crePTP1B2/2 mice (KO). C: Brown
adipose tissue immunoblots of insulin signaling components in chow-
and HFD-fed fl/fl and adip-crePTP1B2/2 (KO) and fl/fl (FL) mice after
injection with saline or insulin (10 mU/kg). White bar = fl/fl; black
bar = adip-crePTP1B2/2. Data are represented as mean 6 SEM; data
were analyzed using two-tailed Student’s t test (*P,0.05; **P,0.01).
doi:10.1371/journal.pone.0032700.g005

adipose tissue after saline or insulin (10 mU/kg) injection of chow- or HFD-fed fl/fl and adip-crePTP1B2/2 mice, as indicated. Phosphorylated proteins
were normalized as shown in the graphs. C: IP: IR (IB: pY). D: IR Y1158. E: IRS-1 Y608. F: Akt/PKB S473. White bar = fl/fl; black bar = adip-crePTP1B2/2.
Data are represented as mean 6 SEM; data were analyzed using two-way ANOVA with Bonferroni multiple comparisons post-tests to compare
between diets, and two-tailed Student’s t test to compare between different genotypes on the same diet (*P,0.05; **P,0.01; ***P,0.001;
****P,0.0001).
doi:10.1371/journal.pone.0032700.g004
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,10–15% of postprandial glucose uptake [53]. Large adipocytes

exhibit reduced glucose uptake and are less insulin-sensitive than

small adipocytes as they become enriched with large lipid droplets

[54]. Fasted blood glucose levels after 8 and 14 weeks of HFD, and

HOMA-IR after 14 weeks HFD, were significantly higher in adip-

crePTP1B2/2 mice than fl/fl controls suggesting mild glucose

intolerance in these mice. However, adip-crePTP1B2/2 mice

showed no alteration in serum adipokines (other than leptin),

despite larger adipocytes and increased lipogenesis.

Reports of the effect(s) of adipose tissue PTP1B-deficiency on

insulin signaling are conflicting. In vivo antisense oligonucleotide

treatment, which decreased adipose-PTP1B, elicited some im-

provements in insulin signaling [26,27]. However, over-expression

of PTP1B in differentiated adipocytes had minimal effects on

insulin signaling [23]. Furthermore, adipose tissue-insulin signaling

was not different in global PTP1B2/2 mice relative to controls

[17]. In contrast, in another study, basal hyper-phosphorylation of

p70S6K was observed in the adipose tissue of globally PTP1B-

deficient mice, which was described as the cause of decreased

insulin-stimulated phosphorylation of IRS-1 and decreased activity

of Akt/PKB, leading to adipose-specific insulin resistance in

PTP1B2/2 mice [25]. Consistent with the latter studies, we show

here that insulin-stimulated phosphorylation of IR and Akt/PKB,

under HFD-feeding conditions, is impaired in mice with an

adipocyte-specific PTP1B deletion. Interestingly, leptin has been

shown to impair insulin signaling in rat adipocytes [55], which is

also consistent with these observations. It is possible that the

increases in serum leptin, in the absence of PTP1B in adipocytes,

and the potential of signaling crosstalk, may be confounding

detection of predicted changes in insulin signaling in vivo. However,

since we did not observe any differences between groups in IR

phosphorylation, or that of the downstream components, in

isolated adipocytes under different insulin concentrations, this

confirms our in vivo findings that PTP1B does not appear to be the

main IR phosphatase nor be a negative regulator of insulin

signaling in adipocytes. In addition, adipocyte-PTP1B deletion did

not result in any differences in the phosphorylation of p70S6K, S6

ribosomal protein, IRS-1, mTOR or a number of other insulin

signaling pathway components in our studies. Such differences in

findings may be due to altered cross-talk between the adipose

tissue and other tissues, such as the liver and the central nervous

system, in global PTP1B2/2 mice.

We therefore suggest that PTP1B deletion in adipocytes

enhances basal lipogenesis and fatty acid re-esterification via a

non-classical insulin signaling pathway, by increasing lipogenic

(Srebp-1c, Fas) and gluconeogenic (Pepck) mRNA expression, which

subsequently leads to increased lipid storage and enlarged

adipocytes. This increased adipocyte size, combined with

increased Hif-1a gene expression, results in hypoxia-induced

adipose tissue dysfunction and leads to augmented leptin secretion,

which dampens adipocyte-insulin signaling; finally leading to

leptin resistance and mildly elevated fasting blood glucose. Our

findings and those of Ruffolo et al. suggest that some compensatory

mechanism(s), such as the up-regulation of another protein

tyrosine phosphatase may be involved in regulating adipocyte-

insulin signaling [17,25]. T-cell protein-tyrosine phosphatase (TC-

PTP) is a ubiquitous tyrosine-specific phosphatase with a high

degree of similarity to PTP1B [56]. Furthermore, TC-PTP has

been shown to coordinately regulate insulin signaling with PTP1B

and act to control common and distinct insulin signaling pathways

within the same cells [56]. In the current study, TC-PTP was not

up-regulated by PTP1B deletion. Similarly, no changes in SHP2

levels were observed in adip-crePTP1B2/2 mice. However, it is

still possible that some other protein tyrosine phosphatase(s) may

play a role as a negative regulator of IR signaling in adipocytes.

Overall, tissue-specific knockout studies of PTP1B have revealed

key roles for brain-, liver- and muscle-PTP1B in the regulation of

global energy and glucose homeostasis. However, adipocyte-

PTP1B primarily appears to only locally regulate lipogenic gene

expression, adipocyte cell size, and leptin secretion and does not

appear to play a major role in regulating body weight/adiposity or

whole body glucose homeostasis.

Figure 6. No effect of adipocyte-PTP1B deletion on insulin signaling in isolated adipocytes. A: Immunoblots of insulin-stimulated (0 nM,
10 nM or 100 nM insulin) isolated epididymal adipocytes from chow-fed control and adip-crePTP1B2/2 mice. B: Immunoblots of insulin-stimulated
(0 nM, 10 nM or 100 nM insulin) isolated epididymal adipocytes from HFD-fed control and adip-crePTP1B2/2 mice.
doi:10.1371/journal.pone.0032700.g006
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Supporting Information

Figure S1 PTP1B deletion of fl/fl control, adip-cre-
alone control and adip-crePTP1B+/2 mice. PTP1B deletion

efficiency of HFD-fed fl/fl (FL), adip-cre-alone (CRE) and adip-

crePTP1B+/2 (HET) mice in epididymal WAT.

(TIF)

Figure S2 Saline control injections to leptin sensitivity
experiment. No significant effect on food intake after saline

control injections in chow fed adip-crePTP1B2/2 and fl/fl control

mice (n = 3 mice/group). White circles = chow fl/fl saline; black

circles = chow adip-crePTP1B2/2 saline. Data are represented as

mean 6 SEM.

(TIF)

Figure S3 Area under the curve of Figure 2B. No

significant differences between groups. PTP1B deletion does not

significantly affect glucose clearance following a glucose bolus.

White bars = fl/fl; diagonally striped bars = adip-cre; horizontally

striped bars = adip-crePTP1B+/2; black bars = adip-crePTP1B2/2.

Data are represented as mean 6 SEM.

(TIF)

Figure S4 Adipocyte morphology in subcutaneous and
peri-renal fat pads. No differences of subcutaneous or peri-

renal adipocyte cell size between HFD-fed adip-crePTP1B2/2

mice (KO) and fl/fl (FL) control mice. n = 4 mice/group. White

bars = fl/fl; black bars = adip-crePTP1B2/2. Data are represented

as mean 6 SEM.

(TIF)

Figure 7. Increased lipogenic gene expression in HFD-fed adip-crePTP1B2/2 mice. Graphs A to I show relative mRNA levels of the indicated
genes in epididymal WAT, measured by quantitative real-time PCR and normalized against Hprt mRNA. Chow-fed adip-crePTP1B2/2 (n = 4) and chow-
fed fl/fl control mice (n = 13) were compared to HFD-fed adip-crePTP1B2/2 (n = 4) and HFD-fed fl/fl control mice (n = 15). A: Srebp-1c. B: Fas. C: Srebp-2.
D: Ppar-c. E: Pepck. F: Hif-1a. G: Leptin. H: Adiponectin. I: Tnf-a. White bar = fl/fl; black bar = adip-crePTP1B2/2. Data are represented as mean 6 SEM;
data were analyzed using two-tailed Student’s t test (*P,0.05; **P,0.01).
doi:10.1371/journal.pone.0032700.g007
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Table S1 Real time quantitative PCR primer sequences
for gene expression analysis and PCR primer sequences
for genotyping.
(DOCX)
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