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Abstract (250/250words) 1 

Cognitive control is proposed to rely on a rostral-to-caudal hierarchy of neural processing within the 2 

prefrontal cortex (PFC), with more rostral parts exerting control over more caudal parts. Anatomical 3 

and functional data suggest that this hierarchical organization of the PFC may be separated into a 4 

ventral and a dorsal component. Furthermore, recent studies indicate that the apex of the hierarchy 5 

resides within the mid-lateral rather the rostral PFC. However, investigating the hierarchical aspect of 6 

rostro-to-caudal processing requires quantification of the directed interactions between PFC regions. 7 

Using functional near-infrared spectroscopy (fNIRS) in a sample of healthy young adults we analyzed 8 

directed interactions between rostral and caudal PFC during passive watching of nature 9 

documentaries. Directed coherence (DC) as a measure of directed interaction was computed pairwise 10 

between 38 channels evenly distributed over the lateral prefrontal convexity. 11 

Results revealed an overall predominance of rostral-to-caudal directed interactions in the PFC that 12 

further dissociated along a ventro-dorsal axis: Dorsal regions exerted stronger rostro-caudally directed 13 

interactions on dorsal than on ventral regions and vice versa. Interactions between ventral and dorsal 14 

PFC were stronger from ventral to dorsal areas than vice versa. Results further support the notion that 15 

the mid-dorsolateral PFC constitutes the apex of the prefrontal hierarchy. 16 

Taken together these data provide novel evidence for parallel dorsal and ventral streams within the 17 

rostro-caudal hierarchical organization of the PFC. FNIRS-based analyses of directed interactions put 18 

forward a new perspective on the functional architecture of the prefrontal hierarchy and complement 19 

previous insights from functional magnetic resonance imaging.  20 
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Significance Statement 21 

The capabilities of the human prefrontal cortex (PFC) are a unique feature of our species, but our 22 

understanding of its functional principles is still vague. A theory currently under debate sheds light on 23 

how the PFC gives rise to the human cognition and goal-directed behavior. It assumes that abstract 24 

ideas are successively concretized into actual actions by processing relevant information along a 25 

rostro-caudal gradient in the PFC. Here we introduce a novel approach that is particularly promising 26 

for the assessment of the neurophysiological mechanisms in the PFC underlying the hierarchical 27 

control of behavior. Our results provide evidence for the rostro-caudally directed interplay within the 28 

PFC and quantify the interactions between the ventral and dorsal components of this hierarchical 29 

organization.  30 
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Introduction 31 

Within the lateral prefrontal cortex (PFC), different levels of cognitive control are assumed to be 32 

hierarchically organized along a rostro-caudal axis, with rostral parts of the PFC performing highly 33 

abstract levels of behavioral control and caudal parts carrying out concrete action selection in a 34 

temporally confined context (Badre et al., 2009; Blumenfeld et al., 2013; Koechlin et al., 2003, 1999; 35 

Voytek et al., 2015). Evidence for this hierarchical organization of neural processing has been 36 

provided by task-based functional magnetic resonance imaging (fMRI) studies (Badre & D’Esposito, 37 

2007; Bahlmann, Blumenfeld, & D’Esposito, 2015; Koechlin et al., 1999, for a review see Badre & 38 

D’Esposito, 2009) but is also supported by lesion data (Azuar et al., 2014) and transcranial magnetic 39 

stimulation (Nee and D’Esposito, 2017). However, other studies showed that rostral PFC regions can 40 

also be recruited by concrete action selection (Crittenden and Duncan, 2014) and that the temporal, 41 

rather than the spatial activation profile of specific PFC regions is modulated by maintenance 42 

demands, irrespective of the level of abstraction (Reynolds et al., 2012). Tracer studies in monkeys 43 

further demonstrated that the structural network in the PFC does not follow a strict rostro-caudal 44 

organization (Goulas et al., 2014). The extent to which the PFC is organized along a rostro-caudal axis 45 

hence constitutes a matter of debate. 46 

Beyond functional gradients along a rostro-caudal axis, the structural and functional organization of 47 

the PFC has also been subject to anatomically detailed characterizations along a ventro-dorsal axis 48 

(see Tanji & Hoshi, 2008 and Petrides, 2005 for reviews). In this respect, it has been demonstrated that 49 

potentially separable rostro-caudal streams of processing are present in the ventral and dorsal 50 

convexity of the lateral PFC (Blumenfeld et al., 2018, 2013). Using a resting-state fMRI paradigm, 51 

Blumenfeld et al. (2013) found parallel ventral and dorsal networks that were interconnected in caudal 52 

but not in rostral PFC regions. Bahlmann et al. (2015) further suggested that rostro-caudally organized 53 

functional networks in ventral and dorsal PFC adapt their ventro-dorsal segregation dynamically to be 54 

operative on the highest level of the rostro-caudal axis that is currently engaged in the task, whereas on 55 

lower levels processing is integrated across ventral and dorsal areas. The lateral PFC thus seems to 56 

comprise parallel rostro-caudal pathways which appear anatomically separable along a ventro-dorsal 57 

axis but functionally interact to subserve goal-directed behavior. While this functional interaction has 58 
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been proposed to be orchestrated by the rostral-most part of the lateral PFC (e.g. Ramnani and Owen, 59 

2004; Wendelken et al., 2012; for a recent review on the function of the frontopolar cortex see 60 

Mansouri et al., 2017), recent evidence suggests that the apex of the prefrontal hierarchy actually 61 

resides in the mid-lateral rather than the rostral PFC (Margulies et al., 2016; Nee and D’Esposito, 62 

2016; for a review see Badre and Nee, 2018).  63 

Taken together, an abundance of fMRI studies demonstrate the gradual activation along the rostro-64 

caudal and the ventro-dorsal axes of the PFC by task-related factorial designs (e.g., Bahlmann et al., 65 

2015) as well as the functional connectivity, between the respective regions by correlation analyses of 66 

resting-state activity (e.g. Taren et al., 2011). These studies argue for a hierarchical functional 67 

organization of the PFC. However, to fully understand the mechanisms and functional pathways that 68 

subserve cognitive functions requires to complement these correlation- and activation-based analyses 69 

by the inference of the actual direction of influences and the demonstration of the implied propagation 70 

of neural activity along a rostro-to-caudal gradient of hierarchical control within the lateral PFC. 71 

While the slow hemodynamic response is well captured by sampling intervals between 0.5 and 2 Hz as 72 

provided by conventional fMRI (Logothetis, 2008), functional interactions between brain regions 73 

appear on a much smaller temporal scale (Stokes et al., 2013). Reliably inferring directed functional 74 

connections from such very short delays between neural activity in different regions requires much 75 

faster sampling of at least 10 Hz (Mader et al., 2008; Roebroeck et al., 2005). Simplifying the problem 76 

of inferring directionality down to the detection of short delays between oscillations (Granger, 1969), 77 

the need for a sufficiently high temporal resolution can be easily illustrated by plotting two noisy sine 78 

waves with a small phase shift using different sampling rates. A phase shift which is entirely obscure 79 

when sampled at .5 Hz can become highly apparent when sampled at 10 Hz (Supplementary Figure 80 

S1). 81 

Similar to fMRI, functional near-infrared spectroscopy (fNIRS) relies on the neuro-vascular coupling 82 

and measures the hemodynamic response but in contrast to fMRI it is based on the differential 83 

absorption properties of oxygenated and deoxygenated hemoglobin (Scholkmann et al., 2014; 84 

Strangman et al., 2002). Multiple light sources and detectors transcranially measure absorption 85 
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changes elicited by changes in cortical oxygenation at sample frequencies up to 250 Hz (Scholkmann 86 

et al., 2014). Thus, fNIRS overcomes the limited temporal resolution of fMRI and provides 87 

sufficiently high spatial resolution (here 2.1 cm) to allow for inference of directed functional 88 

interactions along rostro-caudal and ventro-dorsal axes in the PFC. 89 

Here we used fast optical imaging with multi-channel fNIRS and measures of directed coherence (DC) 90 

(Schelter et al., 2006) to estimate the propagation of neural activity across the PFC and to provide 91 

complementary evidence for the predicted influences within and between parallel rostro-caudal 92 

signaling pathways in the ventral and dorsal PFC (Bahlmann et al., 2015; Blumenfeld et al., 2013; 93 

Bunge et al., 2005; Wendelken et al., 2012). We expected to reveal (i) a predominant rostral to caudal 94 

direction of influences within the PFC and (ii) a separation into a ventral and a dorsal component. 95 

Methods 96 

Experimental Design 97 

Subjects between 19 and 26 years of age were recruited from the University of Freiburg provided that 98 

they were German native speakers and fulfilled MRI safety criteria. Exclusion criteria concerned 99 

current or previous psychiatric/neurological disease, use of psychotropic medication, and color 100 

blindness. Thirty-one subjects participated in two 24-minutes fNIRS measurements (one week apart) 101 

and additionally underwent MRI and neuropsychological assessments that were conducted as a part of 102 

a larger methodological study (see Köstering et al., 2015; Schumacher et al., 2018). Depressive 103 

symptoms were screened for with the Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 104 

1996), and MR images were inspected for incidental findings. All subjects were right-handed, had 105 

normal or corrected-to-normal vision, received a compensation of 60 €, and gave written informed 106 

consent to participation. The study was approved by local ethics authorities. As two subjects had to be 107 

excluded (one BDI-II score of 15 indicating mild depressivity (Beck et al., 1996), one incidental MRI 108 

finding), the final sample comprised 29 subjects (age, mean ± standard deviation 22.6±1.8 years; 13 109 

males; all university students). 110 
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Functional near-infrared spectroscopy measurements (fNIRS) 111 

FNIRS measurements were conducted using an ETG-4000 optical topography system (Hitachi 112 

Medical Systems, Japan) which provides a sampling frequency of 10 Hz and operates in a continuous 113 

wave mode with two different wavelengths of near-infrared light (695 nm and 830 nm). Spatial optode 114 

arrangement was derived from the system’s 3×11 grid configuration consisting of 17 emitters and 16 115 

detectors. We modified this probe set by placing 12 emitters and 13 detectors on the forehead 116 

(interoptode distance of 3 cm), thus resulting in 38 channels evenly distributed over the lateral PFC 117 

(cf. Fig. 4). The modified probe set comprised 3 further emitter-detector-pairs with a smaller 118 

interoptode distance of approximately 1.8 cm which were placed on the parietal bone but not included 119 

in the present analyses. Three unused emitter optodes were covered by a black cap to avoid crosstalk. 120 

Grid placement over PFC was standardized across subjects (i) by aligning its center optodes to the 121 

sagittal midline and (ii) by positioning the lower center optode at a distance of about 1.5 cm above the 122 

nasion. 123 

Data were acquired for 24 minutes in a task-free state. Subjects watched two different muted nature 124 

documentaries on both testing sessions (selected scenes without text overlays from “Earth”, Fothergill 125 

& Linfield, 2007). The order of scenes was balanced across subjects. Muted videos were presented 126 

instead of a fixation cross (i) in order increase comfort for and compliance of participants and (ii) 127 

because specificity of functional connectivity has been shown to be higher during natural viewing 128 

conditions than during ‘pure’ rest (Bartels and Zeki, 2005). Presentation of the nature documentaries 129 

and on-/offset of simultaneous fNIRS recording were controlled by NBS Presentation software 130 

(version 12.2; Neurobehavioral Systems Inc., CA). Following a short interval of baseline fNIRS 131 

measurements, temporal markers were automatically set for later identification of the 24 minutes time 132 

window within the fNIRS time series that corresponded to an identical section of the videos across all 133 

subjects. To prevent artifacts during fNIRS measurement due to head movements, subject’s head was 134 

stabilized using a chin rest. 135 

Raw data of light intensity changes were converted into hemoglobin concentration changes by in-136 

house Matlab software (version 2012b, The MathWorks, Natick, MA, USA, Kaller, Schumacher, 137 
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Schelter, unpublished toolbox) using the modified Beer-Lambert law (Cope and Delpy, 1988). Due to 138 

the absorption of interfering hairs some channels did not contain any signal. The respective time series 139 

were interpolated from the surrounding channels using the Matlab 4 griddata method. With respect to 140 

all recorded channels included in the analyses, this affected a total of 29 out of 1865 channels (1.56 141 

%). Note that treating the 2.75% of connections that involved interpolated channels as missing data in 142 

the respective statistical models revealed virtually identical results. In order to remove motion-induced 143 

artifacts, we applied the correlation-based correction method developed by Cui, Bray, & Reiss (2010). 144 

The resulting data for oxygenated and deoxygenated hemoglobin are perfectly anticorrelated and 145 

therefore have identical spectral properties. No further preprocessing was applied to avoid bias of the 146 

connectivity estimates (Florin et al., 2010). 147 

Spatial reconstruction of fNIRS channel positions 148 

Optode locations and irradiation were recorded in an independent sample of 20 healthy adults (mean 149 

age ± standard deviation: 24.6 ± 2.8 years) using a PATRIOT digitizer (Polhemus Inc., VT) and 150 

custom-built software. Recording included the locations of three fiducials (nasion, left/right 151 

preauricular points) and a scattered point-wise sampling of the head surface. Reconstruction of optode 152 

positions was accomplished by co-registration of the surface points with the individual anatomical 153 

MRI scans (T1-weighted MPRAGE images acquired on a 3T Tim Trio scanner; Siemens AG, 154 

Erlangen, Germany; scan acquisition parameters: repetition time, 2200 ms; echo time, 2.15 ms; 155 

inversion time, 1100 ms; flip angle, 12°; 160 sagittal slices; matrix size, 256×256; field of view, 256 156 

mm, resulting in 1.0 mm3 cubic voxels), based on iterative closest point procedure. Segmentation of 157 

structural MRI scans was performed using the ‘new segment’ approach implemented in SPM8 158 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) with default prior maps for gray matter, white 159 

matter, cerebro-spinal fluid, and three non-brain tissue classes. The segmented brain tissues were 160 

further used to create a normalized brain template based on the high-dimensional DARTEL 161 

(diffeomorphic anatomical registration through exponentiated lie algebra) approach (Ashburner, 162 

2007). Individual fNIRS channel positions were calculated using the mean Euclidian distance of both 163 

the positions and the irradiation angles of the respective pairings of emitter and detector optodes 164 

(Supplementary Figure S2). Based on the deformation fields from the DARTEL normalizations, NIRS 165 
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channel positions on brain surface were then transformed into the sample-specific template space. The 166 

resulting individual channel positions and the group-averaged Euclidian mean positions are shown in 167 

Supplementary Figure S3. The group-averaged Euclidian mean channel positions were used for 168 

illustration of the spatial distribution of directed interactions by applying a 3D Gaussian smoothing 169 

kernel (3 cm full width at half maximum; Supplementary Figure S2) and rendering of the resulting 170 

kernel volume on the cortical surface (cf. Fig. 4). The Matlab code used for the spatial reconstruction 171 

of fNIRS channels and the visualization of the channel data on the cortical surface are available upon 172 

request. 173 

Directed coherence as a measure of directed interactions between fNIRS channels 174 

Directed interactions were estimated by means of directed coherence (DC) using the frequency domain 175 

multivariate analyses (FDMA) toolbox (www.fdm.uni-freiburg.de/Toolboxes/fdma-toolbox). As 176 

indicated by the term coherence, DC is a frequency-domain measure and is calculated by fitting a 177 

vector autoregressive model and transforming the estimated autoregression coefficients into the 178 

frequency domain (for details see Schelter et al., 2006). Thus, DC estimated from fNIRS data 179 

represents the strength and the direction of influences exerted between cortical areas in a certain 180 

frequency. The vector autoregressive model was fitted with a model order of 20, corresponding to the 181 

past 2 seconds of the time-series. As functional connectivity is apparent in low frequency oscillations 182 

(Biswal et al., 1995; Lowe et al., 2000), we chose the frequency band between .06 and .12 Hz and used 183 

the maximum DC value in this band for further analysis. Note that this approach is different from 184 

applying a band-pass filter during data preprocessing (which would potentially bias DC estimates 185 

(Florin et al., 2010)). 186 

Statistical Analysis 187 

Given the nested structure of the present data, DC values were analyzed in linear mixed effects models 188 

in R (version 3.4.2 (R Core Team, 2016)) using the lme4 package (version 1.1-14 (Bates et al., 2015)). 189 

In each hemisphere 16 channels in 4 streams along the rostro-caudal axis of the PFC were selected for 190 

analysis: 2 streams representing ventral and 2 streams representing dorsal PFC (Fig. 1). From all 191 

available channels, 2 channels located on the longitudinal fissure were excluded and another 2 192 
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channels per hemisphere were excluded in order to facilitate a balanced factorial design. Models were 193 

fitted with a random intercept for the interaction between the factors identifying the stream of the 194 

source channel, hemisphere, session and participant using maximum likelihood estimation. 195 

Differences of influences between rostral and caudal as well as between and within ventral and dorsal 196 

streams were assessed in Model #1 with the following three fixed factors (Fig. 1) and all resulting 197 

interactions between them: direction (directed interactions from rostral toward caudal and from 198 

caudal toward rostral PFC), congruence (directed interactions within and between the ventral and 199 

dorsal streams), and level (three levels: the rostral, middle, and caudal connection between the 200 

selected channels along the rostro-caudal axis). In order to analyze differences between the ventral and 201 

the dorsal channels as the sources of influence, in Model #2 we fitted another mixed effects model 202 

considering only rostro-caudally directed influences and including (in place of direction) the factor 203 

source which distinguished whether the influence was exerted by a ventral or by a dorsal channel (Fig. 204 

1). In correspondence with Model #1, the factors level and congruence as well as all possible 205 

interactions were also implemented in Model #2. Taken together, Model #1 assessed the rostro-caudal 206 

asymmetry of directed interactions and the degree of segregation between the ventral and the dorsal 207 

convexity, whereas Model #2 focused on the ventro-dorsal asymmetry of directed interactions within 208 

the rostro-caudal processing hierarchy. 209 

Positions of the 16 selected channels, the considered influences and the fixed factors included in these 210 

two models are illustrated in Figure 1 for the left hemisphere. Significance of fixed effects were 211 

assessed using the anova method (Type III F-statistics with Satterthwaite's approximation of degrees 212 

of freedom) implemented in the lmerTest package (Kuznetsova et al., 2016) (version 2.0-33). Post-hoc 213 

comparisons and calculation of confidence bands were performed using the lsmeans package (Lenth, 214 

2016) (version 2.27-2). Multiplicity was adjusted using Tukey’s method. 215 
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Figure 1, Illustration of factors included in the linear mixed models and positions of fNIRS channels. Selected 216 

connections for which DC values were analyzed in the mixed models are illustrated here for the left hemisphere but were 217 

identically applied in the right hemisphere. Hemisphere and stream (position of source channel along the ventro-dorsal axis) 218 

were included as random factors in the analyses. The direction of connections was classified as either rostral-to-caudal or as 219 

caudal-to-rostral. The factor congruence divided influences into those within the ventral and dorsal streams (green) and into 220 

those between the ventral and dorsal streams (yellow). The position of connections along the rostro-caudal axis (light to dark 221 

colors) was identified by the factor level. Model #1 considered the factors direction, congruence and level. In Model #2, 222 

only directed interactions in rostral-to-caudal direction were considered, thereby eliminating the factor direction. Instead, 223 

factor source introduced the differentiation between influences originating from ventral (blue regions) and dorsal (red 224 

regions) PFC. Thus, in Model #2 factors congruence and level were analogous to Model #1, except that only rostro-caudally 225 

directed influences were included. 226 

Results 227 

Due to the high number of observations all fixed effects terms in both models were significant (p < 228 

.05); we therefore only report significant digits (Clymo, 2014) of least square means of DC values 229 

(DCLSM) ± standard errors and post-hoc tests of interest in the text and refer the reader to 230 

Supplementary Table S1 for a detailed overview of effect statistics. In the following, ∆DCLSM denotes 231 

contrasts (pairwise comparisons) of DCLSM values and ∆∆DCLSM denotes interaction contrast (pairwise 232 

comparisons of pairwise comparisons).  233 
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Rostro-caudally directed interactions dissociate into ventral and dorsal components (Model #1) 234 

Directed interactions along the rostro-caudal axis in the PFC were assessed by means of directed 235 

coherence (DC) from and toward 16 reference channels (per hemisphere) placed on the ventral and 236 

dorsal convexity of the lateral PFC (Fig. 1). Model #1 comprised the fixed within-subject factors 237 

direction, congruence, and level and the main effect for direction revealed that caudally directed 238 

influences (DCLSM = .417 ± .005) were significantly higher than those directed rostrally (DCLSM = .286 239 

± .005; ∆DCLSM = .131 ± .004, p < .0001). Regarding the main effect for level, influences at the 240 

middle level (DCLSM = .370 ± .006) were significantly larger than at the rostral (DCLSM = .341 ± .006; 241 

middle-rostral: ∆DCLSM = .030 ± .005, p < .0001) and caudal level (DCLSM = .344 ± .006; middle-242 

caudal: ∆DCLSM = .027 ± .005, p < .0001). There was no significant difference between the rostral and 243 

the caudal level (∆DCLSM = .003 ± .005, p = .85). The main effect for congruence further revealed that 244 

directed interactions between the ventral and the dorsal channel rows (DCLSM = .338 ± .005) were 245 

lower than those within ventral and within dorsal rows (DCLSM = .366 ± .005; ∆DCLSM = .029 ± .004, p 246 

< .0001). The significant two-way interaction between level and direction indicated that the difference 247 

between the directions of influences varied across levels, i.e. across regions along the rostro-caudal 248 

axis. The corresponding pairwise comparisons showed that (i) on all levels, caudally directed 249 

influences were higher than rostrally directed influences (rostral: ∆DCLSM = .050 ± .008, middle: 250 

∆DCLSM = .214 ± .008, caudal: ∆DCLSM = .130 ± .008; all p < .0001) and (ii) that the difference 251 

between directions on the middle level was larger than on the rostral (∆∆DCLSM = .16 ± .01, p < .0001) 252 

and on the caudal (∆∆DCLSM = .08 ± .01, p < .0001) level, and larger on the caudal compared to the 253 

rostral level (∆∆DCLSM = .08 ± .01, p < .0001). Taken together the rostro-caudal gradient was strong in 254 

the mid-lateral PFC but only weak in the rostral PFC (Fig. 2). 255 
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Figure 2: Model #1. Two-way interaction between level and direction. (A) Histogram of DC values aggregated across 256 

factors session, hemisphere, stream and congruence, i.e. each participant contributes one count to each histogram. Lines 257 

represent normal distributions fitted to the aggregated DC values. (B) Least square means with 95% confidence intervals. 258 

Both plots demonstrate a marked prevalence for rostro-caudally directed influences at the middle and caudal level, whereas 259 

there was little difference between directions at the rostral level. 260 

Similar effects were established by the significant two-way interactions between direction and 261 

congruence: The rostro-caudal gradient (i.e. the difference between caudally and rostrally directed 262 

influences) was always positive, but greater within than between ventral and dorsal PFC (within: 263 

∆DCLSM = .143 ± .006, p < .0001; between: ∆DCLSM = .119 ± .006, p < .0001; within vs. between: 264 

∆∆DCLSM = .024 ± .009, p = .009). Regarding the interaction between level and congruence, 265 

influences at the middle and caudal level were stronger within than between channel rows in ventral 266 

and dorsal PFC (middle: ∆DCLSM = .040 ± .008, caudal: ∆DCLSM = .040 ± .008, both p < .0001). At 267 

the rostral level, this difference was concordant, but not significant (∆DCLSM = .004 ± .008, p = .61). 268 

The contrast of congruence was significantly larger on the middle than on the rostral level (∆∆DCLSM 269 

= .04 ± .01, p = .003), larger on the caudal than on the rostral level (∆∆DCLSM = .04 ± .01, p = .003) 270 
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and equal on the middle and caudal level (∆∆DCLSM = .00 ± .01, p > .99). Finally, the significant 271 

three-way interaction between direction, congruence, and level revealed that (i) for the rostral-to-272 

caudal direction, again only at the middle and caudal level, influences within ventral and dorsal were 273 

significantly stronger than between ventral and dorsal PFC (rostral: ∆DCLSM = .00 ± .01, p = .88; 274 

middle: ∆DCLSM = .07 ± .01, caudal: ∆DCLSM = .05 ± .01, both p < .0001, Fig. 3 left panels), whereas 275 

(ii) for the caudal-to-rostral direction, this was only the case at the caudal level (rostral: ∆DCLSM = .01 276 

± .01, p = .38; middle: ∆DCLSM = .01 ± .01, p = .22; caudal: ∆DCLSM = .03 ± .01, p = .02, Fig. 3 right 277 

panels). Taken together, for the predominant rostral-to-caudal direction, the segregation between 278 

ventral and dorsal PFC was apparent only on the middle and caudal level. In contrast, for the weaker 279 

caudo-rostrally directed influences the ventro-dorsal segregation was evident only on the caudal level 280 

(Fig. 3). 281 
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Figure 3: Model #1. Three-way interaction between level, congruence and direction. (A) Histogram of DC values 282 

aggregated across the random factors session, hemisphere and stream, i.e. each participant contributes one count to each 283 

histogram. Lines represent normal distributions fitted to the aggregated DC values. (B) Least square means with 95% 284 

confidence intervals. For rostro-caudally directed influences (left panels), DC revealed higher influences within, than 285 

between dorsal and ventral PFC at the middle and caudal level, while there was no difference at the rostral level. In contrast, 286 

for the caudal-to-rostral direction (right panels), the caudal level was the only one showing a small, but significant difference 287 

when comparing influences within vs. between ventral and dorsal PFC. 288 

The main results from Model #1 for the 16 selected channels (Fig. 1) were also reflected by the 289 

renderings of the directed influences across all 38 prefrontal channels (Fig. 4): Influences between 290 

PFC regions as measured by DC revealed higher influences from rostral references toward caudal 291 

areas than from caudal references toward rostral areas (Fig. 4A). Complementarily, influences toward 292 

rostral references from caudal areas were inferior to those toward caudal references from rostral areas 293 

(Fig. 4B). These relations were observed irrespective of whether the reference channel was on the 294 

dorsal (Fig. 4 outer columns) or on the ventral convexity (Fig. 4 middle two columns). The net-295 

influences in terms of the difference between the directions of influences, projected on the cortical 296 

surface are illustrated in Supplementary Figure S4. 297 
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Figure 4: Influences from (A) and toward (B) reference channels as measured by DC, averaged over both testing sessions 298 

and all subjects. Reference channels are marked black; each brain represents the average over two reference channels. Hot 299 

and cold colors indicate high influences from and toward reference channels, respectively. (A) Influences from references on 300 

regions rostral to the references were lower than on regions caudal to the references. (B) Conversely, influences toward 301 

references originating in regions rostral to the references were higher than in regions caudal to the references. The contrast 302 

between the influences plotted in panels A and B, i.e. the net-influences of each reference channel, reflecting the rostro-303 

caudal asymmetry of influences is provided in Supplementary Figure S4. 304 

Interactions between the ventral and dorsal stream (Model #2) 305 

Model #2 was designed to assess differences between influences exerted by ventral and dorsal 306 

reference channels, regarding only the predominant rostral-to-caudal direction. The linear mixed 307 

model comprised the within-subject factors source, congruence, and level (Fig. 1). For the main effect 308 

of source, influences from ventral channels (DCLSM = .456 ± .008) were stronger than from dorsal 309 
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channels (DCLSM = .379 ± .008; ∆DCLSM = .08 ± .01, p < .0001). The main effect of congruence again 310 

showed that directed interactions within ventral and dorsal channel rows (DCLSM = .437 ± .006) 311 

exceeded those between rows (DCLSM = .397 ± .006; ∆DCLSM = .040 ± .007, p < .0001). The main 312 

effect of level revealed directed interactions at the rostral level (DCLSM = .366 ± .007) to be lower than 313 

at the middle (DCLSM = .477 ± .007; ∆DCLSM = .111 ± .008, p < .0001) and caudal level (DCLSM = .409 314 

± .007; ∆DCLSM = .043 ± .008, p < .0001). Directed interactions at the middle level were stronger than 315 

at the caudal level (∆DCLSM = .069 ± .008, p < .0001). A significant two-way interaction between level 316 

and congruence again indicated that directed interactions were higher within than between ventral and 317 

dorsal PFC only at the middle (∆DCLSM = .07 ± .01, p < .0001) and caudal level (∆DCLSM = .05 ± .01, 318 

p < .0001) and equal in the rostral PFC (∆DCLSM = .00 ± .01, p = .88). Likewise, a significant two-way 319 

interaction between level and source further showed that the predominance of directed interactions 320 

originating from ventral channels compared to influences from dorsal channels increased from rostral 321 

to caudal PFC (rostral: ∆DCLSM = .03 ± .01, p = .03; middle: ∆DCLSM = .03 ± .01, p = .02; caudal: 322 

∆DCLSM = .17 ± .01, p < .0001; Fig. 5). A significant two-way interaction between source and 323 

congruence yielded that directed interactions from dorsal toward other dorsal channels were higher 324 

than toward ventral channels (∆DCLSM = .125 ± .009, p < .001). In contrast, directed interactions 325 

within ventral channel rows were lower than from ventral toward dorsal PFC (∆DCLSM = .045 ± .009, 326 

p < .001). However, a significant three-way interaction revealed a disordinal relationship between 327 

level and congruence for the ventral sources (Fig. 5, right panels): At the rostral and middle level, 328 

directed interactions from ventral toward dorsal PFC were stronger than within ventral PFC (rostral: 329 

∆DCLSM = .09 ± .02, p < .0001; middle: ∆DCLSM = .14 ± .02, p < .0001), while at the caudal level 330 

interactions within ventral PFC were stronger than from ventral toward dorsal PFC (∆DCLSM = .09 ± 331 

.02, p < .0001).For the dorsal sources (Fig. 5, left panels), directed interactions at the rostral and 332 

caudal levels were stronger on other dorsal channels than on ventral channels (rostral: ∆DCLSM = .09 ± 333 

.02, p < .0001; middle: ∆DCLSM = .27 ± .02, p < .0001), but there was no significant difference on the 334 

caudal level (∆DCLSM = .02 ± .02, p = .28). In summary, the most pronounced rostro-caudal influences 335 

were exerted within the mid-dorsolateral PFC, from mid-ventrolateral toward mid-dorsolateral and 336 

within caudo-ventral regions. 337 
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Figure 5: Model #2. Three-way interaction between level, congruence and source. (A) Histogram of DC values for rostro-338 

caudally directed influences aggregated across session, hemisphere and streams within ventral and dorsal PFC, i.e. each 339 

participant contributes one count to each histogram. Lines represent normal distributions fitted to the aggregated DC values. 340 

(B) Least square means with 95% confidence intervals. For dorsal sources (left panels), influences directed caudally were 341 

always stronger toward other dorsal channels than toward ventral channels. This dissociation is most pronounced for the 342 

middle level and was not significant at the caudal level. Influences exerted by ventral sources (right panels) increased from 343 

rostral to caudal PFC. At the rostral and middle level the influence from ventral to dorsal exceeded the influence within the 344 

ventral channels, whereas influences within ventral PFC predominated at the caudal-most level. 345 

Long-distance connections 346 

To facilitate a balanced factorial design, Model #1 and #2 considered only connections between 347 

adjacent channels, i.e. only a subset of all possible channel pairs. In order to extend the scope of the 348 

present analyses, Supplementary Model #3 included connections between distant channel pairs and 349 

assessed the rostro-caudal and ventro-dorsal influences across long-range connections. Results of 350 

Supplementary Model #3 were generally in line with Model #1 and #2 but additionally revealed that 351 

(i) the rostro-caudal asymmetry of influences increased with the length of connections with the rostral-352 

most region exerting strong influences on caudal PFC (and not vice versa) and (ii) that the segregation 353 

into the ventral and dorsal component was only existent for short connections between rostro-caudally 354 
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adjacent channels and not for long-range connections. For further details see Supplementary Analysis 355 

(Model #3) and Supplementary Figures S5 – S7. 356 

Exhaustive vector representation of influences within and between dorsal and ventral PFC 357 

Mixed models #1 - #3 tested hypotheses about influences of specific directions. However, the spatial 358 

representation of connections as vectors allows a more comprehensive illustration of influences 359 

between PFC regions. Figure 6 therefore shows all within-hemisphere connections as vectors 360 

superposed on the cortical surface (see also Supplementary Figure S8 for a full connectivity matrix). 361 

At each channel position, all influences from (Fig. 6A) and toward (Fig. 6B) that channel are 362 

represented as lines pointing toward the respective 2nd channel with the length of the line defined by 363 

the DC value (i.e. representing the strength of the influence). Averages across connections of each 364 

channel and across connections of all ventral and all dorsal channels are shown as arrows with black 365 

and white outlines respectively. The vector representation reflects the results of the mixed model 366 

analyses as for within-connections, rostral channels were stronger causal sources than caudal channels 367 

(Fig. 6 A, left) and caudal channels were stronger causal sinks than rostral channels (Fig. 6 B, left). 368 

For between-connections, ventral channels were stronger sources than dorsal channels (Fig. 6 A, right) 369 

and dorsal channels were stronger sinks than ventral channels (Fig. 6 B, right). The length of arrows 370 

representing average within- and average between-influences suggest that – contrary to the results of 371 

Model #1 – influences were stronger between than within ventral and dorsal PFC. However, it is 372 

essential to recognize that the arrangement of channels biased the length of the average vectors. 373 

Specifically, the length of between-vectors (right) tend to sum-up as they all point in a similar 374 

direction, while for within-vectors (left) lengths tend to average out. The vector representation of the 375 

net-influences in terms of the difference between influences exerted by and on channels is shown in 376 

Supplementary Figure S9. 377 
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Figure 6: Vector representation of influences within and between ventral and dorsal PFC. Within each hemisphere, all 378 

connections within (green vectors, left) and between (yellow vectors, right) ventral (blue surface) and dorsal (red surface) 379 

channel pairs are represented by vectors. The illustration reflects results of the mixed model analyses as (i) rostral channels 380 

exerted stronger influences than caudal channels (A), (ii) caudal channels received stronger influences than rostral channels 381 

(B) and (iii) influences from ventral toward dorsal PFC were stronger than vice versa (A and B, right brains). (A) At the 382 

position Pi of channel i the influence i�j is represented as a line of length DCi�j pointing toward channel j. (B) At the 383 

position Pi of channel i the influence ij is represented as a line of length DCij pointing toward channel j. At each position 384 

the average of vectors is indicated by arrows. Big arrows with white outlines represent averages for ventral and dorsal 385 

channels at the mean position of the respective channels (indicated as white circles). Vectors were calculated in two 386 

dimensions (in the x-z-plane after rotation around the x-axis by 15 degrees) and were superposed on the cortical surface for 387 

spatial assignment. Note that the length of mean vectors for within-connections and between-connections shown as arrows 388 

are not comparable, because for between-connections (right) the length of vectors tend to sum-up as they all point in a similar 389 

direction, while for within-connections (left) directionality of vectors tend to average out; thus, direction and length of mean 390 

vectors are biased by the arrangement of channels. 391 
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Discussion 392 

Taking advantage of the sufficiently high temporal and spatial resolution of multi-channel fNIRS, the 393 

present study used directed coherence as a measure of influences between brain regions to assess the 394 

functional networks of the PFC (Medvedev, 2014). Showing that activity in caudal PFC is modulated 395 

by activity in its more rostral parts, the present data provide complementary evidence for the intrinsic 396 

rostro-caudal functional hierarchy within the PFC, as predicted by extant models of prefrontal 397 

organization (Badre and Nee, 2018). More specifically, the rostro-caudal asymmetry of influences is 398 

most pronounced in the mid-lateral PFC, but only marginal in its rostral-most part. Furthermore, this 399 

effect is segregated into a ventral and a dorsal component. 400 

The rostro-caudally directed hierarchy of neural processing in the PFC 401 

Confirming previous assumptions (Badre and D’Esposito, 2009; Koechlin et al., 2003), Model #1 402 

revealed a predominance of rostro-caudally directed influences. However, this pattern was not 403 

uniformly evident across the rostro-caudal axis, as directed interactions on the rostral-most level 404 

appeared to be almost balanced between both directions (Fig. 2). First of all, this finding does not 405 

contradict the general validity of the rostro-caudal hierarchy hypothesis, because the overall influences 406 

from the rostral channels on the rest of the PFC (Fig. 4A) exceeded by far the influences toward the 407 

rostral channels from the rest of the PFC (Fig. 4B), i.e. the rostro-caudal gradient was evident 408 

especially for long connections (also see Supplementary Analysis). Second, recent findings indicate 409 

that mid-lateral PFC and not rostral PFC may represent the apex of the hierarchical processing in the 410 

PFC (Badre and Nee, 2018; Margulies et al., 2016; Nee and D’Esposito, 2016) thus suggesting 411 

increased caudo-rostrally directed interactions between mid-lateral and rostral PFC. In line with this, 412 

influences from rostral to mid-lateral PFC were only marginally stronger than vice versa. 413 

Yet, the rostral PFC is often associated with the representation of the most abstract rules and the 414 

selection of goal-relevant information which should be processed within the apex of the hierarchy 415 

(Badre and D’Esposito, 2009, 2007). As such task demands were not externally triggered in the 416 

present study, the intrinsic activation level might have been too low to reveal directed interactions on 417 

this small spatial scale. In turn, the influences over a longer distance, however, might have 418 
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accumulated over the intermediate stages of the rostro-caudal hierarchy. That is, information, as it is 419 

propagated from rostral to caudal PFC, might be enriched by intermediate nodes and accumulate on 420 

lower levels of the rostro-caudal hierarchy (Koechlin et al., 2003; Koechlin and Summerfield, 2007). 421 

The basic idea of this accumulation hypothesis is that superordinate information on higher levels needs 422 

to be maintained over time, because it guides sequences of information selection processes on lower 423 

levels, which are relevant in a more confined context only (Koechlin et al., 2003; Koechlin and 424 

Summerfield, 2007). In other words, more rostral regions maintain persistent information, whereas 425 

more caudal regions process transient information with higher throughput. In line with this, caudally 426 

directed influences on the rostral level were lower than on the middle and caudal level (Fig. 2) and the 427 

rostro-caudal asymmetry of directed interactions between more distant regions was higher than 428 

between adjacent regions (see Supplementary Materials for an analysis of long-distance connections 429 

and Supplementary Figure S6). Thus, if neural activity propagates from rostral to caudal PFC, the 430 

amount of transferred information may increase toward caudal regions, as the information is 431 

substantiated on the intermediate processing stages. In sum, the present results argue for the 432 

implementation of cognitive control by a prefrontal rostro-caudal processing hierarchy that peaks in 433 

mid-lateral PFC rather than in the frontopolar cortex (cf. Badre and Nee, 2018). However, results also 434 

support a hierarchical relationship between frontopolar and caudal PFC with rostro-caudal connections 435 

bypassing mid-lateral PFC. Thus, the PFC network may constitute a concentric network topology with 436 

the mid-lateral PFC as the main hub and the frontopolar cortex as a complementary downstream route 437 

to caudal PFC. 438 

Ventral and dorsal components of the rostro-caudal gradient in the PFC 439 

Model #1 showed that connectivity within dorsal and ventral PFC was stronger than the connectivity 440 

between the two regions and, furthermore, that this difference was directionally and regionally specific 441 

(Fig. 3). This segregation is also reflected by findings concerning differences between ventral and 442 

dorsal PFC in their ontogenetic development (Gogtay et al., 2004), in their cytoarchitecture (Petrides 443 

and Pandya, 2002, 1999), in their structural connectivity with posterior cortex (Saur et al., 2008; 444 

Takahashi et al., 2013), and in their association with different executive functions (Bahlmann et al., 445 

2012; D’Esposito et al., 1999; Owen, 1997) and even by differential behavioral outcome after 446 
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optogenetic inhibition of PFC subregions in the rat (Hardung et al., 2017). However, while there exist 447 

many studies on the segregation of these two regions (e.g. Bahlmann et al. (2015), Blumenfeld, Lee, & 448 

D’Esposito (2014), Swann, Tandon, Pieters, & Aron (2013); for reviews see Blumenfeld & Ranganath 449 

(2007), Tanji & Hoshi (2008)), considerably less attention has been paid on how they may interact. In 450 

this regard, ventral PFC has been shown to be associated with the retrieval, selection, and maintenance 451 

of goal-relevant information (Badre et al., 2005; Bunge et al., 2004; D’Esposito et al., 1999; 452 

Thompson-Schill et al., 1997), whereas the dorsal part is additionally recruited for the manipulation 453 

and monitoring of goal-relevant information (Bunge et al., 2003; Christoff et al., 2001; D’Esposito et 454 

al., 1999; Garavan et al., 2000). In Model #2 the rostro-caudally directed interactions from ventral and 455 

dorsal PFC were considered separately (Fig. 5) revealing asymmetric influences between these two 456 

parts of the PFC. It hence seems that the dorsal and ventral components of the rostro-caudal hierarchy 457 

are segregated, but not coequal. More specifically, influences from ventral toward dorsal PFC were 458 

consistently stronger than from dorsal toward ventral PFC. 459 

If retrieval and selection of information from memory or sensory association cortices is accomplished 460 

by the ventral PFC and manipulation of this information by the dorsal PFC (Bunge et al., 2004; Race 461 

et al., 2009), a bottom-up pathway from ventral to dorsal PFC seems obvious in that the external 462 

information is introduced by ventral PFC for manipulation in dorsal areas. Yet, the selection process 463 

within the ventral PFC is unlikely to be autonomous, but probably supported by top-down feedback 464 

from dorsal PFC (Swann et al., 2013) or gated by the basal ganglia (Badre and Frank, 2012; Hazy et 465 

al., 2007). Therefore, hierarchical processing in ventral PFC might provide a filter for external inputs, 466 

which serve hierarchical processing in dorsal PFC with currently relevant information to be involved 467 

in the evaluation of goal directed behavior by the dorsal processing hierarchy. Thus, from these 468 

assumptions it follows that directed interactions between dorsal and ventral PFC should be modulated 469 

by task demands that require the selection of specific stimuli according to a current task rule. Given 470 

that the present recordings comprised neural activity in a task-free state, these predictions remain to be 471 

tested in future studies. 472 
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Finally, on the rostral-most level in Model #1 we did not find a predominant direction of rostro-caudal 473 

interactions, but when examining influences from ventral and dorsal rostral PFC separately in Model 474 

#2, it was revealed that rostral references exerted stronger influences toward dorsal than ventral PFC. 475 

This seems to contradict the hypothesis that the segregation of ventral and dorsal regions would be 476 

more pronounced than their interaction. However, the rostral-most reference channels probably 477 

sampled a part of the lateral Brodmann area 10, which co-activates with a wide variety of other 478 

prefrontal regions in very different task paradigms (Gilbert et al., 2010). It has been proposed that area 479 

10 fulfills a supervisory function and helps to guide attention to currently relevant information (Bunge 480 

et al., 2005, 2003; Burgess et al., 2007). As such, it might constitute a monitoring entity that evaluates 481 

current abstract goals represented by rostral levels and revises ongoing action selection processed by 482 

caudal levels of the hierarchy. In this scenario, area 10 would not be integrated in the rostro-caudal 483 

hierarchy but differentially interact with each hierarchical level to regulate the parallel ventral and 484 

dorsal information cascades. This interpretation is also supported by the spatial illustration of 485 

influences in Figure 4 and the supplementary analysis considering long-range connections from rostral 486 

to caudal PFC (Model #3), which on the one hand revealed strong influences exerted by the rostral-487 

most on the caudal-most level (Supplementary Figure S6), and on the other hand showed that these 488 

long-range connections did not separate into a ventral and a dorsal component (Supplementary Figure 489 

S7). 490 

Conclusion 491 

Using the methodological framework of fast sampling multi-channel fNIRS and a frequency-domain 492 

measure of directed functional connectivity, we provide explicit evidence for a rostral-to-caudal 493 

processing hierarchy in the PFC. Consistent with extant models of prefrontal organization, this 494 

hierarchy is dissociated into a ventral and a dorsal component and peaks in the mid-dorsolateral PFC, 495 

which exerts the highest level of cognitive control (Badre and Nee, 2018). 496 

  497 
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