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Abstract | Epilepsy is a common disorder characterized by recurrent seizures. An overwhelming 
majority of people with epilepsy regard the unpredictability of seizures as a major issue. More than 
30 years of international effort has been devoted to the prediction of seizures, aiming to remove 
the burden of unpredictability and couple novel, time-specific treatment to seizure prediction 
technology. A highly-influential review published in 2007 concluded that insufficient evidence 
indicated that seizures could be predicted. Since then, several advances have been made, 
including successful prospective seizure prediction using intracranial electroencephalography 
(EEG) in a small number of people in a trial of a real-time seizure prediction device. In this Review, 
we examine advances in the field, including EEG databases, seizure prediction competitions, the 
prospective trial, and advances in our understanding of the mechanisms of seizures. We argue that 
these advances, together with statistical evaluations, set the stage for a resurgence in efforts 
towards the development of seizure prediction methodologies. We propose new avenues of 
investigation involving a synergy between mechanisms, models, data, devices and algorithms and 
refine the existing guidelines for development of seizure prediction technology to instigate 
development of a solution that removes the burden of the unpredictability of seizures.  

 
[H1] Introduction 
The prevalence of epilepsy is almost 1% worldwide1, and in approximately 30% of people with 
epilepsy, the condition is intractable to anti-epileptic drugs2. Medically intractable epilepsy is 
associated with adverse outcomes, including serious comorbidities, injury and death3. Central to 
the burden of intractable epilepsy is the unpredictability of seizures4,5, which is a major detriment to 
quality of life6,7. The ability to accurately predict a seizure minutes before onset would enable 
patients to take precautions against injury and would open the door to novel timely treatment to 
pre-empt or control the impending seizure.  
The field of seizure prediction was established in the 1980s, but after >20 years, a comprehensive 
review published in 20078 concluded that “the current literature allows no definite conclusion as to 
whether seizures are predictable by prospective algorithms". Nevertheless, in the past decade, 
several innovations have driven the field forward (Fig. 1), including: recognition that potential 
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predictors must be robust and that performance evaluation of seizure prediction algorithms must 
be standardized; the compiling of extensive databases of long-term electroencephalography (EEG) 
recordings; establishment of international seizure prediction competitions; and a prospective trial of 
a seizure prediction device that provided convincing evidence that prediction of seizures is 
possible9. In addition, ongoing improvements in our understanding of the mechanisms of seizure 
generation (ictogenesis) have been important; improved understanding means that the 
mechanisms of transition to seizure or the physiological factors that make transition to seizure 
more likely can be taken into account in seizure prediction research. 

In this Review, we first outline the basis of seizure prediction algorithms before discussing the 
developments from the past decade that provide impetus for future development of the seizure 
prediction field and for larger scale clinical trials of seizure prediction devices. On the assumption 
that seizure prediction will progress from a research challenge to clinical reality implemented with 
devices and integrated algorithms that could be coupled to time-specific treatments, we argue that 
an approach that is compatible with standards and regulations for medical devices and medical 
treatments is needed. We also propose an extension of the previous guidelines8 for the 
interpretation of seizure prediction studies in the light of new developments, critically assess the 
findings of recent studies, and suggest future work. We argue that improved understanding of the 
mechanisms of transition from normal brain activity to seizure has the potential to improve seizure 
prediction, and that such improvements will better define and enable leveraging of the synergy 
between mechanisms, models, data, devices and algorithms. 

 
 [H1] Seizure prediction algorithms 
Seizure prediction algorithms typically follow the same basic scheme (Fig. 2). Continuously 
acquired physiological signals, most commonly intracranial EEG, are analysed with advanced time-
series analysis methods to identify predictive characteristics (Box 1). These temporally resolved 
characteristics are in turn used in decision algorithms to trigger an alarm that warns the patient or 
their carer, or, in a closed-loop system, trigger delivery of pharmacological or non-pharmacological 
control of seizures. 

Ideally, a seizure prediction algorithm would forecast seizure onset with sufficient warning for 
preparation or intervention, sufficient precision to minimize interruption to an individual’s life, and 
with minimal false alarms and unpredicted seizures. Predictions made during the (assumed) pre-
ictal period are considered true predictions, and those made outside the pre-ictal period are 
considered false predictions (Fig. 2c). Although the approach outlined is widely used, algorithms 
need further improvement by drawing on knowledge of seizure mechanisms, multimodal imaging 
and neurophysiology, computational modelling and control theory10. 
Several approaches and guidelines are used to evaluate seizure prediction algorithms8. These 
approaches involve receiver operating characteristic (ROC) curves that assess the true positive 
rate against the false positive rate during windows of pre-ictal or inter-ictal data. Approaches that 
help determine the clinical utility of an algorithm involve prospective or pseudo-prospective 
evaluation of sensitivity and measurement of time spent under a false warning11,12. Overall 
algorithm performance can be quantified and ranked by the area under the curve (AUC) for either 
true positive rate versus false positive rate or for sensitivity versus portion of time in false warning 
(Fig. 3). Ranking of the AUC only becomes meaningful if complemented by statistical evaluation 
based on random or surrogate predictors.  
 
[H1] Developments and innovations 
[H2] Need for robust predictors 
Optimism for seizure prediction was high in the late 20th and early 21st centuries after many 
algorithms seemed to enable seizure prediction. However, the landmark review in 20078 pointed 
out that fundamentally flawed methods had been used to demonstrate above-chance performance 
of seizure prediction algorithms. Subsequent rigorous tests of seizure prediction showed no 
evidence of above-chance prediction8. This key fault of historic literature continues to pervade the 
field. 
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No predictive characteristic or pre-seizure biomarker (Box 1) that is universal among people with 
epilepsy and that can forecast the exact time of an individual’s next seizure has been identified.9,13-

18. Typically, a time window in which a seizure is likely to occur is determined. With a longer time 
window, the prediction is more likely to be correct, even if the so-called predictor has no predictive 
value. This observation poses the question of how we can determine whether potential seizure 
predictors do actually predict seizures rather than merely identify random fluctuations in 
physiological signals that have no association with seizures. This key challenge in seizure 
prediction — which is often neglected — requires standardized rigorous statistical evaluation of 
predictive performance (guidelines have been published elsewhere8) because seizure events are 
relatively rare and seizure-free intervals are often long.  
A simple approach to such analysis is to compare the performance of a prediction algorithm to that 
of a random predictor11,19 that generates predictions at random times at the same rate as that of 
the algorithm. If required, a random predictor can be adjusted to account for a person’s diurnal 
variation in seizure distribution or other characteristics15. More advanced approaches make use of 
Monte-Carlo simulations (and other such simulations) to generate predictor surrogates, such as the 
random shifting of seizure times to generate false seizure times20-22 The performance of the 
prediction algorithm is then statistically compared to performance of these predictor surrogates. 
Comparison with a random predictor is computationally the most efficient form of statistical 
evaluation of performance of a prediction algorithm. Surrogate-based approaches are more time-
intensive, but offer greater confidence in determining whether or not an algorithm performs better 
than chance and can account for the non-random occurrence of seizures. Awareness of the 
importance of statistical evaluation of seizure prediction algorithms is critical for understanding the 
value of the results of the seizure prediction studies. 

 
[H2] Databases and associated studies 
The development of seizure prediction algorithms is critically dependent on the availability of 
continuous, annotated, long-term data. Such data sets enable researchers to generate hypotheses 
and statistically validate prospective algorithms. Historically, few investigators have had access to 
comprehensive data23. Recognition of this limitation prompted substantial international efforts 
during the past decade to provide universal access to multi-channel, multi-day EEG data that 
include sleep, wakefulness, and activities of daily life to provide a pseudo-realistic test bed. 

Two major publicly available databases have resulted from this unprecedented effort. One is the 
EPILEPSIAE < www.epilepsiae.eu> database24,25, which superseded the smaller FSPEEG 
database12 that comprised non-continuous data sets. The other is the ieeg.org database26,27, which 
provides the infrastructure to remotely process data within the database. In addition, individual 
research groups have created databases and long-term data sets9 that include data of up to 3 
years’ duration, albeit for only a few people with epilepsy. The new Epilepsy Ecosystem 
<Epilepsyecosystem.org>13 database offers access to these long-term data sets.  

Data from these databases have formed the basis of many seizure prediction studies, and have an 
ongoing effect on retrospective evaluation of seizure prediction algorithms. Several seizure 
prediction algorithms have been developed on the basis of these databases since the 
comprehensive review of seizure prediction in 20078 (Supplementary tables 1 and 2), though their 
adherence to the guidelines in that review varies (Supplementary box 1). When considering these 
studies, it is important to note that the results are sensitive to the kind of data used: some studies 
include data from seizure periods (ictal), seizure-free intervals (inter-ictal), the pre-seizure period 
(pre-ictal) and post-seizure (post-ictal) period, whereas others focus on non-continuous selected 
pre-seizure and inter-ictal data. The specificity of the latter studies cannot be accurately assessed 
owing to selection bias in the inter-ictal data.  

Many algorithms have been applied to data from the seizure prediction databases. Studies in 
which algorithms have been applied to subsets of data, recordings that are too short or non-
continuous data have generally indicated better sensitivity of algorithms, lower false positive rates 
and less time in false warning periods than studies in which larger data sets have been used. This 
observation can probably be attributed to in-sample testing and selection bias in studies in which 



 

4 
 

non-continuous data have been used, a limited number of seizures among the data and a limited 
amount of data from inter-ictal periods. Algorithms that have been assessed with small data sets 
will, therefore, have to be re-evaluated with larger datasets to assess their true contribution to 
seizure prediction.  
The principal finding from studies of these databases is that individual-specific, above-chance 
seizure prediction seems to be achievable. Prior to the creation of larger databases, research 
involved very limited amounts of data and many conflicting claims were made regarding seizure 
prediction performance8. Prediction times in relation to the seizure  and the duration of an assumed 
pre-seizure period vary widely across studies and individuals, suggesting that seizure prediction 
algorithms should be individual-specific and/or specific to the intervention that would be used upon 
prediction. The findings also suggest that neurophysiological understanding of the pre-seizure 
state must be improved to determine whether universal mechanisms lead to the variety of 
observed pre-seizure states. 

Despite being well-annotated, databases were not designed to provide deep insights into seizure-
generating mechanisms. Nevertheless, databases can provide indirect insights into potential 
mechanisms. For example, seizure prediction on the basis of long-term data can be sensitive to 
the different phases of the sleep–wake cycle15,28. Whether the temporal variability of other 
predictive factors, such as hormonal cycles, affect the probability of seizure occurrence and the 
prediction of seizures remains to be investigated29. Such factors do influence continuous EEG data 
collected over extended periods from humans going about their daily lives9,29-31, and taking account 
of these factors is expected to improve seizure prediction in some individuals. 
The nature of databases means that they can only be used for hypothesis generation because the 
data have already been collected, which renders a truly prospective analysis impossible. The same 
data in the databases are typically used repeatedly with different algorithms to assess seizure 
prediction performance, which reduces the reliability of conclusions drawn. Findings based on 
databases do not enable definite conclusion about seizure prediction to be drawn, but can suggest 
algorithms that are likely to perform well in prospective clinical trials by ruling out those that 
underperform even with retrospective data. 

 
[H2] Seizure prediction competitions 
Databases have enabled some standardization of data to be tested, and rigorous statistical criteria 
have standardized the assessment of seizure prediction results, but considerable leeway remains 
in the comparison of algorithms with each other. During the past decade, international seizure 
prediction competitions have driven the field forward by standardizing the comparision of different 
algorithms on the basis of their performance with a common set of data. 
Seizure prediction competitions emerged from the International Workshops on Seizure Prediction 
(IWSP, now named the International Conference for Technology and Analysis of Seizures)10,23,32-37. 
The first two competitions in 2007 and 2009 (Fig. 1), conducted in conjunction with IWSP3 and 
IWSP4, involved continuous intracranial EEG data from three people with epilepsy38. Entrants were 
provided with a training set, and a test set was used to assess the algorithms entered into the 
competition. Of fewer than 10 entrants, none achieved above-chance prediction performance. 
In 2014 and 2016, large-scale international seizure prediction competitions were run on a standard 
data science contest portal13,39. The 2014 competition (American Epilepsy Society Seizure Prediction 
Challenge <www.kaggle.com/c/seizure-prediction>) involved a combination of short-term human 
intracranial EEG data (with 942 seizures recorded over >500 days) and long-term intracranial EEG 
data in dogs (348 seizures recorded over 1,500 days)39,40 All entrants were provided the same set 
of discontinuous 10-minute segments of inter-ictal and pre-seizure data for training their algorithm; 
additional, unlabelled 10-minute segments of EEG recordings from the same people with epilepsy 
were then provided for testing their algorithm. Although less ideal than use of continuous data8, this 
approach was more tractable for the entrants and the evaluators, given the large amounts of data 
involved. The 2016 contest (Melbourne University AES/MathWorks/NIH Seizure Prediction < 
https://www.kaggle.com/c/melbourne-university-seizure-prediction) involved long-term intracranial 
EEG data (1,139 seizures recorded over 1,326 days) from three people with epilepsy whose 
seizures were hard to predict with existing approaches 9,13. The structure of the competition was 
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similar to the one run in 2014. Combined, the 2014 and 2016 contests had more than 1,200 
participants and included many who had not previously been active in the field of seizure 
prediction. 
Evaluation of seizure prediction algorithms in both contests involved use of the area under the 
curve (AUC) metric (Fig. 3). The top performing entry in the 2014 contest was based on a 
combination of various machine learning algorithms, and produced an AUC value of 0.84 out of 
139. Performance for this algorithm dropped by only 8% when applied to a much larger dataset. 
The top algorithm from the 2016 contest produced a similar AUC value of 0.81 for long-term 
human data13.  
Although competitions are highly compelling and enable standardized comparison of algorithms, 
they also raise new challenges in the assessment of seizure prediction algorithms. A large number 
of algorithms were assessed, and some might have performed well by chance. Without appropriate 
statistical correction for multiple testing, unwarranted positive conclusions about a seizure 
prediction algorithm are possible. A statistical comparison test of the methods, including correction 
for multiple comparisons, was performed for the 2016 competition and indicated that no one 
algorithm is best for a given person, rather sets of algorithms work better than other sets of 
algorithms for a given person13. 
 
[H2] A prospective seizure prediction system  
To date, only one clinical trial of a fully-functioning seizure prediction system, which the 
investigators who developed it described as a seizure advisory system9, has been conducted. The 
system consisted of intracranial implanted electrodes connected by subdermal wires to a 
subdermal telemetry unit implanted in the chest, which wirelessly transmitted the EEG data to a 
hand-held unit (Fig. 2b). This unit processed the data in real time using an individualized algorithm, 
and displayed warning lights to the person depending on whether the likelihood of a seizure was 
high, moderate or low. The study consisted of two phases: in the first phase, the device was 
implanted and data was recorded continuously until the required number of seizures had occurred. 
These data were analysed offline, to identify an individual-specific algorithm. Fifteen people with 
epilepsy received an implant, and 11 completed the first phase; an algorithm was developed for 
nine people who experienced sufficient seizures to enable statistical assessment of algorithms. 
These nine individuals then entered the second phase, in which the developed algorithm was run 
prospectively in real time for 4 months. 
Prospective seizure prediction was above chance for nine people and was excellent for three: 
prospective seizure prediction sensitivities (the percentage of seizures correctly predicted) were 
86%, 100%, and 100% for thirteen, three and three seizures, respectively, during the evaluation 
period. The percentage of time for which these three individuals were under a warning of high 
seizure likelihood was 27%, 31% and 3%, respectively. In the other six people, sensitivity was 54–
71%, and the percentage of time under high seizure likelihood warning was 15–41%.  
This trial was a landmark study in the field of seizure prediction, and remains the only successful 
demonstration of prospective human seizure prediction to date9. Another major aspect that 
contributes to the importance of the study is that it involved human intracranial EEG recordings of 
up to 3 years per person. Standard ambulatory intracranial recordings in hospital continue for a 
maximum of 4 weeks and do not necessarily include an adequate number of seizures to enable 
statistically reliable assessment of seizure prediction8. Furthermore, this study demonstrated that 
such long-term recordings are possible, that seizure prediction algorithms seem to work best when 
developed in a patient-specific manner, that people with epilepsy are willing to volunteer for such 
studies, and that research ethics committees see the benefits of these trials. Thus, the door has 
been opened for more long-term prospective trials. 
The field of seizure prediction has been encouraged by this first demonstration of feasibility of 
seizure prediction. The earliest studies of seizure prediction were restricted by limited data sets 
and computational power. Computing power has evolved, but the costs and practical challenges of 
acquiring long-term data sets that contain adequate numbers of seizures for reliable statistical 
evaluation remain considerable. The earlier studies or studies with limited data sets should not, 
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therefore, be considered as failed attempts, rather as having laid the groundwork that made 
completion of a prospective clinical trial of seizure prediction possible. 

Further work is needed to understand why seizure prediction performance was low for six of the 
nine assessable participants in the trial so that seizure prediction could be improved for these 
people13. The algorithms derived from such an analysis could be applicable to other people with 
epilepsy. More knowledge about the seizures of people for whom the prediction algorithms 
performed poorly could help to better understand and better classify epilepsy. In addition, more 
knowledge about the seizures that were difficult to predict or were unpredictable is important, as 
this knowledge could lead to improvements in seizure prediction. Indeed, analysis of seizure 
statistics (such as seizure duration and frequency) from the trial data set9,15,31,41,42 has identified 
factors that were related to poor seizure prediction; these factors included a high frequency of 
seizures9, long-term temporal variations in seizure frequency30, or multi-modal distributions of 
seizure duration and inter-ictal intervals31.  

The analysis also identified factors associated with good seizure prediction, including an increase 
in the frequency of EEG spikes before seizures41. This observation suggests that characterization 
of an individual’s seizure and spike statistics could improve prediction performance, and that more 
than one predictive factor is required for people with multi-modal distributions of seizure duration. 
However, contradictory findings on the role of EEG spikes and their temporal relationship to 
seizures add uncertainty. This area remains under investigation43-53. An analysis of long-term 
recordings published in 2018 has produced results that are consistent with those of the trial41 and 
indicate that seizures occur preferentially during the rising phase of multi-day rhythms of inter-ictal 
epileptiform activity54. Analysis of the trial data set also indicates that incorporating factors such as 
the time of day is another potential avenue for improving prediction13,15.  
 
[H1] Emerging science for seizure prediction 
Many existing studies of seizure prediction have been performed with little consideration of the 
mechanisms that underlie the transition from apparently normal brain activity to seizure. Most 
studies have also been performed with EEG, a modality that does not lend itself to determination of 
underlying mechanisms. Further, analysis with techniques such as machine learning does not 
readily reveal which physiological aspects underlie the predictive characteristics of the EEG. These 
approaches, though commendable for their pragmatism, have resulted in a limited understanding 
of the mechanistic underpinnings of the pre-ictal state. An understanding of the underlying 
mechanisms will result in a better understanding of ictogenesis, better translation of the information 
collected into methods to detect, predict and control seizures, and eventually a better 
understanding of what a seizure is55. Several lines of investigation have indicated potential to 
provide a deeper understanding of ictogenesis and the pre-seizure period. Below, specific 
emerging areas and their implications for seizure prediction are discussed. 

 
[H2] A network theory of seizure generation 

Traditionally, seizures are thought to result from an imbalance between excitation and inhibition56 
in a discrete cortical area (the seizure focus), resulting in seizure initiation, and subsequent 
recruitment of adjacent cortex into the escalating seizure. By contrast, the network theory proposes 
that even focal seizures arise from aberrant activity in a distributed network, and that a change in 
the configuration or in the activity of a large-scale functional network that spans lobes and 
hemispheres makes the brain more susceptible to seizure57,58. Many studies59-82 have indicated 
aberrant connectivity involving the seizure-onset zone, its surroundings and distant areas. In 
addition, seizure-predictive characteristics can occur in brain regions with no apparent relationship 
to the assumed seizure-onset zone83, thereby questioning the importance of the seizure-onset 
zone in the generation of a seizure. Furthermore, seizures do not occur randomly, and have been 
shown to have short-range84,85 and long-range temporal dependencies30,86. Development of 
methods to measure and track key network variables could improve seizure prediction. 
Analysis techniques that enable assessment of connectivity between brain regions in a time-
resolved manner on the basis of the ongoing EEG83,87-90 in combination with the concepts of 



 

7 
 

network theory that aim to characterize local and global properties of epileptic networks91-98 could 
further our understanding of how seizures emerge from an epileptic network99-118. Considering the 
epileptic network to be evolving rather than static could help to gain deeper insights into when and 
from which nodes seizures emerge96,99-121.  
The challenges in the development of a network theory for seizure prediction include difficulty in 
sampling the evolving epileptic brain network with sufficient spatial and temporal resolution with 
current techniques and uncertainty about where seizures will start within the network, making it 
difficult to position sensors in the correct place. Advances in measurement techniques122 and 
conceptual advances in network theory and statistical physics will enable better definition of the 
epileptic network and pre-seizure changes in the network.  
 
[H2] Multi-scale electrophysiology  
Technological developments have led to use of micro-electrodes123,124 that, compared with EEG, 
provide new levels of temporal and spatial resolution and enable measurement of local field 
potentials and single neuron activity in humans during inter-ictal, pre-ictal and ictal states125-130. 
This technology has enabled observation of phenomena such as micro-seizures and complex 
interactions between neuronal groups on various spatial scales, and these observations challenge 
the traditional view that seizure results from a monolithic, hyper-synchronous neuronal event 
stemming from runaway excitation125-130. 

Such high-resolution recording is an emerging area of electrophysiology that should help with 
interpretation of previous work conducted with macro electrophysiology. Challenges remain, such 
as increasing the number of neurons that can be sampled, improving spatial coverage, and 
clarifying the relationship between neuronal activity and EEG. Nevertheless, the processing power 
of wearable and implantable devices continues to accelerate, and these advances will, with time, 
provide the capacity for seizure prediction devices to handle the amount of data from multi-scale 
recordings. 
 
[H2] Multi-modal biosensing 

The use of multi-modal biosensing and emerging wearable devices is expected to improve seizure 
prediction (see RADAR-CNS <www.radar-cns.org>) because physiological variables can be 
detected through this approach that cannot be detected with traditional approaches4. Availability of 
a library of methods that are sensitive to different physiological variables will enable clinicians to 
use appropriate methods for a given individual. Several techniques and approaches, discussed 
below, show promise. 
Neurochemistry studies in people with epilepsy and in animal models of epilepsy indicate an 
excess of extracellular glutamate131-134 and changes in extracellular glutamine135,136 in the seizure-
onset zone and zones to which the seizure spreads. Measurements in human hippocampal tissue 
slices have indicated an increase in glutamate in the same areas around the time of a seizure137, 
though whether these changes precede seizures remains to be determined138. Inhibition during the 
pre-ictal period might also be important, given that pre-ictal changes in GABAA receptor-mediated 
chloride influx is observed in mice neurons139, and the inhibitory penumbra has a role in seizure 
propagation in animals and humans127,140. 

Several non-neurological pre-seizure changes could also help with seizure prediction. Evidence 
suggests that cardiac autonomic function, cerebral haemodynamics141 (which might reflect 
changes in neuronal activity that are not readily detectable with EEG) and vascular coupling142,143 
change in the pre-seizure period. Limited evidence also indicates pre-seizure changes in heart 
rate. In one small study, heart rate during the 2 minutes before onset of a focal-onset seizure was 
higher among people whose seizures became generalized than those whose did not144. Similarly, 
cardiac vagal tone, which partly controls heart rate, was higher before focal-onset seizures that 
became generalized than those that did not145. A meta-analysis of pre-ictal changes in heart rate 
suggests that such changes are observable in some, but not all, individuals, and further work is 
needed to determine for which patients monitoring of heart rate would be useful for seizure 
prediction146. 
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Several studies in childhood absence epilepsy have suggested that blood-oxygen-level-dependent 
activity increases several seconds before the onset of spike-wave discharges (SWDs)147,148. 
However, not all studies have shown this149, and whether the pre-seizure cortical phenomena are 
the first emergence of seizure activity or are a seizure-permissive (but otherwise normal) brain 
state remains unclear. Such pre-seizure activity has been observed in posterior cortical regions, 
especially the precuneus147,148,150,151, and in frontal cortical regions, such as the orbital and medial 
frontal cortex147,150. Thalamic activity was generally not seen until SWD onset, except in one study 
in which thalamic activity preceded SWD onset by several seconds152. In a single case report, 
focal-onset seizures recorded intraoperatively were preceded by a drop in oxygenated 
haemoglobin and an elevation in cerebral blood volume in the seizure onset region 20 seconds 
before electrographical changes153. In temporal lobe epilepsy, single-photon emission CT usually 
shows decreases in regional cerebral blood flow (rCBF) in the ictal-onset temporal lobe in the inter-
ictal state compared with that during the pre-ictal and ictal periods in the same individual and 
compared with that in healthy people. In individuals who, by chance, underwent single-photon 
emission CT 11 min and 12 min before seizure onset, rCBF was increased relative to the inter-ictal 
period in the same person, suggesting that rCBF increases before seizure onset154. 

Studies in which transcranial magnetic stimulation has been used to assess cortical excitability155 
have indicated increased excitability in people who go on to have seizures within the next 24–
48 h156,157. The combination of this finding with data from computational modelling studies158-161 
indicates that measurement of cortical excitability by use of a probing stimulus162-164 is an 
alternative to passive observation for tracking state changes in the brains of people with epilepsy. 
 

[H2] Computational modelling 
The information gathered from multi-scale and multi-modal studies of epilepsy have stimulated 
development of increasingly sophisticated computational modelling approaches165-170. These 
approaches have gained prominence over the past decade as important tools for understanding 
the complexity of seizures and epilepsy at various spatial and temporal scales. The spatial scales 
range from micro-scale modelling of single neuron behaviour to macro-scale models of brain 
activity, each of which can be used not only for modelling seizure-like activity and the apparently 
unforeseeable onset and termination of seizures, but also to gain insight into possible mechanisms 
of controlling seizures, such as closed-loop electrical intervention. Between these two extremes 
are meso-scale models, such as neural mass models10,171-177, which are intended to finely balance 
model simplification with biological realism to address relevant questions. In all three types of 
models, epilepsy is considered a dynamical brain disease178 in which the initiation of seizures can, 
in general, be induced by changes in network parameters or by inputs (environmental and/or 
endogenous) that might not always be evident to an observer179.  

On the basis of key concepts from the mathematical theory of dynamical systems180, seizures are 
thought to be enabled by criticality — that is, the loss of balance between order and disorder in the 
epileptic brain181,182. In this context, a seizure represents a self-initiated and self-terminated event 
that emerges as a result of bistability of the brain161,183-185, a property that allows spontaneous 
switching from seemingly normal physiological dynamics to periods of pathological activity. 
Evidence indicates that such switching might not only be induced by altered properties of neurons 
or groups of neurons, but also by changes in the gross connections of the neuronal network57,186-

193. 
Given their increasing sophistication, computational models can help to integrate the structural, 
functional and dynamical properties of neural systems into a coherent view and to test in silico 
hypotheses concerning pre-ictal brain dynamics and their relation to endogenous and exogenous 
parameters that control the dynamics. Moreover, such models enable the study of aspects of the 
epileptic brain that cannot be explored in human studies owing to safety concerns. Such 
computational modelling could inform the development of methods for seizure prediction10 and of 
engineering techniques, such as control theory194, to determine physiological parameters that 
control the generation, spreading and termination of seizures over time174,195, and track brain 
states196 on the basis of these parameters. The use of modelling-based approaches will allow for 
physiologically-informed methods of seizure prediction that offer an alternative to standard 
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machine-learning techniques, which take little physiological knowledge into account and yield little 
insight into underlying physiology. Moreover, the combination of data and modelling will help to 
leverage techniques for intervention strategies and seizure control197,198. 
  
[H1] Unmet needs for clinical translation 
 
Collaborative efforts in the field of seizure prediction over the past three decades have resulted in a 
powerful international interdisciplinary effort to understand and control seizures that has led to the 
considerable progress discussed above. However, much remains to be completed in the coming 
years, and several open questions need to be answered to advance the field of seizure prediction. 
[H2] Understanding of seizures 
Research has demonstrated that epilepsy is a multi-scale problem10, meaning that spatially sparse 
recordings with few intracranial EEG electrodes are unlikely to provide a full understanding. 
However, whether the accurate placement of electrodes is critical for detection of seizure 
precursors is not known. Given the variability of seizures between people with epilepsy (and even 
between seizures in an individual), how to standardize electrode placement remains unclear. The 
minimum requirement is likely to be sampling of nodes in an individual’s epileptic network that are 
associated with seizure precursors. 
Success in seizure prediction has enormous potential to improve our understanding of seizures 
and epilepsy and to provide direction for research. The existence of a pre-seizure state is 
unproven, but is logically inferred from the predictability of seizures. What this state is and its 
characteristics, however, are unknown. A better understanding of the dynamic transitions into and 
out of seizures will contribute not only to prediction, but also to our understanding of what 
constitutes a seizure. Computational modeling and analysis has challenged the accepted wisdom 
that seizures result from out-of-control excitation and raised questions about network involvement 
and the role of aberrant synchronization. New computational approaches (such as those based on 
network theory) are also raising questions about the processes that underlie ictogenesis and 
epileptogenesis. 

 

[H2] Critical experiments 
With all of the aforementioned challenges in mind, critical experiments need to be performed to 
understand how seizures occur and how a physiological understanding can be used to predict 
seizures. The ideal critical experiment would be multidisciplinary, drawing on a combination of 
multi-scale electrophysiology and chemical physiology126,138,199, structural and functional imaging200, 
mathematical and computational modelling170, and potentially optogenetics201. Modelling will be 
important for testing hypotheses and filling in missing data when empirical methods come up 
short10. These approaches should be combined to determine what seizures are and why they 
occur; the sequence of brain activity that leads to a seizure; whether a pro-ictal202 state of the brain 
makes seizures more likely or transition to seizure is deterministic (and whether this depends on 
the individual and the type of epilepsy); reliable and robust biomarkers of these sequences that do 
not result in excessive false warning time; and how these aspects are affected by infradian and 
multi-day cycles13,15,54, stress and antiepileptic drugs164. 
Similarly, despite good evidence that seizures are predictable, we are far from seeing a 
commercially-available seizure prediction device. To reach this point, crucial experimental 
evidence remains to be acquired. These critical studies need to incorporate the following aspects: 
use of continuous data rather than selected discontinuous periods; a demonstration that seizure 
prediction works and has benefits; the employed technology (Box 2) must be safe, reliable, stable 
over time, acceptable, beneficial to people with epilepsy, and applicable to and useful for a large 
percentage of people with epilepsy. 
 

[H2] Improved databases and contests  



 

10 
 

Seizure prediction databases and seizure prediction contests have been valuable but suffer from 
limitations. Databases need to be improved to include multi-scale and multi-modal data, and 
monitoring should be standardized. The heterogeneity of epilepsy must also be addressed. For 
example, if a subset of people experience seizures that are more predictable than others, 
identification of these people and a better understanding of seizure generation in them could 
provide an invaluable foot-in-the-door for the control of seizures through seizure prediction. 
With regard to seizure prediction competitions, detailed peer-reviewed accounts of the algorithms 
entered into the 2014 contest39 were not published, and the algorithms merely predicted whether 
segments of EEG recordings were from inter-ictal or pre-seizure periods rather than providing a 
more clinically informative evaluation of seizure prediction performance on the basis of continuous 
data. These contests have brought new investigators into the field and generated hypotheses 
about which algorithms were good predictors. Future competitions could add more value if they are 
based on multi-modal data and assess the computational efficiency of algorithms. Correction for 
multiple comparisons should be performed to account for the number of algorithms entered, and a 
mechanistic interpretation of the algorithm outputs should be required. An attractive possibility is 
the use of seizure prediction databases or competitions as objective benchmarking exercises in 
which algorithms are submitted to a central authority that tests them with unrevealed data. If such a 
process could be conducted in a manner that regulatory bodies would accept results as proof of 
efficacy, it would be of considerable value13. 

 

[H2] Expansion of continuous data collection 
The only system that has been used successfully for real-time, prospective seizure prediction 
required a brain-implantable device9, which raises ethical concerns. Non-invasive solutions, such 
as attachment of electrodes to the scalp, or use of a cap or headband with electrodes attached, are 
unlikely to be satisfactory long-term solutions because frequent maintenance would probably be 
required to obtain good signals, and the electrodes might be obvious and raise concerns of stigma. 
Semi-invasive subdermal systems might be viable alternatives, although the predictive value of 
data obtained in this way is unknown, and, as with intracranial electrodes, standardized placement 
of electrodes is not yet possible. Furthermore, the challenge of creating a system that can be used 
continuously for the life of an individual, including children, has not yet been tackled. If modalities 
other than EEG prove valuable for seizure prediction, the challenge of continous acquisition of 
these data must be overcome203-207. 
 

[H2] Defining outcomes relevant to patients 
People with epilepsy are vital participants in the next steps in seizure prediction, especially 
because the regulatory framework around such a novel approach might be uncharted. The 
opinions and aspirations of these individuals are essential for future planning. For example, 
whether a solution should be invasive or non-invasive, whether prediction needs to be 100% 
accurate, and whether a predictive signal alone is useful without connection to a therapy are 
questions best answered by people with epilepsy208-210. A short-term goal in the field might be to 
develop a close interaction between patient groups, researchers and industry to develop patient-
centered goals. 

 

[H2] Successful trial to commercialization 
Above-chance seizure prediction based on EEG has been demonstrated in humans and animals 
(Box 3). Given this scientific success, an important challenge is commercialization of a seizure 
prediction device. The results of the clinical trial described above did not justify commercialization 
of the device used. The design of future trials will need to account for the lessons learned. Many 
studies have demonstrated that not all people with epilepsy have seizures that can be predicted, 
and that not all of an individual’s seizures are predictable; future work will be needed to define 
epilepsy phenotypes or endophenotypes that are associated with predictability83. Moreover, careful 
work will be needed to determine several aspects, including: acceptable endpoints for regulatory 
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approval, such as the predictive accuracy needed for a device to be declared effective; the gold-
standard for detecting seizures, given that seizure diaries are unreliable9,211-213; whether a device 
that merely predicts seizures would be acceptable to regulators without being directly connected to 
a closed-loop delivery of treatment; and what treatment modality a device could be connected to. 
Currently, no attempt has been made to connect a seizure-predictive characteristic with a therapy 
in human trials. 

 
[H1] Guidelines revisited 
In the 2007 review of seizure prediction8, minimum requirements were proposed to ensure that 
published prospective and retrospective seizure prediction studies are comprehensible, 
comparable and assessable. These requirements stated that studies should be based on 
unselected continuous data, report sensitivity and specificity together with a rigorous statistical 
evaluation, and provide details about the studies themselves, including the use of in-sample or out-
of-sample testing and optimization strategies. These guidelines remain relevant, but we propose 
updates to complement them and account for subsequent advances in the field. 
As the field moves closer to clinical trials, common standards for clinical trial reporting must be 
adopted. These standards include clear reporting of criteria for selection of patients and data, 
inclusion and exclusion criteria, documentation of the gold-standard regarding the location and 
types of sensors, timing and occurrence of seizures. Various measures of specificity have been 
published8, and the most intuitive measure seems to be the time under false warning. Unblinded 
studies, especially those that are based on retrospective data, should be regarded as hypothesis-
generating only; any study that is intended to be definitive should be randomized, controlled, 
double-blinded and prospective, the protocol should be published, and assessment criteria for 
success should be clearly defined. Outcomes of these trials should be publicly available 
irrespective of their success to prevent unsuccessful approaches being revisited and to avoid 
publication bias.  
For trials of wearable and implanted devices16,214,215, additional important criteria are the real-time 
applicability and the power-efficiency of solutions. Algorithms that need minimal computation or 
that can be approximated with low-power analog circuitry should be favoured. Low-complexity 
algorithms that perform inadequately could still provide a good benchmark for more complex 
algorithms. In general, algorithms that are more likely to provide a pathophysiological 
understanding of the disease and the ictogenic process should be favoured over others. 
 
[H1] Conclusions 
Considerable progress has been made in seizure prediction during the past three decades, 
especially since 2007. Technological progress has enabled us to measure relevant signals from 
increasing numbers of sensors, including increasingly small sensors that enable multi-scale 
observation with high spatial and temporal resolution, and to collect data over longer periods of 
time. The progress has led to the creation of large-scale databases and seizure prediction 
competitions. The earlier focus on seizure prediction algorithms has continued. In addition, the 
practical necessities for collection, sharing and standardization of seizure prediction data are being 
addressed, working towards seizure prediction in wearable or implantable devices. 
 
The formation of an international group of seizure prediction laboratories that meets regularly10,23,32-

37 has led to the establishment of several international academic and industry–academic 
partnerships. The group has identified several of the above challenges, and articulated 
suggestions for addressing these challenges. We are hopeful that the remaining challenges will be 
solved in the near future so that seizure prediction can improve the lives of people with epilepsy.  
 
 
Box 1 | Defining pre-ictal biomarkers 
A pre-ictal biomarker is a predictive characteristic (or feature) derived from physiological signals 
(for example electroencephalography (EEG)) that becomes apparent during a defined time period 
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before a seizure and does not occur at other times. Such a characteristic might or might not be 
visually apparent, will reflect changes in the underlying signals, and would be predictive of seizures 
when within a specific range of values. Characteristics are used rather than the raw signals 
because they simplify the essential changes in the signals. For a pre-ictal biomarker to be clinically 
useful in a warning system, it should become detectable early enough to minimize the time under 
false warning. 
Characteristics that have been assessed for their predictive value, particularly those of EEG 
signals, range from simple to complex, and involve univariate, bivariate or multivariate linear or 
nonlinear analysis. The seizure prediction properties of individual characteristics can be assessed 
independently, but combinations of characteristics are often provided as input to pattern 
recognition systems, machine learning algorithms or classifiers. These classifiers enable 
assessment of the seizure prediction properties of characteristics in combination39,175,216. 
 
 

Box 2 | Future technologies, devices and industry 
One clinical trial of a prospective seizure prediction system has demonstrated that long-term 
intracranial recording with a brain implant is safe and feasible9. Moreover, partial success of the 
trial in demonstrating prospective seizure prediction in some individuals has given the field 
confidence to move forward, while recognizing that improvements are still needed13.  

Other brain-implantable devices217-219 offer opportunities to apply and assess seizure prediction 
algorithms. Furthermore, minimally invasive recording techniques that position electrodes under 
the scalp220 are likely to open the door to more opportunities for long-term recording.  

One potential application of seizure prediction is activation of seizure control221 interventions such 
as electrical stimulation, tissue cooling or anti-convulsant drug delivery. Two approaches to 
controlling seizures are possible. First, the impending seizure can be targeted, but prediction of all 
seizures or prevention of all seizures that are successfully predicted might not be possible. 
Second, probabilistic or neuromodulatory approaches might be used to steer the brain away from a 
seizure-generating state and maintain the brain in a state where a seizure will not occur. 

Translating a new modality from the laboratory to continuous real-world monitoring that allows 
individuals to go about their daily life requires a solution that is robust, long-lasting (potentially the 
entire life of an individual), unobtrusive, safe, efficacious and acceptable to regulatory bodies. 
Research and development is also required to minimize power consumption, heat generation and 
the form-factor, and to address device placement, retrieval and replacement. The capability to 
address these multiple aspects does not exist in a single institution or company, suggesting the 
need for collaborations to translate new insights into a successful seizure prediction device. 
 
Box 3 | Seizure prediction in animals 
Seizure prediction has been studied in many animal models of epilepsy, commonly in rats, but 
obtaining recordings in rats for longer than 6 months is challenging. Another challenge with animal 
models is translation of findings to human application. Animal models do not generalize well to 
humans, so predictors defined in animal models might not generalize either.  
The strongest evidence that seizure prediction is possible in animals comes from long-term 
recordings in dogs. Studies have shown that seizure prediction performs better than chance in all 
dogs studied39,40,222. These results are especially important because the recordings were obtained 
in naturally occurring epilepsy over durations of up to 15 months, which increases confidence in 
the performance results achieved and that seizure prediction is possible in general.  

 
Related links 
EPILEPSIAE, www.epilepsiae.eu 
IEEG.org, www.ieeg.org 
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Epilepsy Ecosystem, www.epilepsyecosystem.org 
American Epilepsy Society Seizure Prediction Challenge, www.kaggle.com/c/seizure-prediction 
Melbourne University AES/MathWorks/NIH Seizure Prediction, 
https://www.kaggle.com/c/melbourne-university-seizure-prediction 

RADAR-CNS https://www.radar-cns.org  

 
 
 
Key points 
 

• One clinical trial has shown that prospective seizure prediction in humans is possible.  
• Databases of electroencepholographic data provide a standard reference for comparison of 

seizure prediction algorithms and for hypothesis generation. 
• Competitions provide a platform for identification of the best seizure prediction algorithms. 
• The network theory of epilepsy, multi-modal recording techniques, long-term monitoring, 

and computational modelling are providing new approaches to seizure prediction. 
• The field is ready for a large-scale clinical trial of seizure prediction. 
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We searched PubMed, Web of Science, Google Scholar, and IEEExplore with the terms “seizure 
prediction”', “seizure anticipation”, “seizure forecasting”, and “preictal”' for human and animal 
studies published between 1st January 2006 and 30th June 2018. We did not restrict publications 
by language. We also manually searched the proceedings of seizure-prediction workshops and the 
reference lists of papers identified and extracted relevant papers from our records. 
 
 
Figure 1 | The evolution of seizure prediction. a | A timeline of the main events and findings in 
the field of seizure prediction. Stars indicate the times of international workshops on seizure 
prediction. b | The number of papers on seizure prediction published during the past three decades 
(sourced via PubMed using the keywords “seizure prediction”, “seizure anticipation” and “seizure 
forecasting”). 
 
 
Figure 2 | Seizure prediction systems. a | The scheme of a typical seizure prediction system. 
Biosignals are recorded and pre-processed. Prediction characteristics and/or pre-ictal biomarkers 
are then extracted from these signals. The decision system processes the temporal stream of 
prediction characteristic values and detects changes that indicate an impending seizure. To reach 
a decision, thresholds can be set for characteristics, or classifiers can be used to make decisions 
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on the basis of multiple characteristics. The decision system then engages the advisory system, 
which warns the patient if a seizure is likely to occur in the near future. Dashed lines indicate the 
possibility of closed-loop seizure control. b | An ambulatory seizure warning system that 
implements the open-loop seizure prediction approach in part a. Electrodes are implanted on the 
surface of the cerebral cortex for intracranial electroencephalography (EEG). Recordings are 
transmitted to an external advisory device via an implanted telemetry unit. c | Seizure prediction in 
practice. Continuous intracranial EEG records brain activity (black solid lines). Time series of 
predictive characteristics (green line) can be derived from the intracranial EEG recording and a 
threshold set (black dashed line) to predict (red rectangles) whether a seizure is likely to occur. 
 
Figure 3 | Evaluation of seizure prediction algorithms. Prediction performance is evaluated on 
the basis of receiver operating characteristic (ROC) curves that relate true positive rates to false 
positive rates. Area under the curve (AUC) can be used to quantify algorithm performance (a 
perfect predictor has an AUC of 1). Coloured lines indicate example performance levels of 
algorithms.  
 
 
References  
 
1 Banerjee, P. N., Filippi, D. & Allen Hauser, W. The descriptive epidemiology of epilepsy-a 

review. Epilepsy Res. 85, 31-45, (2009). 
2 Kwan, P., Schachter, S. C. & Brodie, M. J. Drug-resistant epilepsy. N. Engl. J. Med. 365, 

919-926, (2011). 
3 Ridsdale, L., Charlton, J., Ashworth, M., Richardson, M. P. & Gulliford, M. C. Epilepsy 

mortality and risk factors for death in epilepsy: a population-based study. Br. J. Gen. Pract. 
61, e271-278, (2011). 

4 Dumanis, S. B., French, J. A., Bernard, C., Worrell, G. A. & Fureman, B. E. Seizure 
Forecasting from Idea to Reality. Outcomes of the My Seizure Gauge Epilepsy Innovation 
Institute Workshop. eNeuro 4, ENEURO. 0349-0317.2017, (2017). 

5 Epilepsy-Foundation. Ei2 community survey. https://www.epilepsy.com/make-
difference/research-and-new-therapies/innovation/epilepsy-innovation-institute/seizure-
gauge. (2016). 

6 Nickel, R. et al. Quality of life issues and occupational performance of persons with 
epilepsy. Arq. Neuropsiquiatr. 70, 140-144, (2012). 

7 Fisher, R. S. et al. The impact of epilepsy from the patient's perspective I. Descriptions and 
subjective perceptions. Epilepsy Res. 41, 39-51, (2000). 

8 Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and 
winding road. Brain 130, 314-333, (2007). 

9 Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure 
advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 
12, 563-571, (2013). 

10 Kuhlmann, L., Grayden, D. B., Wendling, F. & Schiff, S. J. Role of multiple-scale modeling 
of epilepsy in seizure forecasting. J. Clin. Neurophysiol. 32, 220-226, (2015). 

11 Snyder, D. E., Echauz, J., Grimes, D. B. & Litt, B. The statistics of a practical seizure 
warning system. J Neural Eng 5, 392-401, (2008). 

12 Winterhalder, M. et al. The seizure prediction characteristic: a general framework to assess 
and compare seizure prediction methods. Epilepsy Behav. 4, 318-325, (2003). 

13 Kuhlmann, L. et al. Epilepsyecosystem.org: Crowd-Sourcing Reproducible Seizure 
Prediction with Long-Term Human Intracranial EEG. Brain, In Press, (2018). 

14 Gadhoumi, K., Gotman, J. & Lina, J. M. Scale invariance properties of intracerebral EEG 
improve seizure prediction in mesial temporal lobe epilepsy. PLoS One 10, e0121182, 
(2015). 

15 Karoly, P. J. et al. The circadian profile of epilepsy improves seizure forecasting. Brain 140, 
2169-2182, (2017). 

16 Kiral-Kornek, I. et al. Epileptic Seizure Prediction Using Big Data and Deep Learning: 
Toward a Mobile System. Ebiomedicine 27, 103-111, (2018). 



 

15 
 

17 Truong, N. D. et al. Convolutional Neural Network for Seizure Prediction using Intracranial 
and Scalp Electroencephalogram. Neural Netw., In Press, (2018). 

18 Kuhlmann, L. et al. Patient-specific bivariate-synchrony-based seizure prediction for short 
prediction horizons. Epi. Res. 91, 214-231, (2010). 

19 Schelter, B. et al. Testing statistical significance of multivariate time series analysis 
techniques for epileptic seizure prediction. Chaos 16, 013108, (2006). 

20 Andrzejak, R. G. et al. Testing the null hypothesis of the nonexistence of a preseizure state. 
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 010901, (2003). 

21 Andrzejak, R. G., Chicharro, D., Elger, C. E. & Mormann, F. Seizure prediction: any better 
than chance? Clin. Neurophysiol. 120, 1465-1478, (2009). 

22 Kreuz, T. et al. Measure profile surrogates: a method to validate the performance of 
epileptic seizure prediction algorithms. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 
061915, (2004). 

23 Lehnertz, K. & Litt, B. The First International Collaborative Workshop on Seizure Prediction: 
summary and data description. Clin. Neurophysiol. 116, 493-505, (2005). 

24 Ihle, M. et al. EPILEPSIAE–A European epilepsy database. Comput. Methods Programs 
Biomed. 106, 127-138, (2012). 

25 Klatt, J. et al. The EPILEPSIAE database: an extensive electroencephalography database 
of epilepsy patients. Epilepsia 53, 1669-1676, (2012). 

26 Wagenaar, J. B. et al. Collaborating and sharing data in epilepsy research. J. Clin. 
Neurophysiol. 32, 235-239, (2015). 

27 Kini, L. G., Davis, K. A. & Wagenaar, J. B. Data integration: Combined imaging and 
electrophysiology data in the cloud. Neuroimage 124, 1175-1181, (2016). 

28 Schelter, B. et al. Do False Predictions of Seizures Depend on the State of Vigilance? A 
Report from Two Seizure-Prediction Methods and Proposed Remedies. Epilepsia 47, 2058-
2070, (2006). 

29 Freestone, D. R., Karoly, P. J. & Cook, M. J. A forward-looking review of seizure prediction. 
Curr. Opin. Neurol. 30, 167-173, (2017). 

30 Cook, M. J. et al. The dynamics of the epileptic brain reveal long-memory processes. Front. 
Neurol. 5, 217, (2014). 

31 Cook, M. J. et al. Human focal seizures are characterized by populations of fixed duration 
and interval. Epilepsia 57, 359-368, (2016). 

32 Gluckman, B. J. & Schevon, C. A. Seizure Prediction 6: From Mechanisms to Engineered 
Interventions for Epilepsy. J. Clin. Neurophysiol. 32, 181-187, (2015). 

33 Kuhlmann, L., Grayden, D. B. & Cook, M. J. Special Issue on Epilepsy Mechanisms, 
Models, Prediction and Control. Int. J. Neural Syst. 27, 1702001, (2017). 

34 Osorio, I., Zaveri, H. P., Frei, M. G. & Arthurs, S. in Epilepsy: The Intersection of 
Neurosciences, Biology, Mathematics, Engineering, and Physics    (CRC Press, 2011). 

35 Richardson, M. P. & Jefferys, J. G. Introduction—Epilepsy Research UK Workshop 2010 on 
“Preictal Phenomena”. Epilepsy Res. 97, 229-230, (2011). 

36 Schelter, B., Timmer, J. & Schulze-Bonhage, A. Seizure prediction in epilepsy: from basic 
mechanisms to clinical applications.  (John Wiley & Sons, 2008). 

37 Tetzlaff, R., Elger, C. E. & Lehnertz, K. in Recent Advances in Predicting and Preventing 
Epileptic Seizures    (World Scientific, 2013). 

38 Zaveri, H. P., Frei, M. G., Arthurs, S. & Osorio, I. Seizure prediction: the Fourth 
International Workshop. Epilepsy Behav. 19, 1-3, (2010). 

39 Brinkmann, B. H. et al. Crowdsourcing reproducible seizure forecasting in human and 
canine epilepsy. Brain 139, 1713-1722, (2016). 

40 Howbert, J. J. et al. Forecasting seizures in dogs with naturally occurring epilepsy. PLoS 
One 9, e81920, (2014). 

41 Karoly, P. J. et al. Interictal spikes and epileptic seizures: their relationship and underlying 
rhythmicity. Brain 139, 1066-1078, (2016). 

42 Payne, D. E. et al. Postictal suppression and seizure durations: A patient-specific, long-
term iEEG analysis. Epilepsia 59, 1027-1036, (2018). 

43 Lange, H. H., Lieb, J. P., Engel, J., Jr. & Crandall, P. H. Temporo-spatial patterns of pre-
ictal spike activity in human temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 
56, 543-555, (1983). 



 

16 
 

44 Katz, A., Marks, D. A., McCarthy, G. & Spencer, S. S. Does interictal spiking change prior 
to seizures? Electroencephalogr. Clin. Neurophysiol. 79, 153-156, (1991). 

45 Gotman, J. Relationships between Interictal Spiking and Seizures - Human and 
Experimental-Evidence. Can. J. Neurol. Sci. 18, 573-576, (1991). 

46 Malow, B. A., Lin, X., Kushwaha, R. & Aldrich, M. S. Interictal spiking increases with sleep 
depth in temporal lobe epilepsy. Epilepsia 39, 1309-1316, (1998). 

47 Li, S. F., Zhou, W. D., Yuan, Q. & Liu, Y. X. Seizure Prediction Using Spike Rate of 
Intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 880-886, (2013). 

48 Wasade, V. S. et al. Intracranial electrographic analysis of preictal spiking and ictal onset in 
uni- and bitemporal epilepsy. Epileptic Disord. 17, 156-164, (2015). 

49 Goncharova, II et al. The relationship between seizures, interictal spikes and antiepileptic 
drugs. Clin. Neurophysiol. 127, 3180-3186, (2016). 

50 Goncharova, II, Zaveri, H. P., Duckrow, R. B., Novotny, E. J. & Spencer, S. S. Spatial 
distribution of intracranially recorded spikes in medial and lateral temporal epilepsies. 
Epilepsia 50, 2575-2585, (2009). 

51 Goncharova, II et al. Intracranially recorded interictal spikes: relation to seizure onset area 
and effect of medication and time of day. Clin. Neurophysiol. 124, 2119-2128, (2013). 

52 Spencer, S. S., Goncharova, II, Duckrow, R. B., Novotny, E. J. & Zaveri, H. P. Interictal 
spikes on intracranial recording: behavior, physiology, and implications. Epilepsia 49, 1881-
1892, (2008). 

53 Abou-Khalil, B. The ambiguous relationship between spikes and seizures. Clin. 
Neurophysiol. 127, 3176-3177, (2016). 

54 Baud, M. O. et al. Multi-day rhythms modulate seizure risk in epilepsy. Nature 
communications 9, 88, (2018). 

55 Gotman, J. A few thoughts on ``What is a seizure?''. Epilepsy Behav. 22, S2-S3, (2011). 
56 Staley, K. Molecular mechanisms of epilepsy. Nat. Neurosci. 18, 367-372, (2015). 
57 Terry, J. R., Benjamin, O. & Richardson, M. P. Seizure generation: the role of nodes and 

networks. Epilepsia 53, e166-169, (2012). 
58 Blumenfeld, H. Cellular and network mechanisms of spike-wave seizures. Epilepsia 46 

Suppl 9, 21-33, (2005). 
59 Schevon, C. A. et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. 

Neuroimage 35, 140-148, (2007). 
60 Ortega, G. J., Menendez de la Prida, L., Sola, R. G. & Pastor, J. Synchronization clusters of 

interictal activity in the lateral temporal cortex of epileptic patients: intraoperative 
electrocorticographic analysis. Epilepsia 49, 269-280, (2008). 

61 Gazit, T. et al. Time-frequency characterization of electrocorticographic recordings of 
epileptic patients using frequency-entropy similarity: a comparison to other bi-variate 
measures. J. Neurosci. Methods 194, 358-373, (2011). 

62 Palmigiano, A., Pastor, J., Garcia de Sola, R. & Ortega, G. J. Stability of synchronization 
clusters and seizurability in temporal lobe epilepsy. PLoS ONE [Electronic Resource] 7, 
e41799, (2012). 

63 Towle, V. L., Carder, R. K., Khorasani, L. & Lindberg, D. Electrocorticographic coherence 
patterns. J. Clin. Neurophysiol. 16, 528-547, (1999). 

64 Towle, V. L. et al. Identification of the sensory/motor area and pathologic regions using 
ECoG coherence. Electroencephalogr. Clin. Neurophysiol. 106, 30-39, (1998). 

65 Zaveri, H. P. et al. Localization-related epilepsy exhibits significant connectivity away from 
the seizure-onset area. Neuroreport 20, 891-895, (2009). 

66 Zaveri, H. P., Pincus, S. M., Goncharova, I. I., Duckrow, R. B. & Spencer, S. S. in Proc. of 
SPIE.  70740T-70741. 

67 Frei, M. G. et al. Controversies in epilepsy: debates held during the Fourth International 
Workshop on Seizure Prediction. Epilepsy Behav. 19, 4-16, (2010). 

68 Warren, C. P. et al. Synchrony in normal and focal epileptic brain: the seizure onset zone is 
functionally disconnected. J. Neurophysiol. 104, 3530-3539, (2010). 

69 Varotto, G., Tassi, L., Franceschetti, S., Spreafico, R. & Panzica, F. Epileptogenic networks 
of type II focal cortical dysplasia: a stereo-EEG study. Neuroimage 61, 591-598, (2012). 



 

17 
 

70 Tomlinson, S. B., Porter, B. E. & Marsh, E. D. Interictal network synchrony and local 
heterogeneity predict epilepsy surgery outcome among pediatric patients. Epilepsia 58, 
402-411, (2017). 

71 Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using 
computational modelling. Brain 140, 319-332, (2017). 

72 Eissa, T. L. & Schevon, C. A. The role of computational modelling in seizure localization. 
Brain 140, 254-256, (2017). 

73 Lee, H. W. et al. Altered functional connectivity in seizure onset zones revealed by fMRI 
intrinsic connectivity. Neurology 83, 2269-2277, (2014). 

74 Constable, R. T. et al. Potential use and challenges of functional connectivity mapping in 
intractable epilepsy. Front. Neurol. 4, 39, (2013). 

75 Zhang, X. et al. Social network theory applied to resting-state fMRI connectivity data in the 
identification of epilepsy networks with iterative feature selection. J. Neurosci. Methods 199, 
129-139, (2011). 

76 Negishi, M., Martuzzi, R., Novotny, E. J., Spencer, D. D. & Constable, R. T. Functional MRI 
connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 52, 1733-1740, 
(2011). 

77 Elisevich, K. et al. An assessment of MEG coherence imaging in the study of temporal lobe 
epilepsy. Epilepsia 52, 1110-1119, (2011). 

78 Nissen, I. A. et al. Identifying the epileptogenic zone in interictal resting-state MEG source-
space networks. Epilepsia 58, 137-148, (2017). 

79 Englot, D. J. et al. Epileptogenic zone localization using magnetoencephalography predicts 
seizure freedom in epilepsy surgery. Epilepsia 56, 949-958, (2015). 

80 Englot, D. J. et al. Global and regional functional connectivity maps of neural oscillations in 
focal epilepsy. Brain 138, 2249-2262, (2015). 

81 Englot, D. J., Konrad, P. E. & Morgan, V. L. Regional and global connectivity disturbances 
in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. 
Epilepsia 57, 1546-1557, (2016). 

82 Dickten, H., Porz, S., Elger, C. E. & Lehnertz, K. Weighted and directed interactions in 
evolving large-scale epileptic brain networks. Sci. Rep. 6, 34824, (2016). 

83 Lehnertz, K., Dickten, H., Porz, S., Helmstaedter, C. & Elger, C. E. Predictability of 
uncontrollable multifocal seizures - towards new treatment options. Sci. Rep. 6, 24584, 
(2016). 

84 Sunderam, S., Osorio, I. & Frei, M. G. Epileptic seizures are temporally interdependent 
under certain conditions. Epilepsy Res. 76, 77-84, (2007). 

85 Ouyang, G., Li, X., Dang, C. & Richards, D. A. Using recurrence plot for determinism 
analysis of EEG recordings in genetic absence epilepsy rats. Clin. Neurophysiol. 119, 
1747-1755, (2008). 

86 Ngamga, E. J. et al. Evaluation of selected recurrence measures in discriminating pre-ictal 
and inter-ictal periods from epileptic EEG data. Phys Lett A 380, 1419-1425, (2016). 

87 Staniek, M. & Lehnertz, K. Symbolic transfer entropy: inferring directionality in biosignals. 
Biomed. Tech. (Berl.) 54, 323-328, (2009). 

88 Stamoulis, C., Gruber, L. J., Schomer, D. L. & Chang, B. S. High-frequency neuronal 
network modulations encoded in scalp EEG precede the onset of focal seizures. Epilepsy 
Behav. 23, 471-480, (2012). 

89 Dickten, H. & Lehnertz, K. Identifying delayed directional couplings with symbolic transfer 
entropy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 062706, (2014). 

90 Lehnertz, K. & Dickten, H. Assessing directionality and strength of coupling through 
symbolic analysis: an application to epilepsy patients. Philos T R Soc A 373, 20140094, 
(2015). 

91 Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. The application of graph 
theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317-2331, 
(2007). 

92 Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural 
and functional systems. Nat. Rev. Neurosci. 10, 186-198, (2009). 

93 Richardson, M. Current themes in neuroimaging of epilepsy: brain networks, dynamic 
phenomena, and clinical relevance. Clin. Neurophysiol. 121, 1153-1175, (2010). 



 

18 
 

94 Kramer, M. A. & Cash, S. S. Epilepsy as a Disorder of Cortical Network Organization. 
Neuroscientist 18, 360-372, (2012). 

95 van Diessen, E., Diederen, S. J. H., Braun, K. P. J., Jansen, F. E. & Stam, C. J. Functional 
and structural brain networks in epilepsy: What have we learned? Epilepsia 54, 1855-1865, 
(2013). 

96 Lehnertz, K. et al. Evolving networks in the human epileptic brain. Physica D-Nonlinear 
Phenomena 267, 7-15, (2014). 

97 Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683-
695, (2014). 

98 Yaffe, R. B. et al. Physiology of functional and effective networks in epilepsy. Clin. 
Neurophysiol. 126, 227-236, (2015). 

99 Bertram, E. H., Zhang, D. X., Mangan, P., Fountain, N. & Rempe, D. Functional anatomy of 
limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. 
Epilepsy Res. 32, 194-205, (1998). 

100 Bragin, A., Wilson, C. L. & Engel, J., Jr. Chronic epileptogenesis requires development of a 
network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41 Suppl 
6, S144-152, (2000). 

101 Spencer, S. S. Neural networks in human epilepsy: evidence of and implications for 
treatment. Epilepsia 43, 219-227, (2002). 

102 Schindler, K., Leung, H., Elger, C. E. & Lehnertz, K. Assessing seizure dynamics by 
analysing the correlation structure of multichannel intracranial EEG. Brain 130, 65-77, 
(2007). 

103 Schindler, K., Elger, C. E. & LehnertZ, K. Increasing synchronization may promote seizure 
termination: Evidence from status epilepticus. Clin. Neurophysiol. 118, 1955-1968, (2007). 

104 Kramer, M. A., Kolaczyk, E. D. & Kirsch, H. E. Emergent network topology at seizure onset 
in humans. Epilepsy Res. 79, 173-186, (2008). 

105 Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E. & Lehnertz, K. Evolving 
functional network properties and synchronizability during human epileptic seizures. Chaos 
18, 033119, (2008). 

106 Valton, L. et al. Functional interactions in brain networks underlying epileptic seizures in 
bilateral diffuse periventricular heterotopia. Clin. Neurophysiol. 119, 212-223, (2008). 

107 Kramer, M. A. et al. Coalescence and fragmentation of cortical networks during focal 
seizures. J. Neurosci. 30, 10076-10085, (2010). 

108 Bialonski, S., Wendler, M. & Lehnertz, K. Unraveling spurious properties of interaction 
networks with tailored random networks. PLoS One 6, e22826, (2011). 

109 Kramer, M. A. et al. Human seizures self-terminate across spatial scales via a critical 
transition. Proc. Natl. Acad. Sci. U. S. A. 109, 21116-21121, (2012). 

110 Stamoulis, C., Schomer, D. L. & Chang, B. S. Information theoretic measures of network 
coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure 
termination. Epilepsy Res. 105, 299-315, (2013). 

111 Liao, W. et al. Dynamical intrinsic functional architecture of the brain during absence 
seizures. Brain Struct Funct 219, 2001-2015, (2014). 

112 Afra, P., Jouny, C. C. & Bergey, G. K. Termination patterns of complex partial seizures: An 
intracranial EEG study. Seizure 32, 9-15, (2015). 

113 Geier, C., Bialonski, S., Elger, C. E. & Lehnertz, K. How important is the seizure onset zone 
for seizure dynamics? Seizure 25, 160-166, (2015). 

114 Steimer, A., Zubler, F. & Schindler, K. Chow-Liu trees are sufficient predictive models for 
reproducing key features of functional networks of periictal EEG time-series. Neuroimage 
118, 520-537, (2015). 

115 Gupta, D., Ossenblok, P. & van Luijtelaar, G. Space-time network connectivity and cortical 
activations preceding spike wave discharges in human absence epilepsy: a MEG study. 
Med. Biol. Eng. Comput. 49, 555-565, (2011). 

116 Takahashi, H., Takahashi, S., Kanzaki, R. & Kawai, K. State-dependent precursors of 
seizures in correlation-based functional networks of electrocorticograms of patients with 
temporal lobe epilepsy. Neurol. Sci. 33, 1355-1364, (2012). 



 

19 
 

117 Clemens, B. et al. Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and 
graph analysis of the interictal and immediate preictal states. Epilepsy Res. 106, 357-369, 
(2013). 

118 Geier, C. & Lehnertz, K. Long-term variability of importance of brain regions in evolving 
epileptic brain networks. Chaos 27, 043112, (2017). 

119 Burns, S. P. et al. Network dynamics of the brain and influence of the epileptic seizure 
onset zone. Proc. Natl. Acad. Sci. U. S. A. 111, E5321-5330, (2014). 

120 Kuhnert, M. T., Elger, C. E. & Lehnertz, K. Long-term variability of global statistical 
properties of epileptic brain networks. Chaos 20, 043126, (2010). 

121 Geier, C., Lehnertz, K. & Bialonski, S. Time-dependent degree-degree correlations in 
epileptic brain networks: from assortative to dissortative mixing. Front. Hum. Neurosci. 9, 
462, (2015). 

122 Spencer, D. D., Gerrard, J. L. & Zaveri, H. P. The roles of surgery and technology in 
understanding focal epilepsy and its comorbidities. Lancet Neurol. 17, 373-382, (2018). 

123 Deisseroth, K. & Schnitzer, M. J. Engineering approaches to illuminating brain structure and 
dynamics. Neuron 80, 568-577, (2013). 

124 Patil, A. C. & Thakor, N. V. Implantable neurotechnologies: a review of micro- and 
nanoelectrodes for neural recording. Med. Biol. Eng. Comput. 54, 23-44, (2016). 

125 Stead, M. et al. Microseizures and the spatiotemporal scales of human partial epilepsy. 
Brain 133, 2789-2797, (2010). 

126 Truccolo, W. et al. Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 
635-641, (2011). 

127 Schevon, C. A. et al. Evidence of an inhibitory restraint of seizure activity in humans. 
Nature communications 3, 1060, (2012). 

128 Hu, S. Q. et al. Increase trend of correlation and phase synchrony of microwire iEEG before 
macroseizure onset. Cogn. Neurodyn. 8, 111-126, (2014). 

129 Gast, H. et al. Burst firing of single neurons in the human medial temporal lobe changes 
before epileptic seizures. Clin. Neurophysiol. 127, 3329-3334, (2016). 

130 Smith, E. H. et al. The ictal wavefront is the spatiotemporal source of discharges during 
spontaneous human seizures. Nature communications 7, 11098, (2016). 

131 Petroff, O. A. et al. Glutamate-glutamine cycling in the epileptic human hippocampus. 
Epilepsia 43, 703-710, (2002). 

132 Cavus, I. et al. Extracellular metabolites in the cortex and hippocampus of epileptic 
patients. Ann. Neurol. 57, 226-235, (2005). 

133 DiNuzzo, M., Mangia, S., Maraviglia, B. & Giove, F. Physiological bases of the K+ and the 
glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 108, 995-1012, (2014). 

134 Stephens, M. L. et al. Tonic glutamate in CA1 of aging rats correlates with phasic glutamate 
dysregulation during seizure. Epilepsia 55, 1817-1825, (2014). 

135 Kanamori, K. & Ross, B. D. Chronic electrographic seizure reduces glutamine and elevates 
glutamate in the extracellular fluid of rat brain. Brain Res. 1371, 180-191, (2011). 

136 Kanamori, K. & Ross, B. D. Electrographic seizures are significantly reduced by in vivo 
inhibition of neuronal uptake of extracellular glutamine in rat hippocampus. Epilepsy Res. 
107, 20-36, (2013). 

137 During, M. J. & Spencer, D. D. Extracellular hippocampal glutamate and spontaneous 
seizure in the conscious human brain. Lancet 341, 1607-1610, (1993). 

138 Huberfeld, G. et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in 
human epilepsy. Nat. Neurosci. 14, 627-U121, (2011). 

139 Lillis, K. P., Kramer, M. A., Mertz, J., Staley, K. J. & White, J. A. Pyramidal cells accumulate 
chloride at seizure onset. Neurobiol. Dis. 47, 358-366, (2012). 

140 Smith, E. H. et al. The ictal wavefront is the spatiotemporal source of discharges during 
spontaneous human seizures. Nature communications 7, 11098, (2016). 

141 Tewolde, S., Oommen, K., Lie, D. Y., Zhang, Y. & Chyu, M. C. Epileptic Seizure Detection 
and Prediction Based on Continuous Cerebral Blood Flow Monitoring--a Review. J Healthc 
Eng 6, 159-178, (2015). 

142 Schwartz, T. H., Hong, S. B., Bagshaw, A. P., Chauvel, P. & Benar, C. G. Preictal changes 
in cerebral haemodynamics: review of findings and insights from intracerebral EEG. 
Epilepsy Res. 97, 252-266, (2011). 



 

20 
 

143 Patel, K. S., Zhao, M., Ma, H. & Schwartz, T. H. Imaging preictal hemodynamic changes in 
neocortical epilepsy. Neurosurg. Focus 34, E10, (2013). 

144 Nilsen, K. B., Haram, M., Tangedal, S., Sand, T. & Brodtkorb, E. Is elevated pre-ictal heart 
rate associated with secondary generalization in partial epilepsy? Seizure 19, 291-295, 
(2010). 

145 Delamont, R. S., Julu, P. O. O. & Jamal, G. A. Changes in a measure of cardiac vagal 
activity before and after epileptic seizures. Epilepsy Res. 35, 87-94, (1999). 

146 Bruno, E., Biondi, A., Richardson, M. P. & RADAR-CNS-Consortium. Pre-ictal heart rate 
changes: A systematic review and meta-analysis. Seizure 55, 48-56, (2018). 

147 Benuzzi, F. et al. Increased cortical BOLD signal anticipates generalized spike and wave 
discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia 53, 
622-630, (2012). 

148 Masterton, R. A., Carney, P. W., Abbott, D. F. & Jackson, G. D. Absence epilepsy 
subnetworks revealed by event-related independent components analysis of functional 
magnetic resonance imaging. Epilepsia 54, 801-808, (2013). 

149 Moeller, F. et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed 
absence epilepsy. Epilepsia 49, 1510-1519, (2008). 

150 Bai, X. et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, 
and functional magnetic resonance imaging. J. Neurosci. 30, 5884-5893, (2010). 

151 Carney, P. W. et al. The core network in absence epilepsy. Differences in cortical and 
thalamic BOLD response. Neurology 75, 904-911, (2010). 

152 Moeller, F. et al. Changes in activity of striato-thalamo-cortical network precede generalized 
spike wave discharges. Neuroimage 39, 1839-1849, (2008). 

153 Zhao, M. et al. Focal increases in perfusion and decreases in hemoglobin oxygenation 
precede seizure onset in spontaneous human epilepsy. Epilepsia 48, 2059-2067, (2007). 

154 Baumgartner, C. et al. Preictal SPECT in temporal lobe epilepsy: Regional cerebral blood 
flow is increased prior to electroencephalography-seizure onset. J. Nucl. Med. 39, 978-982, 
(1998). 

155 Bauer, P. R., Kalitzin, S., Zijlmans, M., Sander, J. W. & Visser, G. H. Cortical Excitability as 
a Potential Clinical Marker of Epilepsy: A Review of the Clinical Application of Transcranial 
Magnetic Stimulation. Int. J. Neural Syst. 24, 1430001, (2014). 

156 Wright, M. A., Orth, M., Patsalos, P. N., Smith, S. J. & Richardson, M. P. Cortical excitability 
predicts seizures in acutely drug-reduced temporal lobe epilepsy patients. Neurology 67, 
1646-1651, (2006). 

157 Badawy, R., Macdonell, R., Jackson, G. & Berkovic, S. The peri-ictal state: cortical 
excitability changes within 24 h of a seizure. Brain 132, 1013-1021, (2009). 

158 Suffczynski, P. et al. Active paradigms of seizure anticipation: computer model evidence for 
necessity of stimulation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 051917, (2008). 

159 O'Sullivan-Greene, E., Mareels, I., Freestone, D., Kulhmann, L. & Burkitt, A. in Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society.   (IEEE. 
p. 6428-6431). 

160 Kalitzin, S. N., Velis, D. N. & da Silva, F. H. Stimulation-based anticipation and control of 
state transitions in the epileptic brain. Epilepsy Behav. 17, 310-323, (2010). 

161 Kalitzin, S., Koppert, M., Petkov, G., Velis, D. & da Silva, F. L. Computational model 
prospective on the observation of proictal states in epileptic neuronal systems. Epilepsy 
Behav. 22 Suppl 1, S102-109, (2011). 

162 Bruzzo, A. A., Gesierich, B., Rubboli, G. & Vimal, R. L. Predicting epileptic seizures with a 
mental simulation task: a prospective study. Epilepsy Behav. 13, 256-259, (2008). 

163 Freestone, D. R. et al. Electrical probing of cortical excitability in patients with epilepsy. 
Epilepsy Behav. 22 Suppl 1, S110-118, (2011). 

164 Meisel, C. et al. Intrinsic excitability measures track antiepileptic drug action and uncover 
increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. U. S. A. 
112, 14694-14699, (2015). 

165 Lytton, W. W. Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626-637, (2008). 
166 Soltesz, I. & Staley, K. Computational neuroscience in epilepsy. Vol. 6 (Academic Press, 

2008). 



 

21 
 

167 Stefanescu, R. A., Shivakeshavan, R. G. & Talathi, S. S. Computational models of epilepsy. 
Seizure 21, 748-759, (2012). 

168 Volman, V., Bazhenov, M. & Sejnowski, T. J. Computational models of neuron-astrocyte 
interaction in epilepsy. Front. Comput. Neurosci. 6, 58, (2012). 

169 Holt, A. B. & Netoff, T. I. Computational modeling of epilepsy for an experimental 
neurologist. Exp. Neurol. 244, 75-86, (2013). 

170 Wendling, F., Benquet, P., Bartolomei, F. & Jirsa, V. Computational models of epileptiform 
activity. J. Neurosci. Methods 260, 233-251, (2016). 

171 Chakravarthy, N., Sabesan, S., Tsakalis, K. & Iasemidis, L. Controlling epileptic seizures in 
a neural mass model. Journal of Combinatorial Optimization 17, 98-116, (2009). 

172 Shayegh, F., Fattahi, R. A., Sadri, S. & Ansari-Asl, K. A Brief Survey of Computational 
Models of Normal and Epileptic EEG Signals: A Guideline to Model-based Seizure 
Prediction. J Med Signals Sens 1, 62-72, (2011). 

173 Shayegh, F., Sadri, S., Amirfattahi, R. & Ansari-Asl, K. Proposing a two-level stochastic 
model for epileptic seizure genesis. J. Comput. Neurosci. 36, 39-53, (2014). 

174 Freestone, D. et al. Patient-specific neural mass modelling: stochastic and deterministic 
methods. Recent Advances in Predicting and Preventing Epileptic Seizures, 63-82, (2013). 

175 Freestone, D. R. et al. Seizure Prediction: Science Fiction or Soon to Become Reality? 
Curr. Neurol. Neurosci. Rep. 15, 73, (2015). 

176 Aram, P., Freestone, D. R., Cook, M. J., Kadirkamanathan, V. & Grayden, D. B. Model-
based estimation of intra-cortical connectivity using electrophysiological data. Neuroimage 
118, 563-575, (2015). 

177 Watson, P. D., Horecka, K. M., Cohen, N. J. & Ratnam, R. A Phase-Locked Loop Epilepsy 
Network Emulator. Neurocomputing 173, 1245-1249, (2016). 

178 Milton, J. G. Epilepsy as a dynamic disease: A tutorial of the past with an eye to the future. 
Epilepsy Behav. 18, 33-44, (2010). 

179 Lopes da Silva, F., Blanes, W., Parra, S. N. K. J., Suffczynski, P. & Velis, D. N. Epilepsies 
as dynamical diseases of brain systems: basic models of the transition between normal and 
epileptic activity. Epilepsia 44 (Suppl. 12), 72-83, (2003). 

180 Rabinovich, M. I., Varona, P., Selverston, A. I. & Abarbanel, H. D. I. Dynamical principles in 
neuroscience. Rev Mod Phys 78, 1213-1265, (2006). 

181 Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E. & Gross, T. Failure of adaptive 
self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol. 8, e1002312, 
(2012). 

182 Milton, J. G. Neuronal avalanches, epileptic quakes and other transient forms of 
neurodynamics. Eur. J. Neurosci. 36, 2156-2163, (2012). 

183 Suffczynski, P., Kalitzin, S. & Lopes Da Silva, F. H. Dynamics of non-convulsive epileptic 
phenomena modeled by a bistable neuronal network. Neuroscience 126, 467-484, (2004). 

184 Takeshita, D., Sato, Y. D. & Bahar, S. Transitions between multistable states as a model of 
epileptic seizure dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 051925, 
(2007). 

185 Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of 
seizure dynamics. Brain 137, 2210-2230, (2014). 

186 Feldt, S., Osterhage, H., Mormann, F., Lehnertz, K. & Zochowski, M. Internetwork and 
intranetwork communications during bursting dynamics: Applications to seizure prediction. 
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 021920, (2007). 

187 Rothkegel, A. & Lehnertz, K. Multistability, local pattern formation, and global collective 
firing in a small-world network of non-leaky integrate-and-fire neurons. Chaos 19, 015109, 
(2009). 

188 Rothkegel, A. & Lehnertz, K. Recurrent events of synchrony in complex networks of pulse-
coupled oscillators. Epl-Europhys Lett 95, 38001, (2011). 

189 Anderson, W. S., Azhar, F., Kudela, P., Bergey, G. K. & Franaszczuk, P. J. Epileptic 
seizures from abnormal networks: Why some seizures defy predictability. Epilepsy Res. 99, 
202-213, (2012). 

190 Baier, G., Goodfellow, M., Taylor, P. N., Wang, Y. J. & Garry, D. J. The importance of 
modeling epileptic seizure dynamics as spatio-temporal patterns. Front. Physiol. 3, 281, 
(2012). 



 

22 
 

191 Ansmann, G., Karnatak, R., Lehnertz, K. & Feudel, U. Extreme events in excitable systems 
and mechanisms of their generation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 
052911, (2013). 

192 Petkov, G., Goodfellow, M., Richardson, M. P. & Terry, J. R. A critical role for network 
structure in seizure onset: a computational modeling approach. Front. Neurol. 5, 261, 
(2014). 

193 Ansmann, G., Lehnertz, K. & Feudel, U. Self-induced pattern switching on complex 
networks of excitable units. Phys. Rev. X 6, 011030, (2016). 

194 Schiff, S. J. Neural control engineering: the emerging intersection between control theory 
and neuroscience.  (MIT Press, 2012). 

195 Chong, M. S., Nešić, D., Postoyan, R. & Kuhlmann, L. Parameter and state estimation of 
nonlinear systems using a multi-observer under the supervisory framework. IEEE 
Transactions on Automatic Control 60, 2336-2349, (2015). 

196 Kuhlmann, L. et al. Neural mass model-based tracking of anesthetic brain states. 
Neuroimage 133, 438-456, (2016). 

197 Xian, L., Qing, G. & Xiao-Li, L. Control of epileptiform spikes based on nonlinear unscented 
Kalman filter. Chinese Physics B 23, 010202, (2013). 

198 Taylor, P. N. et al. Optimal control based seizure abatement using patient derived 
connectivity. Front. Neurosci. 9, 202, (2015). 

199 Wei, Y., Ullah, G. & Schiff, S. J. Unification of neuronal spikes, seizures, and spreading 
depression. J. Neurosci. 34, 11733-11743, (2014). 

200 De Ciantis, A. & Lemieux, L. Localisation of epileptic foci using novel imaging modalities. 
Curr. Opin. Neurol. 26, 368-373, (2013). 

201 Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control 
of spontaneous seizures in temporal lobe epilepsy. Nature communications 4, 1376, 
(2013). 

202 Badawy, R. A., Freestone, D. R., Lai, A. & Cook, M. J. Epilepsy: Ever-changing states of 
cortical excitability. Neuroscience 222, 89-99, (2012). 

203 Bazaka, K. & Jacob, M. V. Implantable devices: issues and challenges. Electronics 2, 1-34, 
(2012). 

204 Jory, C. et al. Safe and sound? A systematic literature review of seizure detection methods 
for personal use. Seizure 36, 4-15, (2016). 

205 Patel, A. D. et al. Patient-centered design criteria for wearable seizure detection devices. 
Epilepsy Behav. 64, 116-121, (2016). 

206 Ramgopal, S. et al. Seizure detection, seizure prediction, and closed-loop warning systems 
in epilepsy. Epilepsy Behav. 37, 291-307, (2014). 

207 Van de Vel, A. et al. Non-EEG seizure detection systems and potential SUDEP prevention: 
State of the art: Review and update. Seizure 41, 141-153, (2016). 

208 Arthurs, S., Zaveri, H. P., Frei, M. G. & Osorio, I. Patient and caregiver perspectives on 
seizure prediction. Epilepsy Behav. 19, 474-477, (2010). 

209 Schulze-Bonhage, A. et al. Views of patients with epilepsy on seizure prediction devices. 
Epilepsy Behav. 18, 388-396, (2010). 

210 Hoppe, C. et al. Novel techniques for automated seizure registration: Patients' wants and 
needs. Epilepsy Behav. 52, 1-7, (2015). 

211 Hoppe, C., Poepel, A. & Elger, C. E. Epilepsy: accuracy of patient seizure counts. Arch. 
Neurol. 64, 1595-1599, (2007). 

212 Blachut, B. et al. Counting seizures: The primary outcome measure in epileptology from the 
patients' perspective. Seizure 29, 97-103, (2015). 

213 Elger, C. E. & Hoppe, C. Diagnostic challenges in epilepsy: seizure under-reporting and 
seizure detection. Lancet Neurol. 17, 279-288, (2018). 

214 Johansson, D., Malmgren, K. & Murphy, M. A. Wearable sensors for clinical applications in 
epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. J. Neurol., 
1-13, (2018). 

215 Vandecasteele, K. et al. Automated Epileptic Seizure Detection Based on Wearable ECG 
and PPG in a Hospital Environment. Sensors (Basel) 17, 2338, (2017). 

216 Gadhoumi, K., Lina, J. M., Mormann, F. & Gotman, J. Seizure prediction for therapeutic 
devices: A review. J. Neurosci. Methods 260, 270-282, (2016). 



 

23 
 

217 Fisher, R. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of 
refractory epilepsy. Epilepsia 51, 899-908, (2010). 

218 Sun, F. T. & Morrell, M. J. The RNS System: responsive cortical stimulation for the 
treatment of refractory partial epilepsy. Expert Rev. Med. Devices 11, 563-572, (2014). 

219 Yuan, H. & Silberstein, S. D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive 
Review: Part II. Headache 56, 259-266, (2016). 

220 Duun-Henriksen, J. et al. Subdural to subgaleal EEG signal transmission: the role of 
distance, leakage and insulating affectors. Clin. Neurophysiol. 124, 1570-1577, (2013). 

221 Stacey, W. C. & Litt, B. Technology insight: neuroengineering and epilepsy—designing 
devices for seizure control. Nature Clinical Practice Neurology 4, 190-201, (2008). 

222 Brinkmann, B. H. et al. Forecasting Seizures Using Intracranial EEG Measures and SVM in 
Naturally Occurring Canine Epilepsy. PLoS One 10, e0133900, (2015). 

 









1 
 

 
Supplementary information box 1 | Critical discussion of seizure prediction studies since 2007. 
 
In the landmark review of seizure prediction published in 20071, seizure prediction algorithms from 
the preceding 10 years were summarized in tables. We now present a similar set of tables for 
seizure prediction algorithms published between 2006 and 2018 (Supplementary table 1 and 
Supplementary table 2)2. 
 
The studies listed should not be considered exhaustive. Papers were selected on the basis of 
adherence to the guidelines in the 2007 review, and those that included the most data were 
preferred for inclusion. The guidelines called for: data that are as continuous as possible; 
prediction algorithm performance that outperforms random prediction, surrogate methods or other 
algorithms that have been shown to outperform random prediction or surrogate methods; 
evaluation of performance on out-of-sample (but within individual) testing sets; and no in-sample 
parameter optimization or retrospective best channel selection (that is, parameter optimization 
should only be performed on the training set). .  
 
The algorithms and their performance are listed in supplementary tables 1 and 2 on the basis of 
whether the study was prospective or not (pseudo-prospective evaluation was not considered 
prospective), then in approximate decreasing order of the size of the database or data set used, 
determined by the number of seizures per individual and, where these numbers are similar, the 
number of hours of recorded electroencephalography (EEG) or intracranial EEG data per 
individual. The methods have been listed in this order because of the importance of prospective 
studies and because, as has been considered in depth in the literature1, the ability to properly 
evaluate seizure prediction methods depends on the number of seizures and the duration of the 
(notably inter-ictal) data analysed for each individual. Another important factor in each study is the 
number of individuals considered, as seizure prediction results should ideally be generally 
applicable to many individuals.  
 
Considerable differences still exist in the way investigators describe the performance and 
properties of a prediction system. Typically, one or more of the following metrics are adopted: 
sensitivity (the percentage of correctly predicted seizures), false prediction rate (preferably 
evaluated with respect to the inter-ictal periods and not including the pre-ictal periods), warning 
time portion the percentage of time spent under warning or false warning, assumed pre-ictal period 
(the time before seizure onset within which pre-ictal changes are assumed to occur), and 
prediction time (the time relative to seizure onset at which a prediction is made). For these metrics, 
ranges of values or averages have been reported in different studies. Ranges are important 
because some prediction algorithms work for some people but not for others. Of note, the clinical 
trial of the prospective seizure prediction system2 effectively reported time under warning, whereas 
in many other studies, time under false warning has been reported. 
 
Since 2007, a wide variety of algorithms have been applied across various data sets, and use of 
smaller data sets has generally produced better algorithm performance (higher sensitivity and 
lower false positive rates and/or warning time portions). This observation can probably be 
attributed to the limited number of seizures, the limited amount of inter-ictal data and, potentially, 
discontinuity of data within these data sets. Therefore, algorithms that have been evaluated with 
the smaller data sets will need to be evaluated with larger datasets for conclusions to be made. 
Moreover, the performances of many algorithms published since 2007 must be interpreted with 
great care, particularly for those used with the FSPEEG database given that only parts of the 
database have been analysed in some studies and different segments of the data have been 
analysed in different ways (for example, in contiguous blocks or short interleaved windows) in 
others. Moreover, high discrimination between pre-ictal and inter-ictal data from the FSPEEG 
database has been reported in many studies, but might be due to a data selection bias that has 
been documented before3. Nevertheless, successful prospective seizure prediction for some 
individuals and not for others in the clinical trial of a prospective seizure prediction system 
suggests considerable opportunities to assess whether several of the algorithms can improve 
prospective seizure prediction in long-term recordings. For example, if improvements in seizure 
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prediction can be achieved for individuals in whom seizure prediction was poorest with the 
prospective seizure prediction system2, such improvements could justify a larger scale trial in a 
wider range of patients4.  
 
 
1 Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and 

winding road. Brain 130, 314-333, doi:10.1093/brain/awl241 (2007). 

2 Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure 
advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 
12, 563-571 (2013). 

3 Czarnek, N., Morton, K., Collins, L., Tantum, S. & Throckmorton, C. The impact of time on 
seizure prediction performance in the FSPEEG database. Epilepsy Behav 48, 79-82 
(2015). 

4 Kuhlmann, L. et al. Epilepsyecosystem.org: Crowd-Sourcing Reproducible Seizure 
Prediction with Long-Term Human Intracranial EEG. Brain In Press (2018). 
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Supplementary table 1 | Human seizure prediction studies from 2006 to 2018 involving (semi-)continuous data. 
Year Ref. Predictive characteristic Pre-ictal change 

detection 
method 

E E G  
ty p e   

Epileps
y 
type 

No. of 
patients 

Seizure
s per 
patient 

EEG 
time 
(h per 
patient) 

Prospective? 

Clinical trial database 
201
3 

1 Average/Teager-Kaiser 
energy, line length  

Decision tree, 
kNN, state 
machine 

iEEG RFE 11a 81.7 6956.3 Y 

201
8 

2 Spectrograms Deep learning 
CNN 

iEEG RFE 10 281.7 14270.0 N 

201
7 

3 Spectral energy, line-length Circadian-
weighted logistic 
regression 

iEEG RFE 9 224.8 7677.3 N 

201
8 

4 Numerous features Numerous 
algorithms 

iEEG RFE 3 211 3699 N 

Freiburg database 
201
0 

5 Mean phase coherence, 
dynamical similarity index  

AND operation, 
threshold 

iEEG RFE 8 19.1 182 N 

New Brunswick database 
201
3 

6 Lyapunov exponent kNN iEEG RFE 10 15.5 205.2 N 

201
7 

7 Lyapunov exponent, 3 
bivariate & 2nd-level 
features 

APP, ALP, ANP iEEG RFE 10 15.4 206.9 N 

Gainsville database 
200
6 

8 Lyapunov exponent Dynamic threshold iEEG MTLE 10 13 210 N 

Freiburg contest/Melbourne database 
201
0 

9 mean phase coherence Fixed/dynamic 
threshold 

iEEG RFE 6 12.2 99.6 N 

EPILEPSIAE database 
201
4 

10 cross-frequency coupling Threshold iEEG RFE 53 10.5 240.5 N 

201
4 

11 22 univariate features SVM, RBF-NN,  
RBP-NN 

iEEG/E
EG 

RFE 278b 9.7 175.3 N 

201
2 

12 34 algorithmic features SVM iEEG/E
EG/ 
ECG 

RFE 12c 9 264.8 N 

201
5 

13 Differences/ratios of linear 
univariate features 

SVM iEEG/E
EG 

RFE 10d 8.6 138.8 N 

201
3 

14 22 univariate features SVM iEEG/E
EG 

RFE 10d 8.6 138.8 N 

201
5 

15 Bivariate spectral power SVM iEEG/E
EG 

RFE 24e 7.6 148.5 N 

201
7 

16 22 univariate features Multiclass SVM iEEG/E
EG 

RFE 216f 5.6 77.5 N 

Montreal database 
201
5 

17 (Scaling) cumulant, state 
similarity  

Linear discriminant iEEG MTLE 17 10.3 92.1 N 

201
3 

18 Wavelet energy/entropy-
based state similarity  

Linear discriminant iEEG MTLE 17 10.3 92.1 N 

Bonn database 
201
6 

19 Eigenvalue PCA, 
CNN/linear prediction error, 
crossing levels 

Threshold iEEG RFE 20 5.2 65-575 N 

FSPEEG database 
201
4 

20 Hilbert–Huang mean phase 
coherence  

Threshold iEEG RFE 10 5 ≈27.1 N 

201
2 

21 6 nonlinear features Rule-based iEEG RFE 11 4.5 ≈28.7 N 

201
1 

22 Univariate spectral power Cost-sensitive 
SVM 

iEEG RFE 18 4.4 ≈28.5 N  

201
2 

23 Univariate/multivariate 
correlaton 

SVM iEEG RFE 19 4.4 ≈28.0 N  

201
5 

24 44 spectral power 
features/ratios 

Linear SVM iEEG RFE 18 4.4 23.7 N 

200
9 

25 6 linear/nonlinear 
synchrony  

Logistic 
regression, CNN, 
SVM 

iEEG RFE 21 4.2 27.7 N 

201
4 

26 34 Univariate features Voting SVM iEEG RFE 21 4.2 ≈4.2 N  

201
4 

27 N-gram EEG patterns Fixed/dynamic 
threshold 

iEEG RFE 21 4.1 27.7 N 
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201
4 

28 Neural mass model 
parameters  

Rule-based iEEG RFE 21 4.1 27.7 N 

201
3 

29 Epileptic spike rate Threshold iEEG RFE 21 4.1 27.7 N 

MIT database 
201
5 

30 44 spectral power 
features/ratios 

Linear SVM EEG PE 17 4.6 38.1 N 

Vancouver/MIT database 
201
3 

31 Zero-crossing intervals GMM/threshold EEG TLE,eTL
E, 
PE 

20 4.3 28.1 N 

Pittsburgh/Charleston database 
201
1 

32 Regularity statistic  Dynamic threshold EEG RFE 52 2.0 36.06 N 

Databases and studies are listed in decreasing order of prospective nature, number of seizures per individual, and amount of data per 
individual. aTraining sets: 27.5 seizures and 4076.3 hours per individual, Testing sets: 54.3 seizures and approx. 2880 hours per 
individual. b42 individuals had iEEG with 253 hours per individual. 227 individuals had EEG with 162 hours per individual. cOnly 6 
individuals had iEEG data. d2 individuals had iEEG data. e8 individuals had iEEG with 9.9 seizures and 175.2 hours per individual. iEEG 
and EEG performance were similar. f185 individuals with EEG and 31 individuals with iEEG. ALP: adaptive linear-discriminant-analysis-
based prediction; ANP: adaptive Naïve Bayes-based prediction; APP, adaptive probabilistic prediction; CNN, convolutional neural 
networks; ECG, electrocardiogram; EEG, electroencephalography, eTLE, extra-TLE; GMM, Gaussian mixture model;, iEEG, intracranial 
EEG; kNN, k-nearest neighbours; MTLE, medial LTE; NFE, natural focal epilepsy; PE, paediatric epilepsy; RBF-NN, radial basis 
function neural networks; RBP-NN, resilient backpropagation neural networks; RFE, refractory focal epilepsy; SVM, support vector 
machine; TLE, temporal lobe epilepsy.  
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Supplementary table 2 | Performance information for human seizure prediction studies from 2006 to 2018. 
Year Ref

. 
In-sample 
parameter 
optimizatio
n 

Retrosp
ective 
best 
channel 
selectio
n 

Out-of- 
sampl
e 
testing 

Sensitivit
y 
(%) 

False- 
positives 
per hour 

Warnin
g 
time 
portion 
(%) 

Assumed 
pre-ictal 
period 
(min) 

Predictio
n 
time (min) 

Statistical 
validation 
method 

Clinical trial database 
2013 1 N   N Y 54-100 n/a 3-41 n/a 114 Random 

Poisson 
2018 2 N N Y 69 n/a 27 n/a <60 Random 

Poisson 
2017 3 N N Y 45-78 n/a 12-41 30-60 n/a Random 

Poisson 
2018 4 N N Y 50-60 n/a 10-30 60 n/a Random 

Poisson 
Freiburg database 
2010 5 Y  N Y 43.2 0.15 n/a 10-60 n/a Random 

Poisson 
New Brunswick database 
2013 6 N N Y 73 n/a 33 180 n/a Periodic or 

random 
Poisson 

2017 7 N N Y 71-80 n/a 3-25 30 9.3-14.3 Periodic or 
random 
Poisson 

Gainsville database 
2006 8 Y N N 80 0.56,0.12 28,32 30,180 13,90 Periodic or 

random 
Poisson 

Freiburg contest/Melbourne database 
2010 9 Y Y Y 50-88 0.64-4.69 n/a <15 n/a Random 

Poisson or 
alarm-time 
surrogates 

EPILEPSIAE database 
2014 10 N N Y 36-100a 0.08-0.72a n/a 30-60 n/a Random 

Poisson 
2014 11 N N Y >50b <0.15b n/a 10-40 n/a None 
2012 12 N N Y 2-81 n/ac n/a 20-60 n/a Seizure-time 

surrogates 
2015 13 N N Y 60.9 0.11 n/a 10-40 n/a Random 

Poisson 
2013 14 N N Y 73.9 0.15 n/a 10-40 n/a None 
2015 15 N N Y 75.8 0.1 n/a 30 n/a Random 

Poisson 
2017 16 N N Y 38.5 0.2 n/a 28 n/a Random 

Poisson 
Montreal database 
2015 17 N N Y 80.5d 0.15 25.1 n/a 59.4 Random 

Poisson 
2013 18 N N Y 81.4e 0.15 30.5 n/a 50.6 Random 

Poisson 
Bonn database 
2016 19 Y N Y n/af n/af n/a 20-120 n/a Seizure time 

surrogates 
FSPEEG database 
2014 20 Y Y Y 70 0.15 n/a 40 n/a Random 

Poisson 
2012 21 N N Y 79.9,90.2 0.17,0.11 4 30,50 13,24 Periodic or 

random 
Poisson 

2011 22 N N Y 92.5 0.2 9.5 30 n/a Random 
Poisson 

2012 23 N N Y 86 0.03 3 30 n/a 2-class ROC 
chance 

2015 24 N N Y 100 0.03 n/a 16-54 n/a 2-class ROC 
chance 

2009 25 N N Y 100g 0 n/a 120 2-99 Random 
2014 26

 
N N Y 89-93 n/ah n/a <20 n/a Baseline or 

random 
Poisson 

2014 27 N N Y 54-94 0.01-0.22 n/a 20 n/a random 
Poisson 
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2014 28 N N Y 83,90 0.16,0.12 2.7 30,50 15.4,27 Periodic or 
random 
Poisson 

2013 29 N N Y 72.7 0.11 n/a 50 ≈49.7 Random 
MIT database 
2015 30 N N Y 98.7 0.05 n/a 3-78 n/a 2-class ROC 

chance 
Vancouver/MIT database 
2013 31 N N Y 88.3 0.16 n/a 40 22.5 Random 

Poisson 
Pittsburgh/Charleston database 
2011 32 N N Y 68.3 0.235 n/a 20? n/a Random 

a7 out of 53 subjects performed better than chance. bTrue for 32 % of individuals. cSpecificity of 30-97%. 9 of 12 subjects performed 
better than surrogates. d13 out of 17 subjects performed better than chance. e7 out of 17 subjects performed better than chance. fonly 
area under (ROC) curve values of 0.5-0.93 were reported. gPerfect performance found for each individual with at least one combination 
of feature and classifier. hSpecificity of 99.4-99.7. n/a, not available; ROC, receiver operating characteristic. 
 
 
1 Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure 

advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 
12, 563-571 (2013). 

2 Kiral-Kornek, I. et al. Epileptic seizure prediction using big data and deep learning: toward a 
mobile system. EBioMedicine 27, 103-111 (2018). 

3 Karoly, P. et al. The Circadian Profile of Epilepsy Improves Seizure Forecasting. Brain 140, 
2169-2182 (2017). 

4 Kuhlmann, L. et al. Epilepsyecosystem.org: Crowd-Sourcing Reproducible Seizure 
Prediction with Long-Term Human Intracranial EEG. Brain In Press (2018). 

5 Feldwisch-Drentrup, H. et al. Joining the benefits: combining epileptic seizure prediction 
methods. Epilepsia 51, 1598-1606 (2010). 

6 Wang, S., Chaovalitwongse, W. A. & Wong, S. Online seizure prediction using an adaptive 
learning approach. IEEE Trans. Know. Data Eng. 25, 2854-2866 (2013). 

7 Xiao, C., Wang, S., Iasemidis, L., Wong, S. & Chaovalitwongse, W. A. An Adaptive Pattern 
Learning Framework to Personalize Online Seizure Prediction. IEEE Trans. Big Data, 
doi:10.1109/TBDATA.2017.2675982 (2017). 

8 Sackellares, J. C. et al. Predictability analysis for an automated seizure prediction 
algorithm. J. Clin. Neurophysiol. 23, 509-520 (2006). 

9 Kuhlmann, L. et al. Patient-specific bivariate-synchrony-based seizure prediction for short 
prediction horizons. Epilepsy Res. 91, 214-231 (2010). 

10 Alvarado-Rojas, C. et al. Slow modulations of high-frequency activity (40-140 Hz) 
discriminate preictal changes in human focal epilepsy. Sci. Rep. 4 (2014). 

11 Teixeira, C. A. et al. Epileptic seizure predictors based on computational intelligence 
techniques: A comparative study with 278 patients. Comput. Methods Programs Biomed. 
114, 324-336 (2014). 

12 Valderrama, M. et al. Identifying an increased risk of epileptic seizures using a multi-feature 
EEG–ECG classification. Biomed. Sig. Proc. Control 7, 237-244 (2012). 

13 Rasekhi, J., Mollaei, M. R. K., Bandarabadi, M., Teixeira, C. A. & Dourado, A. Epileptic 
seizure prediction based on ratio and differential linear univariate features. J. Med. Sig. 
Sens. 5, 1 (2015). 

14 Rasekhi, J., Mollaei, M. R. K., Bandarabadi, M., Teixeira, C. A. & Dourado, A. 
Preprocessing effects of 22 linear univariate features on the performance of seizure 
prediction methods. J. Neurosci. Methods 217, 9-16 (2013). 

15 Bandarabadi, M., Teixeira, C. A., Rasekhi, J. & Dourado, A. Epileptic seizure prediction 
using relative spectral power features. Clin. Neurophysiol. 126, 237-248 (2015). 

16 Direito, B., Teixeira, C. A., Sales, F., Castelo-Branco, M. & Dourado, A. A Realistic Seizure 
Prediction Study Based on Multiclass SVM. Int. J. Neural Syst. 27, 1750006 (2017). 

17 Gadhoumi, K., Gotman, J. & Lina, J. M. Scale invariance properties of intracerebral EEG 
improve seizure prediction in mesial temporal lobe epilepsy. PLoS One 10, e0121182 
(2015). 

18 Gadhoumi, K., Lina, J.-M. & Gotman, J. Seizure prediction in patients with mesial temporal 
lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124, 1745-1754 
(2013). 



3 
 

19 Senger, V. & Tetzlaff, R. New Signal Processing Methods for the Development of Seizure 
Warning Devices in Epilepsy. IEEE Trans. Circuits Syst. I: Regular Papers 63, 609-616 
(2016). 

20 Zheng, Y., Wang, G., Li, K., Bao, G. & Wang, J. Epileptic seizure prediction using phase 
synchronization based on bivariate empirical mode decomposition. Clin. Neurophysiol. 125, 
1104-1111 (2014). 

21 Aarabi, A. & He, B. A rule-based seizure prediction method for focal neocortical epilepsy. 
Clin. Neurophysiol. 123, 1111-1122 (2012). 

22 Park, Y., Luo, L., Parhi, K. K. & Netoff, T. Seizure prediction with spectral power of EEG 
using cost sensitive support vector machines. Epilepsia 52, 1761-1770 (2011). 

23 Williamson, J. R., Bliss, D. W., Browne, D. W. & Narayanan, J. T. Seizure prediction using 
EEG spatiotemporal correlation structure. Epilepsy Behav. 25, 230-238 (2012). 

24 Zhang, Z. & Parhi, K. K. Low-Complexity Seizure Prediction From iEEG/sEEG Using 
Spectral Power and Ratios of Spectral Power. IEEE Trans. Biomed. Circ. Syst. 10, 693-706 
(2015). 

25 Mirowski, P., Madhavan, D., Lecun, Y. & Kuzniecky, R. Classification of patterns of EEG 
synchronization for seizure prediction. Clin. Neurophysiol. 120, 1927-1940 (2009). 

26 Moghim, N. & Corne, D. W. Predicting epileptic seizures in advance. PloS one 9, e99334 
(2014). 

27 Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T. G. & Toumazou, C. Ngram-derived 
pattern recognition for the detection and prediction of epileptic seizures. PloS one 9, 
e96235 (2014). 

28 Aarabi, A. & He, B. Seizure prediction in hippocampal and neocortical epilepsy using a 
model-based approach. Clin. Neurophysiol. 125, 930-940 (2014). 

29 Li, S., Zhou, W., Yuan, Q. & Liu, Y. Seizure prediction using spike rate of intracranial EEG. 
IEEE Trans. Neural Syst. Rehabil. Eng. 21, 880-886 (2013). 

30 Zhang, Z. & Parhi, K. K. in 37th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC).   (IEEE. p. 5748-5751). 

31 Zandi, A. S., Tafreshi, R., Javidan, M. & Dumont, G. A. Predicting epileptic seizures in scalp 
EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. 
IEEE Trans. Biomed. Eng. 60, 1401-1413 (2013). 

32 Chien, J.-H. et al. A signal regularity-based automated seizure prediction algorithm using 
long-term scalp EEG recordings. Cybern. Syst. Anal. 47, 586-597 (2011). 

 


	natureneurolfinalpaper
	Figure1
	Figure2
	Figure3
	Supplementary box 1_commented_final copy
	Supplementary table 1_commented_final copy
	Supplementary table 2_commented_final copy

