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Summary

Real-time quantitative polymerase chain reaction (qPCR) has been exten-

sively validated for the detection of minimal residual disease (MRD) in acute

myeloid leukaemia (AML). Meanwhile, multicolour flow cytometry (MFC)

has received less attention because the so-called leukaemia-associated

immunophenotypes (LAIPs) are generally of lower sensitivity and specificity,

and prone to change during therapy. To improve MRD assessment by MFC,

we here evaluate the combination of human Myeloid Inhibitory C-type Lec-

tin (hMICL, also termed C-type lectin domain family 12, member A,

CLEC12A) and CD 123 (also termed interleukin-3 receptor alpha, IL3RA) in

combination with CD34 and CD117 (KIT), as an MRD assay in pre-clinical

and clinical testing in 69 AML patients. Spiking experiments revealed that the

assay could detect MRD down to 10�4 in normal bone marrow with sensitivi-

ties equalling those of validated qPCR assays. Moreover, it provided at least

one MFC MRD marker in 62/69 patients (90%). High levels of hMICL/

CD123 LAIPs at the post-induction time-point were a strong prognostic mar-

ker for relapse in patients in haematological complete remission (P < 0�001).
Finally, in post induction samples, hMICL/CD123 LAIPs were strongly corre-

lated (r = 0�676, P = 0�0008) to applied qPCR targets. We conclude the

hMICL/CD123-based MFC assay is a promising MRD tool in AML.

Keywords: acute myeloid leukaemia, flow cytometry, minimal residual

disease, quantitative polymerase chain reaction, leukaemia-associated

immunophenotype.

The majority of curatively treated acute myeloid leukaemia

(AML) patients will experience a relapse, although deemed

being in complete remission (CR) by standard diagnostic cri-

teria (Estey & D€ohner, 2006). This is caused by the presence

and outgrowth of sustaining leukaemic stem cells (LCSs) in

the bone marrow (BM), termed minimal residual disease

(MRD) (Bachas et al, 2012). Although the translation of

some MRD assays into therapeutic decision-making has been

accomplished, especially in acute lymphoblastic leukaemia

(ALL), routinely prospective risk stratification in AML based

on MRD monitoring is marred by lack of standardized assays

and thresholds. Additionally, formal proof supporting pre-

emptive intervention of MRD-positive AML patients is still

sparse (Paietta, 2012a,b; Vora et al, 2013).

The real-time quantitative polymerase chain reaction

(qPCR) is the most sensitive and specific molecular MRD

detection method in AML, employing fusion transcripts and

over-expressed and mutated genes with sensitivities ranging

from 10�2 to 10�6 and is applicable in approximately 60% of

patients (Grimwade et al, 2009, 2010a; Hokland et al, 2012).

By contrast, MRD detection by multicolour flow cytometry

(MFC) is faster, determines accurately the number of leukae-

mic cells, and is applicable to virtually all AML patients with

sensitivities ranging from 10�2 to 10�4 in most cases (Buccisa-

no et al, 2012; Dinardo & Luger, 2012). The MFC strategy

relies upon detection of so-called leukaemia-associated im-

munophenotypes (LAIPs), which are absent or only rarely

present in normal BM. Thus, advantage is taken of aberrations

in antigen expression, such as lack of expression, cross-lineage

expression, over-expression, and asynchronous expression,

usually in combination with abnormal light scatter patterns of

leukaemic cells (Al-Mawali et al, 2008; Ossenkoppele et al,
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2011). This approach, however, requires the availability of a

comprehensive panel of antibodies at the initial diagnosis for

identification of optimal LAIP combinations. In addition, the

heterogeneity of AML cells within each patient sample can

cause a selective shift in immunophenotype during cytoreduc-

tion, which may yield false negative MRD results (Kern et al,

2010a). Moreover, LAIPs are usually identified by the expres-

sion of CD34 on leukaemic cells, even though up to 30% of

AML cases are CD34- (Bonnet, 2001; Feller et al, 2004;

Al-Mawali et al, 2009). A novel approach within MRD assess-

ment by MFC aims at enumerating LSCs rather than the whole

blast population by quantification of aberrant antigen expres-

sion on CD34+ CD38- stem cells (van Rhenen et al, 2007a).

However, this approach also fails in cases of CD34- AML as

the remaining CD34 + CD38- cells in such patients are usually

of normal origin (van der Pol et al, 2003; Taussig et al, 2010).

Recently, we have identified the human Myeloid Inhibi-

tory C type-like Lectin (hMICL) (also known as CLEC12A or

CLL-1) as a stable and reliable AML antigen expressed in

90% of diagnostic AML samples (Larsen et al, 2012). Addi-

tionally, we found that CD123 (also known as interleukin 3a
receptor, IL3RA) is widely, but not exclusively, expressed in

AML. Importantly, both hMICL and CD123 had high and

conserved antigen expression in 23/23 paired diagnostic/

relapse samples, confirming that antigenic shift is, at most, a

minor problem with these antigens (Larsen et al, 2012).

Finally, hMICL and CD123 have been reported to be robust

markers for LSCs and thus possible targets in antibody medi-

ated anti-leukaemia treatment (van Rhenen et al, 2005,

2007b; Majeti, 2010).

In this study we have evaluated the MRD potential of a

single tube MFC experiment employing hMICL and CD123

in combination with CD45 (also known as PTPRC), CD34,

CD117 (also known as KIT), and CD14. The rationale for

employing CD45, CD34, and CD117 is that these antigens

have proven the most frequent backbone markers in AML

and consequently included the add on of hMICL and CD123

(Al-Mawali et al, 2009; van Dongen et al, 2012). We initially

performed a series of paralleled MFC and qPCR spiking

experiments and then tested the assay in a prospective study

encompassing 69 patients. Taken together, this data set

shows that the hMICL/CD123 MFC assay is a valuable addi-

tion to MRD monitoring with sensitivities approaching those

obtained by qPCR assays in a simplified MFC-based setting

covering more than 90% of AML patients.

Materials and methods

Patient samples

All sampling was conducted with informed patient consent

and in accordance with the Declaration of Helsinki. The

study was approved by the local Ethics Committee. A total

of 69 prospectively accrued diagnostic AML samples were

obtained from the Department of Haematology, Aarhus

University Hospital, from June 2009 to June 2011. A total of

40 patients were treated with curative intent. Of these, 21

patients were evaluable for post-induction response by paral-

leled MFC and qPCR MRD quantification (Table I). Normal

BM from healthy volunteers (n = 12) and regenerating BM

from ALL patients (n = 7) obtained at day 29 were used as

control samples for sensitivity studies and for generation of

internal standard references. The ALL patients included were

all diagnosed at our institution and enrolled in the NOPHO

2008 study. In this protocol, patients were systematically sub-

jected to response evaluation post-induction at day 29. Nor-

mal donor CD3+ T-cells for spiking experiments were

isolated from peripheral blood from two healthy donors

using the immunomagnetic EasySep CD3 Positive Selection

Kit (StemCell Technologies Grenoble, France).

Flow cytometry

Standard four-colour MFC was performed on erythrocyte-

lysed whole BM with monoclonal antibody (MoAb)

combinations for diagnostic purpose, LAIP identification and

monitoring of MRD in follow-up samples. An additional

Table I. Patient characteristics.

Characteristic Value

Sex, number of patients (male/female) 69 (41/28)

Age, years (median; range) 65�5 (7–94)

Total leucocytes x 109/l(median; range) 43 (0�1–312)
Bone marrow blasts at diagnosis% (median; range) 58 (20-97)

Karyotype (n)*

Favourable 4

Unfavourable 11

Intermediate 47

Not done 7

Molecular MRD target

WT1 36

PML-RARA 1

RUNX1-RUNX1T1 2

CBFB-MYH11 1

Negative 8

Not done (age > 70 years) 22

CD34 expression**

CD34� 18

CD34+ 41

Treated with curative intent 40

Available paired MFC/qPCR samples post induction 21

MRD, minimal residual disease; MFC, multicolour flow cytometry;

qPCR, real-time quantitative polymerase chain reaction.

*’Favourable’, cases with t(8;21), t(15;17), or inv(16)/t(16;16); ‘unfa-

vourable’, cases with complex cytogenetic changes (>3 unrelated

abnormalities), �5, add(5q)/del(5q), �7/add(7q), t(6;11), t(10;11),

t(9;22), �17, abn(17p) with other changes, 3q abnormalities exclud-

ing t(3;5), inv(3)/t(3;3); and ‘intermediate’, cases with normal karyo-

type and other noncomplex. (Grimwade et al, 2010b).

**Applying a cut off of 1% CD34+ blast cells.
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tube with a six-colour combination including MoAbs against

hMICL, CD123, CD45, CD34, CD117 and CD14 was run in

all cases. All combinations of MoAbs and their purveyors are

given in Table S1. Data acquisition was performed on a

Canto II [BD Biosciences, San Jose, CA, USA (BD)] and

analysed using BD FACSDiva software (BD). Apoptotic and

dead cells were deselected using Annexin V and 7-Aminoacti-

nomycin D (7-AAD; BD). A minimum of 250 000 live

CD45+ events was acquired, resulting in a theoretical maxi-

mum sensitivity of at least 0�008% in these experiments tak-

ing into account that a cluster of 20 events is needed for

clear definition of a cell population (Buccisano et al, 2009).

Identification of LAIPs, calculations based on MFC
analyses and Gating Strategy

Leukaemic cells were identified based on low expression of

CD45 and low side scatter (SSC) properties (CD45low/

SSClow) (Borowitz et al, 1993; Lacombe et al, 1997). As dif-

ferentiated monocytes express both hMICL and CD123,

CD14 de-selection was performed except for cases with

CD14+ AML. Potential LAIP populations were identified by

the expression of combinations of hMICL, CD123, CD34,

and CD117 and quantified in normal and leukaemic BM,

applying the same stringent gating strategy in all samples. A

threshold of at least 5% LAIP positive cells was set for a

given LAIP combination to be denoted as positive. All LAIP

positive cells were back-gated to FSC/SSC plots to ensure

homogeneous scatter properties. Comparisons between AML

and control samples allowed for the discovery of an ‘empty

space’, defined as regions devoid of normal BM cells in an

hMICL/CD123 dot plot. The gating strategy used and repre-

sentative examples of LAIPs are depicted in Fig 1.

In order to estimate the degree of reduction in leukaemic

mass detectable by the present approach, the logarithmic dif-

ference (LD) between AML and normal BM samples was cal-

culated as the frequency of a LAIP in AML BM divided by

that of the LAIP in normal and regenerating BM. The maxi-

mal LD observed was used for selection of the most optimal

LAIP in a given patient. For comparison of MFC MRD val-

ues to qPCR values, these were normalized and diagnostic

values were set at 1.

Dilution experiments of in vitro sensitivity of
hMICL/CD123 LAIPs

Dilution experiments were employed to test the theoretical

maximal sensitivity in vitro. To this end, BM from two dif-

ferent AML patients were admixed with purified T-lympho-

cytes from normal donors. Secondly, BM from eight AML

patients was admixed with normal BM to approximate the

sensitivity of the assay in the clinical setting. In parallel, in

five of the patients, in whom at least one molecular marker

suitable for quantification by qPCR was present, spiking of

RNA from AML cells in normal BM was performed. The

dilution ranged from 1:1 to 1:216 (in lymphocyte dilutions

1:1 to 1:218) for each experiment. A minimum of 500,000

events was acquired resulting in a theoretical maximal

sensitivity of at least 0�004%.

Real-time quantitative PCR

RNA purification and cDNA synthesis was performed as pre-

viously reported (Beillard et al, 2003; Østergaard et al, 2004).

Levels of PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11,

and WT1 over expression were analysed by TaqMan qPCR

on an Mx3000P PCR or Mx3005P PCR thermocycler (Strata-

gene, La Jolla, CA, USA). All reactions were run on mononu-

clear cells in triplicates and data normalized to the mean of

the two housekeeping genes c-abl oncogene 1, non-receptor

tyrosine kinase (ABL1) and b-2-microglobulin (B2M). At

diagnosis, normalized expression levels were set at one. Pri-

mer pairs and probes are given in Table S2. Sensitivities and

frequencies of the respective aberrations are given in (Gabert

et al, 2003).

Statistics

The association between qPCR and MFC values was quanti-

fied calculating the Spearman correlation coefficient. The

Kaplan-Meier method was used to estimate the distribution

of relapse-free survival (RFS), defined as the time between

day 1 of treatment and date of relapse, censored at last day

of contact. Univariate associations between MRD groups and

relapse were tested using log-rank test. Two-tailed P-values

<0�05 were considered significant.

Results

In vitro sensitivity of hMICL/CD123 LAIPs

The theoretical sensitivity of the hMICL/CD123 was deter-

mined by performing two-fold dilutions of AML cells in highly

purified T-cells, the latter acting as true hMICL-/CD123-/

CD34-/CD117- control cells (Fig 2A). The sensitivity of the

assay was calculated from the plateau-phase at of the titration

curve and was at least 1:4,500 for the hMICL+ CD123 + and

at least 1:30,000 for CD34+ hMICL+CD123+ LAIP.

The sensitivity of the hMICL/CD123 assay in a setting resem-

bling that of clinical testing was evaluated. Dilution experiments

for qPCR-positive patients are shown in Fig 2B–F, and the

three patients without molecular MRD markers are displayed in

Fig S1. The detection limits of MFC ranged from 10�2 to below

10�4. The spiking LAIP assessments with hMICL/CD123

combinations completely paralleled qPCR quantification for

molecularly positive patients. However, for cases with fusion

transcript-positive AML the qPCR methods were more sensitive

than MFC. On the other hand, in one case (Fig 2B ‘empty

space’) the MFC approach was almost as sensitive as the

PML-RARA qPCR assay, reaching below the 10�4 level.

A. S. Roug et al
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Fig. 2. Two-fold dilution series of hMICL+ blasts admixed to T-cells and normal bone marrow with paralleled qPCR results. Dotted lines repre-

sent sensitivity of real-time quantitative polymerase chain reaction (qPCR) methods and background of hMICL/CD123 cells from the donor used

in each experiment. (A) Titration of hMICL+ cells on a negative background of purified T-cells. Axes in (A) are representative of all experiments

A-F. (B) The hMICL/CD123-based leukaemia-associated immunophenotype (LAIP) titrated in a donor with high WT1 background. (C+D) Dilu-
tion series of hMICL/CD123-based LAIPs and paralleled qPCR results of PML-RARA and WT1 from two t(15;17) patients. (E-F) Dilution series

of hMICL/CD123-based LAIPs and paralleled qPCR results for CBFB-MYH11 + and WT1 from two inv(16) positive patients. ND, normal

donor.
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excluded using CD14 staining. (C) hMICL+/CD34+ cells were back-gated into a forward scatter (FSC)/SSC plot in order to ensure homogeneous
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Frequencies of hMICL/CD123-based LAIPs in AML and
in normal and regenerating bone marrow

We delineated the value of hMICL/CD123 combinations for

MRD detection by comparing BM from AML patients with

normal and regenerating BM. The LAIP populations defined,

the number of LAIPs identified, and the number of LAIP

positive patients by application of the hMICL/CD123 to the

CD45/CD34/CD117 backbone are detailed in Table II. A

total of 11 populations fulfilling LAIP criteria were identified

in 64 of the total cohort of 69 patients (93%) at diagnosis.

In fact, because more than one highly sensitive LAIP could

be identified in some patients, a total of 150 LAIPs in 62

positive cases were defined. On the other hand, we failed

to identify a LAIP in five patients (7%). We successfully

applied the ‘empty space’ concept in 12 patients. The most

frequent LAIPs were CD34+hMICL+ , hMICL+CD34high and

CD123 + CD34+ (Table II).

Quantitation of differences in hMICL/CD123-based
LAIP-positive cells between AML and normal and
regenerating BM samples

A crucial issue in the optimization of a routine MRD marker

is the delineation of differences between leukaemic and nor-

mal and regenerating BM cells. We approached this issue by

employing the LD concept (Table II). As will appear, the

maximum LD from the median frequency in both normal

and regenerating BM allowed for identification of the three

most optimal LAIPs in the series. For normal BM these

were: hMICL+CD123high, Empty space (CD34 + AML), and

hMICL+CD34high and in regenerating BM: Empty space

(CD34 + AML), hMICL+CD123high, and empty space

(CD34- AML) in that order of maximal LD.

Comparison of MRD as measured by qPCR and by
hMICL/CD123 based MCF post induction

We directly compared MRD by the hMICL/CD123 assay and –

as gold standard –optimized qPCR assays (Fig 3). Here, 21

molecularly positive patients were evaluable for MRD post-

induction, three positive for a fusion transcript and 18 patients

had WT1 over expression. Relative MRD levels of the most

sensitive hMICL/CD123 LAIPs and standard MFC LAIPs were

compared separately to relative qPCR MRD levels. The corre-

lation between our standard MFC LAIPs (Table S1) and qPCR

was r = 0�574 (P = 0�0065) and even stronger for the hMICL/

CD123 based assay r = 0�676 (P = 0�008).

Level of hMICL/CD123 as a prognostic test at first CR
evaluation

The level of LAIP post-induction was evaluated as a marker

for treatment response. When tabulating the levels of

hMICL/CD123 LAIPs, we found that of 13 patients with

hMICL/CD123 MRD levels above the median in regenerating

BM, 10 patients relapsed. Conversely, only one patient with

hMICL/CD123 MRD below the median in regenerating BM

relapsed (Fig 4). With an admittedly short period of observa-

tion, a statistically significant difference (P < 0�001) in RFS

was detected, with patients with hMICL/CD123 LAIPs levels

below the median in regenerating BM less prone to relapse.

Validation of longitudinal monitoring of MRD by
hMICL/CD123 LAIPS in comparison to qPCR

To determine the value of the hMICL/CD123 MRD marker

in the follow-up phase, we monitored 15 patients longitudi-

nally (median number of MRD samplings = 3, range 3–6) by

relative hMICL/CD123-based MRD by MFC and compared

these results directly to relative qPCR MRD. We found that

these widely different methodologies yielded closely paralleled

MRD curves and kinetics (Fig 5).

Discussion

We have previously reported that the hMICL and CD123 anti-

gens were widely expressed and stable markers in more than

90% of AML samples. This contrasted to other surface proteins

routinely employed for AML immunophenotyping, because

these were not only less frequent at diagnosis but also prone to

change at relapse in up to 35% of cases (Oelschl€agel et al,

2000; Voskova et al, 2004; Larsen et al, 2012). Moreover, as

both hMICL and CD123 have been suggested as strong mark-

ers for LSCs (Jordan et al, 2000; van Rhenen et al, 2007b; Jin

et al, 2009), we have pursued the issue of the hMICL/CD123

markers in combination with CD45 and the stem cell antigens

CD34 and CD117 as an MFC MRD tool. Through spiking

experiments and by testing a prospective patient cohort, we

showed that this combination of MoAbs constituted a simple,

widely applicable MFC MRD tool. Regarding the specificity of

the LAIPs, high hMICL/CD123 MRD levels post-induction

were strongly predictive of relapse.

The CD34 antigen is a widely applied backbone in LAIP

identification due to its expression on immature cells. How-

ever, CD34 negativity of diagnostic samples has been

reported as high as 20-30% when employing a cut-off of 1%

(Al-Mawali et al, 2009; Taussig et al, 2010). In our series of

patients, 18/69 (26%) were classified as CD34- using this

threshold. Among those patients, we only failed to identify a

LAIP for MRD detection in one patient when applying the

hMICL/CD123-based approach. Thus, this combination of

antibodies paves the way for improved LAIP characterization

and MRD quantification by MFC in the otherwise poorly

described CD34- AML cases. Moreover, hMICL/CD123 im-

munophenotyping may be taken advantage of in cell sorting

experiments followed by molecular and cytogenetic analyses

and functional studies to better characterize LSCs in CD34-

AML. On-going molecular studies of FACS (fluorescent-acti-

vated cell sorting) sorted hMICL/CD123 LAIP-positive cells
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in our laboratory have confirmed that these populations are,

in fact, highly enriched for AML-related molecular aberra-

tions (data not shown).

In total, the search for LAIPs was positive in 93% of diag-

nostic AML samples when using the hMICL/CD123-based

combinations, with sensitivities down to 10�4. By inference,

the addition of more colours should undoubtedly allow for

further increased sensitivity and applicability, and reduce the

amount of BM necessary, as well as costs incurred and time

spent. At least four things should be kept in mind: Firstly,

the amount of labour and reagents using the present

approach are much less than the traditional one, which

involves multiple antibody combinations (Kern et al, 2010b;

B�en�e et al, 2011; van Dongen et al, 2012). Secondly, in rou-

tine MFC MRD assessment, it is recommended to determine

at least two independent LAIPs to circumvent the problem

of false negative results due to immunophenotypic shifts

(Kern et al, 2010a). As both hMICL and CD123 can be

detected with conserved antigen densities at relapse, this may

well allow for reducing the number of MoAbs and tubes used

(Langebrake et al, 2005; Larsen et al, 2012). Thirdly, our data

have pinpointed the potential importance of applying the

empty space – also termed the ‘different-from-normal’ –

concept (Lucio et al, 2001; Paietta, 2012a). While highly sen-

sitive in some of our patients, more are, nevertheless, needed

to conclusively determine the impact of empty space hMICL/

CD123 LAIPs in AML. Finally, the hMICL/CD123 assessment

is based on the detection of antigens associated with LSCs

(Majeti, 2010; Estey, 2012). This could lend an added bonus

of the approach due to its possible marking of cells thought

to selectively survive anti-leukaemia treatment. In fact, stan-

dard MFC panels may fail to detect persisting LSCs post-

therapy, which may explain treatment failure in otherwise

MFC MRD-negative patients (Bachas et al, 2012; Buccisano

et al, 2012).

It might be argued that, because LSC-directed MRD

quantification by MFC does not include all malignant cells,

this could lead to a lowering of sensitivity in terms of using

LD calculations in the search for the most optimal LAIP.

This was evidenced in our longitudinally tabulated log

changes of MRD in paralleled relative qPCR and MFC

analyses. While we did observe a striking parallelism, qPCR

performed better than MFC in this setting. However, this

does not in any way diminish the importance of the LSC

MFC assays, as the one presented here. In fact, the LSC

assays’ higher specificity and improved sensitivity due to

low background expression may offer a significant advan-

tage (van Rhenen et al, 2005; ten Cate et al, 2010). Differ-

ent MRD approaches are compared based on their

sensitivity, specificity and applicability, and results are

reported as continuous variables that may not be directly

comparable (e.g. log changes versus percentages of LAIP+
cells) (Paietta, 2012a). Irrespective of this, tandem perfor-

mance and comparison of these methodologies will ensure

better MRD coverage and facilitate the establishment of

method-specific thresholds and the translation of MRD

results into clinical decision making.

The assessment of MRD is a surrogate marker of treat-

ment efficacy that has prognostic impact, although formal

implementation of MRD assessment in the management of

AML patients is still in its infancy (Hourigan & Karp,

2013). In addition, the preferred platform for the measure-

ment of MRD is still a matter for debate. We have recently

suggested a context-driven application of MRD-methods

(Hokland et al, 2012). The MFC assays have the advantages

of wide applicability and short turnover time, and enable

the exact enumeration of LAIP-positive cells. On the other

hand, the fusion transcripts and somatically mutated

genes are the most sensitive and specific MRD targets and

can, together with overexpressed genes, be applied for
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monitoring MRD by qPCR. Additionally, new methods,

such as next generation sequencing, are fast gaining ground

(Kohlmann et al, 2013). How then to implement the

hMICL/CD123-based assay in a routine clinical setting? At

the present time this assay should not replace standard

LAIP marking. Although the sensitivity and applicability of

the assay is established, prospective evaluation in larger

patient cohorts are needed to further solidify its perfor-

mance, and establish clinical cut-off values and recommen-

dations on sampling frequencies.

In conclusion, we have defined an MFC assay employing

hMICL/CD123 in combination with CD34 and CD117,

which is comparable to qPCR. It should allow for simpler,

faster and more standardized MRD determination by MFC

than hitherto described assays due to LAIP coverage of more

than 90% of the patients with sensitivities down to 10�4 and

improve MRD assessment in CD34- AML.
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