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Abstract 

Objective:  The corneas of heterozygous Pax6+/− mice develop abnormally and deteriorate further after birth but it 
is not known whether the postnatal deterioration is predetermined by abnormal development. Our objective was to 
identify whether depletion of Pax6 in adult mice caused any corneal abnormalities, similar to those in Pax6+/− mice, 
where Pax6 levels are low throughout development and adulthood. We used two tamoxifen-inducible, Cre-loxP 
experimental strategies to deplete Pax6 either ubiquitously or in a restricted range of cell types.

Results:  In a preliminary study, ubiquitous depletion of Pax6 by tamoxifen treatment of E9.5 CAG-CreERTg/−;Pax6fl/
fl embryos affected eye development. Tamoxifen treatment of 12-week old, adult CAG-CreERTg/−;Pax6fl/+ and CAG-
CreERTg/−;Pax6fl/fl mice resulted in weak and/or patchy Pax6 immunostaining in the corneal epithelium but caused no 
corneal abnormalities. GFP staining in tamoxifen-treated CAG-CreERTg/−;RCE:loxP reporter mice was also patchy. We 
attribute patchy Pax6 staining to mosaic deletion of the Pax6fl allele, probably caused by mosaic CAG-CreERTg expres‑
sion. In a parallel study, we treated adult Krt19-CreERTg/−;Pax6fl/+ mice with tamoxifen to try to deplete Pax6 in limbal 
epithelial stem cells (LESCs) which replenish the corneal epithelium. However, Pax6 staining remained strong after a 
12-week chase period so the Krt19-CreERTg/− transgene may have failed to target LESCs.
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Introduction
The mouse cornea comprises an outer epithelium of 5–6 
cell layers, a thick stroma and an inner endothelium. The 
corneal epithelium is maintained by limbal epithelial 
stem cells (LESCs), in the ring-shaped limbus, which is 
a transition zone between the corneal epithelium and the 
conjunctiva. The LESCs replace themselves and produce 
transient (or transit) amplifying cells (TACs) that move 
centripetally across the basal corneal epithelium and pro-
duce more differentiated daughter cells, which move api-
cally, through the epithelial layers, and are shed from the 
surface [1].

The Pax6 gene, encoding the Pax6 transcription fac-
tor, is expressed in the brain, pancreas, olfactory system 
and several eye tissues, including the corneal and limbal 
epithelia, and is critical for eye development [2]. Low 
levels of Pax6 throughout development of heterozygous 
Pax6+/− mice cause small eyes, aniridia plus lens and 
corneal defects [3–8]. The newborn Pax6+/− cornea has a 
thin epithelium and the adult cornea deteriorates further, 
because the epithelium is poorly maintained and limbal 
blood vessels invade the stroma [6–8]. The adult Pax6+/− 
corneal epithelium is thin and fragile, cell turnover is ele-
vated, centripetal movement is disrupted and goblet cells 
accumulate. The expression of keratin 12 (K12), which 
is regulated by Pax6 [9], is delayed and immunostaining 
is weak and patchy [6–8, 10, 11]. Indirect evidence sug-
gests that reduced Pax6 causes LESC deficiency in both 
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PAX6+/− humans and Pax6+/− mice and this may under-
lie adult corneal deterioration [1, 12].

It is not known if all corneal abnormalities in adult 
Pax6+/− mice are predetermined by abnormal develop-
ment or whether some are caused by reduced Pax6 in 
the adult. Our aim was to determine whether depletion 
of Pax6 in adult mice caused corneal abnormalities, com-
parable to those reported for Pax6+/− mice. We used one 
experimental strategy to deplete Pax6 ubiquitously and 
another to deplete Pax6 in LESCs.

Main text
Materials and methods
Mice
To deplete Pax6 ubiquitously, CAG-CreERTg/−;Pax6fl/+ 
mice were produced by crossing hemizygous CAG-
CreERTg/− mice (formal transgene name: Tg(CAG-cre/
Esr1*)5Amc) [13] to heterozygous Pax6fl/+ mice (formal 
name: Pax6tm1Ued/+) [14]. Superscript symbols ‘Tg/−’ 
and ‘−/−’ are used to distinguish hemizygous CAG-Cre-
ERTg/− mice and non-transgenic CAG-CreER−/− siblings.

Keratin 19 (Krt19 gene; K19 protein) is expressed in 
the basal epithelium of the mouse limbus and conjunc-
tiva but not the cornea [15]. To try to target LESCs in the 
limbal epithelium, Krt19-CreERTg/−;Pax6fl/+ mice were 
produced by crossing hemizygous Krt19-CreERTg/− mice 
(formal transgene name: Krt19tm1(cre/ERT)Ggu) [16] to het-
erozygous Pax6fl/+ mice.

RCE:loxP mice have the R26R CAG-boosted 
EGFP (RCE) reporter allele with an upstream loxP-
flanked STOP cassette (formal transgene name: 
Gt(ROSA)26Sortm1.1(CAG​−EGFP)Fsh) [17]. CAG-
CreERTg/−;RCE:loxP mice with tamoxifen-inducible 
expression of GFP were bred by crossing CAG-CreERTg/− 
and RCE:loxP mice. Krt19-CreERTg/−;RCE:loxP mice 
were bred by crossing Krt19-CreERTg/− and RCE:loxP 
mice.

Mice were maintained on a predominantly CBA/
Ca genetic background and genotyped by PCR [13, 14, 
16]. Some additional samples from mice on a CD-1 or 
(C57BL/6 × CBA/Ca)F1 genetic background from other 
studies [18, 19], were also analysed.

To activate CreER in adult mice, tamoxifen (Sigma-
Aldrich) was freshly prepared in corn oil (25–40  mg/
ml) by sonication in a 40  °C water bath and adjusted to 
100 μg/g body weight in 0.1 ml. Mice of both sexes were 
injected intraperitoneally with tamoxifen at 12 weeks on 
5 consecutive days and analysed 3  days later (no chase 
group) or after chase periods of 6 or 12 weeks. Control 
mice were injected with 0.1 ml corn oil. Mice were culled 
by cervical dislocation, following overdose of gaseous 
halothane, and eyes were enucleated. Procedures for the 
induction of Cre expression in embryos at embryonic day 

(E) 9.5 and the subsequent collection of E13.5 fetal sam-
ples are described elsewhere [19]. Tamoxifen treatment 
causes CreER to move to the nucleus and recombine 
loxP sites to convert the functional Pax6fl floxed allele to 
a Pax6Δ null allele or express the GFP lineage marker in 
the target cells and their progeny. This should occur in 
all cell types in CAG-CreERTg/− mice, because CreER is 
expressed ubiquitously from the CAG promoter, but only 
in specific cell types in Krt19-CreERTg/− mice.

Analysis
Tissue samples were fixed in 4% paraformaldehyde over-
night at 4  °C. Fetal heads were processed to OCT com-
pound and stored frozen before cryosections were cut 
and stained with haematoxylin and eosin (H&E) [19, 20]. 
Adult eyes were processed to paraffin wax, then 7  μm 
sections were cut, mounted on glass slides and stained 
with H&E or periodic acid-Schiff (PAS) stain [20]. Stained 
sections were photographed and measured using a Zeiss 
Axioplan-2 microscope and calibrated Zeiss Axiovision 
4.8 digital camera system. Numerical data are included 
in Additional file 1 and measurements were compared by 
Student’s t-test.

Immunohistochemistry methods are described else-
where [20]. Briefly, wax sections, mounted on glass slides 
were heat-treated to unmask antigens, then incubated 
with blocking serum, followed by primary antibody, 
biotinylated secondary antibody, avidin–biotin reagent 
and 3,3′-diaminobenzidine (DAB) stain. Sections were 
then lightly counterstained with haematoxylin, dehy-
drated and slides were mounted with DPX mounting 
medium under coverslips. Negative control slides were 
treated with blocking serum instead of primary antibody. 
The antibodies used for Pax6 and K12 immunostaining 
were as described elsewhere [20], except that the second-
ary antibody was biotinylated rabbit anti-mouse, diluted 
1:200 (E0433 from Dako, Ely, UK). For GFP immu-
nostaining, the primary antibody was rabbit anti-GFP 
diluted 1:500 (ab290 from Abcam, Cambridge, UK) and 
the secondary antibody was biotinylated goat anti-rabbit, 
diluted 1:200 (Sc-2012 from SantaCruz Biotechnology, 
Heidelberg, Germany).

Results
Ubiquitous depletion of Pax6 in embryos
For another study, CAG-CreERTg/−;Pax6fl/fl and CAG-
CreERTg/−;Pax6fl/+ embryos were exposed to tamoxifen 
at E9.5 and culled at E13.5 [19]. By E13.5 tamoxifen-
treated CAG-CreERTg/−;Pax6fl/fl fetuses (with two 
floxed Pax6fl alleles) had smaller eyes and lenses than 
CAG-CreERTg/−;Pax6fl/+ fetuses (Additional file  1 and 
Additional file  2: Fig. S1). This showed that tamoxifen-
mediated depletion of Pax6 could affect eye development.
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Ubiquitous depletion of Pax6 in adults
The preliminary result with fetal eyes encouraged us to 
investigate whether tamoxifen-mediated, depletion of 
Pax6 in adults caused any corneal abnormalities, similar 
to those in Pax6+/− mice, where Pax6 is low through-
out development. Pax6-depletion in adults is unlikely to 
reproduce Pax6+/− developmental defects but adult cor-
neal deterioration could be mediated via Pax6-deficiency 
in adult LESCs, the LESC niche, the corneal epithelium 
or other ocular tissues [5, 10]. We compared the effects 
of tamoxifen treatment of CAG-CreERTg/−;Pax6fl/+ mice 
to several genotype and treatment controls, which were 
included to control for any unexpected effects of the 
CAG-CreER transgene or the floxed Pax6fl allele alone 
[20–24].

Following tamoxifen treatment at 12  weeks and a 
6-week chase, Pax6 immunostaining was positive in the 
corneal epithelia of all the control combinations (Fig. 1a–
g). Although immunohistochemistry was not quantified, 

Pax6 appeared to be weak and/or patchy in the corneal 
epithelia of CAG-CreERTg/−;Pax6fl/+ mice, treated with 
tamoxifen as adults (Fig.  1h–l). However, eye and cor-
neal morphology appeared grossly normal (apart from 
some processing artefacts), with no blood vessels visible 
in the cornea (Fig. 2). PAS-positive goblet cells were not 
detected in the corneal epithelium (data not shown) and 
there was little or no effect on K12 staining (Fig. 1m–t). 
Similar results were obtained after a 12-week chase and, 
again, corneal morphology appeared grossly normal 
(Fig.  3). For comparison, previously published corneal 
histology and immunostaining are shown for wild-type 
Pax6+/+ and heterozygous Pax6+/− eyes in Additional 
file 2: Fig. S2. GFP immunostaining of eyes from tamox-
ifen-treated CAG-CreERTg/−;RCE:loxP reporter mice 
showed mosaic expression in the corneal epithelium 
(Additional file 2: Fig. S3).

We did not include CAG-CreERTg/−;Pax6fl/fl mice, 
with two floxed Pax6fl alleles, in the main study because 

Fig. 1  Pax6 and keratin 12 immunohistochemistry of corneal epithelium after a 6-week chase period. a–l Central region of the adult 
corneal epithelium, immunostained for Pax6 (brown DAB endpoint) and counterstained with haematoxylin, showing various controls with 
different genotype and treatment combinations, 6 weeks after treatment (a–g), and several examples of weak and/or patchy staining of 
CAG-CreERTg/−;Pax6fl/+corneas, 6 weeks after treating with tamoxifen (h–l). m–t Central region of the adult corneal epithelium, immunostained 
for keratin 12 (brown DAB endpoint) and counterstained with haematoxylin, showing various controls with different genotype and treatment 
combinations, 6 weeks after treatment (m–s), and a CAG-CreERTg/−;Pax6fl/+ cornea, 6 weeks after treating with tamoxifen (t). Scale bars = 50 μm. ce 
corneal epithelium, CO corn oil treatment, cs corneal stroma, NT no treatment, Tx tamoxifen treatment. All mice were on a predominantly CBA/Ca 
genetic background
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severe, global depletion of Pax6 in these mice results in 
diabetes [18]. However, Pax6 immunostaining of cor-
neas from CAG-CreERTg/−;Pax6fl/fl mice, produced for 
another study [18], showed that Pax6 protein was not 
eliminated following tamoxifen treatment and a 6-week 
chase period (Additional file 2: Fig. S4).

Targeting Pax6‑depletion to LESCs
To try to deplete Pax6 in LESCs we treated Krt19-
CreERTg/−;Pax6fl/+ mice with tamoxifen at 12  weeks 
and analysed the results after a 12-week chase period, to 
allow sufficient time for treated LESCs to replenish the 

corneal epithelium. Pax6 and K12 staining appeared nor-
mal and no corneal morphological abnormalities were 
seen (Additional file 2: Fig. S5). Tamoxifen-treated Krt19-
CreERTg/−;RCE:loxP reporter mice produced patchy GFP 
reporter immunostaining in the conjunctiva, some sparse 
staining in the limbus but no staining in the corneal epi-
thelium (Additional file 2: Fig. S6).

Discussion
Tamoxifen treatment to deplete Pax6 in E9.5 CAG-
CreERTg/−;Pax6fl/fl embryos affected eye morphology by 
E13.5 but did not prevent lens development. The lens 

Fig. 2  Histology of whole eyes and corneas after a 6-week chase period. a–h Whole eye morphology in H&E stained sections showing grossly 
normal eye morphology in all the controls (a–g) and in CAG-CreERTg/−;Pax6fl/+ eyes, 6 weeks after tamoxifen treatment (h). i–p H&E stained central 
corneas showing normal corneal morphology in all the controls (i–o) and in CAG-CreERTg/−;Pax6fl/+ corneas, 6 weeks after tamoxifen treatment (p). 
Scale bars: a (for a–h) = 500 μm; i (for i–p) = 50 μm. CO corn oil treatment, NT no treatment, Tx tamoxifen treatment
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placode forms around E9.5 and is absent in Pax6−/− 
homozygotes [25], so E9.5 tamoxifen-treatment was 
probably too late to prevent lens development in the 
CAG-CreERTg/−;Pax6fl/fl embryos but we did not investi-
gate whether any Pax6 remained at E13.5.

As tamoxifen treatment of Krt19-CreERTg/−;RCE:loxP 
mice did not produce any GFP-positive corneal epithelial 
cells after a 12-week chase, it is likely that this strategy 
failed to target LESCs. With hindsight, the Krt14-Cre-
ERTg/− mouse may have been more suitable for targeting 

expression to LESCs, as this has been successful in line-
age tracing experiments [26, 27].

The normal corneal morphology of the tamoxifen-
treated adult CAG-CreERTg/−;Pax6fl/+ mice is consist-
ent with the possibility that normal Pax6 levels are not 
required in the adult to maintain the corneal epithe-
lium. This would suggest that deterioration of the adult 
Pax6+/− corneal epithelium was predetermined during 
development. However, we also need to consider techni-
cal explanations for our results, particularly as corneal 

Fig. 3  Histology and immunohistochemistry of CAG-CreERTg/−;Pax6fl/+ tissues after a 12 week chase period. a–d H&E stained sections of whole 
eyes (a, b) and central cornea (c, d) of corn oil treated controls and tamoxifen treated CAG-CreERTg/−;Pax6fl/+ mice, 12 weeks after treatment. e–h 
Immunostained sections (brown DAB endpoint) for Pax6 (e, f) and keratin 12 (g, h) 12 weeks after treatment. Scale bars: a (for a, b) = 500 μm; c (for 
c, d), e (for e, f) and g (for g, h) = 50 µm. CO corn oil treatment, Tx tamoxifen treatment
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effects of Pax6-deficiency have now been corrected suc-
cessfully in adult mice [28, 29].

One possibility is that our investigation was under-
mined by mosaic deletion of the Pax6fl allele. The pres-
ence of some Pax6-positive cells in the corneal epithelia 
of tamoxifen-treated CAG-CreERTg/−;Pax6fl/fl mice sug-
gests that mosaicism occurred in these mice as well as 
CAG-CreERTg/−;RCE:loxP reporter mice. We, there-
fore, suggest that mosaic Pax6fl deletion was caused by 
mosaic CAG-CreERTg transgene expression but recom-
bination of Pax6fl loxP sites could also be inefficient for 
other reasons. Mosaic Pax6fl deletion would lead to a 
mixture of Pax6Δ/Δ, Pax6fl/Δ and Pax6fl/fl cells in CAG-
CreERTg/−;Pax6fl/fl mice or a mixture of Pax6Δ/+ and 
Pax6fl/+ cells in CAG-CreERTg/−;Pax6fl/+ mice.

The effects of mixtures of wild-type and Pax6−/− or 
Pax6+/− cells, in ocular tissues, have been investi-
gated using mouse chimaeras. Eye development was 
abnormal in Pax6+/+↔Pax6−/− chimaeras [30–33] but 
Pax6+/+↔Pax6+/− chimaeras had normal eyes [5, 10, 33] 
with normal corneal morphology [10]. It was suggested 
that unknown signals from wild-type cells in the cornea 
and/or other ocular tissues might rescue the Pax6+/− 
cells [10]. This might also occur in tamoxifen-treated 
CAG-CreERTg/−;Pax6fl/+ corneas if the conditional Pax6fl 
allele is not deleted in all cells.

Although the corneal epithelia of tamoxifen-treated 
CAG-CreERTg/−;Pax6fl/fl mice contained many Pax6-
positive cells (Additional file 2: Fig. S4), no Pax6 protein 
was detected by immunofluorescence in most pancreatic 
islet cells in equivalent mice from the same study [18]. 
Apparent differences in frequencies of Pax6-positive cells 
between these two tissues may reflect genuine biological 
differences rather than technical differences in detect-
ing Pax6-positive cells. Mosaic CAG-CreERTg expression 
might be more common and/or recombination of loxP 
sites less efficient in the corneal epithelium than pan-
creatic islets, resulting in mosaic Pax6fl deletion in the 
cornea.

Mosaic reporter expression also occurred in the cor-
neal epithelium of CAG-CreER;R26R-LacZ and CAG-
CreER;R26R-mT/mG reporter mice in a lineage-tracing 
experiment [34]. This lineage tracing experiment was 
undertaken after the present study and, with hindsight, it 
would be worth investigating whether mosaic transgene 
expression is more common for specific tissues and/or 
specific CAG-CreER;loxP combinations.

Limitations
We evaluated corneal histology, the absence of goblet 
cells and K12 immunohistochemistry. Future investiga-
tions could include additional endpoints and markers.

In lineage-tracing experiments, labelled cells pro-
duced by tamoxifen-treated LESCs took at least 
14  weeks to replace the whole corneal epithelium [26, 
27, 34]. Thus, although our chase time of 12  weeks 
should have identified corneal defects attributable to 
Pax6-depletion in LESCs or the niche, it might not have 
been sufficient to produce the maximum effects.

We did not investigate how effectively Pax6 protein 
was depleted in other CAG-CreERTg/−;Pax6fl/+ ocu-
lar tissues or whether mosaic transgene expression 
occurred in those tissues. Also, DNA or RNA meth-
ods were not used to confirm that at least some floxed 
Pax6fl alleles were converted to Pax6Δ in the corneal 
epithelium.

Additional files

Additional file 1. Fetal eye measurements.

Additional file 2: Fig S1. E13.5 fetal eye morphology following tamoxifen 
treatment at E9.5. Fig. S2. Previously published histology and immu‑
nohistochemistry of adult wild-type and heterozygous Pax6+/− mouse 
eyes. Fig. S3. Expression of GFP reporter in corneal epithelium of CAG-
CreERTg/−; RCE:loxP mice after tamoxifen treatment and different chase 
periods. Fig. S4. Pax6 immunohistochemistry of CAG-CreERTg/−;Pax6fl/+ 
and CAG-CreERTg/−;Pax6fl/fl corneal epithelia after a 6-week chase period. 
Fig. S5. Histology and immunohistochemistry of Krt19-CreERTg/−;Pax6fl/+ 
tissues after a 12 week chase period. Fig. S6. Expression of GFP reporter in 
corneal epithelium of Krt19-CreERTg/−; RCE:loxP mice after tamoxifen treat‑
ment and different chase periods.
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