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Abstract 111 

Climate is widely recognized as an important determinant of the latitudinal diversity 112 

gradient. However, most existing studies make no distinction between direct and 113 

indirect effects of climate, which substantially hinders our understanding of how 114 

climate constrains biodiversity globally. Using data from 35 large forest plots, we test 115 

hypothesized relationships among climate, topography, forest structural attributes 116 

(stem abundance, tree size variation and stand basal area) and tree species richness to 117 

better understand drivers of latitudinal tree diversity patterns. Climate influences tree 118 

richness both directly, with more species in warm, moist, aseasonal climates, and 119 

indirectly, with more species at higher stem abundance. These results imply direct 120 

limitation of species diversity by climatic stress and more rapid (co-)evolution and 121 

narrower niche partitioning in warm climates. They also support the idea that 122 

increased numbers of individuals associated with high primary productivity are 123 

partitioned to support a greater number of species.124 
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INTRODUCTION 125 

Although the latitudinal diversity gradient – i.e., the pronounced increase in species 126 

richness from the poles to the equator – has been recognized for centuries (Gaston 127 

2000; Brown 2014; Fine 2015; Ricklefs & He 2016; Comita 2017; Kinlock et al. 128 

2018), the primary factors determining this fundamental gradient in biodiversity 129 

remain unresolved. This gradient is shaped by a combination of evolutionary and 130 

ecological mechanisms (Mittelbach 2012; Brown 2014; Ricklefs & He 2016), with 131 

climate at the forefront of most hypotheses (Kreft & Jetz 2007; Mittelbach 2012; 132 

Schluter 2015). There are numerous interrelated mechanisms through which climate 133 

may influence diversity (Fig. 1). Major mechanisms shaping the latitudinal diversity 134 

gradient include the tropical origins of most clades, niche partitioning, kinetics of 135 

ecological interactions and evolution, and primary productivity (Brown 2014). 136 

The tropics have acted as both a cradle and museum of biodiversity, with the 137 

majority of clades originating and persisting there (Jablonski et al. 2006; Mittelbach 138 

et al. 2007; Cavender‐Bares et al. 2011; Bowen et al. 2013). Rates of speciation are 139 

highest in the tropics, and higher rates of speciation than extinction have led to a 140 

buildup of tropical biodiversity. Given that most clades have originated in the moist 141 

tropics, climatic conditions associated with higher latitudes (e.g., freezing 142 

temperatures, aridity, strong seasonality) are encountered as stressors, and only a 143 

portion of lineages are able to adapt to and persist in these environments, resulting in 144 

a latitudinal gradient in diversity. 145 

Niche partitioning, driven by both abiotic and biotic mechanisms, also plays a 146 
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role in shaping the latitudinal diversity gradient. Species adapted to more abiotically 147 

variable habitats can tolerate a wider range of abiotic conditions and therefore have 148 

wider niches, larger elevational ranges and the associated potential to disperse over 149 

mountain range barriers, and broader geographic ranges (Terborgh 1973; Stevens 150 

1989; Gaston & Chown 1999). This effect is compounded by biotic interactions, 151 

leading to high niche specialization at lower latitudes (Brown 2014). Thus, niche 152 

breadth and the looseness of species “packing” within ecological communities and 153 

across local (e.g., topographic) environmental gradients increase with latitude. 154 

 The latitudinal variation in evolution rate and biotically driven niche 155 

specialization described above is probably driven by temperature (Brown 2014). In 156 

general, biological rates tend to increase with temperature through temperature effects 157 

on the kinetics of the biochemical reactions underlying metabolism (Brown et al. 158 

2004; Sibly et al. 2012). Specifically relevant here, rates of DNA evolution, 159 

speciation, and biological interactions (e.g., competition, herbivory, predation, 160 

parasitism) all increase with temperature (Gillooly et al. 2005; Allen et al. 2006). This 161 

provides a possible mechanistic explanation for the above-described latitudinal 162 

gradients in evolution rate and Red Queen coevolution, leading to the argument of 163 

Brown (2014) that “the Red Queen runs faster when she is hot.” 164 

 While the above mechanisms determine regional species pools, local plot richness 165 

is ultimately constrained by forest structure including the number and sizes of 166 

individuals that can coexist. Indeed, the species-energy hypothesis posits that climate 167 

strongly influences primary productivity, or the total energy available for partitioning 168 
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within most ecological communities, thereby indirectly affecting species richness via 169 

its impact on the number and size of individuals that can be supported (Hutchinson 170 

1959; Currie et al. 2004; Brown 2014; Chu et al. 2016b; Storch et al. 2018). 171 

Specifically, both gross and net primary productivity increase with temperature across 172 

the latitudinal gradient (Luyssaert et al. 2007). This greater energy availability in the 173 

tropics can be partitioned to support more individuals. In turn, more individuals could 174 

represent more species because of a statistical effect (rare species are more likely to 175 

be absent in small samples) and/or larger population sizes per unit area, the latter of 176 

which would be associated with decreased extinction rates and thereby maintenance 177 

of species richness (O’Brien 1998; Srivastava & Lawton 1998; Currie et al. 2004; 178 

Storch et al. 2018). However, evidence that this actually occurs is mixed; for example, 179 

higher tree abundance (i.e., stem abundance) does not necessarily translate to 180 

increased species richness (Hawkins et al. 2003; Currie et al. 2004; Šímová et al. 181 

2011; Storch et al. 2018). In large part, this may be due to the fact that productivity 182 

can also be partitioned to support fewer larger, as opposed to more, individuals. If 183 

increased energy goes primarily to support a few larger individuals, it may have little 184 

impact on species richness, or may even suppress diversity through associated 185 

competition for limiting resources (Franklin et al. 2002). For instance, larger trees 186 

often have a disproportionally large effect on smaller ones through overtopping, 187 

resulting in size-asymmetric competition for light, water, or nutrients (Coomes et al. 188 

2011; Lutz et al. 2014; Farrior et al. 2016).  189 

      The above hypotheses are neither mutually exclusive nor easily disentangled, 190 
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yet they do result in specifically testable and sometimes distinct empirical predictions 191 

that can help determine the relative importance of the various mechanisms (Fig. 1). In 192 

particular, it should be possible to distinguish the direct and indirect (via the number 193 

of individuals) effects of climate on species richness, yet most previous studies have 194 

focused instead on the total or net effect of climatic variables on broad-scale variation 195 

in species diversity (Hawkins et al. 2003; Currie et al. 2004; Šímová et al. 2011). This 196 

has contributed to conflicting conclusions regarding the drivers of species-energy 197 

relationships (Šímová et al. 2011; Storch et al. 2018). Simultaneous consideration of 198 

direct and indirect effects will substantially improve our understanding of the 199 

mechanisms underlying climatic drivers of species richness (e.g., see Menéndez et al. 200 

(2007) for butterflies, Ferger et al. (2014) for birds, and Marshall & Baltzer (2015) for 201 

subarctic plant communities).  202 

      Similar to other taxa, tree species richness usually displays a pronounced 203 

latitudinal diversity gradient (Kreft & Jetz 2007; Šímová et al. 2011). Here, we 204 

attempt to tease apart the indirect role of climate mediated through forest structural 205 

attributes (species-energy hypothesis) from the more direct effects of climate on 206 

global tree species richness. This is made possible with data from 35 large (9-60 ha) 207 

stem-mapped forest plots across the globe (Anderson-Teixeira et al. 2015). We use a 208 

structural equation modelling approach (SEM; Grace 2006) to test hypothesized 209 

causal relationships amongst climate, topography, forest structural attributes (stem 210 

abundance, tree size variation, and stand basal area), and tree species richness. Our 211 

two major objectives were to: (1) Disentangle the direct and indirect effects of climate 212 
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on tree species diversity across global forest plots, thereby evaluating the relative 213 

importance of mechanisms described above (Fig. 1), and (2) Quantify the effects of 214 

forest structural attributes on local tree species richness within each forest plot, in 215 

order to assess whether the importance of these drivers varies systematically with 216 

latitude.  217 

 218 

METHODS 219 

Study sites, topographic and climatic data 220 

Thirty-five forest dynamics plots compiled from the CTFS-ForestGEO network 221 

(http://www.forestgeo.si.edu/) and other sources were used in this study (Fig. 2a, and 222 

Supplementary Information Table 1). In each plot, all freestanding woody stems with 223 

a diameter at breast height (DBH) ≥ 1 cm were identified to species, tagged, measured 224 

and mapped according to a standardized census protocol (Condit 1998). The size of 225 

the plots ranges from 9 ha (Liangshui, China) to 60 ha (Jianfengling, China) and these 226 

plots span a broad latitudinal gradient from -25.10° (Ilha do Cardoso, Brazil) to 227 

61.30° (Scotty Creek, Canada). Data from the first census for all forest plots were 228 

used for the present analyses except Barro Colorado Island, where the seventh census 229 

was used to be temporally comparable to the other, more recently established plots. 230 

      Each forest plot was divided into non-overlapping quadrats at two spatial 231 

scales: 20 m × 20 m and 50 m × 50 m, which allowed us to account for the possible 232 

scale-dependence of forest structural patterns and processes (Chisholm et al. 2013) 233 

and to test the hypothesis that species richness increases more rapidly with increasing 234 

http://www.forestgeo.si.edu/
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spatial scale at lower latitudes (Fig. 1). We excluded shrubs and lianas from the 235 

analyses and focused only on trees. In each quadrat, in addition to tree species 236 

richness we calculated three easily measured and ecologically important forest 237 

structural attributes: stem abundance (the total number of stems), stand basal area (the 238 

sum of stem basal area), and tree size variation measured by the coefficient of 239 

variation (CV) of tree DBH within a quadrat. 240 

      Elevation was recorded at the intersections of the 20 m × 20 m grid for each 241 

plot, which was used to estimate additional topographic variables including slope, 242 

convexity and aspect (Baldeck et al. 2013), and was extrapolated to estimate 243 

topographic factors at the various scales of interest. Following previous definitions 244 

(Harms et al. 2001; Baldeck et al. 2013), elevation of a quadrat was calculated as the 245 

mean elevation of four corners. Slope was derived from the average slope of the four 246 

planes formed by connecting three corners of a quadrat at a time. Convexity was 247 

defined as the elevation of a quadrat minus the mean elevation of all immediate 248 

neighbor quadrats. Aspect refers to the direction in which a slope faces; sin(aspect) 249 

and cos(aspect) were calculated in order to use aspect in the within-forest plot 250 

analyses (Legendre et al. 2009). To account for the potential effect of fine-scale 251 

environmental heterogeneity on species richness and forest structural attributes, we 252 

calculated the ranges of elevation, slope and convexity within each quadrat at the 253 

spatial scales of 20 m × 20 m and 50 m × 50 m, based on the topographic variables at 254 

the finer spatial scale of 10 m × 10 m. In addition, we calculated the ranges of 255 

elevation, slope and convexity within individual forest plots at the two spatial scales, 256 
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resulting in a total of nine topographic variables. 257 

      We compiled climate data for the 35 forests to analyze the relationship among 258 

topography, climate, forest structure, and tree species richness (across-forest plot 259 

analyses at the two spatial scales using the same climatic information). We used 260 

standardized climate data with the 0.5-degree spatial resolution from the CRU TS4.01 261 

database (http://catalogue.ceda.ac.uk/uuid/58a8802721c94c66ae45c3baa4d814d0; downloaded 262 

April 2018) for each forest plot. We retrieved monthly data for 1901-2016 for nine 263 

variables: cloud cover (%), diurnal temperature range (°C), frost day frequency 264 

(days), precipitation (mm), daily mean temperature (°C), monthly average daily 265 

minimum temperature (°C), monthly average daily maximum temperature (°C), 266 

vapour pressure (hectopascals), wet day frequency (days), and potential 267 

evapotranspiration (mm day-1). We calculated the annual temperature range (°C) as 268 

follows: the maximum value of monthly average daily maximum temperature minus 269 

the minimum value of monthly average daily maximum temperature. Monthly data 270 

were used to calculate the annual values, which were then averaged over 1901-2016 271 

to obtain climatic averages for individual plots. Potential evapotranspiration (mm 272 

year-1) data were extracted from the Global Aridity Index (Global-Aridity) and the 273 

Global Potential Evapo-Transpiration (Global-PET) Geospatial Database 274 

(http://www.cgiar-csi.org/data/global-aridity-and-pet-database). Incoming solar radiation (kJ 275 

m-2 day-1) data were downloaded from the WorldClim database 276 

(http://worldclim.org/version2) for the spatial resolution of 30 seconds. In total, twelve 277 

climatic variables were included in the analyses. 278 

http://www.cgiar-csi.org/data/global-aridity-and-pet-database
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      In the following analyses, three forest structural variables (stem abundance, 279 

tree size variation, and stand basal area) and tree species richness were log-280 

transformed to account for the power relationship of stem abundance with species 281 

richness (Ricklefs & He 2016). Topographic and climatic variables were standardized 282 

to the 0-1 range by (x - xmin) / (xmax - xmin). 283 

Statistical analyses 284 

Our structural equation model was constructed using the following assumptions. We 285 

assumed that climate/topography could directly drive the variation of forest structural 286 

attributes and tree species richness, as many previous studies have shown (Vayreda et 287 

al. 2012; Chu et al. 2016a; Lechuga et al. 2017; Lutz et al. 2018). Higher stem 288 

abundance – i.e., increased number of individuals – was expected to increase tree 289 

species richness by reducing the number of species that go extinct due to demographic 290 

stochasticity (i.e., the more-individuals hypothesis (O’Brien 1998; Srivastava & 291 

Lawton 1998; Currie et al. 2004); but see Storch et al. (2018)) and increase tree size 292 

variation due to competition (Weiner et al. 2001). Stand basal area is jointly 293 

determined by the number and the size of trees. If an increase in stand basal area was 294 

due to increased stem abundance, stand basal area was predicted to exert a similar role 295 

as stem abundance on species richness. Conversely, if the increase in stand basal area 296 

was mainly caused by the increased size of trees, stand basal area should result in the 297 

opposite effect, i.e. decreasing species richness and increasing tree size variation as 298 

the result of competition (Canham et al. 2004; Franklin et al. 2002). The relationship 299 

between tree size variation and species richness was unpredictable. On the one hand, 300 
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greater tree species richness may increase the degree of tree size variation in forests 301 

(Hakkenberg et al. 2016; Pretzsch & Schütze 2016). On the other hand, larger tree 302 

size variation may lead to increased species richness by creating more ecological 303 

niches (Terborgh 1985), or may decrease species richness through strong asymmetric 304 

competition for light, especially in more diverse forests with a higher proportion of 305 

rare species (Larson et al. 2008; Hakkenberg et al. 2016). As such, we defined a 306 

reciprocal interaction between tree species richness and tree size variation. 307 

      We conducted both across-forest plot analyses and within-forest plot analyses. 308 

For the across-forest plot analyses, we first calculated mean tree species richness and 309 

forest structural attributes across quadrats at the two spatial scales within each forest 310 

plot. Then we explored the hypothesized relationships among these variables as well 311 

as topographic and climatic factors through structural equation modeling (SEM; Fig. 312 

3a). SEM offers a means to evaluate hypothesized causal relationships amongst 313 

multiple variables. For the within-forest plot analyses, we applied a similar SEM 314 

structure for quadrat-level variables of forest structural attributes and topography (Fig. 315 

3a), but without climatic variables as macroclimate is constant within a plot and 316 

microclimatic variation will largely be determined by topographic variation. 317 

      To simplify the SEM model construction and account for potential colinearity 318 

among variables, we reduced the dimensionality of the climate (twelve predictors) and 319 

topography variables (nine predictors in across-forest plot analyses: elevation, slope, 320 

convexity and the ranges of these three variables both within each quadrat and across 321 

the entire plot; eight predictors in within-forest plot analyses: elevation, slope, 322 
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convexity, and the ranges of these three variables within each quadrat, sin(aspect) and 323 

cos(aspect)) by means of principal component analysis (PCA) at the two spatial 324 

scales. We present the PCA results of topography for the across-forest plot analyses 325 

and plot-specific PCA results of topography for within-forest plot analyses in 326 

Supplementary Information Table 2. We used the 'lavaan' package (Rosseel 2012) in 327 

the R software platform (R Core Team 2016) to parameterize the SEM. Bivariate 328 

relationships among all variables for SEMs in both across-forest plot and within-329 

forest plot analyses were presented in the Supplementary Information Fig. 1. To 330 

develop the final SEMs, we started with our initial hypothesized relationships among 331 

variables (Fig. 3a). We then considered a number of alternative reduced models 332 

sharing the same causal structure with the initial model, which were constructed by 333 

eliminating non-significant variables one by one (Supplementary Information Table 334 

3). The decision to remove a path was based on the performance of overall model fit 335 

and the P-value for the path (Grace 2006). Model evaluation was determined by the 336 

following two criteria: 1) The chi-square test (P > 0.05 for a satisfactory fit), and 2) 337 

The Standardized Root Mean Square Residual (SRMR < 0.05 for a satisfactory fit). 338 

The Bayesian Information Criterion (BIC) was used to select the best model from 339 

models with a satisfactory fit. In the final step, we deleted non-significant paths with 340 

P > 0.05 in SEMs with satisfactory model fit and reassessed model fit. Standardized 341 

SEM path coefficients from within-forest plot analyses are reported in the 342 

Supplementary Information Table 4. The total effect that one variable has on another 343 

equals the sum of its direct and indirect effects through directed (causal) paths. The 344 
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standard error (SE) values and P values for standardized path coefficients were 345 

obtained through the function standardizedSolution in the 'lavaan' package.  346 

 347 

RESULTS 348 

Across-forest plot analyses: Direct and indirect effects of climate on global tree 349 

species richness 350 

The first two PCA axes of 12 climatic variables explained respectively 75% and 13% 351 

of the total variation in climate in the 35 forest plots (Table 1). The first principal 352 

component (ClimPC1) mainly explained the variability of temperature-related climatic 353 

factors, including average daily minimum temperature (10.9%), average daily mean 354 

temperature (10.7%), frost day frequency (10.4%), vapor pressure (10.4%), annual 355 

temperature range (10.1%), and average daily maximum temperature (10.0%). The 356 

second principal component (ClimPC2) best explained the variability of incoming solar 357 

radiation (48.1%), cloud cover (22.9%) and diurnal temperature range (13.8%).  358 

      For topography, the first PCA axis explained 62.5% of the total variation in 359 

topography at the scale of 20 m × 20 m, and 62.4% at the scale of 50 m × 50 m 360 

(Supplementary Information Table 2). The first principal component (TopoPC1) at both 361 

spatial scales best explained the variability in slope and ranges of elevation, slope and 362 

convexity within quadrats and across the entire plot. The second PCA axis explained 363 

16.6% of the total variation in topography for the 20 m scale and 12.4% for the 50 m 364 

scale, which mainly explained the variability in convexity. 365 

      Tree species richness, stem abundance and richness:stem ratios displayed 366 
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pronounced latitudinal gradients (Figs. 2b-2d). In particular, in forest plots at latitudes 367 

lower than 23.5°, tree species richness increased with decreasing absolute latitude at a 368 

rate of 1.82 species per degree at the scale of 20 m × 20 m, and 4.01 species per 369 

degree at the scale of 50 m × 50 m (Fig. 2b). In contrast, in plots at latitudes greater 370 

than 23.5°, the rates were 0.90 and 1.78 species per degree for the 20 and 50m scales, 371 

respectively (Fig. 2b). This demonstrated that tree richness increases more rapidly 372 

with increasing spatial scale in lower latitudes. 373 

      At the scale of 20 m × 20 m, the selected SEM explained 74% of the global 374 

variation in tree species richness (Fig. 3a). ClimPC1 had a significant direct effect on 375 

tree species richness with a standardized path coefficient of 0.60. ClimPC1 and ClimPC2 376 

also influenced tree species richness indirectly via stem abundance, with standardized 377 

path coefficients of 0.20 (0.53 × 0.37) and -0.16 ([-0.44] × 0.37). Topography had no 378 

significant effects on three forest structural attributes or tree richness (Supplementary 379 

Information Table 5) resulting in the removal of these paths from the final model. The 380 

relationship between stand basal area and tree species richness, and the reciprocal 381 

interactions between tree species richness and tree size variation were also not 382 

significant (Supplementary Information Table 5). Among the three structural attributes 383 

in question, stem abundance did not influence tree size variation. In contrast, stand 384 

basal area significantly increased tree size variation globally (Supplementary 385 

Information Table 5). 386 

      Similar results were obtained at the scale of 50 m × 50 m. The SEM explained 387 

76% of the total variation in tree species richness across plots (Fig. 3b). Climate had 388 
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both direct and indirect effects on tree species richness through three pathways (Fig. 389 

3b): one direct from ClimPC1 to richness (path coefficient 0.63), two indirectly 390 

mediated by stem abundance from ClimPC1 (path coefficient 0.19, i.e. 0.54 × 0.36) and 391 

ClimPC2 (-0.15, i.e. [-0.43] × 0.36) to richness, respectively.  392 

      We note that an SEM model incorporating latitude explains slightly higher 393 

proportion of the variance (R2) in tree richness than a model with climate alone (Table 394 

2; across-forest plot SEM models including latitude are presented in the 395 

Supplementary Information Table 6). The incorporation of latitude also makes the 396 

direct path from ClimPC1 to tree species richness non-significant (Supplementary 397 

Information Table 6). ClimPC1 was strongly correlated to latitude (r = -0.91; 398 

Supplementary Information Fig. 2), and it was inappropriate to include two variables 399 

as tightly correlated as these into a single SEM (Grace 2006). Since the aim of our 400 

study has been to elucidate the causes of the latitudinal gradient in tree species 401 

richness, we focus on the model with climate rather than the model with latitude. Still, 402 

we cannot exclude the possibility that the effect of latitude on tree species richness 403 

goes beyond the sole effect of climate. 404 

Within-forest plot analyses: forest structural attributes and local tree species 405 

richness 406 

Within individual forest plots, the direction and strength of SEM path coefficients 407 

between three forest structural attributes and tree species richness varied substantially 408 

(Fig. 4; Supplementary Information Table 4). In total, at the scale of 20 m × 20 m, 409 

stem abundance positively influenced tree richness in 34 of 35 forest plots (with the 410 
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boreal forest plot, Scotty Creek, the exception). Tree size variation was positively 411 

correlated with tree richness in six plots, and stand basal area was positively 412 

correlated with species richness in 18 plots and negatively in 9 plots. At the scale of 413 

50 m × 50 m, stem abundance positively influenced tree richness in 25 out of 35 plots; 414 

tree size variation was positively correlated with tree richness in six plots and 415 

negatively in one plot (Wanang); and stand basal area was negatively correlated with 416 

richness in 13 plots and positively in four. 417 

      The effect of stem abundance on tree species richness displayed a significant 418 

latitudinal trend (Fig. 4b; P < 0.01, R2 = 0.27) at the scale of 20 m × 20 m, with the 419 

effect of stem abundance being more pronounced at lower latitudes. This 420 

temperate/tropical difference was less apparent at the scale of 50 m × 50 m (Fig. 4e; P 421 

= 0.062, R2 = 0.10). 422 

      The proportion of the explained variance in tree richness within plots in 423 

relation to topography and structural traits ranged from 0.050 (Zofin) to 0.88 (Ngel 424 

Nyaki) with a mean of 0.36 at the scale of 20 m × 20 m, and from 0.042 (Zofin) to 425 

0.89 (Ngel Nyaki) with a mean of 0.35 at the scale of 50 m × 50 m (Supplementary 426 

Information Table 4). 427 

 428 

DISCUSSION 429 

Climate influences global tree species richness both directly and indirectly 430 

We found clear evidence that climate influenced tree species richness both directly 431 

and indirectly (through stem abundance) in forest plots worldwide. This lends support 432 
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to all of the major mechanisms considered here (Fig. 1) and yields insights into their 433 

relative importance. 434 

      At the two spatial scales explored, there were strong, direct effects of climate 435 

on tree species richness (Fig. 3), with the first PC axis, ClimPC1, explaining more than 436 

70% of the variation. This axis mainly represented temperature-related climatic 437 

factors, with 50% reflecting the harshness and variability of environmental conditions 438 

(Table 1). Thus, regions with less variable intra-annual climate and higher average 439 

daily minimum temperature harbor more tree species, which is consistent with but 440 

does not distinguish among three mechanisms shaping the latitudinal gradient in 441 

diversity (Fig. 1): (1) difficulty for lineages of tropical origin to adapt to and establish 442 

in cold/seasonal climates, (2) higher extinction rates in cold/seasonal climates, and (3) 443 

wider niches of species adapted to variable climates. The analysis also revealed a 444 

positive effect of temperature, with positive loadings of mean, minimum, and 445 

maximum temperature plus vapor pressure totaling 60% of ClimPC1. This finding 446 

supports the direct role of kinetics in shaping the latitudinal gradient through 447 

accelerated evolution, biotic interactions, and productivity under warmer temperatures 448 

(Brown 2014). 449 

      Apart from the strong direct constraints of climate on species distribution, 450 

climate influenced global tree species richness indirectly via stem abundance at both 451 

spatial scales tested (Fig. 3), supporting the species-energy hypothesis (O’Brien 1998; 452 

Hawkins et al. 2003; Currie et al. 2004). Climate influenced tree stem abundance 453 

through positive effects of temperature (ClimPC1), negative effects of solar radiation, 454 



20 

temperature variation and freezing temperatures (ClimPC1, solar radiation and daily 455 

temperature range in ClimPC2), and a positive effect of moisture (precipitation in 456 

ClimPC1, cloud cover and wet day frequency in ClimPC2). Thus, our results lend clear 457 

support for the species-energy hypothesis that climate influences tree species richness 458 

through abundance of individuals (Srivastava & Lawton 1998; Hawkins et al. 2003; 459 

Currie et al. 2004; Ricklefs & He 2016; Storch et al. 2018). At the same time, our 460 

analysis clearly demonstrates that the species-energy hypothesis alone is insufficient 461 

to account for latitudinal trends in diversity. In addition to the fact that our across-462 

forest plot structural equation model showed stronger direct than indirect effects of 463 

climate, the increase in species diversity with decreasing latitude was far too steep to 464 

be explained only by the abundance of individuals (Fig. 2d) (Brown 2014). 465 

Specifically, species richness increased 17-fold from high to low latitudes for 20 m × 466 

20 m plots and 77-fold for 50 m × 50 m plots in the present study. Given the 467 

decelerating rate at which species accumulate as more individuals are sampled, stem 468 

abundance would need to increase by ~4 orders of magnitude for every order-of-469 

magnitude increase in species richness (Brown 2014), implying the need for 470 

a >10,000-fold increase in stem abundance to explain the observed latitudinal trend in 471 

richness. In fact, stem abundance increased by only 25-fold (Fig. 2c). Thus, our 472 

results demonstrate a small but significant role for stem abundance in shaping the 473 

latitudinal gradient in forest tree diversity.  474 

      We acknowledge that we could not rule out the possibility that other 475 

unmeasured factors which are strongly correlated with latitude influenced the 476 
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observed latitudinal diversity gradient of trees, as indicated by the significant and 477 

strong effect of latitude in the SEM. Since latitude is a composite variable that 478 

incorporates many factors, both contemporary and historical (evolutionary), the strong 479 

effect of latitude on global tree species richness patterns is expectable (Table 2). In 480 

extreme, it is even possible that the observed effect of climate may reflect just another 481 

(unknown) causal factor which is correlated with latitude similarly as climate. 482 

However, it is unclear what such a factor would be, and thus we focus on the central 483 

role of climate.  484 

Latitudinal trends in the local stem abundance effect 485 

The within-forest plot results showed pronounced variation among forest sites in how 486 

specific forest structural attributes affected tree species richness. For example, we 487 

found no significant relationship between tree species richness and stand basal area in 488 

the across-forest plot analyses (Fig. 3; Supplementary Information Table 5). However, 489 

in the within-forest plot analyses, stand basal area was negatively correlated with 490 

local tree species richness in nine plots at the scale of 20 m × 20 m and 13 plots at the 491 

scale of 50 m × 50 m. The negative effect of stand basal area on tree richness likely 492 

implies strong competition among trees for limited resources in these forests. 493 

      Among three forest structural attributes, the effect of stem abundance on tree 494 

species richness decreased with increasing latitude at the scale of 20 m × 20 m (Fig. 495 

4b), which means that on average a change in one standard-deviation unit in stem 496 

abundance could result in a more pronounced change in tree species richness in 497 

tropical forests than in temperate forests, probably due to the higher tree species 498 
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richness in tropical forests. In hyper-diverse tropical plots, the species pool is higher 499 

than the number of individuals at the 20 m × 20 m but not at the 50 m × 50 m quadrat 500 

scale; adding any additional individuals thus has the potential to increase the species 501 

richness of a 20 × 20 m quadrat (Fig. 2d). On the contrary, in species-poor temperate 502 

plots, the highest realizable levels of diversity may be attained with far fewer 503 

individuals and above certain densities adding more individuals will not further 504 

increase species richness of a quadrat. The higher local effect of stem abundance on 505 

species richness in tropical than in temperate forests may also be amplified by 506 

significantly higher conspecific negative density dependence in the tropics (Shao et 507 

al. 2018). 508 

      Our findings also indicate some promising future directions of investigation. 509 

First, only three forest structural attributes were evaluated. The role of other structural 510 

metrics such as canopy height and foliar profile representing the vertical dimensions 511 

of forest structure remains a promising area for additional studies. Another important 512 

factor might be an effect of climatic seasonality and soil resources on site (plot-level) 513 

species richness (Baldeck et al. 2013; Jucker et al. 2018), and consequently on the 514 

latitudinal pattern of tree species richness. Finally, the considerable unexplained 515 

variance at some sites suggests that other unmeasured factors (e.g., the abundance of 516 

herbivores and pathogens; Janzen (1970)) may play a greater role in determining 517 

species richness in these forests. 518 

      In summary, our results demonstrate that climate simultaneously influenced 519 

global tree species richness both directly by climatic extremes and temperature, and 520 
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indirectly via changes in the number of individuals. These findings show that a 521 

number of mechanisms are acting in concert to shape the latitudinal gradient in 522 

diversity, with no single mechanism being sufficient on its own. Our work also 523 

suggests that a more comprehensive framework for the effects of multiple variables 524 

including climate and historical factors on the latitudinal diversity gradient is needed 525 

(Brown 2014). 526 
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Table 1 Percentage contributions (%) and loadings of the twelve individual climatic 681 

variables to the first two principal components (ClimPC1 and ClimPC2). The two 682 

principal components explained 88% of the variation in climate (75% by ClimPC1 and 683 

13% by ClimPC2). 684 

  atr cld dtr frs pet pre rad tmn tmp tmx vap wet 

ClimPC1 Percent 10.1 5.3 6.8 10.4 8.4 9.0 1.8 10.9 10.7 10.0 10.4 6.1 

 Loading -0.32 0.23 -0.26 -0.32 0.29 0.30 0.14 0.33 0.33 0.32 0.32 0.25 

ClimPC2 Percent 0.23 22.9 13.8 0.2 4.2 0.05 48.1 0.12 1.02 3.34 0.03 6.03 

 Loading 0 -0.49 0.37 0 0.21 0 0.69 0 0.10 0.18 0 -0.25 

atr, annual temperature range; cld, cloud cover; dtr, diurnal temperature range; frs, frost day 685 
frequency; pet, potential evapotranspiration; pre, precipitation; rad, solar radiation; tmn, average 686 
daily minimum temperature; tmp, average daily mean temperature; tmx, average daily maximum 687 
temperature; vap, vapour pressure; wet, wet day frequency. 688 

689 
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Table 2 Proportion of the explained variance (R2) in global tree species richness in 690 

models with the predictor of climate or latitude at the plot scales of 20 m × 20 m and 691 

50 m × 50 m. On the top of the hypothesized relationships (Supplementary 692 

Information Fig. 1), latitude was assumed to have both a direct effect (i.e. an arrow 693 

from latitude to tree species richness) and an indirect effect (i.e. an indirect latitudinal 694 

effect via temperature, especially the first PCA axis of 12 climatic variables) on global 695 

tree species richness. The results of SEM models with latitude were presented in the 696 

Supplementary Information Table 6. 697 

SEM 20 m × 20 m 50 m × 50 m 
Climate 0.74 0.76 
Latitude 0.80 0.82 

698 
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Figure legends 699 

Figure 1 Schematic diagram illustrating major hypotheses/mechanisms shaping the 700 

latitudinal diversity gradient, including the tropical origins of most clades, niche 701 

partitioning, kinetics of ecological interactions and evolution, and primary 702 

productivity. Different hypotheses have overlap in mechanisms and lead to different 703 

empirical patterns, among which our analyses were designated to distinguish. In 704 

particular, the finding that regions with less variable intra-annual climate and higher 705 

average daily minimum temperature harbor more tree species is consistent with but 706 

does not distinguish among three mechanisms with the explained variation of more 707 

than 70%: (1) difficulty for lineages of tropical origin to adapt to and establish in 708 

cold/ seasonal climates, (2) higher extinction rates in cold/seasonal climates, and (3) 709 

wider niches of species adapted to variable climates. Meanwhile, our results 710 

demonstrate a small but significant role of stem abundance in explaining the 711 

latitudinal tree diversity gradient (~5%). Hypotheses and mechanisms are primarily as 712 

reviewed in Brown (2014). Italics indicate empirical pattern that would be expected if 713 

the associated mechanism were the only one causing the latitudinal gradient in 714 

diversity. 715 

Figure 2 Global distribution of 35 forest dynamics plots used in this study (a), and the 716 

latitudinal gradients of tree species richness (b), stem abundance (c), and species 717 

richness/ stand stem ratios (d). Richness and stem abundance measured at plot scales 718 

of 20 m × 20 m and 50 m × 50 m. Descriptions of each site can be found in the 719 

Supplementary Information Table 1. Colors indicate increasing absolute latitude from 720 

pink to turquoise. 721 
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Figure 3 (a) The conceptual structural equation model (SEM), which was used to 722 

examine the linkages among climate, topography, forest structural attributes, and tree 723 

species richness. The variables Topo and Clim represent topographic and climatic 724 

factors, respectively. Besides the linkages represented by directed arrows, a 725 

correlation between stem abundance and stand basal area was set. This full model 726 

including both Topo and Clim was used for the across-forest plot analyses, and the 727 

one without the Clim variable (i.e. removing gray paths) was designated for the 728 

within-forest plot analyses. Panels (b) and (c) for the across-forest plot SEM analyses 729 

at the scales of 20 m × 20 m and 50 m × 50 m, respectively. Paths from topography, 730 

tree size variation, and stand basal area to tree species richness were not significant. 731 

The results of the final SEM models including other significant paths (ones from 732 

climate and stand basal area to tree size variation) and the uncertainty (SE) of each 733 

path coefficient were presented in the Supplementary Information Table 5. ClimPC1 734 

and ClimPC2 represented the first two principal components (PC) of the 12 climatic 735 

variables. Statistical significance was indicated by asterisks (*** P < 0.001). 736 

Figure 4 The effects of forest structural attributes on tree diversity derived from the 737 

within-forest plot SEM analyses. Panels a, b, and c at the scale of 20 m × 20 m, and 738 

panels d, e, and f at the scale of 50 m × 50 m. The effect of stem abundance on tree 739 

species richness showed a significant latitudinal trend at the scale of 20 m × 20 m 740 

(panel b; P < 0.01, R2 = 0.27). Standardized path coefficients ± 1 SE are shown; SE's 741 

are smaller than the size of the symbol for some forest plots. Colors indicate 742 

increasing absolute latitude from pink to turquoise.743 
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 744 

Figure 1 Schematic diagram illustrating major hypotheses/mechanisms shaping the 745 

latitudinal diversity gradient, including the tropical origins of most clades, niche 746 

partitioning, kinetics of ecological interactions and evolution, and primary 747 

productivity. Different hypotheses have overlap in mechanisms and lead to different 748 

empirical patterns, among which our analyses were designated to distinguish. In 749 

particular, the finding that regions with less variable intra-annual climate and higher 750 

average daily minimum temperature harbor more tree species is consistent with but 751 

does not distinguish among three mechanisms with the explained variation of more 752 

than 70%: (1) difficulty for lineages of tropical origin to adapt to and establish in 753 

cold/ seasonal climates, (2) higher extinction rates in cold/seasonal climates, and (3) 754 

wider niches of species adapted to variable climates. Meanwhile, our results 755 

demonstrate a small but significant role of stem abundance in explaining the 756 

latitudinal tree diversity gradient (~5%). Hypotheses and mechanisms are primarily as 757 

reviewed in Brown (2014). Italics indicate empirical pattern that would be expected if 758 

the associated mechanism were the only one causing the latitudinal gradient in 759 

diversity.760 
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 761 

 762 

Figure 2 Global distribution of 35 forest dynamics plots used in this study (a), and the 763 

latitudinal gradients of tree species richness (b), stem abundance (c), and species 764 

richness/ stand stem ratios (d). Richness and stem abundance measured at plot scales 765 

of 20 m × 20 m and 50 m × 50 m. Descriptions of each site can be found in the 766 

Supplementary Information Table 1. Colors indicate increasing absolute latitude from 767 

pink to turquoise. 768 

769 

(b) (c) (d) 
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 770 
 771 

 772 

Figure 3 (a) The conceptual structural equation model (SEM), which was used to 773 

examine the linkages among climate, topography, forest structural attributes, and tree 774 

species richness. The variables Topo and Clim represent topographic and climatic 775 

factors, respectively. Besides the linkages represented by directed arrows, a 776 
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correlation between stem abundance and stand basal area was set. This full model 777 

including both Topo and Clim was used for the across-forest plot analyses, and the 778 

one without the Clim variable (i.e. removing gray paths) was designated for the 779 

within-forest plot analyses. Panels (b) and (c) for the across-forest plot SEM analyses 780 

at the scales of 20 m × 20 m and 50 m × 50 m, respectively. Paths from topography, 781 

tree size variation, and stand basal area to tree species richness were not significant. 782 

The results of the final SEM models including other significant paths (ones from 783 

climate and stand basal area to tree size variation) and the uncertainty (SE) of each 784 

path coefficient were presented in the Supplementary Information Table 5. ClimPC1 785 

and ClimPC2 represented the first two principal components (PC) of the 12 climatic 786 

variables. Statistical significance was indicated by asterisks (*** P < 0.001).787 
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 788 

Figure 4 The effects of forest structural attributes on tree diversity derived from the 789 

within-forest plot SEM analyses. Panels a, b, and c at the scale of 20 m × 20 m, and 790 

panels d, e, and f at the scale of 50 m × 50 m. The effect of stem abundance on tree 791 

species richness showed a significant latitudinal trend at the scale of 20 m × 20 m 792 

(panel b; P < 0.01, R2 = 0.27). Standardized path coefficients ± 1 SE are shown; SE's 793 

are smaller than the size of the symbol for some forest plots. Colors indicate 794 

increasing absolute latitude from pink to turquoise. 795 
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