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Abstract Crack damage leading to failure in rocks can be accumulated through cyclic stressing in the
crust. However, the vast majority of experimental studies to investigate cyclic stressing apply conventional
triaxial stress states (o1 > 0, = g3), while in nature the state of stress in the crust is generally truly triaxial
(01 > 05 > 03). Furthermore, the magnitude of these crustal stresses can vary over time and their orientations
can also rotate over time, generating multiple crack populations and bulk anisotropic crack damage. We
investigate the evolution of crack damage under both conventional and true triaxial stress conditions by
sequentially and cyclically varying stresses in all three principal directions on cubic samples of dry sandstone
using independently controlled stress paths. We have measured, simultaneously with stress, the bulk
acoustic emission output, as a proxy for crack damage. We report a directionally controlled crack damage
memory effect which has implications for the approach to failure in complex tectonic stress environments.

Plain Language Summary Fractures that lead to failure and faulting in rocks accumulate over time
with increasing amounts of stress. While a considerable amount of research has been devoted to
understanding how cyclic stresses lead to the development of crack damage, very little work has considered
how this damage evolves with direction. The lack of work on this topic is partly due to the type of
experimental apparatus required to conduct suitable tests. In order to replicate multiple populations of crack
damage in different directions, a true triaxial loading apparatus is needed. Such an apparatus replicates the
general state of stress in the crust and allows those stresses to be varied with direction. It is well known
that the stress field around fault zones, in volcanoes, and in geothermal systems can be complex and can
rotate over time. By conducting experiments using a novel true triaxial apparatus we find a directionally
controlled crack damage memory effect which has implications for the approach to failure of critically
stressed rocks in complex tectonic stress environments. As such, these experimental results will be of interest
to those studying fault zones and volcanic processes.

1. Introduction

Rocks in the crust may undergo, or have undergone, repeated cycles of stress over time (Heap, Vinciguerra,
and Meredith, 2009). In environments with complex stress regimes where stresses may evolve both spatially
and temporally, such as volcanoes or active fault zones, some of these rocks may experience not only cyclic
stressing but also rotating and/or reorienting stress conditions (Faulkner et al., 2006; Karaoglu et al., 2016;
Gudmundsson & Philipp, 2006). In such situations the resulting crack distributions form sequentially and
may therefore be highly anisotropic. Thus, the tectonic history of the crust may include complex stress paths,
encompassing different magnitudes and orientations. Despite this, the way in which such variations in prin-
cipal stress influence the activation and linkage of anisotropic crack distributions remains poorly constrained.

Nevertheless, stress cyclicity has been studied both in the laboratory (e.g., Browning et al., 2017; Heap et al.,
2010; Holcomb, 1993; Lavrov, 2003; Lockner, 1993) and in the field (e.g., Heimisson et al., 2015; Kilburn, 2012).
One well-reported phenomenon exhibited by cyclically stressed crustal rocks is the Kaiser stress memory
effect (e.g., Holcomb, 1993; Lavrov, 2003). This effect is reported as a manifestation of materials to accumulate
and reproduce information about previously experienced stress states (Lavrov, 2003). In the laboratory the
effect has been observed during cyclic stressing experiments, where acoustic emission (AE) output on any
cycle does not commence until the maximum stress on the previous cycle has been reached or exceeded
(Heap et al.,, 2010; Holcomb & Costin, 1986; Lockner, 1993). All of these tests were conducted using uniaxial
or conventional triaxial apparatus and so were unable to fully probe the directionality of the Kaiser effect.
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More recently, Browning et al. (2017) confirmed the presence of the Kaiser effect during true triaxial stressing
experiments but concluded that the effect is more accurately a damage memory rather than a stress memory
effect. In general, the state of stress in the crust is triaxial (i.e., o, > 0, > 03; Zoback & Zoback, 2002), and
results from experiments that recreate these more realistic stress conditions have noted significant effects
on rock strength (Haimson & Chang, 2000), crack densities, crack orientations (Browning et al, 2017;
Ghaffari et al., 2014), and fluid flow characteristics (Nasseri et al., 2014). A Kaiser effect has also been observed
at active volcanoes that are subject to cyclic deformation. The rate of seismic energy release on any deforma-
tion cycle has been found to increase only when a previous maximum stress state has been reached or
exceeded (Heimisson et al., 2015; Kilburn, 2012). The implication of this, in terms of forecasting potential vol-
canic eruptions, is that these observed increases in seismicity may commence at stress levels closer to the
critical failure stress than may have been expected. However, the question remains as to whether rocks pos-
sess a directional damage memory when they are exposed to cyclic and rotated triaxial stresses.

While Browning et al. (2017) reported a damage memory effect under true triaxial conditions, the stress orien-
tations remained constant in their experiments. Here, therefore, we report results from an experimental study
in which we measured the output of AE during conventional and true triaxial experiments on sandstone sam-
ples that have been sequentially deformed both to progressively increasing levels of stress and in multiple
directions. As such, this new study represents the first experimental examination of the Kaiser effect under
rotational stressing conditions.

2, Experimental Setup

The rock chosen for this study was the well-studied and well-characterized Darley Dale sandstone which is a
feldspathic sandstone with a porosity of ~13%; composed of both pores and cracks (Heap, Baud, et al., 2009;
Wau et al,, 2000). All the results presented are from experiments performed at room temperature on dry cubic
samples. Samples were manufactured with edge lengths of 50 mm (£0.03 mm) and with opposing faces
ground flat and parallel to within £0.0 | mm. All experiments were performed in a three-axis stressing frame
constructed of flanged steel beams based at the laboratories of Koninklijke/Shell Exploratie en Produktie
Laboratorium, Rijswijk, the Netherlands (Stuart, 1992; Stuart et al., 1993). A detailed description of the appa-
ratus has recently been presented in Browning et al. (2017) and can also be found in the supporting informa-
tion (Text S1 and Figure S2).

3. Experimental Protocol

In order to probe the level and directionality of the Kaiser effect, we have conducted three sets of experiments of
progressively increasing complexity: sequential conventional triaxial (SCT) loading tests, cyclic sequential con-
ventional triaxial (CSCT) loading tests, and cyclic sequential true triaxial (CSTT) loading tests. We present detailed
results of representative experiments from each of the three sets. Overall, a total of 13 experiments were per-
formed and a table listing the experimental conditions is given in the supporting information (Table S6).

The SCT loading tests each consisted of three loading cycles (Figure 1a). In the first cycle, 6., was increased at
a rate of 0.018 MPa/s to a maximum value of 80 MPa and then unloaded at the same rate, while oy, and o,
were held constant at 4 MPa. In the second cycle, o, was increased to 80 MPa at the same rate and then
unloaded, while 5, and o, were held constant. In the third and final cycle, ,, was loaded to 80 MPa and
unloaded, while ¢,, and o,y were held constant.

In the subsequent CSCT test series, the applied stresses were varied both cyclically and sequentially in order to
investigate the Kaiser effect (Holcomb & Costin, 1986; Lavrov, 2003; Lockner, 1993). These tests were performed
by loading a sample to increasingly elevated peak stress levels in each direction sequentially (Figure 2a). In the
first stage of these tests, o, and gy, were again maintained equal at 4 MPa, while ¢, was again increased to
80 MPa (o7 > 0, = 03). Following unloading, ¢,, was again increased but to a higher level than previously
reached. This pattern of loading was repeated sequentially in the other two loading directions but with the
maximum load in the initial loading cycle stepped down by 10 MPa for each loading direction, respectively.

Loading was again performed at a rate of 0.018 MPa/s, but unloading was rapid. This was simply for practical
reasons so as to allow each test to be conducted during a single working day. Typical total experiment dura-
tion for both the SCT and CSCT tests was approximately 7 hr.
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Figure 1. (a) Sequential conventional triaxial loading where ¢, is first raised to 80 MPa and unloaded, followed in
sequence by an identical loading pattern in the oy, and oy, directions. Cumulative AE is denoted by a black line, and
the onset of AE observed in each cycle is denoted by a black ellipse. (b) Schematics showing the distribution of crack
damage formed during each sequential loading cycle and (c) stereographic projections showing poles to crack planes. AE =
acoustic emission.

In the final series of tests, the CSTT tests, a truly triaxial stress state was applied: ¢, > o, > 03. The applied
stresses were varied both cyclically and in sequential directions (Figures 3a, 3¢, and 3e).

In the first cycle, o4 was raised to 80 MPa at a rate of 0.018 MPa/s, while o, was raised to 40 MPa at half that
loading rate (0.009 MPa/s). In cycle 2, o, and o, were raised to higher stresses of 90 and 45 MPa, respectively,
but at the same loading rates. In cycle 3, o7 was raised to a lower stress level of 60 MPa, again at the same rate,
while both ¢, and o3 were held constant at 4 MPa (thus applying a state of conventional triaxial stress). In
cycle 4, a state of true triaxial stress was reimposed, with ¢, being raised to 100 MPa, while ¢, was raised
to 50 MPa. In the fifth and final cycle of this sequence, a state of conventional triaxial stress was again
imposed, with ¢ being raised to 80 MPa, while o, and o3 were both held constant at 4 MPa. After each load-
ing cycle, the sample was unloaded to the hydrostatic state of 4 MPa in all directions. This pattern of five
sequential loadings was repeated three times, first with ¢, in the o, direction and o3 in the o, direction
(cycles 1 to 5 in Figure 3a), next with o, in the g,y direction and a3 in the o, direction (cycles 6 to 10 in
Figure 3c), and finally with &, in the gy, direction and o3 in the oy direction (cycles 11 to 15 in Figure 3e).
As such, a total of 15 loading cycles were applied; five in each of the three loading directions.

4, Results and Discussion
4.1. SCT Loading

In the SCT loading test the AE output, which we take to mark the onset of new crack damage, commences at
around 42 MPa in each of the three cycles (1, 2, and 3 in Figure 1). The AE onsets are marked as black ellipses,
where the size of the ellipse indicates the picking error associated with each onset point. The onset points are
shown here plotted with the cumulative AE data curves because our primary interests are damage onset and
damage accumulation. However, for maximum accuracy, the onsets were actually picked from the AE rate
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data curves. For completeness, therefore, all the AE rate data curves are given in the supporting information
(Figures S3-S5). Figure 1 shows that the onset of new crack damage occurs at approximately the same level
of stress in each cycle in the SCT test (42 + 5 MPa), and we therefore observe absolutely no manifestation of
the Kaiser effect in this experiment. However, while the AE onsets occur at approximately the same level of
stress in each cycle, the level of AE output, measured as cumulative AE hits, decreases with each sequential
loading cycle. In the first cycle the total number of recorded AE hits was around 32,000, whereas just 4,000 AE
hits where recorded in both the second and third cycles. When taken together these results suggest that
loading in the o,, generated a greater amount of crack damage than loading in the o,y and oy, directions
combined, which together produced a similar level of crack damage.

As noted by Browning et al. (2017), each individual loading cycle produces a separate, cylindrically transverse
isotropic (CTI) crack damage population, where cracks grow in orientations preferentially parallel to ¢, and
open normal to o, and 3. This observation has previously been confirmed from measurement of ultrasonic
wave velocities in multiple orientations using the same rock type and apparatus (Browning et al., 2017).
Briefly, V,, (primary wave velocities) are found to increase in the direction normal to ¢4 during loading due
to elastic crack closure and decrease during unloading, due to elastic crack opening. V,, normal to o, and
o3 (which are equal) are found to decrease at the onset crack damage formation, which was also found to
be around 42 MPa, suggesting that those inelastic crack populations open normal to o, = o3 V,, in these
orientations do not recover following unloading, indicating the formation of new crack damage. As the onset
of AE occurs at around 42 MPa in the SCT test we take this to indicate that a new population of cracks, each
with CTI, are formed in each sequential cycle. The schematic diagrams in Figure 1b indicate the orientation of
the new crack damage in each sequential cycle.

This crack damage can also be represented as poles to crack planes on a stereographic projection (Figure 1c).
In the first of the three cycles, once a differential stress (Ac) of 36 MPa has been reached, cracks form essen-
tially parallel to o, and open essentially perpendicular to o,, and oy, and so are drawn as a colored girdle of
poles in the x-y plane. The breadth of the girdle is represented as 36° since it has previously been recognized
that all fractures in the population do not form perfectly parallel to o, but over a range of angles of about
+18° either side of o, (see Browning et al., 2017). In the subsequent cycle, cracks form parallel to o, and open
perpendicular to 6., and oy, so this damage is represented as a girdle in the z-y plane (with the same width of
36°) but is additional to the previous damage in the x-y plane which remains. When the damage from the third
and final cycle is added (Figure 1c), the resulting stereogram displays only small sectors of undamaged space,
so that the three individual anisotropic crack populations combine to produce an essentially isotropically
damaged rock volume.

The range of crack angles represented in the girdles is also consistent with the measurement of significantly
fewer AE hits on the second and third loading cycles. Since many of the cracks that would have been
nucleated in these later cycles if the alignment was perfect have already been nucleated on previous cycles,
these cracks do not need to be nucleated again; hence, the AE count is lower in later cycles.

4.2, CSCT Loading

In the first cycle (cycle 1) of the CSCT test, the sample was loaded at a constant rate to a peak stress of 75 MPa
in the o, direction, while o, and o, were held constant at 4 MPa (blue lines in Figure 2a). The ¢,, was then
decreased, and the sample returned to a hydrostatic stress state of 4 MPa. In cycle 2, 6., was increased to a
higher peak stress of 81 MPa, while o, and o, were again held constant at 4 MPa. The onset of AE in the first
cycle commenced around 40 MPa, and AE output increased quasi-exponentially with increased loading, until
a total of around 22,000 AE hits were recorded by the peak stress. In the second cycle, further AE only recom-
menced at a level of stress that was significantly higher than the onset stress on the first cycle and close to,
but lower than, the previous maximum stress. This demonstrates a Kaiser effect, albeit an imperfect one. This
occurrence of an AE onset at a stress level somewhat below the previous maximum is a common observation
in cyclic loading experiments and occurs because the new crack damage lags behind the level of stress
imposed during the relatively rapid and continuous loading applied in the laboratory (e.g., Heap et al,,
2010; Lavrov, 2001). Hence, new damage (and associated AE) commences when the previous damage state
is reached, rather than the previous stress state. This observation serves to support our contention that the
Kaiser effect is a damage memory rather than a stress memory effect. Once it has recommenced, the AE
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Figure 2. Cyclic sequential conventional triaxial loading where o, is raised to 75 MPa and then unloaded and raised
higher to 80 MPa. The oy is raised to 65 and 80 MPa, and ayy is raised to 55 and 80 MPa. Cumulative AE is denoted by
the solid black line, and the onset of AE observed in each cycle is denoted by a black ellipse. (b) Stereographic projections
of crack damage formed during each sequential loading cycle, with increasing crack density represented by increasing
color intensity. AE = acoustic emission.

again increased quasi-exponentially with increased loading; with a cumulative count of around 45,000 hits by
the time the maximum stress of 81 MPa was reached.

This pattern of cyclic loading was then repeated but with the maximum load now applied in the o, direction
(red lines in Figure 2a). In cycle 3, oy, was increased to a peak value of 65 MPa, 10 MPa lower than the peak
stress in cycle 1, with o, = oy, = 4 MPa. However, even though this peak stress in the o, direction was lower
than either of those in cycles 1 and 2, significant AE was generated. The onset of AE again occurred at around
40 MPa, but significantly fewer AE hits were generated. This indicates the presence of new crack damage,
albeit much less than in the previous cycles. Following unloading, oy, was raised to a peak stress of
80 MPa in cycle 4. Again, AE recommenced at a level of stress that was slightly lower than the previous max-
imum stress but significantly higher than the onset stress in cycle 3. AE output accelerated with increasing
stress until unloading, generating around 10,000 hits. As we observe an onset of AE at around 40 MPa in both
cycles 1 and 3, this shows no manifestation of the Kaiser effect but instead indicates a directional indepen-
dence. This interpretation is supported by the observation that the Kaiser effect is restored in cycle 4.

In the final set of sequential cycles, o,, was loaded to 55 MPa in cycle 5, again 10 MPa lower than in cycle 3
and 20 MPa lower than in cycle 1 (green lines in Figure 2a). Despite this, we observe exactly the same set of
phenomena; AE output again commenced around 40 MPa and accelerated with increasing stress but with
significantly fewer hits than in either of cycles 1 or 3. On the final cycle (cycle 6), oy, was raised to 80 MPa.
AE on this cycle recommenced at almost exactly the previous maximum stress level in cycle 5 and increased
up to the peak stress, generating a similar number of AE hits to cycle 4.

The AE results from these CSCT tests highlight that the Kaiser effect is in fact a damage-memory effect where
new crack damage is only initiated when the previous damage state is exceeded. We can again highlight the
evolution of crack damage during CSCT loading using stereographic projections of poles to crack planes
(Figure 2b), but we now have to consider the sequential increase in density of each crack population as well
as their orientations. We qualitatively estimate the contemporaneous change in crack density from the quan-
titative output of AE hits recorded during each loading cycle. The maximum stress is decreased in each of the
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initial loading cycles (1, 3, and 5), and so the amount of crack damage generated during each of these cycles
also decreases. In the second set of loading cycles (2, 4, and 6), the sample is loaded to the same maximum
stress (80 MPa) in each direction, and so the final crack densities are expected to mimic those generated in
the SCT test (Figure 1b). We represented increases in crack density by increases in color intensity in the
stereograms of Figure 2b.

4.3. CSTT Loading

The results and observations from all 15 cycles of one of our CSTT test are described and summarized below
and illustrated in Figure 3:

Cycles 1-5 (Figures 3a and 3b)

« AE onset in cycle 1 occurs when o, reaches around 40 MPa. The total number of AE hits generated during
loading to the peak stress of 80 MPa was around 6,600. This contrasts with the 32,000 hits generated during
loading to the same peak stress in the first cycle of the SCT test (Figure 3a). Since the stress regime in this
cycle is truly triaxial, the crack damage population is characterized by planar transverse isotropy (PTI) with
cracks restricted to grow subparallel to ¢, (0,,) and subnormal to o3 (o), rather than the CTI characteristic
of conventional triaxial loading in the SCT test where cracks were able to grow in any orientation in the -03
plane, as previously shown by Browning et al. (2017). As such, the poles to crack planes are plotted as
small circles of £18° centered on the o, axis (Figure 3b), rather than as a girdle around the x-y plane
(as in Figure 1b). The decrease in AE output recorded in the CSTT test, relative to the SCT test, is entirely
commensurate with the restricted range of crack orientations.

+ In cycle 2, AE output recommence only when o, reaches 80 MPa. This is a manifestation of the Kaiser
effect; new damage (and, hence, new AE) is only generated when the maximum stress in the previous cycle
(cycle 1) is exceeded. Cycle 2 is also truly triaxial, meaning that new crack damage is also characterized by
PTI. Hence, the stereogram for this cycle is also plotted as small circles around the o, axis (Figure 3b) but
with increased color intensity to indicate the higher crack density.

« A very different pattern of activity is observed in cycle 3 where the sample is subjected to conventional
triaxial loading (o4 = gyy). AE output recommences when ¢, reaches 40 MPa, a much lower stress level
than in cycle 2 but the same level as for the AE onset in cycle 1. This is because cracks around the x-y plane
that were suppressed from growing in the first two cycles due to the elevated level of the intermediate stress
(oxx) are now able to grow. We now have CTI conditions under a conventional triaxial stress regime, and
the stereogram for this cycle is therefore plotted as a girdle around the x-y plane (Figure 3b) but with low
color intensity to indicate the relatively low density of the infilling cracks; only about 2,000 AE hits were
generated during this loading cycle. We again note that the concept of the Kaiser effect as a simple stress
memory effect also breaks down here. The onset of new AE occurred not at the previous maximum stress
level (90 MPa) but at the overall stress state where it became possible for new, oriented crack damage to
be generated.

+ In cycle 4, we again impose true triaxial loading and AE recommences, as expected, at the point where
the maximum stress in cycle 2 (90 MPa) is exceeded, rather than at the maximum stress in cycle 3
(65 MPa). So a restoration of the directional aspect of the Kaiser effect is observed in this cycle.
Because of the imposed true triaxial loading, crack damage is again restricted to PTI, so the stereogram
is plotted as small circles around the oy, axis (Figure 3b), with increased color intensity to represent the
increased crack density.

+ In cycle 5 we revert back to conventional triaxial loading. AE output recommences at the previous maxi-
mum stress level in cycle 3 (65 MPa), rather than the higher maximum stress level of 100 MPa in cycle 4.
So while the concept of the Kaiser effect as a simple stress memory effect broke down between cycles 2
and 3, its directional aspect is restored between cycles 3 and 5. New crack damage again exhibits CTl, so
the stereogram for cycle 5 is a girdle around the x-y plane with increased color intensity.

«+ The total cumulative number of AE hits generated during loading cycles 1-5 was approximately 30,000
(Figure 3a).

Cycles 6-10 (Figures 3c and 3d)

+ The sequence of loading and the pattern of AE activity and onset during loading cycles 6-10 were essen-
tially identical to those during cycles 1-5 but with o, as o and o, as o3 (Figure 3c).
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Figure 3. Cyclic sequential true triaxial loading test. (a) Cycles 1-5 with corresponding crack damage stereonets (b),
(c and d) cycles 6-10, and (e and f) cycles 11-15. AE = acoustic emission.

« Justas for cycles 1 and 3, we observe AE onsets around 40 MPa in cycles 6 and 8. In cycle 7, we observe an
AE onset a little below 80 MPa (as for cycle 2). In cycle 9, the AE onset occurs a little below 90 MPa (as for
cycle 4), and finally in cycle 10 the AE onset occurs around 65 MPa (as for cycle 5).

+ We show in Figure 3b how crack damage generated in loading cycles 1-5 could be represented graphically
as stereograms. These stereograms also serve to illustrate how the crack damage induced in each cycle is
additive. The damage stereograms for cycles 6-10 are shown in Figure 3d. They follow the same pattern as
those for cycles 1-5, but true triaxial damage is shown as small circles centered on the o, axis, and conven-
tional triaxial damage is shown as girdles around the y-z plane. However, the stereograms of Figure 3d
show that not only is the damage induced in cycles 6-10 internally additive but it is also additive to the
damage population induced in cycles 1-5.

- We note that the total cumulative number of AE hits generated during loading cycles 6-10 was approxi-
mately 12,000 (Figure 3c), about 40% of the number generated during cycles 1-5. This is as expected
because a significant number of the cracks that would be expected to grow in particular orientations dur-
ing loading cycles 6-10 have already been propagated (and generated AE signals) during cycles 1-5. Since
those cracks already exist, they do not generate AE on subsequent loading.

Cycles 11-15 (Figures 3e and 3f)

- The sequence of loading and the pattern of AE activity and onset during loading cycles 11-15 were again
essentially identical to those during cycles 1-5 and 6-10 but with gy, as o, and o, as o3 (Figure 3e).

« Again, the pattern of AE onsets in cycles 11-15 is identical to those in cycles 1-5 and 6-10.

+ The stereograms of crack damage for cycles 11-15 (Figure 3f) also follow the same pattern as those for
cycles 1-5 and 6-10 but with true triaxial damage shown as small circles centered on the o, axis and con-
ventional triaxial damage shown as girdles around the z-x plane. Once again, the stereograms of Figure 3f
show that the crack damage induced during cycles 11-15 is not only internally additive but also additive to
the damage populations induced in cycles 1-5 and 6-10.
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«+ The total cumulative number of AE hits generated during loading cycles 11-15 was again approximately
12,000 (Figure 3e), the same as the number generated during cycles 6-10 and 40% of the number gener-
ated during cycles 1-5. This is entirely as expected for the same reasons as noted above.

5. Concluding Remarks

We consider that the results presented here have fundamental implications for the approach to failure of
crustal structures that have experienced complex loading paths due to variations in stress orientation and
magnitude over geological time. This is because crack damage in natural crustal systems such as fault zones
and volcanoes evolves in different ways depending on the stress history (Healy et al., 2015). Cyclic loading of
crustal structures is common and leads to the progressive evolution of damage populations. Our results
demonstrate that the onset of damage in any orientation depends only on the level of differential stress
(01-03) in that orientation. However, the orientation and magnitude of the evolving damage also depends
on the level of ¢,, because a lower level of o, leads to a less restricted range of available crack orientations
and, hence, to an increased number of cracks. Furthermore, the damage generated during each loading cycle
is incrementally additive. Additionally, stress rotations in the crust lead to the potential for the evolution of
anisotropic damage. Our results show how rotation of the principal stresses leads to the generation of direc-
tionally independent (anisotropic) damage populations. Hence, where crustal structures are subjected to
both cyclical and rotational loading over geological time, multiple crack populations will be generated each
exhibiting independent but directionally controlled damage memory (Kaiser) effects.

This is important because, for example, a large amount of effort has been expended in modeling the cyclic
deformation and seismicity that precede volcanic eruptions (Heimisson et al., 2015; Kilburn, 2012). The rock
mechanical data that have been used as input to these models have necessarily all been obtained from
experiments conducted under uniaxial or conventional triaxial stress conditions, owing to their availability.
However, such data are unable fully to capture the richness of how additive and directional damage popula-
tions evolve under the true triaxial conditions that pertain in the crust. We therefore suggest that models of
cyclic deformation and seismicity in the crust should in future account for truly triaxial stress states and the
potential for stress reorientation so that they can encompass the role of such additive and directional
damage populations in the approach to crustal failure.

Furthermore, previously published work on brittle deformation under true triaxial stress conditions has often
invoked the use of stress invariants in analyzing failure. Reches and Dieterich (1983) used the first and second
invariants J; and J,, where J; = 61 + 05 + 03 and J, = 6,.0, + 0,.03 + 03.0¢, and found that failure by shear
faulting occurred when J, = a),%, where a and b are constants for the specific rock. The analysis by
Colmenares and Zoback (2002) describes other criteria that use some combination of the invariants J;, J,,
or J3 (= 04.0,.03) to analyze failure. However, in this study we are concerned with the evolution of crack
damage that precedes ultimate failure. Our findings clearly show that such damage is a distinctly directional
phenomenon, especially under true triaxial stress states (Browning et al., 2017). The fundamental and intrinsic
attribute of any tensor invariant, that it is identical under any geometrical transformation, only serves to con-
ceal the significance of this specific directionality (e.g., of sequentially evolving damage populations) with
respect to the principal stresses and their orientations. Furthermore, existing brittle failure criteria for true
triaxial stress states do not predict the orientations of the shear failure planes. Our results therefore suggest
that future work should be directed to incorporating directional damage into such failure criteria.
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