# Title: Effects of vitamin D supplementation on musculoskeletal health: systematic review, meta-analyses, and trial-sequential analyses

#### Authors:

Mark J Bolland, MBChB, PhD<sup>1</sup>, m.bolland@auckland.ac.nz Andrew Grey, MD<sup>1</sup>, a.grey@auckland.ac.nz Alison Avenell, MB BS MD<sup>2</sup>, a.avenell@abdn.ac.uk

#### Author Affiliation:

<sup>1</sup>Department of Medicine, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand <sup>2</sup>Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland

#### Word counts:

Abstract: 285 (excluding headings) Text only: 3914 Figures: 6 Tables: 2 Appendix: e1-e15 (12 Tables, 3 Figures)

#### Address for correspondence:

Associate Professor Mark Bolland Bone and Joint Research Group, Department of Medicine, University of Auckland Private Bag 92 019, Auckland 1142, New Zealand Email: <u>m.bolland@auckland.ac.nz</u> Ph 64 9 373 7999 Fax 64 9 373 7677

#### Key words:

Vitamin D, randomised controlled trials, systematic review, meta-analysis, falls, fracture, bone mineral density

#### Abstract:

#### **Background:**

The effects of vitamin D on fracture, falls and bone mineral density (BMD) are uncertain, particularly for higher vitamin D doses.

#### Methods:

Random-effects meta-analyses and trial sequential analyses (TSA) of randomised controlled trials (RCTs) of vitamin D (in which treatment arms only differ by vitamin D) in adults with total fracture, hip fracture, falls, or BMD at the lumbar spine, total hip, femoral neck, total body or forearm as outcomes identified from Pubmed, Embase, Cochrane CENTRAL, and two clinical trial databases, last search Feb 2018.

#### **Findings:**

81 RCTs reported fracture (n=42), falls (n=37), or BMD (n=41). In pooled analyses, vitamin D had no effect on total fracture [36 trials, n=44790, RR 1.00 (95%CI 0.94-1.07)], hip fracture [(20 trials, n=36655, RR 1.11 (0.97-1.26)], or falls [37 trials, n=34144, RR 0.97 (0.93-1.02)]. Results were similar in RCTs of higher vs lower dose vitamin D and in subgroup analyses of RCTs using doses >800 IU/d. In pooled analyses, there were no clinically relevant between-group differences in BMD at any site (range -0.16% to 0.76% over 1-5y).

The effect estimate in the TSAs lay within the futility boundary at a threshold of 7.5% risk reduction for total fracture and falls, lay between the futility boundary and the inferior boundary at a 15% risk reduction for hip fracture, and lay within the futility boundary at thresholds of 0.5% for total hip, forearm, and total body BMD, and 1.0% for lumbar spine and femoral neck, providing reliable evidence that vitamin D does not alter these outcomes by these amounts.

#### Interpretation

Vitamin D supplementation does not prevent fractures or falls, or have meaningful effects on BMD. There were no differences between the effects of higher and lower doses of vitamin D.

Funding: Health Research Council of New Zealand.

#### **Background:**

Vitamin D supplements have long been recommended for older people to treat or prevent osteoporosis,<sup>1</sup> with some early evidence suggesting benefits for musculoskeletal health, including increasing bone mineral density (BMD), and preventing falls and fractures.<sup>2</sup> However, later systematic reviews have reported no effect of vitamin D supplementation on BMD,<sup>3</sup> falls,<sup>4-7</sup> or fractures.<sup>7-10</sup> Trial sequential analyses for the hypothesis of a 15% relative risk reduction in falls or fractures showed that conducting further trials of vitamin D with or without calcium supplementation that are similar to the existing trials is unlikely to alter the conclusion of the recent systematic reviews.<sup>6,9</sup> However, correspondents questioned the utility of this efficacy threshold and also suggested that inadequate vitamin D doses might explain these null results,<sup>11,12</sup> although some randomised controlled trials (RCTs) have reported increased risk of falls or fractures with high dose intermittent vitamin D.<sup>13-15</sup> Since the last major systematic reviews of vitamin D on musculoskeletal health were published in 2012-14, <sup>3-10</sup> 45 RCTs of vitamin D monotherapy (n=20,131) have reported on BMD, falls and fractures, increasing the number of trial participants with these outcomes by 40-85%. Most newer trials have also used substantially higher doses of vitamin D than earlier trials. Consequently, the currently available set of RCTs has much greater power for meta-analysis and trial-sequential analysis, and allows a detailed exploration of potentially important clinical factors in subgroup analyses, including comparisons of higher and lower doses of vitamin D. Therefore, a comprehensive update of previous systematic reviews, metaanalyses, and trial-sequential analyses, that includes the important clinical and major surrogate endpoints, is warranted. An advantage of assessing these outcomes concurrently is that it is possible that an effect may be found for some endpoints whereas no effect is found for others, which might have clinical and biological relevance. Trial-sequential analyses of vitamin D and BMD have also not been previously reported.

Previously, vitamin D supplements have often been co-administered with calcium supplements. Recent systematic reviews have suggested that the evidence for benefits of calcium supplements, with or without vitamin D, in preventing fractures is only weak and inconsistent,<sup>10,16</sup> with any effect on BMD or fracture likely very small and of doubtful clinical relevance.<sup>10,16,17</sup> In addition, uncommon but important side-effects of calcium supplements<sup>18-</sup><sup>21</sup> have been identified contributing to an unfavourable risk-benefit profile. No large trials of co-administered calcium and vitamin D supplements have become available with fracture or falls as the primary endpoint since the previous systematic reviews.

We therefore have undertaken a systematic review, meta-analyses and trial sequential analyses of RCTs in adults of vitamin D supplements on the clinical musculoskeletal outcomes of fractures and falls and the commonly used surrogate endpoint of BMD. To align with the recent findings on calcium supplements, and the recent design of vitamin D RCTs, we have focused on RCTs that have used vitamin D as monotherapy, and included RCTs that compared higher doses of vitamin D with lower doses.

#### **Methods:**

#### Literature search

The PRISMA guidelines for development of protocols<sup>22</sup> and reporting of systematic reviews and meta-analyses were followed.<sup>23</sup> We used our literature searches for previous metaanalyses<sup>3,6,8,9,16,17</sup> as the starting point. For the most recent of these searches, we searched Pubmed in December 2015 for RCTs and recent systematic reviews of vitamin D in adults. We identified all studies from this search and our previous meta-analyses with fracture, falls, or bone density as an outcome. We then searched Pubmed, Embase, and Cochrane CENTRAL in Sept 2017 and Feb 2018 using the term "vitamin D" and keywords shown in Appendix e1 for publications since 2015. We also searched two clinical trials databases, ClinicalTrials.gov and the WHO clinical trials portal, for completed and ongoing trials using vitamin D as the search term. The full text of the search is described in Appendix e1.

#### Study selection

We included RCTs in adults (>18y) comparing vitamin D supplements with untreated controls, placebo or lower dose vitamin D supplements. Trials with multiple interventions (eg co-administered calcium and vitamin D) were eligible provided that the study arms differed only by the use of vitamin D. We included quasi-randomized and open-label trials but excluded trials of hydroxylated vitamin D analogues. RCTs in cohorts with conditions likely to impact on bone turnover or cohorts selected for specific diseases (for example: primary hyperparathyroidism, renal or hepatic disease) were included but analysed separately in the initial analyses. We included RCTs with outcome data on total or hip fracture, falls, or BMD measured using dual energy x-ray absorptiometry (DXA) at the lumbar spine, total hip, femoral neck, total body, or forearm. Trials reporting BMD using other techniques were excluded. Cluster RCTs were included. One author (MB) screened titles and abstracts, two authors (MB, AA) reviewed listings on trial registries, and two authors independently (MB, AG) reviewed the full-text of potentially relevant studies. Studies included in previous meta-analyses but excluded from these meta-analyses are shown in Appendix e2. The flow of articles is shown in Appendix e3.

#### Data Extraction:

Data on participant characteristics, study design, interventions, outcomes, funding sources and conflicts of interest were extracted by one author (MB) and checked by a second author (AG). Where data were presented only in figures, we used digital callipers to extract data. Where data for falls but not fractures were reported, we emailed the authors requesting any data on fractures (Appendix e2). The risk of bias of eligible RCTs was independently assessed by two authors (MB, AG) following the approach in the Cochrane handbook.<sup>24</sup> Discrepancies in author assessments were resolved by discussion.

#### Outcomes:

The co-primary endpoints were participants with  $\geq 1$  fracture,  $\geq 1$  hip fracture, or  $\geq 1$  fall. Where multiple classifications of total fracture were reported, we used the largest number of participants with any fracture, non-vertebral fracture or osteoporotic fracture. The secondary endpoints were the percentage change in BMD from baseline at lumbar spine, total hip, femoral neck, total body, and forearm.

#### Data Analysis and Statistics:

We grouped RCTs comparing vitamin D supplementation with controls together with RCTs comparing vitamin D plus agent with the agent alone (termed vitamin D vs controls). Several trials had multiple vitamin D treatment arms. If there was a control group, we pooled the vitamin D treatment arms and compared the pooled results with the controls. If there was no control group, we pooled treatment arms in which the vitamin D dose was  $\geq$ 800IU/d ('higher' dose), and compared the results to the pooled result of treatment arms where the dose was <800IU/d ('lower' dose). In subgroup analyses, we used relevant individual treatment arms for each trial.

For fractures and falls, we initially analysed RCTs conducted in unselected populations and selected populations separately, and also analysed RCTs comparing vitamin D with controls

and RCTs comparing different doses of vitamin D separately. If the results from the different groups of trials were similar, then the RCTs were pooled in subsequent analyses. For BMD, the same approach was undertaken, but the further variable of study duration was also analysed. BMD RCTs were categorised into 3 groups by duration: '1 year'- duration <1.5 years; '2 years'- duration  $\geq$ 1.5 years and  $\leq$ 2.5 years; and '3+ years'.

Data for fractures and falls were compared using relative risks with an intention-to-treat analysis using all available data and the number of participants randomised to the treatment for each group. BMD data were compared using the weighted difference in means. For all analyses, data were pooled using random-effects models, heterogeneity was evaluated using the I<sup>2</sup> statistic (I<sup>2</sup> >50% was considered significant heterogeneity), and systematic bias was assessed using Funnel Plots and Egger's test (Comprehensive Meta-Analysis, version 2, Biostat, Englewood New Jersey, USA). All tests were two-tailed and p-values <0.05 were considered statistically significant. The sample size of cluster RCTs was adjusted in accordance with the Cochrane Handbook.<sup>24</sup> Raw BMD and absolute change from baseline were converted to percentage change using the methods described in the Cochrane Handbook.<sup>24</sup> For studies that reported mean BMD but not a measure of spread, we imputed the standard deviation using the median site-, duration-, and treatment group-specific standard deviation from other included studies, and separately analysed these studies to determine the impact of this approach.

Trial sequential analysis<sup>25,26</sup> was carried out for each outcome (TSA Viewer, version 0.9.5.10 Beta; <u>www.ctu.dk/tsa</u>). This is a type of cumulative meta-analysis that reduces the risk of false-positive results from repetitive statistical testing and reports the information size, an estimate of the optimum sample size for statistical inference, and estimates of treatment effects and thresholds for statistical significance and futility taking into account multiple statistical tests.<sup>25,26</sup> For fractures and falls, we initially used a 15% relative risk reduction threshold, as in our previous publications,<sup>6,9</sup> and in further analyses used progressively smaller thresholds until the optimum sample size exceeded the actual sample size. For BMD, we initially used a threshold of a 3% increase, representing the approximate average BMD loss of a late post-menopausal women over 2-4 years, and then progressively smaller thresholds. To accommodate heterogeneity between trial results, we used the larger of 15% or the calculated heterogeneity from the meta-analysis of included RCTs in the trial sequential analysis.

Prespecified subgroup analyses were undertaken testing for interactions between the effects of vitamin D supplementation on fractures, falls, and BMD for the following factors, each of which is frequently invoked as a possible modifier of the effects of vitamin D: age <65 vs  $\geq$ 65y, BMI <30 vs  $\geq$ 30 kg/m<sup>2</sup>, baseline 25-hydroxyvitamin D (25OHD) <25 vs  $\geq$ 25 nmol/L, <50 vs  $\geq$ 50 nmol/L, <75 vs  $\geq$ 75 nmol/L; achieved 25OHD  $\geq$ 50 vs <50 nmol/L,  $\geq$ 75 vs <75 nmol/L, dose of vitamin D  $\leq$ 800 IU/day vs >800 IU/day; intermittent vs daily dosing; trials at overall low risk of bias vs trials at moderate or high risk of bias; trial duration  $\leq$ 1y vs >1y; trial size  $\leq$ 200 vs >200 participants; use of co-administered calcium vs no calcium; and location- residential care vs community-dwelling. For intermittent doses where the daily equivalent dose is approximately 800 IU/day (eg 300,000 IU/year), we included these trials in the  $\leq$ 800 IU/day group. All such trials had an equivalent daily dose of <1000 IU.

#### Role of the funding source

The funders had no role in the study design; collection, analysis, and interpretation of the data; writing of the report; and in the decision to submit the paper for publication. All authors

had access to raw data, which are provided in the Appendix. The corresponding author had the final responsibility to submit for publication.

#### **Results:**

#### Baseline characteristics and outcome data

We identified 81 eligible RCTs of vitamin D supplements<sup>13-15,27-107</sup> that reported fracture (n=42), falls (n=37), or BMD (n=41) as an outcome (Appendix e3). The study design and selected baseline characteristics of the RCTs are shown in Appendix e4 and e5 and summarised in Table 1. The majority of RCTs studied vitamin D as monotherapy, in unselected populations of community-dwelling women aged >65 years, using daily doses of >800 IU/day and had a duration of  $\leq$ 1 year. The majority of trials (57%) were carried out in populations with mean 250HD <50 nmol/L but only 4 were carried out in populations with mean 250HD <50 nmol/L but only 4 were carried out in populations with mean 250HD <25 nmol/L. 91% of trials reported achieved 250HD  $\geq$ 50 nmol/L and 58% achieved 250HD  $\geq$ 75 nmol/L. Appendix e6 shows our assessment of risk of bias, and e7 conflicts of interest and funding source. Nine (21%) RCTs were considered at low risk of bias for fractures, 22 (59%) low risk for falls, and 29 (71%) low risk for BMD.

Appendix e8 shows the outcome data for each study for each endpoint.

#### Co-primary endpoints: fractures and falls

Figures 1-3 show the results of the meta-analyses for total fracture, hip fracture, and falls by study design and population. For all 3 outcomes, there was no statistically significant interaction for results between RCTs with different study designs (vitamin D vs controls, higher vs lower dose vitamin D) in unselected populations, or between trials in selected and unselected populations. Therefore, we pooled all the RCTs, finding no effect of vitamin D supplementation on total fracture [36 trials, n=44790, RR 1.00 (95%CI 0.93-1.07)], hip fracture [(20 trials, n=36655, RR 1.11 (0.97-1.26)], or falls [37 trials, n=34144, RR 0.97 (0.93-1.02)]. Using Egger's regression model and visual inspection of funnel plots, data appeared skewed toward a reduction in events with vitamin D supplementation for all 3 outcomes, largely due to an excess of small-medium size studies with positive effects on the outcomes.

Figures 1-3 and Table 2 show the results of the trial sequential analyses. For total fracture and falls, the effect estimate lay within the futility boundary for risk reductions of 15%, 10%, 7.5% and 5% (total fracture only) providing reliable evidence that vitamin D supplementation does not reduce fractures and falls by these amounts. For hip fracture, at a 15% risk reduction, the effect estimate lay between the futility boundary and the inferior boundary, meaning there is reliable evidence that vitamin D supplementation does not reduce hip fractures by this amount, but uncertainty remains as to whether it might increase hip fractures.

#### Secondary endpoints: bone density

Figures 4-6, Appendix e9-e11 show the results of the meta-analyses for BMD by site. First, we compared the results of trials with missing measures of spread and imputed standard deviations to the other trials, by duration, design and population. Appendix e9 shows that generally there was little difference between results, and therefore we included the trials with imputed standard deviations in subsequent analyses. Next, we compared the results of trials by duration, study design, and population type. Appendix e9 shows that for all combinations of these factors, there was very little difference in results between the subgroups, and therefore we pooled the trials with differing study designs (vitamin D vs controls, higher vs

lower dose vitamin D) and those in selected and unselected populations. Because there were only small differences by trial duration, we also pooled all the trials using the final time point data only for each trial. Figures 4-6, Appendix e10-11 show the between-group differences in BMD by site, by trial duration, and the pooled analyses using the final time point. Betweengroup differences in BMD did not consistently increase with increasing trial duration at any site, and in the pooled analyses using the final time point the between-group differences were 0.25%, 0.34%, 1.12%, -0.16%, and 0.13% at the lumbar spine, total hip, femoral neck, forearm, and total body. Of note, at the femoral neck one RCT<sup>107</sup> reported a between-group difference of 10.6% (95%CI 9.0-12.3) after 1y which was a clear outlier and had a disproportionate effect on the pooled result. We excluded this trial<sup>107</sup> from subsequent analyses, and after its exclusion, the between-group difference at the femoral neck was 0.76% (Figure 6). Using Egger's regression model and visual inspection of funnel plots, data appeared skewed toward increased BMD with vitamin D supplementation for all sites except the forearm, again largely due to an excess of small studies with positive effects on BMD. All subsequent trial sequential analyses and subgroup analyses were performed using the final time point data only for each trial.

Table 2, Figures 4-6, Appendix e10-11, show the results of the trial sequential analyses. For the total hip, forearm, and total body sites the effect estimate lay within the futility boundary for a between-group difference of 0.5% (or more), and at the lumbar spine and femoral neck the effect estimate lay within the futility boundary for a difference of 1.0% but above the superior boundary for a difference of 0.5%.

#### Subgroup analyses

#### Reported analyses in individual trials based on baseline 250HD

18 RCTs reported the results of a subgroup analysis using various thresholds for baseline 250HD (Appendix e12). Three RCTs reported no effects of vitamin D on fracture in subgroups, and six reported no effects in subgroups or no interactions with baseline 250HD, and one mixed effects of vitamin D on falls in subgroups. The subgroup results in all RCTs were similar to the primary analyses. For BMD, one RCT reported positive effects in subgroups, five RCTs mixed effects, and eight RCTs no effects in subgroups or no interactions with baseline 250HD. In 3/14 RCTs, some subgroup results were different to the primary analysis, and in the remaining 11 RCTs the subgroups results were similar to the primary analysis.

#### Subgroup analyses in pooled trial datasets

Appendix e13-14 shows the results of the pre-specified subgroup analyses for the metaanalyses. For fractures and falls, there was only 1 significant interaction between vitamin D supplementation and a factor (trial size for total fracture, effect greater in smaller studies) in the 12 subgroup analyses for each of the 3 outcomes (36 total analyses). For BMD, of the 64 subgroup analyses, there were 8 significant interactions, although in 4 there was only 1 trial in one of the subgroups. The remaining 4 significant interactions were for total hip (effect greater without co-administered calcium), femoral neck (effect greater in smaller studies or without co-administered treatments), and total body (effect greater with higher doses). Overall, there were 100 subgroup analyses. If all the results were independent, about 5 statistically significant interactions would be expected by chance. In post-hoc analyses, we compared high daily versus low daily dose RCTs, and intermittent high dose versus intermittent low dose RCTs and there were no significant interactions between subgroups for any outcome.

#### Discussion

In meta-analyses of 81 RCTs, vitamin D supplementation did not affect incident fractures or falls, and did not have consistent clinically relevant effects on BMD. There were no statistically significant differences in results of trials comparing vitamin D with controls and trials comparing higher vs lower doses of vitamin D, although there are fewer trials with the latter study design. Likewise, there was no consistent evidence of different effects in subgroup analyses based upon potentially influential baseline variables including baseline 25OHD or study design characteristics, nor of different effects in trials of higher dose vitamin D or trials with higher achieved 25OHD. Trial sequential analyses showed that there is reliable evidence that vitamin D supplementation does not have meaningful clinical benefits: it does not reduce the relative risk of total fracture by 5% or falls by 7.5%, it does not increase BMD by 0.5-1%, and uncertainty remains as to whether it might increase the risk of hip fracture. Further similar trials are unlikely to alter the conclusions of the trial sequential analyses. If a large future trial has markedly different results to the current trials, adding its results will substantially increase the heterogeneity of the trial results, which in turn will reduce the weighting the new large trial receives in the pooled analyses. Thus, adding a positive result from a large RCT will have only a small effect on the pooled result, and is unlikely to alter the conclusions of the current meta-analyses.

The strengths of the current analyses are that they are comprehensive, include all available data from a large number of new trials, and concomitantly assess the major clinical and surrogate endpoints for musculoskeletal health. The analyses are based on substantially more trials, more participants and more events than previous reviews, which means the analyses have greater power, the effect estimates have greater precision, the trial sequential analyses are able to examine efficacy at lower risk reduction thresholds, and the subgroup analyses are more comprehensive. The trial sequential analyses are important because they provide estimates about the reliability of current evidence and the likelihood of future trials changing current conclusions. The number of studies included permitted a large number of subgroup analyses exploring the effects of potentially relevant trial and participant characteristics, some of which have been invoked as explanations for the null findings of individual trials of vitamin D. The greater number of trials with BMD as an outcome allowed an examination of the effects of vitamin D supplementation in trials of differing durations, which showed no evidence that between-group differences in BMD increased as trial duration increased.

The analyses also have limitations. We included studies with methodological limitations, although there was no evidence that RCTs at low risk of bias reported substantially different effects. Several meta-analyses had moderate heterogeneity in trial results, generally because a few small-moderate sized studies reported positive results that were not observed in larger RCTs. The subgroup analyses show that for all outcomes smaller studies of shorter duration tended to have inflated effect sizes compared with larger and longer studies, such that the results of small, short duration studies should be interpreted very cautiously, as they may not be replicated in larger, longer studies. Heterogeneity of populations, study designs and results is also an issue for trial sequential analyses. While the heterogeneity in the existing RCT results of future large trials are based on the expectation that they will be similar to the existing trials. For vitamin D, this seems a reasonable assumption given the consistency amongst existing trial results, particularly amongst the existing large RCTs. Data were collected differently for falls in different RCTs which may affect trials results, although the results were independent of our assessment of the risk of bias.

The results from these meta-analyses are consistent with most of the recent systematic reviews of vitamin D supplementation on musculoskeletal outcomes,<sup>3,6,7,9,10</sup> including those from the Cochrane groups,<sup>4,5,8</sup> and align with the recent statements from the US Preventative Services Taskforce which recommends against vitamin D supplementation to prevent falls<sup>108</sup> or fractures<sup>109</sup> in community-dwelling adults. Some previous meta-analyses reached more optimistic conclusions, as a result of differences in trial selection and outcome definition, and use of per-protocol rather than intention to treat analysis.<sup>110,111</sup> This might explain why some clinical guidelines continue to recommend vitamin D supplementation for musculoskeletal indications<sup>112,113</sup> which seems inconsistent with the available evidence.

Previous explanations for the failure of vitamin D to have meaningful effects on musculoskeletal outcomes have included that the baseline 25OHD of trial participants have been too high, the doses of vitamin D supplements too low, or that trials have been inadequately designed, underpowered, or conducted in the wrong populations. None of those explanations seems likely to account for the current findings. The trials include a broad range of study designs and populations but there are consistently neutral results for all endpoints, including the surrogate endpoint of BMD. RCTs of higher doses of vitamin D and RCTs that achieved higher 25OHD did not have different results. More than half of trials reported mean baseline 25OHD of <50 nmol/L, a cut-off often considered to indicate vitamin D insufficiency, and almost all <75 nmol/L. It is possible that trials of populations with much lower baseline 25OHD might produce different results because only 4 trials involving 831 participants reported mean baseline 25OHD <25 nmol/L.

In summary, vitamin D supplementation did not have meaningful effects on fracture, falls, or BMD and future trials are unlikely to alter these conclusions. Therefore, there is little justification for the use of vitamin D supplements to maintain or improve musculoskeletal health, and clinical guidelines should reflect these findings. The clear exception to this is for the prevention and/or treatment of the rare conditions of rickets and osteomalacia, which can occur after a prolonged lack of sunshine exposure when 25OHD <25 nmol/L. There is also no justification for more trials of vitamin D supplements with musculoskeletal outcomes because there is no longer equipoise about the effects of vitamin D on these outcomes. Trials of vitamin D supplementation in individuals with marked vitamin D deficiency, who are not at risk of osteomalacia, might produce different results, but require a strong scientific rationale before being undertaken, given the absence of effects of vitamin D seen in the existing trials.

#### **Research in Context:**

#### Evidence before this study

Early evidence suggested vitamin D supplements might have benefits for musculoskeletal health, but more recent systematic reviews have reported no effect of vitamin D supplementation on fractures, falls or bone mineral density. Some authors have suggested that inadequate vitamin D doses might explain these null results. At least 30 trials of vitamin D have been published since the previous systematic reviews, which nearly doubles the available trial results for vitamin D for these outcomes.

#### Added value of this study

The meta-analyses and trial sequential analyses show that in a very large body of clinical trials vitamin D supplementation does not have clinically relevant effects on fractures, falls, and bone mineral density, and this conclusion is unlikely to be altered by future trials with similar designs. Effects of higher doses of vitamin D were similar to effects of lower doses, and none of the other potential modifiers of vitamin D effects were found to influence efficacy for any outcome.

#### Implications of all the available evidence

There is little justification for the use of vitamin D supplements to maintain or improve musculoskeletal health (except for the prevention or treatment of rickets and osteomalacia in high-risk groups), and clinical guidelines should reflect these conclusions.

#### Acknowledgements:

**Declaration of interest:** AG is a shareholder in Auckland Bone Density, a company that provides bone mineral density measurements. All authors have co-authored publications on the efficacy of vitamin D supplementation.

**Funding:** Funding support from the Health Research Council of New Zealand. The Health Services Research Unit is funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. The HRC had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

#### **Author Contributions:**

MB- study design; literature searches; data extraction; data analysis; interpretation of data; drafted manuscript

AG- study design; data extraction; interpretation of data; critical review of manuscript; AA- study design; literature searches; data extraction; interpretation of data; critical review of manuscript.

MB had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis and the final responsibility for the decision to submit for publication.

#### Data availability

All data are included in the Appendix.

#### References

- 1. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. *Am J Med* 1993; **94**:646-50.
- 2. Boonen S, Bischoff-Ferrari HA, Cooper C, Lips P, Ljunggren O, Meunier PJ, et al. Addressing the musculoskeletal components of fracture risk with calcium and vitamin D: a review of the evidence. *Calcif Tissue Int* 2006; **78**:257-70.
- 3. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. *Lancet* 2014; **383**:146-55.
- 4. Cameron ID, Gillespie LD, Robertson MC, Murray GR, Hill KD, Cumming RG, et al. Interventions for preventing falls in older people in care facilities and hospitals. *Cochrane Database Syst Rev* 2012; **12**:CD005465.
- 5. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. *Cochrane Database Syst Rev* 2012; **9**:CD007146.
- 6. Bolland MJ, Grey A, Gamble GD, Reid IR. Vitamin D supplementation and falls: a trial sequential meta-analysis. *Lancet Diabetes Endocrinol* 2014; **2**:573-80.
- 7. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. *BMJ* 2014; **348**:g2035.
- 8. Avenell A, Mak JC, O'Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. *Cochrane Database Syst Rev* 2014; **4**:CD000227.
- 9. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. *Lancet Diabetes Endocrinol* 2014; **2**:307-20.
- 10. Zhao JG, Zeng XT, Wang J, Liu L. Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. *JAMA* 2017; **318**:2466-82.
- 11. Anagnostis P, Karras SN, Athyros VG, Annweiler C, Karagiannis A. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes. *Lancet Diabetes Endocrinol* 2014; **2**:362-3.
- 12. Bischoff-Ferrari HA, Orav EJ, Willett WC, Dawson-Hughes B. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes. *Lancet Diabetes Endocrinol* 2014; **2**:363-4.
- 13. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. *JAMA* 2010; **303**:1815-22.
- Bischoff-Ferrari HA, Dawson-Hughes B, Platz A, Orav EJ, Stahelin HB, Willett WC, et al. Effect of high-dosage cholecalciferol and extended physiotherapy on complications after hip fracture: a randomized controlled trial. *Arch Intern Med* 2010; 170:813-20.
- 15. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline: A Randomized Clinical Trial. *JAMA Intern Med* 2016; **176**:175-83.
- 16. Bolland MJ, Leung W, Tai V, Bastin S, Gamble GD, Grey A, et al. Calcium intake and risk of fracture: systematic review. *BMJ* 2015; **351**:h4580.

- 17. Tai V, Leung W, Grey A, Reid IR, Bolland MJ. Calcium intake and bone mineral density: systematic review and meta-analysis. *BMJ* 2015; **351**:h4183.
- 18. Bolland MJ, Avenell A, Baron JA, Grey A, Maclennan GS, Gamble GD, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. *BMJ* 2010; **341**:c3691.
- 19. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. *BMJ* 2011; **342**:d2040.
- 20. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. *N Engl J Med* 2006; **354**:669-83.
- 21. Lewis JR, Zhu K, Prince RL. Adverse events from calcium supplementation: relationship to errors in myocardial infarction self-reporting in randomized controlled trials of calcium supplementation. *J Bone Miner Res* 2012; **27**:719-22.
- 22. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev* 2015; **4**:1.
- 23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009; **339**:b2535.
- 24. Higgins JPT, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0 [updated March 2011]: The Cochrane Collaboration, available from www.cochrane-handbook.org; 2011.
- 25. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. User manual for trial sequential analysis (TSA). Copenhagen, Denmark: Copenhagen Trial Unit, Centre for Clinical Intervention Research; 2011.
- 26. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. *J Clin Epidemiol* 2008; **61**:64-75.
- 27. Dawson-Hughes B, Dallal GE, Krall EA, Harris S, Sokoll LJ, Falconer G. Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. *Ann Intern Med* 1991; **115**:505-12.
- 28. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE, Falconer G, Green CL. Rates of bone loss in postmenopausal women randomly assigned to one of two dosages of vitamin D. *Am J Clin Nutr* 1995; **61**:1140-5.
- 29. Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM, Lips P. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. *J Clin Endocrinol Metab* 1995; **80**:1052-8.
- Graafmans WC, Ooms ME, Hofstee HM, Bezemer PD, Bouter LM, Lips P. Falls in the elderly: a prospective study of risk factors and risk profiles. *Am J Epidemiol* 1996; 143:1129-36.
- 31. Lips P, Graafmans WC, Ooms ME, Bezemer PD, Bouter LM. Vitamin D supplementation and fracture incidence in elderly persons. A randomized, placebo-controlled clinical trial. *Ann Intern Med* 1996; **124**:400-6.
- 32. Komulainen MH, Kroger H, Tuppurainen MT, Heikkinen AM, Alhava E, Honkanen R, et al. HRT and Vit D in prevention of non-vertebral fractures in postmenopausal women; a 5 year randomized trial. *Maturitas* 1998; **31**:45-54.
- 33. Komulainen M, Kroger H, Tuppurainen MT, Heikkinen AM, Alhava E, Honkanen R, et al. Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: a population-based 5-year randomized trial. *J Clin Endocrinol Metab* 1999; **84**:546-52.

- 34. Hunter D, Major P, Arden N, Swaminathan R, Andrew T, MacGregor AJ, et al. A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. *J Bone Miner Res* 2000; **15**:2276-83.
- 35. Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. *J Bone Miner Res* 2000; **15**:1113-8.
- 36. Patel R, Collins D, Bullock S, Swaminathan R, Blake GM, Fogelman I. The effect of season and vitamin D supplementation on bone mineral density in healthy women: a double-masked crossover study. *Osteoporos Int* 2001; **12**:319-25.
- 37. Meyer HE, Smedshaug GB, Kvaavik E, Falch JA, Tverdal A, Pedersen JI. Can vitamin D supplementation reduce the risk of fracture in the elderly? A randomized controlled trial. *J Bone Miner Res* 2002; **17**:709-15.
- 38. Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. *J Bone Miner Res* 2003; **18**:343-51.
- 39. Cooper L, Clifton-Bligh PB, Nery ML, Figtree G, Twigg S, Hibbert E, et al. Vitamin D supplementation and bone mineral density in early postmenopausal women. *Am J Clin Nutr* 2003; **77**:1324-9.
- 40. Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). *J Am Geriatr Soc* 2003; **51**:291-9.
- 41. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. *BMJ* 2003; **326**:469.
- 42. Avenell A, Grant AM, McGee M, McPherson G, Campbell MK, McGee MA, et al. The effects of an open design on trial participant recruitment, compliance and retention--a randomized controlled trial comparison with a blinded, placebocontrolled design. *Clin Trials* 2004; **1**:490-8.
- 43. Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG, et al. Vitamin D supplementation improves neuromuscular function in older people who fall. *Age Ageing* 2004; **33**:589-95.
- 44. Harwood RH, Sahota O, Gaynor K, Masud T, Hosking DJ, Nottingham Neck of Femur S. A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NONOF) Study. *Age Ageing* 2004; **33**:45-51.
- 45. Aloia JF, Talwar SA, Pollack S, Yeh J. A randomized controlled trial of vitamin D3 supplementation in African American women. *Arch Intern Med* 2005; **165**:1618-23.
- 46. Flicker L, MacInnis RJ, Stein MS, Scherer SC, Mead KE, Nowson CA, et al. Should older people in residential care receive vitamin D to prevent falls? Results of a randomized trial. *J Am Geriatr Soc* 2005; **53**:1881-8.
- 47. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. *Lancet* 2005; **365**:1621-8.
- 48. Wissing KM, Broeders N, Moreno-Reyes R, Gervy C, Stallenberg B, Abramowicz D. A controlled study of vitamin D3 to prevent bone loss in renal-transplant patients receiving low doses of steroids. *Transplantation* 2005; **79**:108-15.

- 49. Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendano M, et al. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. *Exp Gerontol* 2006; **41**:746-52.
- 50. Law M, Withers H, Morris J, Anderson F. Vitamin D supplementation and the prevention of fractures and falls: results of a randomised trial in elderly people in residential accommodation. *Age Ageing* 2006; **35**:482-6.
- 51. Mikati MA, Dib L, Yamout B, Sawaya R, Rahi AC, Fuleihan Gel H. Two randomized vitamin D trials in ambulatory patients on anticonvulsants: impact on bone. *Neurology* 2006; **67**:2005-14.
- 52. Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP. A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. *J Am Geriatr Soc* 2007; **55**:234-9.
- 53. Burleigh E, McColl J, Potter J. Does vitamin D stop inpatients falling? A randomised controlled trial. *Age Ageing* 2007; **36**:507-13.
- 54. Lyons RA, Johansen A, Brophy S, Newcombe RG, Phillips CJ, Lervy B, et al. Preventing fractures among older people living in institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D supplementation. *Osteoporos Int* 2007; **18**:811-8.
- 55. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women--a population-based, randomized, double-blind, placebo-controlled trial. *Rheumatology (Oxford)* 2007; **46**:1852-7.
- 56. Andersen R, Molgaard C, Skovgaard LT, Brot C, Cashman KD, Jakobsen J, et al. Effect of vitamin D supplementation on bone and vitamin D status among Pakistani immigrants in Denmark: a randomised double-blinded placebo-controlled intervention study. *Br J Nutr* 2008; **100**:197-207.
- 57. Prince RL, Austin N, Devine A, Dick IM, Bruce D, Zhu K. Effects of ergocalciferol added to calcium on the risk of falls in elderly high-risk women. *Arch Intern Med* 2008; **168**:103-8.
- 58. Zhu K, Bruce D, Austin N, Devine A, Ebeling PR, Prince RL. Randomized controlled trial of the effects of calcium with or without vitamin D on bone structure and bone-related chemistry in elderly women with vitamin D insufficiency. *J Bone Miner Res* 2008; **23**:1343-8.
- 59. Zhu K, Devine A, Dick IM, Wilson SG, Prince RL. Effects of calcium and vitamin D supplementation on hip bone mineral density and calcium-related analytes in elderly ambulatory Australian women: a five-year randomized controlled trial. *J Clin Endocrinol Metab* 2008; **93**:743-9.
- 60. Islam MZ, Shamim AA, Viljakainen HT, Akhtaruzzaman M, Jehan AH, Khan HU, et al. Effect of vitamin D, calcium and multiple micronutrient supplementation on vitamin D and bone status in Bangladeshi premenopausal garment factory workers with hypovitaminosis D: a double-blinded, randomised, placebo-controlled 1-year intervention. *Br J Nutr* 2010; **104**:241-7.
- 61. Jorde R, Sneve M, Torjesen PA, Figenschau Y, Hansen JB, Grimnes G. No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year. *Nutr J* 2010; **9**:1.
- 62. Janssen HC, Samson MM, Verhaar HJ. Muscle strength and mobility in vitamin Dinsufficient female geriatric patients: a randomized controlled trial on vitamin D and calcium supplementation. *Aging Clin Exp Res* 2010; **22**:78-84.

- 63. Witham MD, Crighton LJ, Gillespie ND, Struthers AD, McMurdo ME. The effects of vitamin D supplementation on physical function and quality of life in older patients with heart failure: a randomized controlled trial. *Circ Heart Fail* 2010; **3**:195-201.
- 64. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. *Am J Clin Nutr* 2011; **94**:486-94.
- 65. Papaioannou A, Kennedy CC, Giangregorio L, Ioannidis G, Pritchard J, Hanley DA, et al. A randomized controlled trial of vitamin D dosing strategies after acute hip fracture: no advantage of loading doses over daily supplementation. *BMC Musculoskelet Disord* 2011; **12**:135.
- 66. Rastelli AL, Taylor ME, Gao F, Armamento-Villareal R, Jamalabadi-Majidi S, Napoli N, et al. Vitamin D and aromatase inhibitor-induced musculoskeletal symptoms (AIMSS): a phase II, double-blind, placebo-controlled, randomized trial. *Breast Cancer Res Treat* 2011; **129**:107-16.
- 67. Steffensen LH, Jorgensen L, Straume B, Mellgren SI, Kampman MT. Can vitamin D supplementation prevent bone loss in persons with MS? A placebo-controlled trial. *J Neurol* 2011; **258**:1624-31.
- 68. Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. *J Bone Miner Res* 2011; **26**:42-9.
- 69. Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of threemonthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. *J Bone Miner Res* 2012; **27**:170-6.
- 70. Grimnes G, Joakimsen R, Figenschau Y, Torjesen PA, Almas B, Jorde R. The effect of high-dose vitamin D on bone mineral density and bone turnover markers in postmenopausal women with low bone mass--a randomized controlled 1-year trial. *Osteoporos Int* 2012; **23**:201-11.
- 71. Nieves JW, Cosman F, Grubert E, Ambrose B, Ralston SH, Lindsay R. Skeletal effects of vitamin D supplementation in postmenopausal black women. *Calcif Tissue Int* 2012; **91**:316-24.
- 72. Iuliano-Burns S, Ayton J, Hillam S, Jones G, King K, Macleod S, et al. Skeletal and hormonal responses to vitamin D supplementation during sunlight deprivation in Antarctic expeditioners. *Osteoporos Int* 2012; **23**:2461-7.
- 73. Bolland MJ, Wilsher ML, Grey A, Horne AM, Fenwick S, Gamble GD, et al. Randomised controlled trial of vitamin D supplementation in sarcoidosis. *BMJ Open* 2013; **3**:e003562.
- 74. Macdonald HM, Wood AD, Aucott LS, Black AJ, Fraser WD, Mavroeidi A, et al. Hip bone loss is attenuated with 1000 IU but not 400 IU daily vitamin D3: a 1-year double-blind RCT in postmenopausal women. *J Bone Miner Res* 2013; **28**:2202-13.
- 75. Wood AD, Secombes KR, Thies F, Aucott LS, Black AJ, Reid DM, et al. A parallel group double-blind RCT of vitamin D3 assessing physical function: is the biochemical response to treatment affected by overweight and obesity? *Osteoporos Int* 2014; **25**:305-15.
- 76. Punthakee Z, Bosch J, Dagenais G, Diaz R, Holman R, Probstfield J, et al. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. *Diabetologia* 2012; **55**:36-45.

- 77. Wamberg L, Pedersen SB, Richelsen B, Rejnmark L. The effect of high-dose vitamin D supplementation on calciotropic hormones and bone mineral density in obese subjects with low levels of circulating 25-hydroxyvitamin d: results from a randomized controlled study. *Calcif Tissue Int* 2013; **93**:69-77.
- 78. Witham MD, Price RJ, Struthers AD, Donnan PT, Messow CM, Ford I, et al. Cholecalciferol treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH randomized controlled trial. *JAMA Intern Med* 2013; **173**:1672-9.
- 79. Breslavsky A, Oz H, Matas Z, Shargorodsky M. The effect of vitamin D supplementation on plasma leptin/adiponectin ratio in diabetic individuals with different haptoglobin phenotypes. *Cardiovasc Endocrinol* 2014; **3**:74-8.
- 80. Massart A, Debelle FD, Racape J, Gervy C, Husson C, Dhaene M, et al. Biochemical parameters after cholecalciferol repletion in hemodialysis: results From the VitaDial randomized trial. *Am J Kidney Dis* 2014; **64**:696-705.
- 81. Norenstedt S, Pernow Y, Zedenius J, Nordenstrom J, Saaf M, Granath F, et al. Vitamin D supplementation after parathyroidectomy: effect on bone mineral density-a randomized double-blind study. *J Bone Miner Res* 2014; **29**:960-7.
- 82. Rizzoli R, Dawson-Hughes B, Kaufman JM, Fardellone P, Brandi ML, Vellas B, et al. Correction of vitamin D insufficiency with combined strontium ranelate and vitamin D3 in osteoporotic patients. *Eur J Endocrinol* 2014; **170**:441-50.
- 83. Rolighed L, Rejnmark L, Sikjaer T, Heickendorff L, Vestergaard P, Mosekilde L, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. *J Clin Endocrinol Metab* 2014; **99**:1072-80.
- 84. Baron JA, Barry EL, Mott LA, Rees JR, Sandler RS, Snover DC, et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. *N Engl J Med* 2015; **373**:1519-30.
- 85. Cangussu LM, Nahas-Neto J, Orsatti CL, Poloni PF, Schmitt EB, Almeida-Filho B, et al. Effect of isolated vitamin D supplementation on the rate of falls and postural balance in postmenopausal women fallers: a randomized, double-blind, placebo-controlled trial. *Menopause* 2015.
- 86. Hansen KE, Johnson RE, Chambers KR, Johnson MG, Lemon CC, Vo TN, et al. Treatment of Vitamin D Insufficiency in Postmenopausal Women: A Randomized Clinical Trial. *JAMA Intern Med* 2015; **175**:1612-21.
- 87. Houston DK, Tooze JA, Demons JL, Davis BL, Shertzer-Skinner R, Kearsley LB, et al. Delivery of a Vitamin D Intervention in Homebound Older Adults Using a Mealson-Wheels Program: A Pilot Study. *J Am Geriatr Soc* 2015; **63**:1861-7.
- 88. Liyanage PLGC, Lekamwasam S, Weerarathna TP, Liyanage C. Effect of vitamin D therapy on bone mineral density among patients with diabetic nephropathya a randomized, doubleblind placebo controlled clinical trial. *Osteoporos Int* 2015; **1**:S230.
- 89. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. Exercise and vitamin D in fall prevention among older women: a randomized clinical trial. *JAMA Intern Med* 2015; **175**:703-11.
- 90. Aspray TJ, Francis RM, McColl E, Chadwick TJ, Stamp E, Prentice A, et al. Vitamin D in older people (VDOP): A does ranging intervention trail to prevent bone loss. *J Bone Miner Res* 2016; **31**:S1: Abstract SA 003.
- 91. Jin X, Jones G, Cicuttini F, Wluka A, Zhu Z, Han W, et al. Effect of Vitamin D Supplementation on Tibial Cartilage Volume and Knee Pain Among Patients With Symptomatic Knee Osteoarthritis: A Randomized Clinical Trial. JAMA 2016; 315:1005-13.

- Mak JC, Mason RS, Klein L, Cameron ID. An initial loading-dose vitamin D versus placebo after hip fracture surgery: randomized trial. *BMC Musculoskelet Disord* 2016; 17:336.
- 93. Mason C, Tapsoba JD, Duggan C, Imayama I, Wang CY, Korde L, et al. Effects of Vitamin D3 Supplementation on Lean Mass, Muscle Strength, and Bone Mineral Density During Weight Loss: A Double-Blind Randomized Controlled Trial. *J Am Geriatr Soc* 2016; **64**:769-78.
- 94. Owusu J, Mikhail M, Fazzari M, Dhaliwal R, Katumuluwa S, Shieh A, et al. Physical performance, osteoporosis and vitamin D in elderly African-American women the PODA trial and bone density loss. *J Bone Miner Res* 2017; **32**:S1: Abstract 1157.
- 95. Eckard AR, O'Riordan MA, Rosebush JC, Ruff JH, Chahroudi A, Labbato D, et al. Effects of Vitamin D Supplementation on Bone Mineral Density and Bone Markers in HIV-Infected Youth. *J Acquir Immune Defic Syndr* 2017; **76**:539-46.
- 96. Ginde AA, Blatchford P, Breese K, Zarrabi L, Linnebur SA, Wallace JI, et al. High-Dose Monthly Vitamin D for Prevention of Acute Respiratory Infection in Older Long-Term Care Residents: A Randomized Clinical Trial. *J Am Geriatr Soc* 2017; 65:496-503.
- 97. Hin H, Tomson J, Newman C, Kurien R, Lay M, Cox J, et al. Optimum dose of vitamin D for disease prevention in older people: BEST-D trial of vitamin D in primary care. *Osteoporos Int* 2017; **28**:841-51.
- 98. Khaw KT, Stewart AW, Waayer D, Lawes CMM, Toop L, Camargo CA, Jr., et al. Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomised, double-blind, placebo-controlled ViDA trial. *Lancet Diabetes Endocrinol* 2017; **5**:438-47.
- 99. Larsen AU, Grimnes G, Jorde R. The effect of high-dose vitamin D3 supplementation on bone mineral density in subjects with prediabetes. *Osteoporos Int* 2018; **29**:171-80.
- 100. Levis S, Gomez-Marin O. Vitamin D and Physical Function in Sedentary Older Men. *J Am Geriatr Soc* 2017; **65**:323-31.
- Pop LC, Sukumar D, Schneider SH, Schlussel Y, Stahl T, Gordon C, et al. Three doses of vitamin D, bone mineral density, and geometry in older women during modest weight control in a 1-year randomized controlled trial. *Osteoporos Int* 2017; 28:377-88.
- 102. Rahme M, Sharara SL, Baddoura R, Habib RH, Halaby G, Arabi A, et al. Impact of Calcium and Two Doses of Vitamin D on Bone Metabolism in the Elderly: A Randomized Controlled Trial. *J Bone Miner Res* 2017; **32**:1486-95.
- 103. Reid IR, Horne AM, Mihov B, Gamble GD, Al-Abuwsi F, Singh M, et al. Effect of monthly high-dose vitamin D on bone density in community-dwelling older adults substudy of a randomized controlled trial. *J Intern Med* 2017; **282**:452-60.
- 104. Schwetz V, Schnedl C, Urbanic-Purkart T, Trummer C, Dimai HP, Fahrleitner-Pammer A, et al. Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. *Osteoporos Int* 2017; **28**:3347-54.
- 105. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial. *J Steroid Biochem Mol Biol* 2017; **173**:317-22.
- 106. Havens PL, Stephensen CB, Van Loan MD, Schuster GU, Woodhouse LR, Flynn PM, et al. Vitamin D3 Supplementation Increases Spine Bone Mineral Density in Adolescents and Young Adults With Human Immunodeficiency Virus Infection Being Treated With Tenofovir Disoproxil Fumarate: A Randomized, Placebo-Controlled Trial. *Clin Infect Dis* 2018; **66**:220-8.

- 107. Zheng CM, Wu CC, Hung CF, Liao MT, Shyu JF, Hsu YH, et al. Cholecalciferol Additively Reduces Serum Parathyroid Hormone Levels in Severe Secondary Hyperparathyroidism Treated with Calcitriol and Cinacalcet among Hemodialysis Patients. *Nutrients* 2018; **10**:E196.
- U. S. Preventive Services Task Force, Grossman DC, Curry SJ, Owens DK, Barry MJ, Caughey AB, et al. Interventions to Prevent Falls in Community-Dwelling Older Adults: US Preventive Services Task Force Recommendation Statement. *JAMA* 2018; 319:1696-704.
- 109. U. S. Preventive Services Task Force, Grossman DC, Curry SJ, Owens DK, Barry MJ, Caughey AB, et al. Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: US Preventive Services Task Force Recommendation Statement. *JAMA* 2018; **319**:1592-9.
- 110. Bolland MJ, Grey A. A case study of discordant overlapping meta-analyses: vitamin d supplements and fracture. *PLoS One* 2014; **9**:e115934.
- 111. Bolland MJ, Grey A, Reid IR. Differences in overlapping meta-analyses of vitamin d supplements and falls. *J Clin Endocrinol Metab* 2014; **99**:4265-72.
- 112. Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. *Nat Rev Endocrinol* 2017; **13**:466-79.
- Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. *J Steroid Biochem Mol Biol* 2018; 175:125-35.
- 114. Christiansen C, Christensen MS, McNair P, Hagen C, Stocklund KE, Transbol I. Prevention of early postmenopausal bone loss: controlled 2-year study in 315 normal females. *Eur J Clin Invest* 1980; **10**:273-9.
- 115. Mobarhan SA, Russell RM, Recker RR, Posner DB, Iber FL, Miller P. Metabolic bone disease in alcoholic cirrhosis: a comparison of the effect of vitamin D2, 25-hydroxyvitamin D, or supportive treatment. *Hepatology* 1984; **4**:266-73.
- 116. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. *N Engl J Med* 1992;
   327:1637-42.
- 117. Chapuy MC, Arlot ME, Delmas PD, Meunier PJ. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. *BMJ* 1994; **308**:1081-2.
- 118. Vogelsang H, Ferenci P, Resch H, Kiss A, Gangl A. Prevention of bone mineral loss in patients with Crohn's disease by long-term oral vitamin D supplementation. *Eur J Gastroenterol Hepatol* 1995; **7**:609-14.
- 119. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. *N Engl J Med* 1997; **337**:670-6.
- Baeksgaard L, Andersen KP, Hyldstrup L. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women. *Osteoporos Int* 1998; 8:255-60.
- 121. Tuppurainen MT, Komulainen M, Kroger H, Honkanen R, Jurvelin J, Puntila E, et al. Does vitamin D strengthen the increase in femoral neck BMD in osteoporotic women treated with estrogen? *Osteoporos Int* 1998; **8**:32-8.
- 122. Krieg MA, Jacquet AF, Bremgartner M, Cuttelod S, Thiebaud D, Burckhardt P. Effect of supplementation with vitamin D3 and calcium on quantitative ultrasound of bone in elderly institutionalized women: a longitudinal study. *Osteoporos Int* 1999; **9**:483-8.

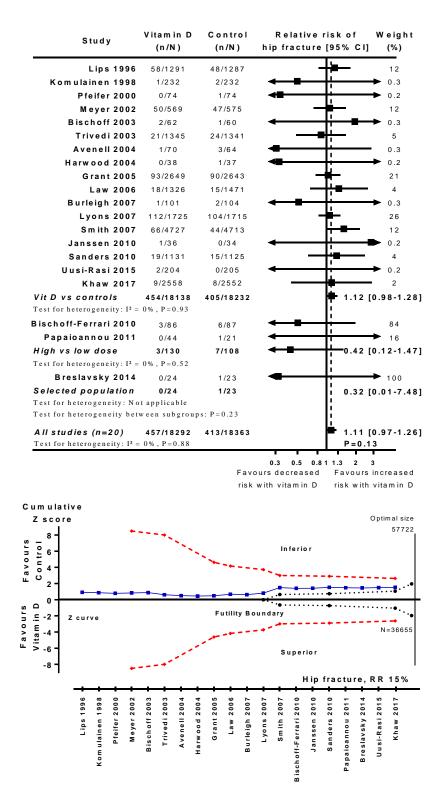
- 123. Peichl P, Rintelen B, Kumpan W, Broll H. Increase of axial and appendicular trabecular and cortical bone density in established osteoporosis with intermittent nasal salmon calcitonin therapy. *Gynecol Endocrinol* 1999; **13**:7-14.
- 124. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. *J Bone Miner Res* 2004; **19**:370-8.
- 125. Meier C, Woitge HW, Witte K, Lemmer B, Seibel MJ. Supplementation with oral vitamin D3 and calcium during winter prevents seasonal bone loss: a randomized controlled open-label prospective trial. *J Bone Miner Res* 2004; **19**:1221-30.
- 126. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents severe falls in elderly community-dwelling women: a pragmatic population-based 3-year intervention study. *Aging Clin Exp Res* 2005; **17**:125-32.
- 127. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, et al. Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. *BMJ* 2005; **330**:1003.
- 128. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. *Cerebrovasc Dis* 2005; **20**:187-92.
- 129. Arden NK, Crozier S, Smith H, Anderson F, Edwards C, Raphael H, et al. Knee pain, knee osteoarthritis, and the risk of fracture. *Arthritis Rheum* 2006; **55**:610-5.
- 130. Bischoff-Ferrari HA, Orav EJ, Dawson-Hughes B. Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. *Arch Intern Med* 2006; **166**:424-30.
- 131. Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. *J Bone Miner Res* 2007; **22**:509-19.
- 132. Berggren M, Stenvall M, Olofsson B, Gustafson Y. Evaluation of a fall-prevention program in older people after femoral neck fracture: a one-year follow-up. *Osteoporos Int* 2008; **19**:801-9.
- 133. Grieger JA, Nowson CA, Jarman HF, Malon R, Ackland LM. Multivitamin supplementation improves nutritional status and bone quality in aged care residents. *Eur J Clin Nutr* 2009; **63**:558-65.
- Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. *Osteoporos Int* 2009; 20:315-22.
- Viljakainen HT, Vaisanen M, Kemi V, Rikkonen T, Kroger H, Laitinen EK, et al. Wintertime vitamin D supplementation inhibits seasonal variation of calcitropic hormones and maintains bone turnover in healthy men. *J Bone Miner Res* 2009; 24:346-52.
- 136. Salovaara K, Tuppurainen M, Karkkainen M, Rikkonen T, Sandini L, Sirola J, et al. Effect of vitamin D(3) and calcium on fracture risk in 65- to 71-year-old women: a population-based 3-year randomized, controlled trial--the OSTPRE-FPS. *J Bone Miner Res* 2010; 25:1487-95.
- 137. Karkkainen M, Tuppurainen M, Salovaara K, Sandini L, Rikkonen T, Sirola J, et al. Effect of calcium and vitamin D supplementation on bone mineral density in women aged 65-71 years: a 3-year randomized population-based trial (OSTPRE-FPS). *Osteoporos Int* 2010; **21**:2047-55.

- 138. Takizawa H, Igarashi M, Hayashi Y, Karube S, Kimura H. [Comparison of treatments in senile osteoporosis: follow up for 12 months (author's transl)]. *Nihon Seikeigeka Gakkai Zasshi* 1980; **54**:345-55.
- Tjellesen L, Gotfredsen A, Christiansen C. Effect of vitamin D2 and D3 on bonemineral content in carbamazepine-treated epileptic patients. *Acta Neurol Scand* 1983; 68:424-8.
- 140. Imaoka M, Higuchi Y, Todo E, Kitagwa T, Ueda T. Low-frequency Exercise and Vitamin D Supplementation Reduce Falls Among Institutionalized Frail Elderly. *International Journal of Gerontology* 2016; **10**:202-6.
- Mager DR, Jackson ST, Hoffmann MR, Jindal K, Senior PA. Vitamin D3 supplementation, bone health and quality of life in adults with diabetes and chronic kidney disease: Results of an open label randomized clinical trial. *Clin Nutr* 2017; 36:686-96.
- 142. Kruger MC, Chan YM, Lau LT, Lau CC, Chin YS, Kuhn-Sherlock B, et al. Calcium and vitamin D fortified milk reduces bone turnover and improves bone density in postmenopausal women over 1 year. *Eur J Nutr* 2017.
- 143. Wei W, Shary JR, Garrett-Mayer E, Anderson B, Forestieri NE, Hollis BW, et al. Bone mineral density during pregnancy in women participating in a randomized controlled trial of vitamin D supplementation. *Am J Clin Nutr* 2017; **106**:1422-30.
- 144. Venkatachalam S, Gupta R, Speden D, Fickling W, Robertson D, Ring E, et al. A randomised controlled trial of parenteral vitamin D in coeliac disease-Bone density changes. *Osteoporos Int* 2003; **14**:S39-S40.
- 145. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. *Am J Clin Nutr* 2007; **85**:1586-91.
- 146. Mieczkowski M, Zebrowski P, Wojtaszek E, Stompor T, Przedlacki J, Bartoszewicz Z, et al. Long-term cholecalciferol administration in hemodialysis patients: a single-center randomized pilot study. *Med Sci Monit* 2014; **20**:2228-34.
- 147. Maity A, Chauhan K. Efficacy of calcium and vitamin D doses in relation to bone health of elderly people. *Annals of Nutrition and Metabolism* 2015; **67**:434-5.
- 148. Peppone L, Mustian K, Peoples A, Kerns S, Reschke J, Cole C, et al. A phase II RCT of high-dose vitamin D supplementation for androgen deprivation therapy (ADT)-induced bone loss among older prostate cancer (PCa) patients. Journal of clinical oncology Conference: 2017 annual meeting of the american society of clinical oncology, ASCO United states; 2017.
- 149. Tan B, Li P, Lv H, Yang H, Li Y, Wang O, et al. Therapeutic effect of vitamin D supplementation in Chinese inflammatory bowel disease patients: an open-label, randomized pilot study. Journal of digestive diseases Conference: 17th congress of gastroenterology china China; 2017. p. 30.
- 150. Vos R, Ruttens D, Verleden SE, Vandermeulen E, Bellon H, Van Herck A, et al. High-dose vitamin D after lung transplantation: A randomized trial. *J Heart Lung Transplant* 2017; **36**:897-905.

| Characteristics of randomised controlled trials     | All trials (n=81) |
|-----------------------------------------------------|-------------------|
| Population unselected for illness                   | 61 (75%)          |
| Treatment studied                                   |                   |
| Vitamin D vs controls                               | 39 (48)           |
| Vitamin D with agent vs agent                       | 26 (32)           |
| Calcium                                             | 20                |
| Exercise                                            | 2                 |
| Calcium/Exercise                                    | 1                 |
| Other                                               | 3                 |
| High vs low dose vitamin D                          | 16 (20)           |
| Vitamin D dose >800 IU/d                            | 55 (68)           |
| Frequency of vitamin D dose                         |                   |
| Daily                                               | 44 (54)           |
| Intermittent                                        | 36 (44)           |
| Mixed                                               | 1 (1)             |
| Duration ≤1 year                                    | 55 (68)           |
| >200 participants                                   | 39 (48)           |
| Community dwelling participants                     | 69 (85)           |
| Majority of participants female                     | 62 (77)           |
| Baseline mean age <65 years                         | 33 (41)           |
| Baseline mean Body Mass Index <30 kg/m <sup>2</sup> | 58 (72)           |
| Baseline 25-hydroxyvitamin D                        |                   |
| <25 nmol/L                                          | 4 (6)             |
| <50 nmol/L                                          | 41 (57)           |
| <75 nmol/L                                          | 71 (99)           |
| Achieved 25-hydroxyvitamin D                        |                   |
| 50+ nmol/L                                          | 69 (91)           |
| 75+ nmol/L                                          | 44 (58)           |
| Outcome data                                        |                   |
| Fracture                                            | 42 (52)           |
| Falls                                               | 37 (46)           |
| Bone mineral density                                | 41 (51)           |

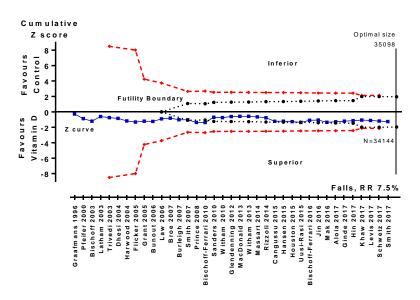
# Table 1: Summary of selected characteristics of eligible trials

Data are number of trials (%).


|                     | Incidence/    |                 |                     |                        |
|---------------------|---------------|-----------------|---------------------|------------------------|
| Outcome             | Heterogeneity | Effect size     | Optimum sample size | Result                 |
| Total fracture      | 10%/18%       | 15% RR          | 14364               | Futile                 |
| 36 studies, n=44790 |               | 10% RR          | 33100               | Futile                 |
|                     |               | 7.5% RR         | 59536               | Futile                 |
|                     |               | 5% RR           | 135507              | Futile                 |
| Hip fracture        | 2.5%/15%      | 20% RR          | 32495               | Futile                 |
| 20 studies, n=36655 |               | 15% RR          | 57722               | Uncertain <sup>a</sup> |
| Falls               | 40%/76%       | 15% RR          | 8638                | Futile                 |
| 37 studies, n=34144 |               | 10% RR          | 19643               | Futile                 |
|                     |               | 7.5% RR         | 35098               | Futile                 |
|                     |               | 5% RR           | 79344               | Uncertain <sup>b</sup> |
| Lumbar spine        |               |                 |                     |                        |
| BMD                 | -/50%         | 3% difference   | 144                 | Not assessible         |
| 33 studies, n=5198  |               | 2% difference   | 327                 | Futile                 |
|                     |               | 1% difference   | 1304                | Futile                 |
|                     |               | 0.5% difference | 5212                | Benefit                |
| Total hip BMD       |               | 3% difference   | 46                  | Not assessible         |
| 28 studies, n=4572  | -/64%         | 2% difference   | 104                 | Not assessible         |
|                     |               | 1% difference   | 409                 | Futile                 |
|                     |               | 0.5% difference | 1627                | Futile                 |
| Femoral neck BMD    |               | 3% difference   | 128                 | Not assessible         |
| 26 studies, n=4311  | -/73%         | 2% difference   | 285                 | Benefit                |
|                     |               | 1% difference   | 1140                | Futile                 |
|                     |               | 0.5% difference | 4561                | Benefit                |
| Forearm BMD         |               | 3% difference   | 27                  | Not assessible         |
| 10 studies, n=1096  | -/15%         | 2% difference   | 60                  | Not assessible         |
|                     |               | 1% difference   | 237                 | Futile                 |
|                     |               | 0.5% difference | 947                 | Futile                 |
| Total Body BMD      | -/82%         | 3% difference   | 59                  | Not assessible         |
| 15 studies, n=2793  |               | 2% difference   | 135                 | Not assessible         |
|                     |               | 1% difference   | 535                 | Futile                 |
|                     |               | 0.5% difference | 2138                | Futile                 |
|                     |               |                 |                     |                        |

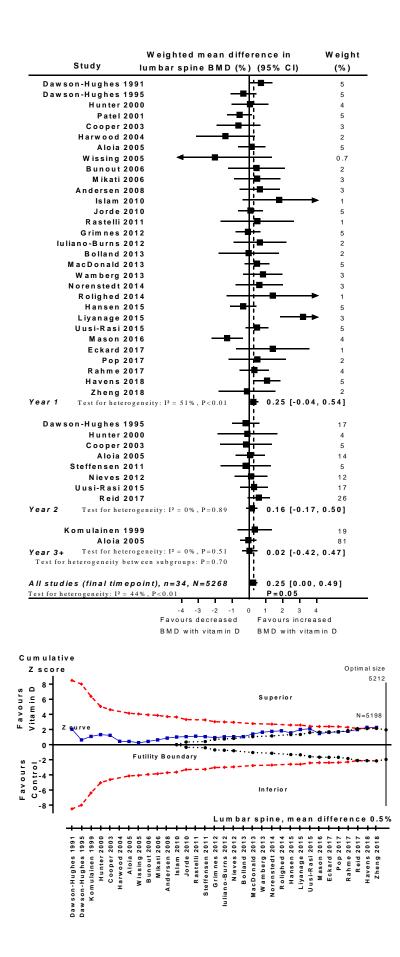
#### Table 2: Results of trial sequential analyses

BMD- bone mineral density, RR- risk reduction. Not assessable- analyses were not possible because the optimum sample size was smaller than the sample size for the first trial. <sup>a</sup> effect size lay between the futility and inferior boundaries <sup>b</sup> effect size lay between the futility and superior boundaries


| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                         | Vitamin D<br>(n/N)                        | Control<br>(n/N)           | R elative r<br>total fracture                                    | -                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Lips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1996                                                                      | 135/1291                                  | 122/1287                   | -                                                                | 9                                                                                                                       |
| Komulainen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           | 18/232                                    | 21/232                     |                                                                  | 2                                                                                                                       |
| Pfeifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 3/74                                      | 6/74                       | <                                                                | 0.3                                                                                                                     |
| Meyer<br>Trivedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 69/569<br>119/1345                        | 76/575<br>149/1341         |                                                                  | - 6<br>9                                                                                                                |
| Avenell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 6/70                                      | 149/1341                   |                                                                  | 0.7                                                                                                                     |
| Harwood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 0/38                                      | 5/37                       |                                                                  | 0.1                                                                                                                     |
| Flicker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005                                                                      | 25/313                                    | 35/312                     |                                                                  | 2                                                                                                                       |
| Grant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2005                                                                      | 387/2649                                  | 377/2643                   |                                                                  | 18                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2006                                                                      | 48/1326                                   | 38/1471                    |                                                                  | 3                                                                                                                       |
| Burleigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | 1/101                                     | 3/104                      |                                                                  | • 0.1                                                                                                                   |
| Lyons<br>Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | 205/1725                                  | 218/1715                   | -1                                                               | 13                                                                                                                      |
| Prince                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 306/4727<br>4/151                         | 279/4713<br>3/151          |                                                                  | ■ 15<br>■ ● 0.3                                                                                                         |
| Janssen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 1/36                                      | 0/34                       |                                                                  | • 0.1                                                                                                                   |
| Sanders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 155/1131                                  | 125/1125                   |                                                                  | - 9                                                                                                                     |
| Glendenning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           | 10/353                                    | 10/333                     |                                                                  | 0.8                                                                                                                     |
| MacDonald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2013                                                                      | 3/203                                     | 3/102                      | <b>← ∎</b>                                                       | 0.2                                                                                                                     |
| Hansen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2015                                                                      | 4/154                                     | 4/76                       | <b>←</b> ∎                                                       | 0.3                                                                                                                     |
| Uusi-Rasi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           | 9/204                                     | 11/205                     |                                                                  | 0.8                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2017                                                                      | 6/204                                     | 1/101                      |                                                                  | • 0.1                                                                                                                   |
| Khaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 156/2558                                  | 136/2552                   | -                                                                | 9                                                                                                                       |
| Larsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 15/256                                    | 13/255                     |                                                                  |                                                                                                                         |
| Smith<br>Dvscontro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | 5/235<br>1690/19945                       | 1/38                       |                                                                  | ► 0.1                                                                                                                   |
| t for heterogene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |                                           | 1647/19540                 | •                                                                | 1.01 [0.94-1.10]                                                                                                        |
| choff-Ferrari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | 7/86                                      | 15/87                      | <b></b>                                                          | - 41                                                                                                                    |
| Grimnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 6/149                                     | 6/148                      |                                                                  | ▶ 24                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2016                                                                      | 3/111                                     | 3/107                      |                                                                  | ▶ 12                                                                                                                    |
| Ginde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           | 4/55                                      | 8/52                       | <b>←</b> ∎───                                                    | 23                                                                                                                      |
| <b>gh vs low dos</b><br>t for heterogene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | <b>20/401</b><br>0%, P=0.66               | 32/394                     |                                                                  | 0.61 [0.36-1.06]                                                                                                        |
| Witham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2010                                                                      | 2/53                                      | 1/52                       |                                                                  | 2                                                                                                                       |
| M itri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2011                                                                      | 1/86                                      | 0/86                       | •                                                                | 1                                                                                                                       |
| Punthakee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           | 3/607                                     | 3/614                      |                                                                  | → 4                                                                                                                     |
| Witham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 2/80                                      | 3/79                       |                                                                  | 3                                                                                                                       |
| Breslavsky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           | 0/24                                      | 2/23                       |                                                                  | → 1<br>→ 1                                                                                                              |
| Massart<br>Baron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0/26<br>55/1130                           | 5/29<br>64/1129            | _                                                                | - 85                                                                                                                    |
| Baron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           | 2/249                                     | 2/243                      |                                                                  | <u> </u>                                                                                                                |
| Schwetz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | 65/2255                                   | 80/2255                    |                                                                  |                                                                                                                         |
| Schwetz<br>elected popul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                           |                            |                                                                  | • •                                                                                                                     |
| st for heterogene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ity: I <sup>2</sup> =                                                     |                                           | s: P = 0.12                |                                                                  |                                                                                                                         |
| elected popul<br>st for heterogene<br>st for heterogene<br>Il studies (n=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               |                            |                                                                  | 1.00 [0.93-1.07]<br>P=0.99                                                                                              |
| elected popul<br>st for heterogene<br>st for heterogene<br>Il studies (n=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | 0.3 0.5 0.81<br>ursdecreased<br>with vitam in D                  | P = 0.99                                                                                                                |
| Schwetz<br>elected popul<br>st for heterogene<br>ist for heterogene<br>Il studies (n=:<br>sst for heterogene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | urs decreased                                                    | P=0.99<br>1.3 2 3<br>Favours increased                                                                                  |
| elected popul,<br>st for heterogene<br>st for heterogene<br>Il studies (n=3<br>st for heterogene<br>st for heterogene<br>st for heterogene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | urs decreased                                                    | P=0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D                                                          |
| ulative<br>score<br>8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size                                        |
| lected popul<br>st for heterogene<br>st for heterogene<br>I studies (n=:<br>st for heterogene<br>ulative<br>score<br>8 -<br>6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | urs decreased                                                    | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size                                        |
| lected popul,<br>it for heterogene<br>it for heterogene<br>I studies (n=:<br>it for heterogene<br>it for heterogene<br>it core<br>8 - 4 - 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ity: I <sup>2</sup> =<br>eity bety<br><b>36)</b>                          | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size                                        |
| lected popul.<br>it for heterogene<br>it for heterogene<br>l studies (n=:<br>st for heterogene<br>u lative<br>score<br>8 -<br>6 -<br>4 -<br>2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601               | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size                                        |
| lected popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>ulative<br>core<br>8 -<br>6 -<br>4 -<br>2 -<br>0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size                                        |
| lected popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>ulative<br>core<br>8<br>6<br>4<br>2<br>2<br>2<br>2<br>2<br>curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536                               |
| lected popul<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>ulative<br>core<br>8 -<br>6 -<br>4 -<br>2 -<br>2 -<br>2 -<br>2 curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size                                        |
| lected popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>ulative<br>core<br>8<br>6<br>4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>curve<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitam in D<br>Inferior                     | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536                               |
| lected popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>studies (n=:<br>core<br>8<br>6<br>4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>6<br>6<br>4<br>4<br>6<br>6<br>6<br>7<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitamin D                                  | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536                               |
| lected popul<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>k =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitam in D<br>Inferior                     | P = 0.99<br>1.3 2 3<br>Favours in creased<br>risk with vitam in D<br>Optimal size<br>59536<br>N=44790                   |
| lected popul<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>k =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ity: I <sup>2</sup> =<br>eity betx<br><b>36)</b><br>ity: I <sup>2</sup> = | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo         | urs decreased<br>with vitam in D<br>Inferior                     | P = 0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536                               |
| lected popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>store<br>a<br>a<br>core<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Futil                                                                     | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo<br>risk | urs decreased<br>with vitam in D<br>Inferior<br>Superior<br>Tota | P=0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536<br>N=44790<br>fracture, RR 7.5% |
| lected popul.<br>it for heterogene<br>it for heterogene<br>I studies (n=:<br>it for heterogene<br>score<br>8<br>6<br>4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>6<br>8<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Futil                                                                     | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo<br>risk | urs decreased<br>with vitam in D<br>Inferior<br>Superior<br>Tota | P=0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536<br>N=44790<br>fracture, RR 7.5% |
| lected popul.<br>it for heterogene<br>it for heterogene<br>I studies (n=:<br>it for heterogene<br>score<br>8<br>6<br>4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>6<br>8<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Futil                                                                     | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo<br>risk | urs decreased<br>with vitam in D<br>Inferior<br>Superior<br>Tota | P=0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536<br>N=44790<br>fracture, RR 7.5% |
| lected popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>store<br>a<br>a<br>core<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Futil                                                                     | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo<br>risk | urs decreased<br>with vitam in D<br>Inferior<br>Superior<br>Tota | P=0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536<br>N=44790<br>fracture, RR 7.5% |
| Lacted popul.<br>t for heterogene<br>t for heterogene<br>studies (n=:<br>t for heterogene<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>a<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>core<br>c | Futil                                                                     | veen subgroup<br>1775/22601<br>5%, P=0.39 | 1759/22189<br>Favo<br>risk | urs decreased<br>with vitam in D<br>Inferior<br>Superior<br>Tota | P=0.99<br>1.3 2 3<br>Favours increased<br>risk with vitam in D<br>Optimal size<br>59536<br>N=44790<br>fracture, RR 7.5% |

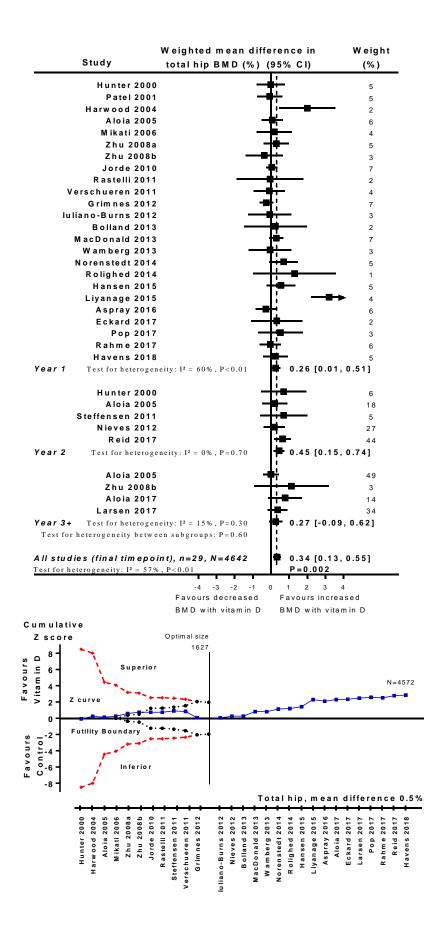
**Figure 1**: The top panel shows random effects meta-analyses of vitamin D supplementation on total fracture. Vit D vs controls refers to trials of vitamin D with controls in unselected populations, High vs Low dose to trials of higher and lower dose vitamin D in unselected populations, and Selected Population to trials of vitamin D with controls in populations with an underlying illness. The bottom panel shows trial sequential analysis of all trials of vitamin D on total fracture for a relative risk (RR) of 7.5%. The z-curve is a measure of treatment effect, and the boundaries are thresholds for statistical significance adjusted for heterogeneity of trial results and multiple statistical testing. A treatment effect outside the statistical significance boundary (dashed line) indicates that there is reliable evidence of a treatment effect, and a treatment effect within the futility boundary (dotted line) indicates that there is reliable evidence of no treatment effect. Optimal size indicates the calculated optimum sample size for statistical inference and N indicates the number of participants in the metaanalysis.




**Figure 2**: The top panel shows random effects meta-analyses of vitamin D supplementation on hip fracture. Vit D vs controls refers to trials of vitamin D with controls in unselected populations, High vs Low dose to trials of higher and lower dose vitamin D in unselected populations, and Selected Population to trials of vitamin D with controls in populations with an underlying illness. The bottom panel shows trial sequential analysis of all trials of vitamin D on hip fracture for a relative risk (RR) of 15% (see Figure 1 for detailed description).

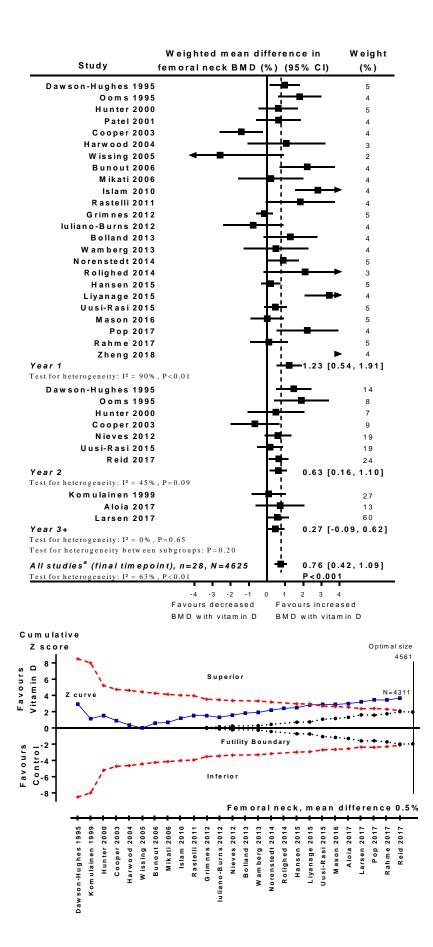
| Study                                                           | Vitam in D<br>(n/N)          | Control<br>(n/N) | Relative risk of<br>falls [95% Cl]    | Weight<br>(%) |
|-----------------------------------------------------------------|------------------------------|------------------|---------------------------------------|---------------|
| Pfeifer 2000                                                    | 11/74                        | 19/74            |                                       | 0.4           |
| Bischoff 2003                                                   | 14/62                        | 18/60            |                                       | 0.5           |
| Latham 2003                                                     | 64/121                       | 60/122           |                                       | 3             |
| Trivedi 2003                                                    | 254/1027                     | 261/1011         | +                                     | 6             |
| Dhesi 2004                                                      | 11/70                        | 14/69            |                                       | 0.4           |
| Harwood 2004                                                    | 2/38                         | 13/37            | ←                                     | 0.1           |
| Flicker 2005                                                    | 170/313                      | 185/312          | -                                     | 7             |
| Bunout 2006                                                     | 15/48                        | 16/48            |                                       | 0.6           |
| Law 2006                                                        | 492/1127                     | 533/1250         | +                                     | 10            |
| Broe 2007                                                       | 50/99                        | 11/25            |                                       | 0.8           |
| Burleigh 2007                                                   | 36/101                       | 45/104           |                                       | 2             |
| Sm ith 2007                                                     | 2544/4727                    | 2577/4713        |                                       | 16            |
| Prince 2008                                                     | 80/151                       | 95/151           | -8-                                   | 4             |
| Sanders 2010                                                    | 837/1131                     | 769/1125         |                                       | 15            |
| Glendenning 2012                                                | 102/353                      | 89/333           |                                       | 3             |
| MacDonald 2013                                                  | 60/203                       | 31/102           |                                       | 1             |
| Rizzoli 2014                                                    | 65/413                       | 21/105           |                                       | 1             |
| Cangussu 2015                                                   | 19/80                        | 37/80            | <b>——</b>                             | 0.9           |
| Hansen 2015                                                     | 46/154                       | 23/76            |                                       | 1             |
| Houston 2015                                                    | 11/37                        | 12/29            |                                       | 0.5           |
| Uusi-Rasi 2015                                                  | 136/204                      | 145/205          |                                       | 7             |
| Aloia 2017                                                      | 51/130                       | 50/130           |                                       | 2             |
| Hin 2017                                                        | 34/204                       | 14/101           |                                       | 0.6           |
| Khaw 2017                                                       | 1312/2558                    | 1326/2552        |                                       | 15            |
| Levis 2017                                                      | 8/66                         | 11/64            | ← ■ ↓                                 | 0.3           |
| Sm ith 2017                                                     | 78/235                       | 15/38            |                                       | 1             |
| Vit D vs controls                                               | 6502/13726                   | 6390/12916       | • 0.9                                 | 97 [0.93-1.02 |
| Test for heterogeneity: I <sup>2</sup> =                        | $38\%$ , $P{=}0.03$          |                  |                                       | -             |
| Bischoff-Ferrari 2010                                           | 45/86                        | 47/87            |                                       | 31            |
| Bischoff-Ferrari 2016                                           | 45/67                        | 32/67            |                                       | 30            |
| Mak 2016                                                        | 7/111                        | 23/107           | ←                                     | 17            |
| Ginde 2017                                                      | 20/55                        | 15/52            |                                       | 23            |
| High vs low dose                                                | 117/319                      | 117/313          |                                       | 94 [0.60-1.49 |
| Test for heterogeneity: I <sup>2</sup> =                        | $78\%$ , $P{<}0.01$          |                  |                                       |               |
| Witham 2010                                                     | 2/53                         | 5/52             | <b>+</b>                              | 6             |
| Witham 2013                                                     | 25/80                        | 26/79            |                                       | 47            |
| Massart 2014                                                    | 0/26                         | 5/29             | ← –                                   | 2             |
| Jin 2016                                                        | 2/209                        | 0/204            | <                                     | 2             |
| Schwetz 2017                                                    | 27/249                       | 33/243           |                                       | 44            |
| Selected population<br>Test for heterogeneity: I <sup>2</sup> = | <b>56/617</b><br>13%, P=0.33 | 69/607           | .0                                    | 33 [0.56-1.21 |
| Graafmans 1996                                                  | 62/177                       | 65/177           |                                       | 18            |
| Grant 2005                                                      | 380/2649                     | 381/2643         | +                                     | 82            |
| Sensitivity analysis                                            | 442/2826                     | 446/2820         | 📥 o.s                                 | 9 [0.88-1.11  |
| Test for heterogeneity: I <sup>2</sup> =                        |                              |                  |                                       |               |
| Test for heterogeneity betw                                     |                              | s: P = 0.86      |                                       |               |
| All studies (n=37)                                              | 7117/17488                   | 7022/16656       | .0                                    | 97 [0.93-1.02 |
| Test for heterogeneity: I <sup>2</sup> =                        |                              |                  |                                       | 0.21          |
|                                                                 |                              |                  | 0.3 0.5 0.811.3 2<br>rsdecreased Favo |               |




Page 27 of 65

**Figure 3**: The top panel shows random effects meta-analyses of vitamin D supplementation on falls. Vit D vs controls refers to trials of vitamin D with controls, High vs Low dose to trials of higher and lower dose vitamin D, sensitivity analysis to trials where falls data were gathered only in a subset of participants or for only part of the trial duration. Trials in all 3 categories were conducted in unselected populations. Selected Population refers to trials of vitamin D with controls in populations with an underlying illness. The bottom panel shows trial sequential analysis of all trials of vitamin D on falls for a relative risk (RR) of 7.5% (see Figure 1 for detailed description).




Page 29 of 65

**Figure 4**: The top panel shows random effects meta-analyses of vitamin D supplementation on lumbar spine bone mineral density (BMD) by trial duration and the pooled analysis of all trials using the final time point. The bottom panel shows trial sequential analysis of all trials of vitamin D on lumbar spine BMD for a mean difference of 0.5% (see Figure 1 for detailed description).



Page 31 of 65

**Figure 5**: The top panel shows random effects meta-analyses of vitamin D supplementation on total hip bone mineral density (BMD) by trial duration and the pooled analysis of all trials using the final time point. The bottom panel shows trial sequential analysis of all trials of vitamin D on total hip BMD for a mean difference of 0.5% (see Figure 1 for detailed description).



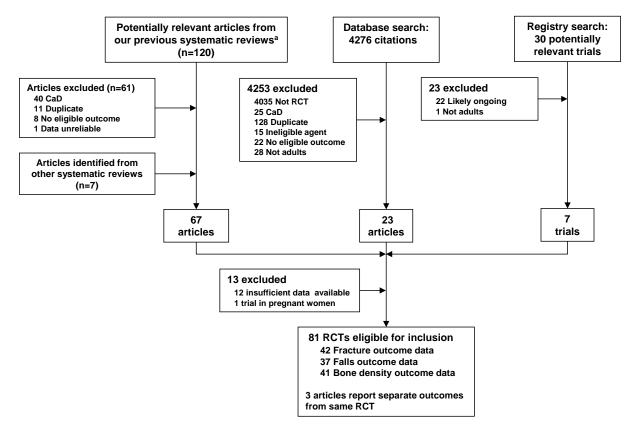
Page 33 of 65

**Figure 6**: The top panel shows random effects meta-analyses of vitamin D supplementation on femoral neck bone mineral density (BMD) by trial duration and the pooled analysis of all trials using the final time point. One study (Zheng 2018) has clearly outlying results – difference 10.6% (95%CI 9.0-12.3). Excluding this trial, reduces the effect size at 1y to 0.81% (0.37-1.25). Because of its disproportionate effect, this result was excluded from further analyses. The bottom panel shows trial sequential analysis of all trials of vitamin D on femoral neck BMD for a mean difference of 0.5% (see Figure 1 for detailed description).

## Appendix:

## e1. Table: Literature Searches

| Database             | Search Terms                                                                                                                                                                                        | Citation       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| December 2015        |                                                                                                                                                                                                     |                |
| Pubmed               | Vitamin D with clinical trials filter                                                                                                                                                               | 4018           |
| Pubmed               | Within title: ("Vitamin D" or "cholecalciferol" or "colecalciferol" or "ergocalciferol" or "calciferol") and (random* or "trial")                                                                   | 631            |
| Pubmed               | Vitamin D, publication date after 1/1/2015                                                                                                                                                          | 634            |
| Pubmed               | Systematic reviews or Meta-analyses of randomized controlled trials of vitamin D with clinical endpoints                                                                                            | 38             |
| rubilled             | Systematic reviews of Meta-analyses of randomized controlled trans of vitanini D with clinical endpoints                                                                                            | 58             |
| September 2017       |                                                                                                                                                                                                     |                |
| Pubmed               | vitamin D AND (falls or fracture or ("bone density") or ("bone mineral") or ("bone mass")); June 2015- on                                                                                           | 1575           |
| Embase               | 1. vitamin D/                                                                                                                                                                                       | 64209          |
|                      | 2. falling/                                                                                                                                                                                         | 33692          |
|                      | 3. fracture/                                                                                                                                                                                        | 80482          |
|                      | 4. bone density.mp. or bone density/                                                                                                                                                                | 82944          |
|                      | 5. bone mineral.mp. or bone mineral/                                                                                                                                                                | 63614          |
|                      | 6. bone mass.mp. or bone mass/                                                                                                                                                                      | 32201          |
|                      | 7. 4 or 5 or 6                                                                                                                                                                                      | 111659         |
|                      | 8. 2 or 3 or 7                                                                                                                                                                                      | 206968         |
|                      | 9. 1 and 8                                                                                                                                                                                          | 14680          |
|                      | 10. limit 9 to yr="2015 -Current"                                                                                                                                                                   | 2555           |
| Cochrane             | #1 "vitamin D" Publication Year from 2015 to 2017 (Word variations have been searched)<br>#2 "falls" or "fracture" or "bone mineral" or "bone density" or "bone mass" Publication Year from 2015 to | 1776           |
|                      | 2017 (Word variations have been searched)                                                                                                                                                           | 5945           |
|                      | #3 #1 and #2                                                                                                                                                                                        | 420            |
| February 2018        |                                                                                                                                                                                                     |                |
| Pubmed               | vitamin D AND (falls or fracture or ("bone density") or ("bone mineral") or ("bone mass")) June 2017- on                                                                                            | 476            |
| F 1                  |                                                                                                                                                                                                     | 65390          |
| Embase               | 1. vitamin D/                                                                                                                                                                                       |                |
|                      | 2. falling/                                                                                                                                                                                         | 34199          |
|                      | 3. fracture/                                                                                                                                                                                        | 81571          |
|                      | 4. bone density.mp. or bone density/                                                                                                                                                                | 84341          |
|                      | 5. bone mineral.mp. or bone mineral/                                                                                                                                                                | 64576<br>22595 |
|                      | 6. bone mass.mp. or bone mass/                                                                                                                                                                      | 32585          |
|                      | 7.4 or 5 or 6                                                                                                                                                                                       | 113405         |
|                      | 8. 2 or 3 or 7                                                                                                                                                                                      | 210079         |
|                      | 9. 1 and 8                                                                                                                                                                                          | 14871          |
|                      | 10. limit 9 to yr="2017 -Current"                                                                                                                                                                   | 853            |
| Cochrane             | #1 "vitamin D" Publication Year from 2017 to 2018 (Word variations have been searched)<br>#2 "falls" or "fracture" or "bone mineral" or "bone density" or "bone mass" Publication Year from 2017 to | 643            |
|                      | 2018 (Word variations have been searched)                                                                                                                                                           | 2742           |
|                      | #3 #1 and #2                                                                                                                                                                                        | 137            |
| Clinical trials. gov | 24 new potentially relevant trials- 20 ongoing/recently completed; 4 new citations                                                                                                                  | 4              |
|                      |                                                                                                                                                                                                     |                |


| Reference                            | Reason for exclusion                                           | Outcome               |
|--------------------------------------|----------------------------------------------------------------|-----------------------|
| RCTs included in previo              | bus meta-analyses                                              |                       |
| Christiansen 1980 <sup>114</sup>     | BMD not measured with DXA                                      | BMD                   |
| Mobarhan 1984 <sup>115</sup>         | BMD not measured with DXA                                      | BMD                   |
| Chapuy 1992 <sup>116,117</sup>       | Co-adminstered calcium and vitamin D vs placebo                | Falls/Fracture/BMD    |
| Vogelsang 1995 <sup>118</sup>        | BMD not measured with DXA                                      | BMD                   |
| Dawson-Hughes 1997 <sup>119</sup>    | Co-adminstered calcium and vitamin D vs placebo                | Fracture/BMD          |
| Baeksgaard 1998 <sup>120</sup>       | Co-adminstered calcium and vitamin D vs placebo                | BMD                   |
| Tuppurainen 1998 <sup>121</sup>      | Co-adminstered calcium and vitamin D vs placebo                | BMD                   |
| Krieg 1999 <sup>122</sup>            | Co-adminstered calcium and vitamin D vs placebo                | Fracture              |
| Peichl 1999 <sup>123</sup>           | Other co-interventions in treatment but not controls           | Falls                 |
| Harwood 2004 <sup>44</sup>           | Co-administered calcium and vitamin D vs placebo arms excluded | Fracture/Falls/BMD    |
| Larsen 2004 <sup>124</sup>           | Co-administered calcium and vitamin D vs placebo arms excluded | Fracture              |
| Meier 2004 <sup>125</sup>            | Co-administered calcium and vitamin D vs placebo               | BMD                   |
| Larsen 2005 <sup>126</sup>           | Co-administered calcium and vitamin D vs placebo               | Falls                 |
| Porthouse 2005 <sup>127</sup>        | *                                                              | Falls/Fracture        |
|                                      | Co-adminstered calcium and vitamin D vs placebo                |                       |
| Sato 2005 <sup>128</sup>             | Retracted                                                      | Falls/Fracture        |
| Arden 2006 <sup>129</sup>            | Duplicate data                                                 | Falls                 |
| Bischoff-Ferrari 2006 <sup>130</sup> | Co-administered calcium and vitamin D vs placebo               | Falls                 |
| Jackson 2006 <sup>20</sup>           | Co-adminstered calcium and vitamin D vs placebo                | Fracture/BMD          |
| Bolton-Smith 2007 <sup>131</sup>     | Co-adminstered calcium and vitamin D vs placebo                | Fracture              |
| Berggren 2008 <sup>132</sup>         | Other co-interventions in treatment but not controls           | Falls                 |
| Grieger 2009 <sup>133</sup>          | Other co-interventions in treatment but not controls           | Falls                 |
| Pfeifer 2009 <sup>134</sup>          | Data inaccuracy                                                | Falls/Fracture        |
| Viljakainen 2009 <sup>135</sup>      | BMD not measured with DXA                                      |                       |
| Salovaara 2010 <sup>136</sup>        | Co-adminstered calcium and vitamin D vs placebo                | BMD/Fracture/Falls    |
| Karkkainen 2010 <sup>137</sup>       | Co-adminstered calcium and vitamin D vs placebo                | BMD/Fracture/Falls    |
| Other RCTs excluded or               | full toxt raviow                                               |                       |
| Takizawa 1980 <sup>138</sup>         | BMD not measured with DXA                                      | BMD                   |
| Tjellesen 1983 <sup>139</sup>        | BMD not measured with DXA                                      | BMD                   |
| Imaoka 2016 <sup>140</sup>           | Other co-interventions in treatment but not controls           | Falls                 |
| Hin 2017 <sup>97</sup>               | BMD not measured with DXA                                      |                       |
|                                      |                                                                | BMD                   |
| Mager 2017 <sup>141</sup>            | No post-baseline BMD measurement                               | BMD                   |
| Kruger 2017 <sup>142</sup>           | Other co-interventions in treatment but not controls           | BMD                   |
| Wei 2017 <sup>143</sup>              | Pregnancy                                                      | BMD                   |
| Potential relevant RCTs              | but unable to obtain sufficient data                           |                       |
| Venkatachalam 2003144                | Author unable to provide further data                          | BMD                   |
| Lappe 2007 <sup>145</sup>            | Author and co-authors didn't respond to emails                 | <b>BMD</b> /Fractures |
| Mieczkowski 2014 <sup>146</sup>      | Author didn't respond to emails                                | BMD                   |
| Maity 2015 <sup>147</sup>            | Author didn't respond to emails                                | BMD                   |
| Peppone 2017 <sup>148</sup>          | Author unable to provide further data                          | BMD                   |
| Tan 2017 <sup>149</sup>              | Author didn't respond to emails                                | BMD                   |
| Vos 2017 <sup>150</sup>              | Author unable to provide further data                          | BMD                   |
| <b></b>                              |                                                                |                       |
|                                      | ta without complete fracture data                              |                       |
| Bischoff 2003 <sup>38</sup>          | Author didn't respond to emails                                | Falls                 |
| Latham 2003 <sup>40</sup>            | Author didn't respond to emails                                | Falls                 |
| Dhesi 200443                         | Fracture data not gathered                                     | Falls                 |
| Broe 2007 <sup>52</sup>              | Fracture data not gathered                                     | Falls                 |
| Rizzoli 2014 <sup>82</sup>           | Fracture data not gathered                                     | Falls                 |
| Houston 201587                       | Fracture data not gathered                                     | Falls                 |
| Bischoff-Ferrari 2016 <sup>15</sup>  | Author didn't respond to emails                                | Falls                 |
| Jin 2016 <sup>91</sup>               | Fracture data not gathered                                     | Falls                 |
| T-1-1-11 - 400 - 1-0                 | -14.4                                                          |                       |
| Trials identified from re<br>Enishi  | gistries<br>Authors replied, final data not available yet      | JPRN-UMIN00000836     |
|                                      | · ·                                                            |                       |
| Wang                                 | Authors replied, final data not available yet                  | ChiCTR-PRC-090005     |

## e2. Table: Ineligible potentially relevant randomised controlled trials

| Hillier     | Author didn't respond to emails               | NCT01119131 |
|-------------|-----------------------------------------------|-------------|
| Elliot      | Author didn't respond to emails               | NCT00204919 |
| Vestergaard | Authors replied, final data not available yet | NCT01932931 |

Abbreviations: RCT- randomised controlled trial, BMD- bone mineral density, DXA- dual energy x-ray absorptiometry,

### e3. Figure: study flow



<sup>a</sup> Previous systematic reviews<sup>3,6,8,9,16,17</sup>

Abbreviations: RCT- randomised controlled trial, CaD- co-administered calcium and vitamin D

|                                       | Participants<br>(Vit D/<br>Control) <sup>a</sup> | Age<br>(y) | Gender<br>(% F) | Duration | Treatment groups                   | Vit D Dose                    | Primary<br>Endpoint | Secondary<br>Endpoint |
|---------------------------------------|--------------------------------------------------|------------|-----------------|----------|------------------------------------|-------------------------------|---------------------|-----------------------|
| Dawson-Hughes 1991 <sup>27</sup>      | 139/137                                          | 62         | 100             | 12m      | CaD, Ca+Placebo                    | 400IU/d                       | Bone density        |                       |
| Dawson-Hughes 1995 <sup>28</sup>      | 131/130                                          | 64         | 100             | 2y       | CaD                                | 100 or 700IU/d                | Bone density        |                       |
| Ooms 1995 <sup>29</sup>               | 177/171                                          | 80         | 100             | 2y       | Vit D, Placebo                     | 400IU/d                       | Fracture            | Bone density          |
| Graafmans 1996 <sup>30</sup>          | 177/177                                          | 83         | 85              | 28w      | Vit D, Placebo                     | 400IU/d                       | Fracture            | Falls                 |
| Lips 1996 <sup>31</sup>               | 1291/1287                                        | 80         | 74              | 4y       | Vit D, Placebo                     | 400IU/d                       | Fracture            | Falls                 |
| Komulainen 1998/1999 <sup>32,33</sup> | 232/232                                          | 53         | 100             | 5у       | 2*2 factorial: Vit D, HRT, Placebo | 300IU/d for 4y then 100IU/d   | Bone density        | Fracture              |
| Hunter 2000 <sup>34</sup>             | 79/79                                            | 59         | 100             | 2у       | Vit D, Placebo                     | 800IU/d                       | Bone density        |                       |
| Pfeifer 2000 <sup>35</sup>            | 74/74                                            | 74         | 100             | 1 y      | CaD, Ca                            | 800IU/d                       | Body sway           | Falls/Fracture        |
| Patel 2001 <sup>36</sup>              | 35/35                                            | 47         | 100             | 2у       | Vit D, Placebo                     | 800IU/d                       | Biochemistry        | Bone density          |
| Meyer 2002 <sup>37</sup>              | 569/575                                          | 85         | 76              | 2у       | Vit D, Placebo                     | 400IU/d                       | Fracture            |                       |
| Bischoff 2003 <sup>38</sup>           | 62/60                                            | 85         | 100             | 12w      | CaD, Ca                            | 800IU/d                       | Falls               | Fracture              |
| Cooper 2003 <sup>39</sup>             | 93/94                                            | 56         | 100             | 2у       | CaD, Ca+Placebo                    | 10,000IU/w                    | Bone density        |                       |
| Latham 200340                         | 121/122                                          | 79         | 65              | 6m       | Vit D, Placebo                     | 300,000IU stat                | Health              | Falls                 |
| Trivedi 200341                        | 1345/1341                                        | 75         | 24              | 5у       | Vit D, Placebo                     | 100,000IU/3m                  | Fracture            | Falls                 |
| Avenell 2004 <sup>42</sup>            | 70/64                                            | 77         | 83              | 46m      | 2*2 factorial: Vit D, Ca, Control  | 800IU/d                       | Compliance          | Fracture              |
| Dhesi 2004 <sup>43</sup>              | 70/69                                            | 77         | 78              | 6m       | IM Vit D, Placebo                  | 600,000IU stat                | Reaction Time       | Falls                 |
| Harwood 200444                        | 38/37                                            | 81         | 100             | 12m      | IM Vit D, Control                  | 300,000IU stat                | Bone density        | Falls/Fracture        |
| Aloia 2005 <sup>45</sup>              | 104/104                                          | 61         | 100             | 3у       | CaD, Ca+Placebo                    | 800IU/d for 24m then 2000IU/d | Bone density        |                       |
| Flicker 2005 <sup>46</sup>            | 313/312                                          | 83         | 95              | 2у       | CaD, Ca+Placebo                    | 10,000IU/w then 1000IU/d      | Falls               | Fracture              |
| Grant 200547                          | 2649/2643                                        | 77         | 85              | 45m      | 2*2 factorial: Vit D, Ca, Placebo  | 800IU/d                       | Fracture            | Falls                 |
| Wissing 2005 <sup>48a</sup>           | 46/44                                            | 43         | 43              | 1 y      | CaD, Ca                            | 25,000 IU/m                   | Bone density        |                       |
| Bunout 2006 <sup>49a</sup>            | 48/48                                            | 77         | 90              | 9m       | 2*2 factorial: CaD, Exercise       | 400IU/d                       | Muscle strength     | Bone density/falls    |
| Law 2006 <sup>50a</sup>               | 1762/1955                                        | 85         | 76              | 10m      | Vit D, Control (cluster)           | 100,000IU/3m                  | Fracture            | Falls                 |
| Mikati 2006 <sup>51a</sup>            | 57/49                                            | 29         | 54              | 1 y      | Vit D                              | 400 or 4000IU/d               | Bone density        |                       |
| Broe 2007 <sup>52</sup>               | 99/25                                            | 89         | 73              | 5m       | Vit D, Placebo                     | 200, 400, 600 or 800IU/d      | Biochemistry        | Falls                 |
| Burleigh 200753                       | 101/104                                          | 83         | 59              | 1m       | CaD, Ca                            | 800IU/d                       | Falls               | Fracture              |
| Lyons 2007 <sup>54</sup>              | 1725/1715                                        | 84         | 76              | 3у       | Vit D, Placebo                     | 100,000IU/4m                  | Fracture            |                       |
| Smith 2007 <sup>55</sup>              | 4727/4713                                        | 79         | 54              | 3у       | IM Vit D, Placebo                  | 300,000IU/y                   | Fracture            | Falls                 |
| Andersen 2008 <sup>56</sup>           | 117/56                                           | 37         | 51              | 1 y      | Vit D, Placebo                     | 400 or 800IU/d                | Bone density        |                       |
| Prince/Zhu 2008a <sup>57,58</sup>     | 151/151                                          | 77         | 100             | 1 y      | CaD, Ca+Placebo                    | 1000IU/d                      | Falls               | Fracture/Bone density |
| Zhu 2008b <sup>59</sup>               | 39/40                                            | 75         | 100             | 5у       | CaD, Ca                            | 1000IU/d                      | Bone density        |                       |

# e4. Table: Study design and selected baseline characteristics of included trials.

| Bischoff-Ferrari 2010 <sup>14a</sup>       | 86/87     | 84 | 79  | 12m  | 2*2 factorial: Vit D, Physiotherapy                   | 800, or 2000IU/d                                       | Falls                | Fracture                    |
|--------------------------------------------|-----------|----|-----|------|-------------------------------------------------------|--------------------------------------------------------|----------------------|-----------------------------|
| Islam 2010 <sup>60</sup>                   | 50/50     | 23 | 100 | 12m  | Vit D, Placebo                                        | 400IU/d                                                | Bone density         |                             |
| Jorde 2010 <sup>61</sup>                   | 279/142   | 47 | 63  | 1 y  | CaD, Ca+Placebo                                       | 20,000 or 40,000IU/w                                   | Biochemistry         | Bone density                |
| Janssen 2010 <sup>62a</sup>                | 36/34     | 81 | 100 | 6m   | CaD, Ca+Placebo                                       | 400IU/d                                                | Muscle strength      | Fracture                    |
| Sanders 201013                             | 1131/1125 | 76 | 100 | 3-5y | Vit D, Placebo                                        | 500,000IU/y                                            | Fracture             | Falls                       |
| Witham 2010 <sup>63a</sup>                 | 53/52     | 80 | 34  | 20w  | Vit D, Placebo                                        | 100,000IU/10w                                          | 6 min walk           | Falls/Fracture              |
| Mitri 2011 <sup>64a</sup>                  | 46/46     | 57 | 51  | 16w  | 2*2 factorial: Vit D, Ca, Placebo                     | 2000IU/d                                               | Biochemistry         | Fracture                    |
| Papaioannou 2011 <sup>65a</sup>            | 44/21     | 78 | 55  | 3m   | Vit D, Placebo                                        | 50,000 or 100,000IU stat<br>50,000IU/w for 8-16wk then | Biochemistry         | Fracture                    |
| Rastelli 201166                            | 30/30     | 62 | 100 | 6m   | CaD, CaD+Placebo                                      | 50,000IU/m                                             | Pain                 | Bone density                |
| Steffensen 201167                          | 35/36     | 40 | 71  | 96w  | CaD, Ca+Placebo                                       | 20,000IU/w                                             | Bone density         | Fractures                   |
| Verschueren 2011 <sup>68</sup>             | 56/57     | 80 | 100 | 6m   | 2*2 factorial: Vit D, Exercise                        | 880 or 1600IU/d                                        | Muscle strength      | Bone density                |
| Glendenning 2012 <sup>69</sup>             | 353/333   | 77 | 100 | 9m   | Vit D, Placebo                                        | 150,000IU/3m                                           | Falls                | Fracture                    |
| Grimnes 2012 <sup>70</sup>                 | 149/148   | 63 | 100 | 1 y  | CaD, CaD+Placebo                                      | 20,000IU twice/w                                       | Bone density         |                             |
| Nieves 201271                              | 64/63     | 62 | 100 | 2у   | CaD, Ca+Placebo                                       | 1000IU/d                                               | Bone density         |                             |
| Iuliano-Burns 2012 <sup>72a</sup>          | 75/35     | 41 | 17  | 12m  | Vit D                                                 | 50,000IU /m or /2m                                     | Biochemistry         | Bone density                |
| Bolland 2013 <sup>73a</sup>                | 13/14     | 57 | 70  | 1 y  | Vit D, Placebo                                        | 50,000IU/m                                             | Biochemistry         | Bone density                |
| MacDonald 2013/Wood 2014 <sup>74,75a</sup> | 203/102   | 65 | 100 | 12m  | Vit D, Placebo<br>3*2 factorial: Vit D, Pioglitazone, | 400 or 1000 IU/d                                       | Bone density         | Falls/Fractures             |
| Punthakee 201376a                          | 607/614   | 67 | 41  | 6m   | Rosiglitazone, Placebo                                | 1000IU/d                                               | Death or cancer      | Fracture                    |
| Wamberg 201377a                            | 26/26     | 40 | 71  | 6m   | Vit D, Placebo                                        | 7000IU/d                                               | Biochemistry         | Bone density                |
| Witham 201378a                             | 80/79     | 77 | 48  | 12m  | Vit D, Placebo                                        | 100,000IU/3m                                           | Blood pressure       | Falls                       |
| Breslavsky 2014 <sup>79a</sup>             | 24/23     | 66 | 53  | 12m  | Vit D, Placebo                                        | 1000 IU/d                                              | Biochemistry         | Fractures                   |
| Massart 2014 <sup>80a</sup>                | 26/29     | 64 | 38  | 13w  | Vit D, Placebo                                        | 25,000IU/w                                             | Biochemistry         | Fracture                    |
| Norenstedt 2014 <sup>81a</sup>             | 75/75     | 60 | 79  | 1 y  | CaD, Ca                                               | 1600IU/d                                               | Biochemistry         | Bone density                |
| Rizzoli 2014 <sup>82a</sup>                | 413/105   | 67 | 91  | 6m   | Vit D, control                                        | 1000IU/d                                               | 25OHD                | Falls                       |
| Rolighed 2014 <sup>83a</sup>               | 23/23     | 59 | 76  | 1 y  | Vit D, Placebo                                        | 2800IU/d                                               | Biochemistry         | Bone density                |
| Baron 2015 <sup>84a</sup>                  | 1130/1129 | 58 | 37  | 3-5y | 2*2 factorial: Vit D, Ca, Placebo                     | 1000IU/d                                               | Colorectal adenoma   | Fracture                    |
| Cangussu 2015 <sup>85a</sup>               | 80/80     | 59 | 100 | 9m   | Vit D, Placebo                                        | 1000IU/d<br>800 IU/d or 50,000 IU/d for 15d            | Falls                |                             |
| Hansen 2015 <sup>86a</sup>                 | 154/76    | 61 | 100 | 12m  | Vit D, Placebo                                        | then 50,000 IU/2w                                      | Calcium absorption   | Bone density/Falls/Fracture |
| Houston 2015 <sup>87a</sup>                | 38/30     | 78 | 72  | 5m   | Vit D, Placebo (cluster)                              | 100,000IU/ m                                           | Adherence            | Falls                       |
| Liyanage 2015 <sup>88a</sup>               | 42/43     | 58 | 55  | 6m   | IM Vit D, Placebo                                     | 50,000IU/m                                             | Biochemistry         | Bone density                |
| Uusi-Rasi 2015 <sup>89a</sup>              | 204/205   | 74 | 100 | 2y   | 2*2 factorial: Vit D, Exercise                        | 800 IU/d                                               | Falls                | Bone density                |
| Aspray 201690a                             | 253/126   | 75 | 48  | 12m  | Vit D                                                 | 12,000, 24,000 or 48,000IU/m                           | Bone density         | Falls                       |
| Bischoff-Ferrari 2016 <sup>15a</sup>       | 67/67     | 78 | 67  | 12m  | Vit D                                                 | 24,000 or 60,000IU/m                                   | Physical performance | Falls                       |

| 1: 001 c <sup>9</sup>        | 200/201   | <i>(</i> 2) | 50  | 24   |                               | 50.000 HI                                                  |                                   | E 11                         |
|------------------------------|-----------|-------------|-----|------|-------------------------------|------------------------------------------------------------|-----------------------------------|------------------------------|
| Jin 2016 <sup>91a</sup>      | 209/204   | 63          | 50  | 24m  | Vit D, Placebo                | 50,000 IU/m                                                | Cartilage volume                  | Falls                        |
| Mak 2016 <sup>92a</sup>      | 111/107   | 84          | 77  | 4w   | Vit D, Placebo                | 250,000IU stat                                             | Gait velocity                     | Falls/Fractures              |
| Mason 2016 <sup>93a</sup>    | 109/109   | 60          | 100 | 12m  | Vit D, Placebo                | 2000IU/d<br>Vit D to keep 25OHD >                          | Weight loss                       | Bone density                 |
| Aloia 2017 <sup>94a</sup>    | 130/130   | 68          | 100 | 3у   | CaD, Ca+Placebo               | 75nmol/L                                                   | Bone density                      | Falls                        |
| Eckard 201795a               | 66/36     | 20          | 36  | 12m  | Vit D                         | 18,000, 60,000 or 120,000IU/m                              | Bone density<br>Acute respiratory |                              |
| Ginde 2017 <sup>96a</sup>    | 55/52     | 81          | 58  | 12m  | Vit D                         | 12,000 or 100,000IU/m                                      | infection                         | Falls/Fractures              |
| Hin 2017 <sup>97a</sup>      | 204/101   | 72          | 49  | 12m  | Vit D, Placebo                | 2000 or 4000IU<br>200,000IU stat then                      | 250HD                             | Falls/Fracture               |
| Khaw 201798,103a             | 2558/2552 | 65.9        | 42  | 3.4y | Vit D, Placebo                | 100,000IU/m                                                | Cardiovascular disease            | Falls/Fractures              |
| Larsen 201799a               | 256/255   | 62          | 39  | 5y   | Vit D, Placebo                | 20,000IU/w                                                 | Incidence of diabetes             | Bone density/Fractures       |
| Levis 2017 <sup>100a</sup>   | 66/64     | 72          | 0   | 9m   | Vit D, Placebo                | 4000IU/d                                                   | Physical performance              | Falls                        |
| Pop 2017 <sup>101a</sup>     | 57/24     | 58          | 100 | 1 y  | CaD, CaD+placebo, CaD+placebo | 10,000 or 25,000IU/w                                       | Bone density                      |                              |
| Rahme 2017 <sup>102a</sup>   | 129/128   | 71          | 55  | 1 y  | CaD, CaD+Placebo              | 10,000IU/w                                                 | Bone density                      |                              |
| Reid 201798,103a             | 228/224   | 69          | 37  | 2y   | Vit D, Placebo                | 200,000IU then 100,000IU/m                                 | Cardiovascular disease            | Bone density                 |
| Schwetz 2017 <sup>104a</sup> | 249/243   | 65          | 35  | 6m   | Vit D, Placebo                | 540,000IU stat then 90,000IU/m 400, 800, 1600, 2400, 3200, | Hospital stay                     | Falls/Fractures/Bone density |
| Smith 2017 <sup>105a</sup>   | 235/38    | 66          | 100 | 12m  | Vit D, Placebo                | 4000, or 4800IU/d                                          | 250HD                             | Falls/Fractures              |
| Havens 2018 <sup>106a</sup>  | 109/105   | 22          | 16  | 48w  | CaD, CaD+placebo              | 50,000IU/q4w                                               | Bone density                      |                              |
| Zheng 2018 <sup>107a</sup>   | 30/30     | 66          | 45  | 24w  | Vit D, Placebo                | 5000IU/d                                                   | Biochemistry                      | Bone density                 |
|                              |           |             |     |      |                               |                                                            |                                   |                              |

<sup>a</sup> Trial not included in our previous systematic reviews<sup>3,6,9</sup> Abbreviations: Vit D- vitamin D; CaD- co-administered calcium and vitamin D; Ca- calcium; HRT- hormone replacement therapy; IM-intramuscular; 250HD- 25 hydroxyvitamin D

|                      | Country     | Population                          | Residental<br>status | BMI (or<br>Weight)<br>(kg/m <sup>2</sup> ) | Additional agent<br>in both groups       | Baseline<br>25OHD<br>(nmol/L) | Achieved<br>25OHD<br>(nmol/L) | Assay        |
|----------------------|-------------|-------------------------------------|----------------------|--------------------------------------------|------------------------------------------|-------------------------------|-------------------------------|--------------|
| Dawson-Hughes 1991   | USA         | White, postmenopausal               | Community            | 68kg                                       | Ca 380 mg/d                              | NS                            | 95/71 (All)                   | CBP          |
| Dawson-Hughes 1995   | USA         | White, postmenopausal               | Community            | 26                                         | Ca 500 mg/d                              | NS                            | 100/66 (All)                  | CBP          |
| Ooms 1995            | Netherlands | Residential care, > 70y             | Institution          | 28                                         |                                          | 26/27 (All)                   | 62/23 (All)                   | HPLC         |
| Graafmans 1996       | Netherlands | Residential care, substudy of Lips  | Institution          | NS                                         |                                          | NS                            | NS                            |              |
| Lips 1996            | Netherlands | >70y                                | Institution          | NS                                         |                                          | 26/27 (270)                   | 54/23 (96)                    | HPLC         |
| Komulainen 1998/1999 | Finland     | Postmenopausal                      | Community            | 26                                         | Ca 93 mg/d in Vit<br>D/Placebo groups    | 26/29 (35/34)                 | 35/26 (35/34)                 | HPLC         |
| Hunter 2000          | UK          | Twins                               | Community            | 24                                         |                                          | 71/70 (All)                   | 105/80 (All)                  | Incstar      |
| Pfeifer 2000         | Germany     | >70y                                | Community            | 25                                         | Ca 1.2 g/d                               | 26/25 (All)                   | 66/43 (All)                   | Nichols RIA  |
| Patel 2001           | UK          | Healthy Females                     | Community            | 25                                         |                                          | 68/76 (All)                   | +25 (All)                     | Incstar      |
| Meyer 2002           | Norway      | Residential care                    | Institution          | 22                                         |                                          | 47/51 (31/34)                 | 64/46 (31/34)                 | HPLC         |
| Bischoff 2003        | Switzerland | Residential care                    | Institution          | 25                                         | Ca 1.2 g/d                               | 31/29 (All)                   | 66/29 (All)                   | Nichols RIA  |
| Cooper 2003          | Australia   | Postmenopausal                      | Community            | 67kg                                       | Ca 1g/d                                  | 82/83 (All)                   | 81/70 (All)                   | Incstar      |
| Latham 2003          | NZ          | Frail and in hospital               | Community            | 25                                         | Exercise                                 | 38/48 (All)                   | 60/48 (All)                   | Diasorin RIA |
| Trivedi 2003         | UK          | Mainly UK doctors                   | Community            | 24                                         |                                          | NS                            | 74/53<br>(124/114)            | NS           |
| Avenell 2004         | UK          | Previous fracture                   | Community            | NS                                         | Ca 1g/d in 2 groups                      | NS                            | NS                            |              |
| Dhesi 2004           | UK          | Falls clinic                        | Community            | 27                                         |                                          | 27/25 (All)                   | 44/32                         | IDS          |
| Harwood 2004         | UK          | Recent hip fracture                 | Community            | 24                                         |                                          | 28/30 (All)                   | 40/27 (25/32)                 | Incstar RIA  |
| Aloia 2005           | USA         | African American, postmenopausal    | Community            | 30                                         | Ca up to 1.2-1.5 g/d                     | 48/43 (All)                   | 71/NS (All)                   | Diasorin RIA |
| Flicker 2005         | Australia   | Residential care                    | Institution          | 60kg                                       | Ca 600 mg/d                              | NS                            | NS                            |              |
| Grant 2005           | UK          | Previous fracture                   | Community            | 65kg                                       | Placebo or Ca 1g/d                       | 38 (60)                       | 62/44 (60)                    | HPLC         |
| Wissing 2005         | Belgium     | Renal transplant receiving steroids | Community            | 24                                         | Ca up to 2g/d<br>Exercise or nil, Ca 800 | 61/49 (All)                   | 67/41 (All)                   | Diasorin RIA |
| Bunout 2006          | Chile       | 25OHD < 40                          | Community            | 29                                         | mg/d                                     | 31/33 (All)                   | 65/36 (All)                   | Not stated   |
| Law 2006             | UK          | Residential Care                    | Institution          | NS                                         |                                          | 59/NS (18)                    | 99/NS (18)                    | IDS          |
| Mikati 2006          | Lebanon     | Anticonvulsants                     | Community            | 26                                         |                                          | 34/33 (All)                   | 66/44 (All)                   | Incstar      |
| Broe 2007            | US          | Residential care                    | Institution          | 25                                         |                                          | 48/53 (All)                   | 63/60 (All)                   | NS           |
| Burleigh 2007        | UK          | Hospital ATR ward                   | Institution          | NS                                         | Ca 1.2 g/d                               | 25/22 (54)                    | 27/22 (NS)                    | Nichols RIA  |
| Lyons 2007           | UK          | Residential care                    | Institution          | NS                                         |                                          | NS                            | 80/54 (102)                   | Diasorin RIA |
| Smith 2007           | UK          | GP register                         | Community            | NS                                         |                                          | 56.5 (43)                     | +21%/NS (NS)                  | Nichols RIA  |
| Andersen 2008        | Denmark     | Pakistanis in Denmark               | Community            | 27                                         |                                          | 16/16 (All)                   | 46/15 (All)                   | HPLC         |
| Prince/Zhu 2008a     | Australia   | Recent fall                         | Community            | 29                                         | Ca 1 g/d                                 | 45/44 (All)                   | 60/44 (All)                   | Diasorin RIA |
|                      |             |                                     |                      |                                            |                                          |                               |                               |              |

## e5. Table: Further selected baseline characteristics of included trials.

| Zhu 2008b                | Australia     | Postmenopausal                       | Community   | 70kg | Ca 1.2 g/d<br>Ca 1g/d,<br>Standard/extended | 70/67 (All)   | 106/64 (All)                | СВР              |
|--------------------------|---------------|--------------------------------------|-------------|------|---------------------------------------------|---------------|-----------------------------|------------------|
| Bischoff-Ferrari 2010    | Switzerland   | Post hip fracture                    | Community   | 24   | physiotherapy                               | 33/31 (All)   | 89/112 (All)                | Diasorin RIA     |
| Islam 2010               | Bangladesh    | Factory workers                      | Community   | 22   |                                             | 37/35 (All)   | 69/36 (All)                 | IDS              |
| Jorde 2010               | Norway        | Overweight                           | Community   | 35   | Ca 500 mg/d                                 | 59/60 (All)   | 122/56 (All)                | Diasorin RIA     |
| Janssen 2010             | Netherlands   | >65y                                 | Institution | 26   | Ca 500 mg/d                                 | 33/34 (All)   | 77/42 (All)<br>55-74/~40-50 | NS               |
| Sanders 2010             | Australia     | >70y                                 | Community   | NS   |                                             | 53/45 (74/57) | (16-57/20-49)               | Diasorin RIA     |
| Witham 2010              | UK            | CHF, >70y, 25OHD <50 nmol/L          | Community   | 27   |                                             | 21/24 (All)   | 41/25 (All)                 | RIA              |
| Mitri 2011               | USA           | Glucose intolerance/diabetes         | Community   | 32   | Placebo or 800 mg/d                         | 61/62 (All)   | 77/46 (All)                 | HPLC             |
| Papaioannou 2011         | Canada        | Post hip fracture                    | Community   | 69kg | Vit D 1000IU/d                              | 48/47 (27/18) | 79/87 (All)                 | Diasorin         |
| Rastelli 2011            | USA           | Past breast cancer using anastrozole | Community   | 32   | Ca 1g/d, vit D 400IU/d                      | 58/55 (All)   | 74/64 (All)                 | Diasorin Liaison |
| Steffensen 2011          | Norway        | Multiple sclerosis                   | Community   | 26   | Ca 500 mg/d<br>Vibration or nil,            | 56/57 (All)   | 123/62 (All)                | LCMS/MS          |
| Verschueren 2011         | Belgium       | Residential care, > 70y              | Institution | 27   | Calcium 1 g/d                               | 55/52 (All)   | 157/138 (All)               | Diasorin RIA     |
| Glendenning 2012         | Australia     | >70y                                 | Community   | 27   |                                             | 65/67 (20/20) | 75/60 (20/20)               | Liaison          |
| Grimnes 2012             | Norway        | Low BMD                              | Community   | 25   | Ca 1g/d, vit D 800IU/d                      | 71/71 (All)   | 186/90 (All)                | LCMS/MS          |
| Nieves 2012              | USA           | African American, Postmenopausal     | Community   | 31   | Ca to 1 g/d total intake                    | 29/29 (All)   | 55/32 (All)                 | Diasorin RIA     |
| Iuliano-Burns 2012       | Australia     | Antarctic explorers                  | Community   | 85kg |                                             | 58/63 (All)   | 66/54 (All)                 | Roche            |
| Bolland 2013             | New Zealand   | Sarcoidosis                          | Community   | 27   |                                             | 40/45 (All)   | 79/47 (All)                 | LCMS/MS          |
| MacDonald 2013/Wood 2014 | UK            | Postmenopausal, white                | Community   | 25   | Pioglitazone,<br>rosiglitazone, or          | 33/36 (All)   | 70/32 (All)                 | LCMS/MS          |
| Punthakee 2013           | Multinational | Diabetes Mellitus                    | Community   | 31   | placebo                                     | NS            | NS                          |                  |
| Wamberg 2013             | Denmark       | Obese                                | Community   | 36   |                                             | 35/35 (All)   | 110/47 (All)                | LCMS/MS          |
| Witham 2013              | UK            | Systolic hypertension                | Community   | 28   |                                             | 45/45 (All)   | 67/48 (All)                 | IDS              |
| Breslavsky 2014          | Israel        | Diabetes Mellitus                    | Community   | 29   |                                             | 27/34 (All)   | 42/35 (All)                 | NS               |
| Massart 2014             | Belgium       | Haemodialysis                        | Community   | 27   |                                             | 46/43 (All)   | 88/41 (All)                 | Liaison          |
| Norenstedt 2014          | Sweden        | Post parathyroidectomy               | Community   | 26   | Ca 1 g/d<br>Strontium 2 g/d,                | 40/45 (All)   | 73/51 (All)                 | Diasorin Liaison |
| Rizzoli 2014             | 13 countries  | Osteoporosis                         | Community   | 25   | Calcium 1 g/d                               | 44/44 (All)   | 67/45 (All)                 | Diasorin RIA     |
| Rolighed 2014            | Denmark       | Pre/Post parathyroidectomy           | Community   | 81kg |                                             | 50/57 (All)   | 105/63 (All)                | LCMS/MS          |
| Baron 2015               | USA           | Recent colorectal adenoma removed    | Community   | 29   | Placebo or Ca 1.2 g/d                       | 61/61 (All)   | 81/NS (All)                 | IDS              |
| Cangussu 2015            | Brazil        | Recent fall                          | Community   | 30   |                                             | 38/42 (All)   | 69/35 (All)                 | HPLC             |
| Hansen 2015              | USA           | 25OHD 35-68 nmol/L, no osteoporosis  | Community   | 31   |                                             | 53/53 (All)   | 86/45 (All)                 | HPLC             |
| Houston 2015             | USA           | Meals on Wheels programme            | Community   | NS   |                                             | 56/47 (All)   | 106/56 (All)                | Liaison          |
| Liyanage 2015            | Sri Lanka     | Diabetic nephropathy                 | Community   | 24   |                                             | 56/50 (All)   | 82/46 (All)                 | Vitros           |
|                          |               |                                      |             |      |                                             |               |                             |                  |

| Uusi-Rasi 2015        | Finland     | Recent fall                        | Community        | 28   |                                          | 63/69 (All)   | 93/69 (All)            | IDS              |
|-----------------------|-------------|------------------------------------|------------------|------|------------------------------------------|---------------|------------------------|------------------|
| Aspray 2016           | UK          | Older men and women                | Community        | 27   |                                          | 41/43 (All)   | 80/61 (All)            | LCMS/MS          |
| Bischoff-Ferrari 2016 | Switzerland | Recent fall                        | Community        | 26   |                                          | 47/52 (All)   | 100/76 (All)           | LCMS/MS          |
| Jin 2016              | Australia   | Osteoarthritis                     | Community<br>83% | 30   | Ca 500 mg/d, Vit D                       | 44/44 (All)   | 84/51 (All)            | Liaison          |
| Mak 2016              | Australia   | Hip fracture surgery               | Community        | 25   | 800IU/d<br>Weight loss                   | 56/50 (All)   | 80/72 (All)            | Diasorin         |
| Mason 2016            | US          | Overweight undertaking weight loss | Community        | 32   | programme                                | 54/54 (All)   | 88/50 (All)            | Diasorin Liaison |
| Aloia 2017            | US          | African American                   | Community        | NS   | Ca to 1 g/d total intake                 | NS/NS         | 94/52 (All)            | NS               |
| Eckard 2017           | US          | HIV                                | Community        | 23   |                                          | 45/43 (All)   | 87/74 (All)            | IDS or ADVIA     |
| Ginde 2017            | USA         | Residential Care                   | Institution      | 27   |                                          | 58/58 (All)   | 77/65 (All)            | LCMS/MS          |
| Hin 2017              | UK          | >65y                               | Community        | 27   |                                          | 52/47 (All)   | 120/53 (All)<br>135/66 | Access 2         |
| Khaw 2017             | New Zealand | 50-84y                             | Community        | 28   |                                          | 64/63 (All)   | (171/163)              | LCMS/MS          |
| Larsen 2017           | Norway      | Prediabetes                        | Community        | 30   |                                          | 60/62 (All)   | 122/67 (All)           | LCMS/MS          |
| Levis 2017            | USA         | 65-90y                             | Community        | 31   | Vit D to 600IU/d, Ca                     | 58/57 (All)   | 115/60 (All)           | LCMS/MS          |
|                       |             |                                    |                  |      | to 1.2 g/d total intake,<br>Weight loss  |               |                        |                  |
| Pop 2017              | US          | BMI>25                             | Community        | 30   | programme<br>Ca 1 g/d, Vit D             | 69/67 (39/19) | 96/76 (39/19)          | Diasorin RIA     |
| Rahme 2017            | Lebanon     | BMI>25                             | Community        | 30   | 500IU/d                                  | 52/50 (All)   | 90/65 (All)            | LCMS/MS          |
| Reid 2017             | New Zealand | Substudy of Khaw                   | Community        | 82kg |                                          | 55/56 (All)   | 129/60 (All)           | LCMS/MS          |
| Schwetz 2017          | Austria     | ICU                                | Community        | 28   |                                          | 33/33 (All)   | 115/66 (37/43)         | IDS              |
| Smith 2017            | USA         | 250HD 13-50 nmol/L                 | Community        | 31   | M 1: : (400H1/1 :                        | 36/36 (All)   | NS                     | Diasorin         |
| Havens 2018           | US          | HIV taking tenofovir               | Community        | 24   | Multivit (400IU/d vit<br>D, Ca 162 mg/d) | 39/42 (All)   | 92/52 (All)            | IDS              |
| Zheng 2018            | Taiwan      | Secondary HPT on Haemodialysis     | Community        | 22   | Cinacalcet, Calcitriol                   | 46/48 (All)   | 94/59 (All)            | Immundiagnostik  |
|                       |             |                                    |                  |      |                                          |               |                        |                  |

BMI- body mass index; 25OHD- 25 hydroxyvitamin D; CHF- congestive heart failure; ICU- intensive care unit; HPT- hyperparathyroidism; NS- not stated; Ca- calcium; Vit D- vitamin D; CBP- competitive binding protein; HPLC- high performance liquid chromatography; RIA- radioimmunoassay; LSMS/MS- liquid chromatography tandem mass spectometry

|                      | Random<br>sequence<br>generation<br>described | Allocation<br>concealment | Blinding of<br>participants/<br>personnel | Blinding<br>of<br>outcome<br>assessment | Incomplete<br>outcome<br>data | Differential<br>loss to<br>follow-up | Selective reporting | Definition<br>of falls | Duration of<br>recall of falls<br>(risk of bias) | Overall<br>assessment<br>of risk of<br>bias falls | Overall<br>assessment<br>of risk of<br>bias<br>fracture | Overall<br>assessment<br>of risk of<br>bias bone<br>density |
|----------------------|-----------------------------------------------|---------------------------|-------------------------------------------|-----------------------------------------|-------------------------------|--------------------------------------|---------------------|------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
| Dawson-Hughes 1991   | Not stated                                    | Not stated                | Double-blind                              | Yes                                     | Yes                           | No                                   | No                  |                        |                                                  |                                                   |                                                         | Moderate                                                    |
| Dawson-Hughes 1995   | Not stated                                    | Not stated                | Double-blind                              | Yes                                     | Yes                           | No                                   | No                  |                        |                                                  |                                                   |                                                         | Moderate                                                    |
| Ooms 1995            | Yes                                           | Yes                       | Double-blind                              | Yes                                     | Yes                           | No                                   | No                  |                        |                                                  |                                                   |                                                         | Low                                                         |
| Graafmans 1996       | Yes                                           | Yes                       | Double-blind                              | Yes                                     | Yes                           | Not stated                           | No                  | Yes                    | 1w (Low)                                         | Moderate                                          |                                                         |                                                             |
| Lips 1996            | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   | Low                                                     |                                                             |
| Komulainen 1998/1999 | Yes                                           | Yes                       | No                                        | No                                      | No                            | No                                   | No                  |                        |                                                  |                                                   | Moderate                                                | Moderate                                                    |
| Hunter 2000          | Yes                                           | Yes                       | Double-blind                              | Yes                                     | Yes                           | No                                   | No                  |                        |                                                  |                                                   |                                                         | Moderate                                                    |
| Pfeifer 2000         | Not stated                                    | Not stated                | Double-blind                              | Yes                                     | No                            | No                                   | No                  | Yes                    | Not stated                                       | Moderate                                          | Moderate                                                |                                                             |
| Patel 2001           | Not stated                                    | Not stated                | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   |                                                         | Moderate                                                    |
| Meyer 2002           | Pseudo (DOB)                                  | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   | Low                                                     |                                                             |
| Bischoff 2003        | Not stated                                    | Yes                       | Double-blind                              | Yes                                     | Yes                           | No                                   | No                  | Yes                    | Daily (Low)                                      | Moderate                                          | Moderate                                                |                                                             |
| Cooper 2003          | Not stated                                    | Not stated                | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   |                                                         | Low                                                         |
| atham 2003           | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | No                     | Daily (Low)                                      | Low                                               |                                                         |                                                             |
| Trivedi 2003         | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | No                     | 12m (High)                                       | Moderate                                          | Low                                                     |                                                             |
| Avenell 2004         | Yes                                           | Not stated                | No                                        | Yes                                     | No                            | Yes                                  | No                  |                        |                                                  |                                                   | High                                                    |                                                             |
| Dhesi 2004           | Yes                                           | Not stated                | Double-blind                              | Yes                                     | No                            | No                                   | No                  | Yes                    | Daily (Low)                                      | Moderate                                          |                                                         |                                                             |
| Iarwood 2004         | Yes                                           | Yes                       | No                                        | No                                      | No                            | Yes                                  | No                  | No                     | 3-6m (High)                                      | High                                              | High                                                    | High                                                        |
| Aloia 2005           | Yes                                           | Not stated                | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   |                                                         | Low                                                         |
| licker 2005          | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | Yes                    | Daily (Low)                                      | Low                                               | Low                                                     |                                                             |
| Grant 2005           | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | No                     | 1w (Low)                                         | Moderate                                          | Low                                                     |                                                             |
| Vissing 2005         | Pseudo                                        | No                        | Not stated                                | Not stated                              | Yes                           | Yes                                  | No                  |                        |                                                  |                                                   |                                                         | High                                                        |
| Bunout 2006          | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | No                     | 1m (Low)                                         | Low                                               |                                                         | Low                                                         |
| aw 2006              | Yes                                           | Not stated                | No                                        | Yes                                     | No                            | No                                   | No                  | No                     | NS                                               | Moderate                                          | Moderate                                                |                                                             |
| Aikati 2006          | Pseudo                                        | No                        | Open-label                                | Yes                                     | Yes                           | Yes                                  | No                  |                        |                                                  |                                                   |                                                         | High                                                        |
| Broe 2007            | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | Yes                    | Daily (Low)                                      | Low                                               |                                                         |                                                             |
| Burleigh 2007        | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | Yes                    | Daily (Low)                                      | Low                                               | Moderate                                                |                                                             |
| yons 2007            | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   | Low                                                     |                                                             |
| mith 2007            | Not stated                                    | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | No                     | 6m (High)                                        | Moderate                                          | Low                                                     |                                                             |
| Andersen 2008        | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  |                        |                                                  |                                                   |                                                         | Low                                                         |
| Prince/Zhu 2008a     | Yes                                           | Yes                       | Double-blind                              | Yes                                     | No                            | No                                   | No                  | Yes                    | 6w (Mod)                                         | Low                                               | Moderate                                                | Low                                                         |

## e6. Table: Assessment of risk of bias in included trials

| Zhu 2008b                | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Low      |
|--------------------------|------------|------------|--------------|------------|-----|-----|-----|-----|--------------|----------|----------|----------|
| Bischoff-Ferrari 2010    | Yes        | Not stated | Double-blind | Yes        | No  | No  | No  | Yes | Daily (Low)  | Low      | Moderate |          |
| Islam 2010               | Not stated | Yes        | Double-blind | Yes        | No  | Yes | No  |     |              |          |          | Low      |
| Jorde 2010               | Not stated | Not stated | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Low      |
| Janssen 2010             | Not stated | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          | High     |          |
| Sanders 2010             | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | Daily (Low)  | Low      | Low      |          |
| Witham 2010              | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | No  | 10w (Mod)    | Moderate | Moderate |          |
| Mitri 2011               | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          | Moderate |          |
| Papaioannou 2011         | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          | High     |          |
| Rastelli 2011            | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Low      |
| Steffensen 2011          | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          | High     | Low      |
| Verschueren 2011         | Yes        | Yes        | Not stated   | Yes        | No  | No  | No  |     |              |          |          | Low      |
| Glendenning 2012         | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | Daily (Low)  | Low      | Moderate |          |
| Grimnes 2012             | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Low      |
| Nieves 2012              | Not stated | Not stated | Double-blind | Yes        | No  | Yes | No  |     |              |          |          | Low      |
| Iuliano-Burns 2012       | Not stated | Not stated | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Low      |
| Bolland 2013             | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Moderate |
| MacDonald 2013/Wood 2014 | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | No  | 2m (Mod)     | Low      | Moderate | Low      |
| Punthakee 2013           | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | 110 | 2111 (11104) | Low      | High     | Low      |
| Wamberg 2013             | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          | mgn      | Low      |
| Witham 2013              | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | No  | Daily (Low)  | Low      | Moderate | 2011     |
| Breslavsky 2014          | Not stated | Not stated | Not stated   | Not stated | No  | No  | No  | 110 | 2 mil (20 m) | 2011     | High     |          |
| Massart 2014             | Yes        | Not stated | Yes          | Yes        | No  | No  | Yes | No  | Not stated   | High     | Moderate |          |
| Norenstedt 2014          | Not stated | Not stated | Double-blind | Yes        | No  | No  | No  |     |              | 8        |          | Low      |
| Rizzoli 2014             | Not stated | Yes        | Double-blind | Yes        | Yes | Yes | No  | Yes | Daily (Low)  | Moderate |          |          |
| Rolighed 2014            | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          |          | Moderate |
| Baron 2015               | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              |          | Low      |          |
| Cangussu 2015            | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | 9m (High)    | Moderate | Moderate |          |
| Hansen 2015              | Not stated | Yes        | Yes          | Yes        | No  | No  | No  | No  | 1-4m (Mod)   | Low      | Moderate | Low      |
| Houston 2015             | Yes        | Not stated | Single       | Uncertain  | No  | No  | No  | No  | 1m (Low)     | High     |          |          |
| Liyanage 2015            | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |              | e        |          | Low      |
| Uusi-Rasi 2015           | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | Daily (Low)  | Low      | Moderate | Low      |
| Aspray 2016              | Not stated | Not stated | Double-blind | Yes        | No  | No  | Yes |     |              |          |          | Low      |
| Bischoff-Ferrari 2016    | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | Daily (Low)  | Low      |          |          |
|                          |            |            |              |            |     |     |     |     |              |          |          |          |

| Jin 2016     | Yes        | Yes        | Yes          | Yes        | No  | Yes | No  | No  | NS          | High     |          |          |
|--------------|------------|------------|--------------|------------|-----|-----|-----|-----|-------------|----------|----------|----------|
| Mak 2016     | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | Daily (Low) | Low      | Moderate |          |
| Mason 2016   | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |             |          |          | Low      |
| Aloia 2017   | Not stated | Not stated | Double-blind | Yes        | No  | No  | No  |     | 3m (Mod)    | Low      |          | Low      |
| Eckard 2017  | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |             |          |          | Low      |
| Ginde 2017   | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | No  | Daily (Low) | Low      | Moderate |          |
| Hin 2017     | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | No  | 6m (High)   | Moderate | Moderate |          |
| Khaw 2017    | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  | Yes | 1-4m (Mod)  | Low      | Low      |          |
| Larsen 2017  | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |             |          | Moderate | Low      |
| Levis 2017   | Not stated | Yes        | Double-blind | Yes        | No  | No  | No  | No  | 3m (Mod)    | Moderate | Moderate |          |
| Pop 2017     | Not stated | Not stated | Double-blind | Yes        | Yes | No  | No  |     |             |          |          | Moderate |
| Rahme 2017   | Not stated | Yes        | Double-blind | Yes        | No  | No  | No  |     |             |          |          | Low      |
| Reid 2017    | Yes        | Yes        | Double-blind | Yes        | No  | No  | No  |     |             |          |          | Low      |
| Schwetz 2017 | Yes        | Yes        | Double-blind | Yes        | Yes | Yes | No  | No  | 6m (High)   | High     | High     |          |
| Smith 2017   | Yes        | Yes        | Double-blind | Yes        | Yes | No  | Yes | Yes | 3m (Mod)    | Low      | Moderate |          |
| Havens 2018  | Not stated | Not stated | Double-blind | Yes        | No  | No  | No  |     |             |          |          | Low      |
| Zheng 2018   | Not stated | Not stated | Open-label   | Not stated | No  | No  | No  |     |             |          |          | Moderate |
|              |            |            |              |            |     |     |     |     |             |          |          |          |

Pseudo- pseudorandomised; DOB- date of birth; Mod- moderate;

## e7. Table: Reported conflicts of interest and funding sources from included trials

|                          | Conflict of<br>Interest<br>statement | Conflict of<br>Interest<br>exists | Funding                                                           |
|--------------------------|--------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Dawson-Hughes 1991       | No                                   | Yes                               | Mixed industry/ non-industry                                      |
| Dawson-Hughes 1995       | No                                   | Yes                               | Mixed industry/ non-industry                                      |
| Ooms 1995                | No                                   | Unknown                           | Non-industry, drugs from industry                                 |
| Graafmans 1996           | No                                   | Unknown                           | Non industry, drugs from industry                                 |
| Lips 1996                | No                                   | Unknown                           |                                                                   |
| Komulainen 1998/1999     | No                                   | Yes                               | Non-industry, drugs from industry<br>Mixed industry/ non-industry |
| Hunter 2000              | No                                   | Unknown                           | Non-industry                                                      |
| Pfeifer 2000             | No                                   | Yes                               | Industry funded, run, and co-authored.                            |
| Patel 2000               | No                                   | Unknown                           | -                                                                 |
| Meyer 2002               | No                                   | Yes                               | Not stated, drugs from industry                                   |
| Bischoff 2003            | No                                   | Yes                               | Industry funded, drugs from industry                              |
|                          |                                      |                                   | Mixed industry/non-industry                                       |
| Cooper 2003              | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Latham 2003              | No                                   | Unknown                           | Non-industry                                                      |
| Trivedi 2003             | Yes                                  | No                                | Non-industry                                                      |
| Avenell 2004             | No                                   | No                                | Non-industry, drugs from industry                                 |
| Dhesi 2004               | Yes                                  | No                                | Non-industry                                                      |
| Harwood 2004             | No                                   | Unknown                           | Industry                                                          |
| Aloia 2005               | Yes                                  | No                                | Non-industry                                                      |
| Flicker 2005             | Yes                                  | No                                | Non-industry                                                      |
| Grant 2005               | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Wissing 2005             | No                                   | Unknown                           | Not stated                                                        |
| Bunout 2006              | No                                   | Unknown                           | Non-industry, drugs and equipment from industry                   |
| Law 2006                 | No                                   | Unknown                           | Non-industry                                                      |
| Mikati 2006              | Yes                                  | No                                | Non-industry                                                      |
| Broe 2007                | No                                   | Unknown                           | Non-industry                                                      |
| Burleigh 2007            | No                                   | Unknown                           | Not stated, drugs from industry                                   |
| Lyons 2007               | No                                   | Unknown                           | Non-industry                                                      |
| Smith 2007               | Yes                                  | No                                | Non-industry                                                      |
| Andersen 2008            | Yes                                  | No                                | Non-industry                                                      |
| Prince/Zhu 2008a         | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Zhu 2008b                | Yes                                  | No                                | Non-industry                                                      |
| Bischoff-Ferrari 2010    | Yes                                  | No                                | Non-industry                                                      |
| Islam 2010               | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Jorde 2010               | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Janssen 2010             | No                                   | Unknown                           | Non-industry                                                      |
| Sanders 2010             | Yes                                  | No                                | Non-industry                                                      |
| Witham 2010              | Yes                                  | No                                | Non-industry                                                      |
| Mitri 2011               | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Papaioannou 2011         | Yes                                  | Yes                               | Unrestricted grant from industry                                  |
| Rastelli 2011            | No                                   | Yes                               | Industry                                                          |
| Steffensen 2011          | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Verschueren 2011         | Yes                                  | No                                | Non-industry                                                      |
| Glendenning 2012         | Yes                                  | No                                | Non-industry                                                      |
| Grimnes 2012             | Yes                                  | No                                | Non-industry, drugs from industry                                 |
| Nieves 2012              | Yes                                  | No                                | Non-industry                                                      |
| Iuliano-Burns 2012       | Yes                                  | No                                | Non-industry                                                      |
| Bolland 2013             | Yes                                  | No                                | Non-industry                                                      |
| MacDonald 2013/Wood 2014 | Yes                                  | No                                | Non-industry                                                      |
| Punthakee 2013           | Yes                                  | Yes                               | Industry                                                          |
| Wamberg 2013             | Yes                                  | No                                | Not stated                                                        |

| Witham 2013           | Yes | No  | Non-industry                                           |
|-----------------------|-----|-----|--------------------------------------------------------|
| Breslavsky 2014       | Yes | No  | Not stated                                             |
| Massart 2014          | Yes | Yes | Industry funded                                        |
| Norenstedt 2014       | Yes | No  | Industry and non-industry funding, drugs from industry |
| Rizzoli 2014          | Yes | Yes | Industry funded                                        |
| Rolighed 2014         | Yes | No  | Non-industry                                           |
| Baron 2015            | Yes | Yes | Non-industry, drugs from industry                      |
| Cangussu 2015         | Yes | No  | Non-industry                                           |
| Hansen 2015           | Yes | Yes | Non-industry                                           |
| Houston 2015          | Yes | No  | Non-industry                                           |
| Liyanage 2015         | Yes | No  | Non-industry                                           |
| Uusi-Rasi 2015        | Yes | No  | Non-industry                                           |
| Aspray 2016           | Yes | Yes | Not stated                                             |
| Bischoff-Ferrari 2016 | Yes | Yes | Mixed industry/ non-industry                           |
| Jin 2016              | Yes | No  | Non-industry                                           |
| Mak 2016              | Yes | Yes | Non-industry                                           |
| Mason 2016            | Yes | No  | Non-industry                                           |
| Aloia 2017            | Yes | No  | Not stated                                             |
| Eckard 2017           | Yes | Yes | Non-industry                                           |
| Ginde 2017            | Yes | No  | Non-industry                                           |
| Hin 2017              | Yes | No  | Non-industry, drugs from industry                      |
| Khaw 2017             | Yes | No  | Non-industry                                           |
| Larsen 2017           | Yes | No  | Non-industry                                           |
| Levis 2017            | Yes | No  | Non-industry                                           |
| Pop 2017              | Yes | No  | Non-industry                                           |
| Rahme 2017            | Yes | No  | Non-industry, drugs from industry                      |
| Reid 2017             | Yes | No  | Non-industry                                           |
| Schwetz 2017          | Yes | Yes | Industry and non-industry funding, drugs from industry |
| Smith 2017            | Yes | No  | Non-industry                                           |
| Havens 2018           | Yes | No  | Non-industry                                           |
| Zheng 2018            | Yes | No  | Non-industry                                           |
|                       |     |     |                                                        |

## e8: Table Outcome data by study

Falls, hip fracture and Total fracture

|                       |                   |      |                 | alls     |                   |     |                 | <u>acture</u> |                     |        |                 | <u>fracture</u> |                     |
|-----------------------|-------------------|------|-----------------|----------|-------------------|-----|-----------------|---------------|---------------------|--------|-----------------|-----------------|---------------------|
|                       |                   |      | D or<br>er dose |          | rols or<br>r dose |     | D or<br>er dose |               | trols or<br>er dose |        | D or<br>er dose |                 | trols of<br>er dose |
| Study                 | Treatment arm     | n    | Ν               | n        | Ν                 | n   | Ν               | n             | Ν                   | n      | Ν               | n               | Ν                   |
| Graafmans 1996        |                   | 62   | 177             | 65       | 177               |     |                 |               |                     |        |                 |                 |                     |
| Lips 1996             |                   |      |                 |          |                   | 58  | 1291            | 48            | 1287                | 135    | 1291            | 122             | 128                 |
| Komulainen 1998       |                   |      |                 |          |                   | 1   | 232             | 2             | 232                 | 18     | 232             | 21              | 23                  |
|                       | Vit D vs P        |      |                 |          |                   | 1   | 116             | 2             | 116                 | 11     | 116             | 15              | 11                  |
|                       | Vit D/HRT vs HRT  |      |                 |          |                   | 0   | 116             | 0             | 116                 | 7      | 116             | 6               | 11                  |
| Pfeifer 2000          |                   | 11   | 74              | 19       | 74                | 0   | 74              | 1             | 74                  | 3      | 74              | 6               | 74                  |
| Meyer 2002            |                   |      |                 |          |                   | 50  | 569             | 47            | 575                 | 69     | 569             | 76              | 57                  |
| Bischoff 2003         |                   | 14   | 62              | 18       | 60                | 2   | 62              | 1             | 60                  |        |                 |                 |                     |
| Latham 2003           |                   | 64   | 121             | 60       | 122               |     |                 |               |                     |        |                 |                 |                     |
| Trivedi 2003          |                   | 254  | 1027            | 261      | 1011              | 21  | 1345            | 24            | 1341                | 119    | 1345            | 149             | 134                 |
| Avenell 2004          |                   |      |                 |          |                   | 1   | 70              | 3             | 64                  | 6      | 70              | 11              | 64                  |
|                       | Vit D vs Controls |      |                 |          |                   | 0   | 35              | 1             | 35                  | 3      | 35              | 5               | 35                  |
|                       | CaD vs Ca         |      |                 |          |                   | 1   | 35              | 2             | 29                  | 3      | 35              | 6               | 29                  |
| Dhesi 2004            |                   | 11   | 70              | 14       | 69                |     |                 |               |                     |        |                 |                 |                     |
| Harwood 2004          |                   | 2    | 38              | 13       | 37                | 0   | 38              | 1             | 37                  | 0      | 38              | 5               | 37                  |
| Flicker 2005          |                   | 170  | 313             | 185      | 312               | -   | -               |               | -                   | 25     | 313             | 35              | 31                  |
| Grant 2005            |                   | 380  | 2649            | 381      | 2643              | 93  | 2649            | 90            | 2643                | 387    | 2649            | 377             | 264                 |
|                       | Vit D vs P        | 161  | 1306            | 185      | 1311              | 47  | 2649            | 41            | 2643                | 208    | 1343            | 192             | 133                 |
|                       | CaD vs Ca         | 219  | 1343            | 196      | 1332              | 46  | 2649            | 49            | 2643                | 179    | 1306            | 185             | 131                 |
| Bunout 2006           |                   | 15   | 48              | 16       | 48                |     |                 |               |                     |        |                 |                 |                     |
| Builder 2000          | CaD vs Ca         | 6    | 24              | 11       | 24                |     |                 |               |                     |        |                 |                 |                     |
|                       | CaD/ex vs Ca/ex   | 9    | 24              | 5        | 24                |     |                 |               |                     |        |                 |                 |                     |
| Law 2006              | Cluster-adjusted  | 492  | 1127            | 533      | 1250              | 18  | 1326            | 15            | 1471                | 48     | 1326            | 38              | 147                 |
| 2000                  | Raw data          | 770  | 1762            | 833      | 1955              | 24  | 1762            | 20            | 1955                | 64     | 1762            | 51              | 195                 |
| Broe 2007             | Turr unu          | 50   | 99              | 11       | 25                | 2.  | 1,02            | 20            | 1,00                | 0.     | 1702            | 01              | 170                 |
| Burleigh 2007         |                   | 36   | 101             | 45       | 104               | 1   | 101             | 2             | 104                 | 1      | 101             | 3               | 10                  |
| Lyons 2007            |                   | 20   | 101             | 10       | 101               | 112 | 1725            | 104           | 1715                | 205    | 1725            | 218             | 171                 |
| Smith 2007            |                   | 2544 | 4727            | 2577     | 4713              | 66  | 4727            | 44            | 4713                | 306    | 4727            | 279             | 471                 |
| Prince 2008           |                   | 80   | 151             | 95       | 151               | 00  | .,_,            |               | 1710                | 4      | 151             | 3               | 15                  |
| Bischoff-Ferrari 2010 |                   | 45   | 86              | 47       | 87                | 3   | 86              | 6             | 87                  | 7      | 86              | 15              | 87                  |
| Janssen 2010          |                   | 45   | 00              |          | 07                | 1   | 36              | 0             | 34                  | 1      | 36              | 0               | 34                  |
| Sanders 2010          |                   | 837  | 1131            | 769      | 1125              | 19  | 1131            | 15            | 1125                | 155    | 1131            | 125             | 112                 |
| Witham 2010           |                   | 2    | 53              | 5        | 52                | 0   | 53              | 0             | 52                  | 2      | 53              | 125             | 52                  |
| Mitri 2011            |                   | 2    | 55              | 5        | 52                | 0   | 55              | 0             | 52                  | 1      | 86              | 0               | 86                  |
| Whith 2011            | Vit D vs P        |      |                 |          |                   |     |                 |               |                     | 1      | 43              | 0               | 43                  |
|                       | CaD vs Ca         |      |                 |          |                   |     |                 |               |                     | 0      | 43              | 0               | 43                  |
| Papaioannou 2011      | CaD vs Ca         |      |                 |          |                   | 0   | 44              | 1             | 21                  | 0      | 45              | 0               | т.                  |
| Steffensen 2011       |                   |      |                 |          |                   | 0   | 30              | 0             | 30                  | 0      | 30              | 0               | 30                  |
| Glendenning 2012      |                   | 102  | 353             | 89       | 333               | 0   | 50              | 0             | 50                  | 10     | 353             | 10              | 33                  |
| Grimnes 2012          |                   | 102  | 555             | 07       | 555               |     |                 |               |                     | 6      | 149             | 6               | 14                  |
| Bolland 2013          |                   |      |                 |          |                   | 0   | 13              | 0             | 14                  | 0      | 149             | 0               | 14                  |
| MacDonald 2013        |                   | 60   | 203             | 31       | 102               | 0   | 203             | 0             | 203                 | 3      | 203             | 3               | 10                  |
| macionala 2015        | High vs Low dose  | 27   | 101             | 33       | 102               | U   | 203             | v             | 203                 | 0      | 101             | 3               | 10                  |
|                       | High vs P         | 27   | 101             | 33<br>31 | 102               |     |                 |               |                     | 0      | 101             | 3               | 10                  |
|                       | Low vs P          | 33   | 101             | 31       | 102               |     |                 |               |                     | 3      | 101             | 3               | 10                  |
| Punthakee 2013        | LOW 151           | 55   | 102             | 51       | 102               |     |                 |               |                     | 3      | 607             | 3               | 61                  |
| Witham 2013           |                   | 25   | 80              | 26       | 79                |     |                 |               |                     | 3<br>2 | 807             | 3               | 01-<br>79           |
|                       |                   | 23   | 80              | 20       | 19                | 0   | 24              | 1             | 23                  |        | 80<br>24        | 3<br>2          | 79<br>23            |
| Breslavsky 2014       |                   | 0    | 26              | F        | 20                | 0   | 24              | 1             | 23                  | 0      |                 |                 |                     |
| Massart 2014          |                   | 0    | 26              | 5        | 29                |     |                 |               |                     | 0      | 26              | 5               | 29                  |
| Rizzoli 2014          |                   | 65   | 413             | 21       | 105               |     |                 |               |                     |        | 1120            | <i></i>         |                     |
| Baron 2015            |                   | 10   | 66              |          | 66                | ~   | 66              | 0             | <u> </u>            | 55     | 1130            | 64              | 112                 |
| Cangussu 2015         |                   | 19   | 80              | 37       | 80                | 0   | 80              | 0             | 80                  | 0      | 80              | 0               | 80                  |
| Hansen 2015           |                   | 46   | 154             | 23       | 76                |     |                 |               |                     | 4      | 154             | 4               | 76                  |
|                       | High vs Low dose  | 22   | 79              | 24       | 75                |     |                 |               |                     | 2      | 79              | 2               | 75                  |
|                       | High vs P         | 22   | 79              | 23       | 76                |     |                 |               |                     | 2      | 79              | 4               | 76                  |

|                       | Low vs P         | 24   | 75   | 23   | 76   |   |      |   |      | 2   | 75   | 4   | 76   |
|-----------------------|------------------|------|------|------|------|---|------|---|------|-----|------|-----|------|
| Houston 2015          | Cluster-adjusted | 11   | 37   | 12   | 29   |   |      |   |      | -   | 10   | ·   | 10   |
|                       | Raw data         | 11   | 38   | 12   | 30   |   |      |   |      |     |      |     |      |
| Uusi-Rasi 2015        |                  | 136  | 204  | 145  | 205  | 2 | 204  | 0 | 205  | 9   | 204  | 11  | 205  |
|                       | Vit D vs P       | 66   | 102  | 75   | 102  | 2 | 102  | 0 | 102  | 6   | 102  | 6   | 102  |
|                       | Vit D/ex vs P/ex | 70   | 102  | 70   | 103  | 0 | 102  | 0 | 103  | 3   | 102  | 5   | 103  |
| Bischoff-Ferrari 2016 |                  | 45   | 67   | 32   | 67   |   |      |   |      |     |      |     |      |
| Jin 2016              |                  | 2    | 209  | 0    | 204  |   |      |   |      |     |      |     |      |
| Mak 2016              |                  | 7    | 111  | 23   | 107  |   |      |   |      | 3   | 111  | 3   | 107  |
| Aloia 2017            |                  | 51   | 130  | 50   | 130  |   |      |   |      |     |      |     |      |
| Ginde 2017            |                  | 20   | 55   | 15   | 52   |   |      |   |      | 4   | 55   | 8   | 52   |
| Hin 2017              |                  | 34   | 204  | 14   | 101  |   |      |   |      | 6   | 204  | 1   | 101  |
| Khaw 2017             |                  | 1312 | 2558 | 1326 | 2552 | 9 | 2558 | 8 | 2552 | 156 | 2558 | 136 | 2552 |
| Larsen 2017           |                  |      |      |      |      | 0 | 256  | 0 | 255  | 15  | 256  | 13  | 255  |
| Levis 2017            |                  | 8    | 66   | 11   | 64   | 0 | 66   | 0 | 64   | 0   | 66   | 0   | 64   |
| Schwetz 2017          |                  | 27   | 249  | 33   | 243  |   |      |   |      | 2   | 249  | 2   | 243  |
| Smith 2017            |                  | 78   | 235  | 15   | 38   | 0 | 235  | 0 | 38   | 5   | 235  | 1   | 38   |
|                       | High vs Low dose | 51   | 168  | 27   | 67   | 0 | 168  | 0 | 67   | 5   | 168  | 0   | 67   |
|                       | High vs P        | 51   | 168  | 15   | 38   | 0 | 168  | 0 | 38   | 5   | 168  | 1   | 38   |
|                       | Low vs P         | 27   | 67   | 15   | 38   | 0 | 67   | 0 | 38   | 0   | 67   | 1   | 38   |
|                       | Low vs P         | 27   | 67   | 15   | 38   | 0 | 67   | 0 | 38   | 0   | 67   | 1   | 38   |

|                    |                  |           |       | Vit D or<br><u>gher dos</u> | <u>e</u> |       | ntrols or<br><u>ver dose</u> |     | B     | etween-g<br><u>differen</u> |     |     |
|--------------------|------------------|-----------|-------|-----------------------------|----------|-------|------------------------------|-----|-------|-----------------------------|-----|-----|
| Study              | Treatment arm    | Site/Year | Mean  | SD                          | Ν        | Mean  | SD                           | Ν   | Mean  | SE                          | N1  | N2  |
| Dawson-Hughes 1991 |                  | LS1       |       |                             |          |       |                              |     | 0.70  | 0.34                        | 110 | 110 |
|                    |                  | TB1       |       |                             |          |       |                              |     | 0.11  | 0.16                        | 125 | 125 |
| Dawson-Hughes 1995 |                  | LS1       |       |                             |          |       |                              |     | -0.34 | 0.40                        | 110 | 105 |
|                    |                  | FN1       |       |                             |          |       |                              |     | 0.98  | 0.42                        | 121 | 122 |
|                    |                  | TB1       |       |                             |          |       |                              |     | 0.30  | 0.17                        | 124 | 124 |
|                    |                  | LS2       |       |                             |          |       |                              |     | -0.21 | 0.41                        | 110 | 105 |
|                    |                  | FN2       |       |                             |          |       |                              |     | 1.48  | 0.50                        | 121 | 122 |
|                    |                  | TB2       |       |                             |          |       |                              |     | 0.16  | 0.20                        | 124 | 122 |
| Ooms 1995          |                  | FN1       |       |                             |          |       |                              |     | 1.80  | 0.61                        | 135 | 148 |
|                    |                  | FR1       |       |                             |          |       |                              |     | -2.40 | 1.61                        | 135 | 148 |
|                    |                  | FN2       |       |                             |          |       |                              |     | 1.90  | 0.77                        | 118 | 120 |
|                    |                  | FR2       |       |                             |          |       |                              |     | -0.30 | 2.35                        | 118 | 126 |
| Komulainen 1999    |                  | LS3       | -1.84 | 5.64                        | 221      | -2.17 | 5.28                         | 226 |       |                             |     |     |
|                    |                  | FN3       | -2.75 | 5.12                        | 223      | -2.85 | 5.04                         | 228 |       |                             |     |     |
|                    | Vit D/HRT vs HRT | LS3       | 0.90  | 6.18                        | 111      | 0.20  | 5.67                         | 112 |       |                             |     |     |
|                    |                  | FN3       | -1.30 | 5.20                        | 115      | -1.40 | 5.18                         | 114 |       |                             |     |     |
|                    | Vit D vs P       | LS3       | -4.60 | 5.08                        | 110      | -4.50 | 4.90                         | 114 |       |                             |     |     |
|                    |                  | FN3       | -4.30 | 5.04                        | 108      | -4.30 | 4.90                         | 114 |       |                             |     |     |
| Hunter 2000        |                  | LS1       | 1.11  | 3.08                        | 64       | 1.06  | 3.19                         | 64  |       |                             |     |     |
|                    |                  | TH1       | -1.14 | 2.24                        | 64       | -1.13 | 2.28                         | 64  |       |                             |     |     |
|                    |                  | FN1       | 0.22  | 3.08                        | 64       | -0.40 | 3.17                         | 64  |       |                             |     |     |
|                    |                  | FR1       | -0.96 | 2.84                        | 64       | -0.88 | 3.43                         | 64  |       |                             |     |     |
|                    |                  | TB1       | -0.27 | 2.33                        | 64       | -0.29 | 2.12                         | 64  |       |                             |     |     |
|                    |                  | LS2       |       |                             |          |       |                              |     | -0.10 | 0.90                        | 64  | 64  |
|                    |                  | TH2       |       |                             |          |       |                              |     | 0.70  | 0.63                        | 64  | 64  |
|                    |                  | FN2       |       |                             |          |       |                              |     | 0.50  | 0.79                        | 64  | 64  |
|                    |                  | FR2       |       |                             |          |       |                              |     | -0.70 | 0.51                        | 64  | 64  |
|                    |                  | TB2       |       |                             |          |       |                              |     | 0.20  | 0.57                        | 64  | 64  |
| Patel 2001         |                  | LS1       |       |                             |          |       |                              |     | -0.56 | 0.37                        | 35  | 35  |
|                    |                  | TH1       |       |                             |          |       |                              |     | -0.07 | 0.36                        | 35  | 35  |
|                    |                  | FN1       |       |                             |          |       |                              |     | 0.64  | 0.63                        | 35  | 35  |
|                    |                  | TB1       |       |                             |          |       |                              |     | -0.59 | 0.30                        | 35  | 35  |
| Cooper 2003        |                  | LS1       | -0.19 | 4.13                        | 74       | 0.44  | 4.20                         | 84  |       |                             |     |     |
| *                  |                  | FN1       | -1.81 | 3.90                        | 74       | -0.40 | 3.72                         | 84  |       |                             |     |     |
|                    |                  | FR1       | -1.69 | 2.53                        | 74       | -0.69 | 3.60                         | 84  |       |                             |     |     |
|                    |                  | LS2       | 0.30  | 4.98                        | 73       | 0.48  | 4.70                         | 80  |       |                             |     |     |

|                    |                  | FN2        | 0.52          | 4.28         | 73       | 1.18           | 4.12         | 80       |       |      |    |    |
|--------------------|------------------|------------|---------------|--------------|----------|----------------|--------------|----------|-------|------|----|----|
|                    |                  | FR2        | -1.72         | 4.28         | 73       | -1.46          | 4.12         | 80       |       |      |    |    |
| Harwood 2004       |                  | LS1        | -1.05         | 3.08         | 28       | 0.35           | 3.19         | 22       |       |      |    |    |
|                    |                  | TH1        |               |              |          |                |              |          | 2.00  | 0.79 | 22 | 28 |
|                    |                  | FN1        |               |              |          |                |              |          | 1.07  | 1.09 | 22 | 28 |
| Aloia 2005         |                  | LS1        | 0.67          | 3.40         | 104      | 0.52           | 2.44         | 104      |       |      |    |    |
|                    |                  | TH1        | 1.10          | 2.09         | 104      | 1.03           | 2.30         | 104      |       |      |    |    |
|                    |                  | FR1        | 1.60          | 3.15         | 104      | 1.16           | 4.02         | 104      |       |      |    |    |
|                    |                  | TB1        | 1.49          | 3.79         | 104      | 1.54           | 2.83         | 104      |       |      |    |    |
|                    |                  | LS2        | 0.81          | 3.04         | 104      | 0.75           | 3.44         | 104      |       |      |    |    |
|                    |                  | TH2        | -0.03         | 2.62         | 104      | -0.24          | 2.48         | 104      |       |      |    |    |
|                    |                  | FR2        | -1.08         | 3.15         | 104      | -0.50          | 2.99         | 104      |       |      |    |    |
|                    |                  | TB2        | -1.13         | 2.59         | 104      | -1.29          | 3.29         | 104      |       |      |    |    |
|                    |                  | LS3        | 0.25          | 1.82         | 104      | 0.30           | 1.82         | 104      |       |      |    |    |
|                    |                  | TH3        | -0.40         | 1.20         | 104      | -0.40          | 1.80         | 104      |       |      |    |    |
|                    |                  | FR3        | -0.80         | 1.30         | 104      | -0.55          | 1.80         | 104      |       |      |    |    |
|                    |                  | TB3        | -0.35         | 1.60         | 104      | -0.30          | 1.50         | 104      |       |      |    |    |
| Wissing 2005       |                  | LS1        | -3.44         | 7.08         | 38       | -1.42          | 8.12         | 41       |       |      |    |    |
|                    |                  | FN1        | -1.56         | 8.05         | 38       | 1.02           | 7.82         | 41       |       |      |    |    |
| Bunout 2006        |                  | LS1        | 1.61          | 4.07         | 46       | 1.17           | 4.07         | 46       |       |      |    |    |
|                    |                  | FN1        | 1.14          | 3.80         | 46       | -1.08          | 3.73         | 46       |       |      |    |    |
| Mikati 2006        |                  | LS1        | 1.13          | 2.70         | 36       | 0.65           | 3.19         | 36       |       |      |    |    |
|                    |                  | TH1        | 0.81          | 1.96         | 36       | 0.62           | 2.23         | 36       |       |      |    |    |
|                    |                  | FN1        | -0.71         | 3.82         | 36       | -0.92          | 3.98         | 36       |       |      |    |    |
|                    |                  | FR1        | 0.78          | 2.14         | 36       | 0.89           | 3.06         | 36       |       |      |    |    |
| Zhu 2008a          |                  | TH1        | 0.50          | 3.33         | 123      | 0.20           | 2.31         | 133      |       |      |    |    |
|                    |                  | TB1        | 0.40          | 2.22         | 123      | 0.40           | 2.31         | 133      |       |      |    |    |
| Zhu 2008b          |                  | TH1        | -0.17         | 2.71         | 34       | 0.20           | 1.68         | 37       |       |      |    |    |
|                    |                  | TH3        | -0.39         | 4.32         | 34       | -1.53          | 3.87         | 29       |       |      |    |    |
| Andersen 2008      |                  | LS1        | 2.77          | 3.08         | 87       | 2.13           | 3.19         | 37       |       |      |    |    |
|                    |                  | TB1        | 0.17          | 2.33         | 84       | 2.21           | 2.12         | 37       |       |      |    |    |
|                    | High vs Low dose | LS1        | 4.85          | 3.08         | 47       | 0.85           | 3.19         | 40       |       |      |    |    |
|                    |                  | TB1        | -0.86         | 2.33         | 45       | 1.38           | 2.12         | 39       |       |      |    |    |
| Islam 2010         |                  | LS1        | 1.45          | 4.01         | 40       | -0.34          | 5.50         | 35       |       |      |    |    |
|                    |                  | FN1        | 1.50          | 3.50         | 40       | -1.30          | 1.56         | 35       |       |      |    |    |
| Jorde 2010         |                  | LS1        | 0.64          | 2.99         | 207      | 0.56           | 3.36         | 105      |       |      |    |    |
|                    |                  | TH1        | 0.87          | 1.29         | 207      | 0.82           | 1.56         | 105      |       |      |    |    |
|                    | High vs Low dose | LS1        | 0.63          | 2.83         | 110      | 0.65           | 3.16         | 97       |       |      |    |    |
|                    |                  | TH1        | 0.72          | 1.26         | 110      | 1.03           | 1.31         | 97       |       |      |    |    |
| Rastelli 2011      |                  | LS1        | 0.12          | 3.76         | 21       | -0.36          | 3.82         | 26       |       |      |    |    |
|                    |                  | TH1        | -0.01         | 3.16         | 21       | 0.04           | 3.21         | 26       |       |      |    |    |
|                    |                  | FN1        | 0.45          | 3.30         | 21       | -1.39          | 3.37         | 26       |       |      |    |    |
| Steffensen 2011    |                  | LS2        |               |              |          |                |              |          | -0.20 | 0.77 | 33 | 35 |
|                    |                  | TH2        |               |              |          |                |              |          | 0.70  | 0.66 | 33 | 35 |
| V. 1 0011          |                  | FR2        |               |              |          |                |              |          | 1.00  | 1.40 | 33 | 35 |
| Verschueren 2011   |                  | TH1        | 0.05          | 2.10         | 1.40     | 0.00           | 2.22         | 1.40     | -0.08 | 0.44 | 56 | 55 |
| Grimnes 2012       |                  | LS1        | 0.25          | 3.19         | 149      | 0.32           | 3.23         | 148      |       |      |    |    |
|                    |                  | TH1        | 0.31          | 1.59         | 149      | 0.56           | 1.70         | 148      |       |      |    |    |
|                    |                  | FN1        | 0.03          | 2.08         | 149      | 0.17           | 1.87         | 148      |       |      |    |    |
| Inline Drees 2012  |                  | TB1        | 0.18          | 1.14         | 149      | 0.20           | 1.23         | 148      |       |      |    |    |
| Iuliano-Burns 2012 |                  | LS1        | -0.76         | 3.76         | 71       | -1.40          | 3.60         | 31       |       |      |    |    |
|                    |                  | TH1        | -0.16         | 2.85         | 71       | -0.10          | 2.80         | 31       |       |      |    |    |
| Nieves 2012        |                  | FN1<br>LS2 | -0.36         | 3.99<br>2.57 | 71<br>55 | 0.40           | 3.70<br>2.40 | 31<br>48 |       |      |    |    |
| Nieves 2012        |                  | LS2        | -0.48         | 2.57         | 55<br>55 | -0.59          | 2.40         | 48       |       |      |    |    |
|                    |                  | TH2<br>EN2 | -0.50         | 1.52         | 55<br>55 | -0.69          | 1.46         | 48       |       |      |    |    |
| Polland 2012       |                  | FN2        | -0.19         | 1.90         | 55<br>12 | -0.80          | 1.80         | 48       |       |      |    |    |
| Bolland 2013       |                  | LS1<br>TH1 | 0.03          | 2.55<br>2.04 | 13<br>13 | 0.06           | 2.11         | 13<br>13 |       |      |    |    |
|                    |                  | TH1<br>EN1 | -0.53         |              | 13       | -0.78          | 2.43         | 13       |       |      |    |    |
|                    |                  | FN1<br>TB1 | 0.37          | 1.80<br>0.94 | 13<br>13 | -0.93          | 2.05         | 13<br>12 |       |      |    |    |
| MacDonald 2013     |                  | TB1<br>LS1 | -0.62<br>0.01 | 0.94<br>2.79 | 13       | -0.79<br>-0.46 | 2.00<br>2.79 | 12<br>88 |       |      |    |    |
| macionala 2013     |                  | L.J I      | 0.01          | 2.17         | 1/1      | 0.40           | 2.17         | 00       |       |      |    |    |
|                    |                  |            |               |              |          |                |              |          |       |      |    |    |

|                 |                   | TH1        | -0.30          | 1.40         | 171       | -0.60         | 1.66         | 88        |
|-----------------|-------------------|------------|----------------|--------------|-----------|---------------|--------------|-----------|
|                 | High vs Low dose  | LS1        | 0.23           | 2.88         | 88        | -0.23         | 2.69         | 83        |
|                 |                   | TH1        | -0.05          | 1.46         | 88        | -0.57         | 1.33         | 83        |
|                 | High vs P         | LS1        | 0.23           | 2.88         | 88        | -0.46         | 2.79         | 88        |
|                 |                   | TH1        | -0.05          | 1.46         | 88        | -0.60         | 1.66         | 88        |
|                 | Low vs P          | LS1        | -0.23          | 2.69         | 83        | -0.46         | 2.79         | 88        |
| <b>W</b> 1 0010 |                   | TH1        | -0.57          | 1.33         | 83        | -0.60         | 1.66         | 88        |
| Wamberg 2013    |                   | LS1        | 0.92           | 1.97         | 22        | 0.10          | 1.89         | 21        |
|                 |                   | TH1        | -0.37          | 2.25         | 22        | -0.32         | 1.55         | 21        |
|                 |                   | FN1        | 0.34           | 2.99         | 22        | -0.16         | 2.92         | 21        |
|                 |                   | FR1        | 0.37           | 1.53         | 22        | -0.02         | 1.19         | 21        |
| No              |                   | TB1        | 0.41           | 2.12         | 22        | -0.48         | 2.02         | 21        |
| Norenstedt 2014 |                   | LS1<br>TH1 | 3.60           | 4.07         | 66        | 3.00          | 4.22         | 69<br>69  |
|                 |                   | FN1        | 2.80           | 2.37         | 66        | 2.10          | 2.30<br>2.74 |           |
|                 |                   | FR1        | 3.20<br>0.20   | 2.37<br>3.85 | 66<br>66  | 2.30<br>0.30  | 3.26         | 69<br>69  |
| Rolighed 2014   |                   | LS1        | 0.20<br>3.30   | 3.85<br>4.56 | 20        | 0.30<br>1.90  | 4.30         | 20        |
| Koligileu 2014  |                   | TH1        | 2.80           | 2.28         | 20<br>20  | 1.50          | 4.68         | 20<br>20  |
|                 |                   | FN1        | 2.80           | 2.28         | 20        | 0.10          | 4.34         | 20<br>20  |
|                 |                   | FR1        | -1.30          | 3.88         | 20        | -1.00         | 4.22         | 20        |
| Hansen 2015     |                   | LS1        | -0.15          | 2.64         | 148       | 0.20          | 3.18         | 20<br>73  |
| Hansen 2015     |                   | TH1        | -0.35          | 2.64         | 148       | -0.90         | 3.19         | 73        |
|                 |                   | FN1        | -0.60          | 0.67         | 148       | -0.80         | 3.17         | 73        |
|                 |                   | TB1        | -0.45          | 2.64         | 148       | -0.50         | 3.19         | 73        |
|                 | High vs Low dose  | LS1        | -0.30          | 3.08         | 74        | 0.00          | 2.11         | 74        |
|                 | ingii is zon dose | TH1        | -0.20          | 3.09         | 74        | -0.50         | 2.11         | 74        |
|                 |                   | FN1        | -0.30          | 3.08         | 74        | -0.90         | 2.12         | 74        |
|                 |                   | TB1        | -0.40          | 3.08         | 74        | -0.50         | 2.12         | 74        |
|                 | High vs P         | LS1        | -0.30          | 3.08         | 74        | 0.20          | 3.18         | 73        |
|                 | 0                 | TH1        | -0.20          | 3.09         | 74        | -0.90         | 3.19         | 73        |
|                 |                   | FN1        | -0.30          | 3.08         | 74        | -0.80         | 3.17         | 73        |
|                 |                   | TB1        | -0.40          | 3.08         | 74        | -0.50         | 3.19         | 73        |
|                 | Low vs P          | LS1        | 0.00           | 2.11         | 74        | 0.20          | 3.18         | 73        |
|                 |                   | TH1        | -0.50          | 2.11         | 74        | -0.90         | 3.19         | 73        |
|                 |                   | FN1        | -0.90          | 2.12         | 74        | -0.80         | 3.17         | 73        |
|                 |                   | TB1        | -0.50          | 2.12         | 74        | -0.50         | 3.19         | 73        |
| Liyanage 2015   |                   | LS1        | 1.78           | 3.08         | 41        | -1.41         | 3.19         | 41        |
|                 |                   | TH1        | 2.62           | 2.24         | 41        | -0.58         | 2.28         | 41        |
|                 |                   | FN1        | 2.05           | 3.08         | 41        | -1.38         | 3.17         | 41        |
|                 |                   | TB1        | 2.02           | 2.33         | 41        | -0.67         | 2.12         | 41        |
| Uusi-Rasi 2015  |                   | LS1        | 0.71           | 3.19         | 185       | 0.23          | 3.34         | 189       |
|                 |                   | FN1        | -0.35          | 2.96         | 183       | -0.83         | 3.16         | 186       |
|                 |                   | LS2        | 1.07           | 3.97         | 182       | 0.78          | 3.91         | 180       |
|                 |                   | FN2        | -1.01          | 3.37         | 179       | -1.19         | 3.50         | 176       |
|                 | Vit D vs P        | LS1        | 0.94           | 3.41         | 89        | 0.23          | 3.19         | 97        |
|                 |                   | FN1        | -0.18          | 2.93         | 86        | -1.33         | 2.82         | 94        |
|                 |                   | LS2        | 1.27           | 4.30         | 87        | 1.01          | 4.03         | 93        |
|                 |                   | FN2        | -0.77          | 3.42         | 84        | -1.34         | 3.36         | 89<br>02  |
|                 | Vit D/ex vs P/ex  | LS1        | 0.49           | 2.98         | 96<br>07  | 0.24          | 3.49         | 92<br>02  |
|                 |                   | FN1<br>LS2 | -0.51<br>0.89  | 2.99<br>3.65 | 97<br>95  | -0.31<br>0.53 | 3.48<br>3.78 | 92<br>87  |
|                 |                   |            |                |              | 95<br>95  |               |              |           |
| Aspray 2016     |                   | FN2<br>TH1 | -1.23<br>-0.20 | 3.32<br>2.53 | 93<br>230 | -1.04<br>0.07 | 3.63<br>2.43 | 87<br>113 |
| Mason 2016      |                   | LS1        | -0.20          | 2.55<br>3.08 | 230<br>90 | 0.07          | 2.45<br>3.19 | 92        |
| 1105011 2010    |                   | FN1        | -1.28          | 3.08         | 90<br>88  | -1.18         | 3.19         | 92<br>92  |
| Aloia 2017      |                   | TH3        | -1.69          | 3.56         | 98        | -2.47         | 2.90         | 92<br>93  |
| - 10.00 2017    |                   | FN3        | -1.28          | 4.65         | 98        | -2.01         | 4.80         | 93        |
|                 |                   | FR3        | -1.68          | 3.08         | 98        | -1.50         | 3.49         | 93        |
| Eckard 2017     |                   | LS1        | 2.80           | 5.36         | 51        | 1.40          | 3.78         | 30        |
| =               |                   | TH1        | 0.93           | 2.89         | 51        | 0.61          | 3.48         | 30        |
| Larsen 2017     |                   | TH3        | -0.52          | 2.74         | 201       | -0.89         | 2.88         | 213       |
|                 |                   | -          |                | -            | -         |               |              | -         |

|             | FN3 | -0.70 | 3.26 | 201 | -1.28 | 3.26 | 213 |
|-------------|-----|-------|------|-----|-------|------|-----|
| Pop 2017    | LS1 | -0.40 | 3.08 | 39  | -0.88 | 3.19 | 19  |
|             | TH1 | 0.52  | 2.24 | 39  | 0.00  | 2.28 | 19  |
|             | FN1 | 0.00  | 3.08 | 39  | -2.22 | 3.17 | 19  |
|             | FR1 | 0.00  | 2.84 | 39  | 0.00  | 3.43 | 19  |
|             | TB1 | 0.43  | 2.33 | 39  | 0.00  | 2.12 | 19  |
| Rahme 2017  | LS1 | 1.65  | 3.21 | 110 | 1.34  | 3.42 | 112 |
|             | TH1 | 0.47  | 2.22 | 110 | 0.50  | 2.26 | 112 |
|             | FN1 | 0.66  | 4.16 | 110 | 0.55  | 3.78 | 112 |
|             | TB1 | 1.18  | 4.13 | 110 | 0.19  | 2.66 | 112 |
| Reid 2017   | LS2 | -0.06 | 3.57 | 228 | -0.64 | 3.61 | 224 |
|             | TH2 | -0.71 | 2.43 | 228 | -1.34 | 2.44 | 224 |
|             | FN2 | -0.55 | 2.97 | 228 | -1.20 | 2.99 | 224 |
|             | TB2 | -0.70 | 1.66 | 228 | -0.70 | 1.68 | 224 |
| Havens 2018 | LS1 | 1.15  | 2.59 | 99  | 0.09  | 3.01 | 89  |
|             | TH1 | -0.17 | 2.85 | 99  | -0.42 | 1.76 | 89  |
|             | TB1 | 0.00  | 2.33 | 99  | -0.27 | 1.90 | 89  |
| Zheng 2018  | LS1 | 5.49  | 3.08 | 27  | 5.62  | 3.19 | 28  |
|             | FN1 | 17.54 | 3.08 | 27  | 6.90  | 3.17 | 28  |
|             |     |       |      |     |       |      |     |

Vit D- vitamin D; HRT- hormone replacement therapy; CaD- coadministered calcium and vitamin D; Cacalcium; P-placebo; Ex- exercise; LS- lumbar spine; TH- total hip; FN- femoral neck; FR- forearm; TB- total body

### e9. Table: Analyses by population, duration of trial, and study design for bone density outcomes.

#### Compare trials with missing measures of spread

| Site          | Factors       | Population     | Design               | Group           | N, mean (95%CI)        | Group         | N, mean (95%CI)        | Group   | N, mean (95%CI)        | Pa     |
|---------------|---------------|----------------|----------------------|-----------------|------------------------|---------------|------------------------|---------|------------------------|--------|
| Lumbar spine  | Year 1        | Unselected     | Vit D vs Control     | Spread present  | 11, 0.20 (-0.12, 0.52) | Spread absent | 5, 0.24 (-1.31, 1.78)  |         |                        | 0.96   |
| Total hip     | Year 1        | Unselected     | Vit D vs Control     | Spread present  | 9, 0.17 (-0.05, 0.39)  | Spread absent | 2, 1.58 (-1.57, 4.73)  |         |                        | 0.38   |
| Femoral neck  | Year 1        | Unselected     | Vit D vs Control     | Spread present  | 9, 0.86 (0.11, 1.60)   | Spread absent | 3, 1.30 (-0.57, 3.17)  |         |                        | 0.66   |
| Forearm       | Year 1        | Unselected     | Vit D vs Control     | Spread present  | 4, -0.21 (-1.14, 0.72) | Spread absent | 1, -0.08 (-1.17, 1.01) |         |                        | 0.86   |
| Total body    | Year 1        | Unselected     | Vit D vs Control     | Spread present  | 6, -0.02 (-0.30, 0.26) | Spread absent | 3, 0.22 (-2.30, 2.74)  |         |                        | 0.86   |
| Lumbar spine  | Year 1        | Unselected     | High vs low dose     | Spread present  | 4, -0.01 (-0.44, 0.43) | Spread absent | 1, 0.48 (-1.23, 2.19)  |         |                        | 0.59   |
| Total hip     | Year 1        | Unselected     | High vs low dose     | Spread present  | 5, -0.19 (-0.44, 0.07) | Spread absent | 1, 0.52 (-0.71, 1.76)  |         |                        | 0.27   |
| Femoral neck  | Year 1        | Unselected     | High vs low dose     | Spread present  | 4, 0.15 (-0.50, 0.79)  | Spread absent | 1, 2.22 (0.52, 3.93)   |         |                        | 0.03   |
| Total body    | Year 1        | Unselected     | High vs low dose     | Spread present  | 3, 0.26 (-0.15, 0.66)  | Spread absent | 1, 0.43 (-0.81, 1.67)  |         |                        | 0.79   |
| Lumbar spine  | Year 1        | Selected       | Vit D vs Control     | Spread present  | 4, 0.30 (-0.69, 1.28)  | Spread absent | 1, -0.12 (-1.78, 1.54) |         |                        | 0.67   |
| Femoral neck  | Year 1        | Selected       | Vit D vs Control     | Spread present  | 4, 0.92 (-0.18, 2.03)  | Spread absent | 1, 10.65 (9.00, 12.30) |         |                        | < 0.01 |
| Compare resul | lts by year f | or each popula | tion type and study  | design for dose |                        |               |                        |         |                        |        |
| Lumbar spine  |               | Unselected     | Vit D vs Control     | Year 1          | 16, 0.22 (-0.21, 0.65) | Year 2        | 6, 0.27 (-0.11, 0.65)  | Year 3+ | 2, 0.02 (-0.42, 0.47)  | 0.70   |
| Lumbar spine  |               | Unselected     | High vs low dose     | Year 1          | 5, 0.02 (-0.40, 0.45)  | Year 2        | 1, -0.21 (-1.01, 0.59) |         |                        | 0.61   |
| Lumbar spine  |               | Selected       | Vit D vs Control     | Year 1          | 5, 0.19 (-0.66, 1.03)  | Year 2        | 1, -0.20 (-1.70, 1.30) |         |                        | 0.66   |
| Total hip     |               | Unselected     | Vit D vs Control     | Year 1          | 11, 0.44 (0.01, 0.88)  | Year 2        | 5, 0.43 (0.13, 0.74)   | Year 3+ | 1, 0.27 (-0.09, 0.62)  | 0.75   |
| Total hip     |               | Selected       | Vit D vs Control     | Year 1          | 3, 0.68 (0.00, 1.37)   | Year 2        | 1, 0.70 (-0.60, 2.00)  |         |                        | 0.98   |
| Femoral neck  |               | Unselected     | Vit D vs Control     | Year 1          | 12, 0.96 (0.29, 1.63)  | Year 2        | 6, 0.49 (0.04, 0.94)   | Year 3+ | 3, 0.47 (-0.02, 0.95)  | 0.45   |
| Femoral neck  |               | Unselected     | High vs low dose     | Year 1          | 5, 0.40 (-0.38, 1.17)  | Year 2        | 1, 1.48 (0.50, 2.46)   |         |                        | 0.09   |
| Forearm       |               | Unselected     | Vit D vs Control     | Year 1          | 5, -0.15 (-0.85, 0.55) | Year 2        | 4, -0.55 (-1.13, 0.02) | Year 3+ | 2, -0.24 (-0.63, 0.15) | 0.60   |
| Forearm       |               | Selected       | Vit D vs Control     | Year 1          | 2, -0.14 (-1.22, 0.95) | Year 2        | 1, 1.00 (-1.75, 3.75)  |         |                        | 0.45   |
| Total body    |               | Unselected     | Vit D vs Control     | Year 1          | 9, 0.08 (-0.53, 0.69)  | Year 2        | 3, 0.04 (-0.24, 0.32)  | Year 3+ | 1, -0.05 (-0.47, 0.37) | 0.92   |
| Total body    |               | Unselected     | High vs low dose     | Year 1          | 4, 0.25 (-0.10, 0.60)  | Year 2        | 1, 0.16 (-0.23, 0.55)  |         |                        | 0.74   |
| Compare resul | lts by popul  | ation type and | study design for dos | e for each year |                        |               |                        |         |                        |        |
| Lumbar spine  | Year 1        | Unselected     | Vit D vs Control     |                 | 16, 0.22 (-0.21, 0.65) |               |                        |         |                        | 0.14   |

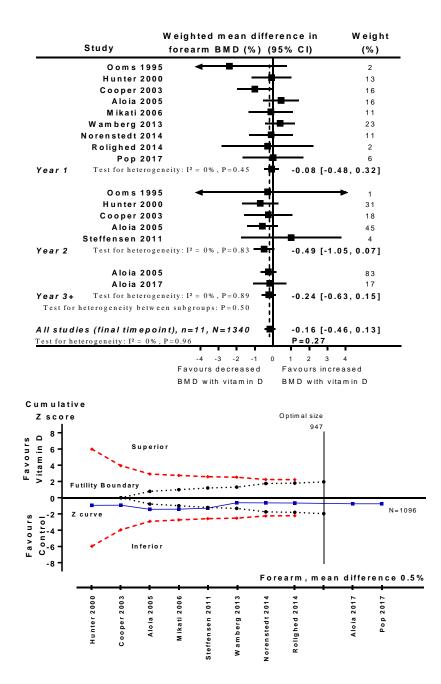
5, 0.02 (-0.40, 0.45) Unselected High vs low dose 5, 0.19 (-0.66, 1.03) Selected Vit D vs Control Selected High vs low dose 4, 0.92 (0.29, 1.55) Vit D vs Control 6, 0.27 (-0.11, 0.65) Year 2 Unselected Vit D vs Control 1, -0.21 (-1.01, 0.59) Unselected 1, -0.20 (-1.70, 1.30) Selected Vit D vs Control

Page 55 of 65

0.51

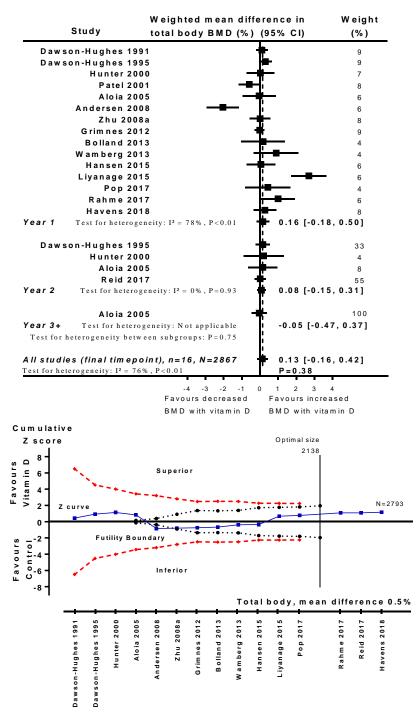
| Total hip       | Year 1       | Unselected      | Vit D vs Control                      |                    | 11, 0.44 (0.01, 0.88)  |        |                        |         |                        | 0.02  |
|-----------------|--------------|-----------------|---------------------------------------|--------------------|------------------------|--------|------------------------|---------|------------------------|-------|
|                 |              | Unselected      | High vs low dose                      |                    | 6, -0.16 (-0.41, 0.09) |        |                        |         |                        |       |
|                 |              | Selected        | Vit D vs Control                      |                    | 3, 0.68 (0.00, 1.37)   |        |                        |         |                        |       |
|                 |              | Selected        | High vs low dose                      |                    | 4, 0.22 (-0.28, 0.72)  |        |                        |         |                        |       |
|                 | Year 2       | Unselected      | Vit D vs Control                      |                    | 4, 0.43 (0.13, 0.74)   |        |                        |         |                        | 0.69  |
|                 |              | Selected        | Vit D vs Control                      |                    | 1, 0.70 (-0.60, 2.00)  |        |                        |         |                        |       |
| Femoral neck    | Year 1       | Unselected      | Vit D vs Control                      |                    | 12, 0.96 (0.29, 1.63)  |        |                        |         |                        | 0.55  |
|                 |              | Unselected      | High vs low dose                      |                    | 5, 0.40 (-0.38, 1.17)  |        |                        |         |                        |       |
|                 |              | Selected        | Vit D vs Control                      |                    | 5, 2.58 (-1.37, 6.53)  |        |                        |         |                        |       |
|                 |              | Selected        | High vs low dose                      |                    | 2, 0.99 (-0.59, 2.58)  |        |                        |         |                        |       |
|                 | Year 2       | Unselected      | Vit D vs Control                      |                    | 6, 0.49 (0.04, 0.94)   |        |                        |         |                        | 0.07  |
|                 |              | Unselected      | High vs low dose                      |                    | 1, 1.48 (0.50, 2.46)   |        |                        |         |                        |       |
| Forearm         | Year 1       | Unselected      | Vit D vs Control                      |                    | 5, -0.15 (-0.85, 0.55) |        |                        |         |                        | >0.99 |
|                 |              | Unselected      | High vs low dose                      |                    | 1, 0.00 (-1.67, 1.67)  |        |                        |         |                        |       |
|                 |              | Selected        | Vit D vs Control                      |                    | 2, -0.14 (-1.22, 0.95) |        |                        |         |                        |       |
|                 |              | Selected        | High vs low dose                      |                    | 1, -0.12 (-1.34, 1.10) |        |                        |         |                        |       |
|                 | Year 2       | Unselected      | Vit D vs Control                      |                    | 4, -0.55 (-1.13, 0.02) |        |                        |         |                        | 0.28  |
|                 |              | Selected        | Vit D vs Control                      |                    | 1, 1.00 (-1.75, 3.75)  |        |                        |         |                        |       |
| Total body      | Year 1       | Unselected      | Vit D vs Control                      |                    | 9, 0.08 (-0.53, 0.69)  |        |                        |         |                        | 0.97  |
|                 |              | Unselected      | High vs low dose                      |                    | 4, 0.25 (-0.10, 0.60)  |        |                        |         |                        |       |
|                 |              | Selected        | Vit D vs Control                      |                    | 1, 0.17 (-1.04, 1.38)  |        |                        |         |                        |       |
|                 |              | Selected        | High vs low dose                      |                    | 1, 0.27 (-0.34, 0.88)  |        |                        |         |                        |       |
|                 | Year 2       | Unselected      | Vit D vs Control                      |                    | 3, 0.04 (-0.24, 0.32)  |        |                        |         |                        | 0.24  |
|                 |              | Selected        | Vit D vs Control                      |                    | 1, 0.16 (-0.23, 0.55)  |        |                        |         |                        |       |
| Compare resul   | ts by year.  | pooling studies | by population type :                  | and study design f | or dose                |        |                        |         |                        |       |
| Lumbar spine    |              | F 8             | · · · · · · · · · · · · · · · · · · · | Year 1             | 30, 0.25 (-0.04, 0.54) | Year 2 | 8, 0.16 (-0.17, 0.50)  | Year 3+ | 2, 0.02 (-0.42, 0.47)  | 0.71  |
| Total hip       |              |                 |                                       | Year 1             | 24, 0.26 (0.01, 0.51)  | Year 2 | 5, 0.45 (0.15, 0.74)   | Year 3+ | 4, 0.27 (-0.09, 0.62)  | 0.60  |
| Femoral neck    |              |                 |                                       | Year 1             | 24, 1.23 (0.12, 0.54)  | Year 2 | 7, 0.63 (0.06, 0.16)   | Year 3+ | 3, 0.47 (0.06, -0.02)  | 0.20  |
| Forearm         |              |                 |                                       | Year 1             | 9, -0.08 (-0.48, 0.32) | Year 2 | 5, -0.49 (-1.05, 0.07) | Year 3+ | 2, -0.24 (-0.63, 0.15) | 0.50  |
| Total body      |              |                 |                                       | Year 1             | 15, 0.16 (-0.18, 0.50) | Year 2 | 4, 0.08 (-0.15, 0.31)  | Year 3+ | 1, -0.05 (-0.47, 0.37) | 0.75  |
| Femoral neck, Z | Zheng 2018   | excluded        |                                       | Year 1             | 23, 0.81 (0.37, 1.25)  | Year 2 | 7, 0.63 (0.16, 1.10)   | Year 3+ | 3, 0.47 (-0.02, 0.95)  | 0.59  |
| 0               | ts by site u | sing final time | point results only fro                | om each study      |                        |        |                        |         |                        |       |
| Compare resul   |              | -               | - 0                                   | -                  | 34, 0.25 (0.00, 0.49)  |        |                        |         |                        |       |
| Lumbar spine    |              |                 |                                       |                    | 3+, 0.23(0.00, 0.+))   |        |                        |         |                        |       |
| -               |              |                 |                                       |                    | 29, 0.34 (0.13, 0.55)  |        |                        |         |                        |       |
| Lumbar spine    |              |                 |                                       |                    |                        |        |                        |         |                        |       |

Total body


#### 16, 0.13 (-0.16, 0.42)

Femoral neck, Zheng 2018 excluded

28, 0.76 (0.42, 1.09)


N- number of studies; mean- weighted mean between-group difference in bone mineral density; Vit D- vitamin D;. <sup>a</sup> P values are for the test of interaction between subgroups.

#### e10. Figure: Forearm bone density



The top panel shows random effects meta-analyses of vitamin D supplementation on forearm bone mineral density (BMD) by trial duration and the pooled analysis of all trials using the final time point. The bottom panel shows trial sequential analysis of all trials of vitamin D on forearm BMD for a mean difference of 0.5% (see Figure 1 for detailed description).

#### e11. Figure: Total body bone density



The top panel shows random effects meta-analyses of vitamin D supplementation on total body bone mineral density (BMD) by trial duration and the pooled analysis of all trials using the final time point. The bottom panel shows the trial sequential analysis of all trials of vitamin D on total body BMD (see Figure 1 for description).

## e12. Table: Reported subgroup analyses based on baseline 25-hydroxyvitamin D

|                       |                           | <u>Fracture</u> | Comparison             |                           | <u>Falls</u>   | Comparison                          |                                    | <u>Bone density</u> | Comparison                          |
|-----------------------|---------------------------|-----------------|------------------------|---------------------------|----------------|-------------------------------------|------------------------------------|---------------------|-------------------------------------|
|                       | Threshold<br>(nmol/L)     | Result          | to primary<br>analysis | Threshold<br>(nmol/L)     | Result         | to primary<br>analysis              | Threshold<br>(nmol/L)              | Result              | to primary<br>analysis              |
| Patel 2001            |                           |                 |                        |                           |                | a' 11 -                             | <60 only                           | No effect           | Similar to primary                  |
| Latham 2003           |                           |                 | ~                      | <25                       | No effect      | Similar to<br>primary               |                                    |                     | ~                                   |
| Harwood 2004          | <30 (and PTH<br><50) only | No effect       | Similar to primary     | <30 (and PTH<br><50) only | No effect      | Similar to primary                  | <30 (and PTH<br><50) only          | Mixed               | Similar to<br>primary<br>Similar to |
| Aloia 2005            |                           |                 |                        |                           |                |                                     | Not stated                         | No effect           | primary                             |
| Zhu 2008b             |                           |                 |                        |                           |                |                                     | <68, >68                           | Positive            | Mixed<br>Similar to                 |
| Jorde 2010            |                           |                 |                        |                           |                |                                     | <45 only                           | No effect           | primary                             |
| Grimnes 2012          |                           |                 |                        |                           |                |                                     | <69.7, >69.7<br><55, >55           | No<br>interaction   | Similar to<br>primary<br>Similar to |
| MacDonald 2013        |                           |                 |                        |                           |                |                                     | <50 only                           | Mixed               | primary                             |
| Norenstedt 2014       |                           |                 |                        |                           |                |                                     | <50 or >50                         | No effect           | Similar to<br>primary               |
| Bischoff-Ferrari 2016 |                           |                 |                        | <50, >50                  | Mixed          | Similar to<br>primary               |                                    |                     |                                     |
| Mason 2016            |                           |                 |                        | ,                         |                |                                     | <50 only                           | Mixed               | Mixed                               |
| Ginde 2017            | <50; <25, 25-50,          |                 | Similar to             | <50, >50                  | No interaction | Similar to<br>primary<br>Similar to |                                    |                     |                                     |
| Khaw 2017             | 50-75 vs 75+              | No effect       | primary                | <50 only                  | No effect      | primary                             |                                    |                     | <b>G</b> <sup>1</sup> <b>1</b>      |
| Larsen 2017           |                           |                 |                        |                           |                |                                     | <50 only<br><50, >50 and           | No effect           | Similar to primary                  |
| Rahme 2017            |                           |                 |                        |                           |                |                                     | PTH <76<br><25, >25;<br><30, >30;  | Mixed               | Mixed                               |
| Reid 2017             |                           |                 | Similar to             |                           |                | Similar to                          | <50, >50,<br><40, >40;<br><50, >50 | Mixed<br>No         | Similar to<br>primary<br>Similar to |
| Schwetz 2017          | <25, >25                  | No effect       | primary                | <25, >25                  | No effect      | primary                             | <25 or >25<br><50 or >50           | difference          | primary                             |
| Havens 2018           |                           |                 |                        |                           |                |                                     | only in vit D<br>group             | No<br>difference    | Similar to primary                  |

250HD- 25 hydroxyvitamin D; PTH- parathyroid hormone; Vit D- vitamin D;

## e13. Table: Results of subgroups analyses for falls and fracture

| Subgroups                        | Group                 | N, RR, 95% CI                                 | Group                 | N, RR, 95% CI         | Group | N, RR, 95% CI        | $\mathbf{P}^{\mathrm{a}}$ |
|----------------------------------|-----------------------|-----------------------------------------------|-----------------------|-----------------------|-------|----------------------|---------------------------|
| Total fracture                   |                       |                                               |                       |                       |       |                      |                           |
| Age                              | <65 years             | 7, 0.88 (0.67, 1.14)                          | 65+ years             | 29, 1.00 (0.92, 1.09) |       |                      | 0.34                      |
| BMI                              | $<30 \text{ kg/m}^2$  | 26, 0.95 (0.87, 1.03)                         | 30+ kg/m <sup>2</sup> | 4, 0.78 (0.32, 1.90)  |       |                      | 0.66                      |
| Duration                         | ≤12 m                 | 22, 0.92 (0.71, 1.19)                         | >12 m                 | 14, 1.00 (0.92, 1.09) |       |                      | 0.52                      |
| Trial size                       | ≤200<br>Community-    | 12, 0.50 (0.32, 0.77)                         | >200                  | 24, 1.02 (0.96, 1.09) |       |                      | 0.002                     |
| Site                             | dwelling              | 28, 1.01 (0.93, 1.09)                         | Residential Care      | 8, 0.98 (0.84, 1.14)  |       |                      | 0.73                      |
| Risk of bias                     | Low                   | 9, 1.00 (0.90, 1.11)                          | Moderate/High         | 27, 0.99 (0.88, 1.10) |       |                      | 0.85                      |
| Vit D Dose                       | >800 IU/d             | 18, 1.07 (0.94, 1.22)                         | ≤800 IU/d             | 17, 0.98 (0.90, 1.08) |       |                      | 0.29                      |
| Dose Frequency<br>Coadministered | Daily                 | 19, 0.97 (0.88, 1.07)                         | Intermittent          | 16, 1.03 (0.92, 1.16) | Mixed | 1, 0.49 (0.13, 1.92) | 0.43                      |
| therapy                          | No                    | 25, 1.04 (0.97, 1.12)                         | Yes                   | 11, 0.89 (0.77, 1.04) |       |                      | 0.07                      |
| Therapy                          |                       |                                               | Calcium               | 9, 0.89 (0.77, 1.04)  |       |                      | 0.76                      |
|                                  |                       |                                               | Calcium/Exercise      | 1, 0.61 (0.15, 2.47)  |       |                      |                           |
|                                  |                       |                                               | Exercise              | 1, 1.17 (0.40, 3.37)  |       |                      |                           |
| Baseline 25OHD                   | <25  nmol/L           | 2, 0.79 (0.14, 4.33)                          | 25+ nmol/L            | 29, 1.05 (0.98, 1.13) |       |                      | 0.74                      |
|                                  | <50 nmol/L            | 18, 1.03 (0.93, 1.14)                         | 50+ nmol/L            | 13, 1.08 (0.97, 1.21) |       |                      | 0.52                      |
|                                  | <75  nmol/L           | 31, 1.05 (0.98, 1.14)                         | 75+ nmol/L            | -                     |       |                      |                           |
| Achieved 25OHD                   | < 50  nmol/L          | 5, 0.70 (0.36, 1.35)                          | 50+ nmol/L            | 27, 1.02 (0.95, 1.09) |       |                      | 0.27                      |
| TI:                              | <75  nmol/L           | 16, 1.03 (0.93, 1.14)                         | 75+ nmol/L            | 16, 0.96 (0.85, 1.09) |       |                      | 0.42                      |
| High vs low dose<br>within study |                       | 7, 0.65 (0.39, 1.07)                          |                       |                       |       |                      |                           |
| Hip fracture                     |                       |                                               |                       |                       |       |                      |                           |
| Age                              | <65 years             | 1, 0.50 (0.05, 5.48)                          | 65+ years             | 19, 1.11 (0.97, 1.26) |       |                      | 0.51                      |
| BMI                              | $<30 \text{ kg/m}^2$  | 14, 0.99 (0.81, 1.22)                         |                       |                       |       |                      |                           |
| Duration                         | ≤12 m                 | 9, 0.95 (0.56, 1.62)                          | >12 m                 | 11, 1.12 (0.98, 1.28) |       |                      | 0.57                      |
| Trial size                       | ≤200<br>Community-    | 9, 0.53 (0.24, 1.16)                          | >200                  | 11, 1.13 (0.99, 1.29) |       |                      | 0.06                      |
| Site                             | dwelling              | 13, 1.09 (0.90, 1.32)                         | Residential Care      | 7, 1.12 (0.94, 1.34)  |       |                      | 0.84                      |
| Risk                             | Low                   | 7, 1.12 (0.98, 1.29)                          | Moderate/High         | 13, 0.96 (0.62, 1.49) |       |                      | 0.50                      |
| Vit D Dose                       | >800 IU/d             | 3, 1.17 (0.68, 2.00)                          | ≤800 IU/d             | 15, 1.11 (0.97, 1.28) |       |                      | 0.88                      |
| Dose Frequency<br>Coadministered | Daily<br>No           | 12, 1.06 (0.87, 1.28)                         | Intermittent<br>Yes   | 8, 1.15 (0.96, 1.38)  |       |                      | 0.51                      |
| therapy                          | INO                   | 13, 1.15 (1.00, 1.32)                         |                       | 7, 0.91 (0.63, 1.32)  |       |                      | 0.24                      |
| Therapy                          | <25 mm - 1/T          | 1 0 51 (0 05 5 50)                            | Calcium               | 7, 0.91 (0.63, 1.32)  |       |                      | 0.51                      |
| Baseline 25OHD                   | <25 nmol/L            | 1, 0.51 (0.05, 5.59)                          | 25 + nmol/L           | 16, 1.15 (0.98, 1.35) |       |                      | 0.51                      |
|                                  | <50 nmol/L            | 13, 1.06 (0.89, 1.27)                         | 50+ nmol/L            | 4, 1.43 (1.05, 1.96)  |       |                      | 0.10                      |
| A abiavad 25011D                 | <75 nmol/L            | 17, 1.15 (0.98, 1.34)                         | 75 + nmol/L           | -                     |       |                      | 0.17                      |
| Achieved 25OHD                   | <50 nmol/L            | 4, 0.43 (0.11, 1.66)                          | 50+ nmol/L            | 15, 1.12 (0.98, 1.28) |       |                      | 0.17                      |
| High vs low dose<br>within study | <75 nmol/L            | 13, 1.14 (0.97, 1.33)<br>2, 0.42 (0.12, 1.47) | 75+ nmol/L            | 6, 1.05 (0.83, 1.34)  |       |                      | 0.61                      |
|                                  |                       | _, (,,)                                       |                       |                       |       |                      |                           |
| Falls                            |                       |                                               |                       |                       |       |                      | a :-                      |
| Age                              | <65 years             | 4, 0.83 (0.55, 1.24)                          | 65+ years             | 33, 0.98 (0.94, 1.02) |       |                      | 0.42                      |
| BMI                              | <30 kg/m <sup>2</sup> | 28, 0.95 (0.89, 1.02)                         | 30+ kg/m <sup>2</sup> | 3, 0.76 (0.52, 1.11)  |       |                      | 0.25                      |
| Duration                         | ≤12 m                 | 28, 0.91 (0.83, 1.01)                         | >12 m                 | 9, 1.00 (0.96, 1.04)  |       |                      | 0.10                      |
| Trial size                       | ≤200<br>Community-    | 16, 0.84 (0.69, 1.03)                         | >200                  | 21, 0.99 (0.95, 1.03) |       |                      | 0.12                      |
| Site                             | dwelling              | 30, 0.97 (0.92, 1.02)                         | Residential Care      | 7, 0.98 (0.92, 1.05)  |       |                      | 0.74                      |
| Risk                             | Low                   | 22, 0.99 (0.94, 1.04)                         | Moderate/High         | 15, 0.90 (0.81, 1.00) |       |                      | 0.12                      |
| Vit D Dose                       | >800 IU/d             | 21, 0.95 (0.89, 1.02)                         | ≤800 IU/d             | 15, 0.98 (0.95, 1.01) |       |                      | 0.45                      |
| Dose Frequency                   | Daily                 | 18, 0.92 (0.87, 0.98)                         | Intermittent          | 18, 1.01 (0.95, 1.07) | Mixed | 1, 0.99 (0.65, 1.50) | 0.13                      |
| Coadministered                   | No                    | 24, 0.98 (0.93, 1.03)                         | Yes                   | 12, 0.95 (0.87, 1.04) |       |                      | 0.55                      |

therapy

| Therapy                          |            |                       | Calcium          | 8, 0.92 (0.82, 1.03)  | 0.25 |
|----------------------------------|------------|-----------------------|------------------|-----------------------|------|
|                                  |            |                       | Calcium/Exercise | 1, 1.80 (0.71, 4.59)  |      |
|                                  |            |                       | Exercise         | 2, 1.03 (0.89, 1.20)  |      |
|                                  |            |                       | Strontium        | 1, 0.79 (0.51, 1.23)  |      |
| Baseline 25OHD                   | <25 nmol/L | 2, 0.80 (0.57, 1.11)  | 25+ nmol/L       | 31, 0.98 (0.93, 1.03) | 0.24 |
|                                  | <50 nmol/L | 22, 0.92 (0.83, 1.02) | 50+ nmol/L       | 11, 0.99 (0.94, 1.03) | 0.25 |
|                                  | <75 nmol/L | 33, 0.97 (0.92, 1.03) | 75+ nmol/L       | -                     |      |
| Achieved 25OHD                   | <50 nmol/L | 4, 0.60 (0.33, 1.07)  | 50+ nmol/L       | 30, 0.99 (0.94, 1.03) | 0.10 |
|                                  | <75 nmol/L | 19, 0.96 (0.91, 1.03) | 75+ nmol/L       | 15, 0.99 (0.90, 1.10) | 0.66 |
| High vs low dose<br>within study |            | 7, 0.90 (0.69, 1.18)  |                  |                       |      |

N- number of studies; RR- relative risk; BMI- body mass index; vit D- vitamin D; 25OHD- 25-hydroxyvitamin D

## e14. Table: Results of subgroups analyses for bone density

| Subgroups                        | Group                    | N, mean, 95% CI         | Group              | N, mean, 95% CI        | Group | N, mean, 95% CI        | Р    |
|----------------------------------|--------------------------|-------------------------|--------------------|------------------------|-------|------------------------|------|
| Lumbar spine                     | -                        |                         | •                  |                        | -     |                        |      |
| Age                              | <65 years                | 6, 0.30 (-0.11, 0.70)   | 65+ years          | 28, 0.27 (-0.03, 0.56) |       |                        | 0.91 |
| BMI                              | <30 kg/m2                | 25, 0.38 (0.07, 0.69)   | 30+ kg/m2          | 9, -0.05 (-0.41, 0.32) |       |                        | 0.08 |
| Duration                         | ≤12 m                    | 24, 0.39 (0.03, 0.75)   | >12 m              | 10, 0.03 (-0.23, 0.29) |       |                        | 0.11 |
| Trial size                       | ≤200                     | 21, 0.39 (-0.05, 0.83)  | >200               | 13, 0.16 (-0.13, 0.45) |       |                        | 0.39 |
| 6 <b>:</b> 4-                    | Community-               | 24 0 25 (0 00 0 40)     | Desidential Com    |                        |       |                        |      |
| Site<br>Risk of bias             | dwelling                 | 34, 0.25 (0.00, 0.49)   | Residential Care   | -                      |       |                        | 0.20 |
| Vit D Dose                       | Low                      | 22, 0.35 (0.04, 0.67)   | Moderate/High      | 12, 0.03 (-0.35, 0.41) |       |                        | 0.20 |
|                                  | >800 IU/d                | 14, 0.30 (-0.21, 0.81)  | ≤800 IU/d          | 13, 0.10 (-0.21, 0.41) | Maria | 1 0 25 ( 1 14 0 44)    | 0.51 |
| Dose Frequency<br>Coadministered | Daily                    | 18, 0.15 (-0.13, 0.44)  | Intermittent       | 15, 0.42 (-0.05, 0.88) | Mixed | 1, -0.35 (-1.14, 0.44) | 0.25 |
| therapy                          | No                       | 14, 0.29 (-0.28, 0.85)  | Yes                | 12, 0.16 (-0.12, 0.44) |       |                        | 0.70 |
| Therapy                          |                          |                         | Calcium            | 9, 0.14 (-0.16, 0.43)  |       |                        | 0.87 |
|                                  |                          |                         | Calcium/Cinacalcet | 1, -0.12 (-1.78, 1.54) |       |                        |      |
|                                  |                          |                         | Exercise           | 1, 0.36 (-0.72, 1.44)  |       |                        |      |
| Baseline 25OHD                   | $<\!\!25 \text{ nmol/L}$ | 31, 0.23 (-0.04, 0.51)  | 25+ nmol/L         | 1, 0.64 (-0.56, 1.83)  |       |                        | 0.52 |
|                                  | <50 nmol/L               | 15, 0.34 (0.07, 0.61)   | 50+ nmol/L         | 17, 0.13 (-0.29, 0.56) |       |                        | 0.42 |
|                                  | <75 nmol/L               | 1, -0.18 (-1.71, 1.35)  | 75+ nmol/L         | 31, 0.26 (-0.02, 0.53) |       |                        | 0.58 |
| Achieved 25OHD                   | <50 nmol/L               | 3, 0.05 (-0.97, 1.06)   | 50+ nmol/L         | 31, 0.26 (0.00, 0.52)  |       |                        | 0.69 |
|                                  | <75  nmol/L              | 12, 0.36 (-0.01, 0.73)  | 75+ nmol/L         | 22, 0.22 (-0.10, 0.54) |       |                        | 0.58 |
| High vs low dose<br>within study |                          | 13, 0.57 (0.03, 1.11)   |                    |                        |       |                        |      |
| Wieldin Study                    |                          | 10, 0107 (0100, 1111)   |                    |                        |       |                        |      |
| <u>Total hip</u>                 |                          |                         |                    |                        |       |                        |      |
| Age                              | <65 years                | 8, 0.34 (-0.06, 0.73)   | 65+ years          | 21, 0.34 (0.08, 0.60)  |       |                        | 0.97 |
| BMI                              | <30 kg/m2                | 20, 0.45 (0.14, 0.76)   | 30+ kg/m2          | 8, 0.08 (-0.12, 0.29)  |       |                        | 0.05 |
| Duration                         | ≤12 m                    | 20, 0.35 (0.05, 0.65)   | >12 m              | 9, 0.32 (0.10, 0.53)   |       |                        | 0.87 |
| Trial size                       | ≤200<br>Community-       | 17, 0.59 (0.15, 1.04)   | >200               | 12, 0.16 (-0.02, 0.34) |       |                        | 0.08 |
| Site                             | dwelling                 | 28, 0.35 (0.14, 0.57)   | Residential Care   | 1, -0.08 (-0.93, 0.77) |       |                        | 0.33 |
| Risk of bias                     | Low                      | 22, 0.31 (0.08, 0.55)   | Moderate/High      | 7, 0.43 (-0.05, 0.92)  |       |                        | 0.66 |
| Vit D Dose                       | >800 IU/d                | 15, 0.62 (0.29, 0.96)   | ≤800 IU/d          | 6, 0.19 (-0.16, 0.55)  |       |                        | 0.09 |
| Dose Frequency<br>Coadministered | Daily                    | 13, 0.23 (0.04, 0.42)   | Intermittent       | 15, 0.42 (0.05, 0.80)  | Mixed | 1, 0.55 (-0.25, 1.35)  | 0.54 |
| therapy                          | No                       | 11, 0.74 (0.25, 1.22)   | Yes                | 8, 0.18 (-0.02, 0.39)  |       |                        | 0.04 |
| Therapy                          |                          |                         | Calcium            | 8, 0.18 (-0.02, 0.39)  |       |                        |      |
| Baseline 25OHD                   | <25 nmol/L               | 28, 0.32 (0.11, 0.54)   | 25+ nmol/L         | -                      |       |                        |      |
|                                  | <50 nmol/L               | 12, 0.19 (0.00, 0.38)   | 50+ nmol/L         | 16, 0.43 (0.07, 0.79)  |       |                        | 0.25 |
|                                  | <75 nmol/L               | 28, 0.32 (0.11, 0.54)   | 75+ nmol/L         | -                      |       |                        |      |
| Achieved 25OHD                   | <50 nmol/L               | 1, 2.00 (0.46, 3.55)    | 50+ nmol/L         | 28, 0.31 (0.10, 0.51)  |       |                        | 0.03 |
| High vs low dose                 | <75 nmol/L               | 8, 0.34 (0.08, 0.59)    | 75+ nmol/L         | 21, 0.34 (0.07, 0.62)  |       |                        | 0.97 |
| within study                     |                          | 13, -0.01 (-0.20, 0.18) |                    |                        |       |                        |      |
|                                  |                          |                         |                    |                        |       |                        |      |
| Femoral neck                     |                          |                         |                    |                        |       |                        |      |
| Age                              | <65 years                | 7, 0.74 (0.23, 1.25)    | 65+ years          | 21, 0.75 (0.32, 1.17)  |       |                        | 0.98 |
| BMI                              | <30 kg/m2                | 19, 0.79 (0.33, 1.25)   | 30+ kg/m2          | 8, 0.63 (0.13, 1.12)   |       |                        | 0.64 |
| Duration                         | ≤12 m                    | 17, 0.95 (0.38, 1.52)   | >12 m              | 11, 0.57 (0.27, 0.87)  |       |                        | 0.25 |
| Trial size                       | ≤200<br>Community-       | 17, 1.08 (0.49, 1.67)   | >200               | 11, 0.39 (0.09, 0.69)  |       |                        | 0.04 |
| Site                             | dwelling                 | 28, 0.76 (0.42, 1.09)   | Residential Care   | -                      |       |                        |      |
| Risk of bias                     | Low                      | 18, 0.72 (0.31, 1.12)   | Moderate/High      | 10, 0.87 (0.30, 1.44)  |       |                        | 0.67 |
| Vit D Dose                       | >800 IU/d                | 12, 0.76 (0.32, 1.20)   | ≤800 IU/d          | 10, 0.82 (0.11, 1.52)  |       |                        | 0.89 |
| Dose Frequency                   | Daily                    | 15, 0.88 (0.46, 1.29)   | Intermittent       | 12, 0.67 (0.06, 1.29)  | Mixed | 1, 0.20 (-0.33, 0.73)  | 0.14 |
|                                  |                          |                         |                    |                        |       |                        |      |

| Coadministered                   |                          |                          |                          |                                                   |       |                       |        |
|----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------------|-------|-----------------------|--------|
| therapy                          | No                       | 14, 1.02 (0.53, 1.50)    | Yes                      | 8, 0.27 (-0.19, 0.72)                             |       |                       | 0.03   |
| Therapy                          |                          |                          | Calcium                  | 6, 0.34 (-0.24, 0.93)                             |       |                       | 0.66   |
|                                  |                          |                          | Exercise                 | 1, -0.19 (-1.20, 0.82)                            |       |                       |        |
|                                  |                          |                          | HRT                      | 1, 0.10 (-1.24, 1.44)                             |       |                       |        |
| Baseline 25OHD                   | <25 nmol/L               | 25, 0.68 (0.33, 1.04)    | 25+ nmol/L               | 1, 1.90 (0.40, 3.40)                              |       |                       | 0.12   |
|                                  | <50 nmol/L               | 10, 1.11 (0.55, 1.67)    | 50+ nmol/L               | 16, 0.50 (0.08, 0.92)                             |       |                       | 0.09   |
|                                  | <75 nmol/L               | 1, -0.66 (-1.99, 0.67)   | 75+ nmol/L               | 25, 0.77 (0.42, 1.13)                             |       |                       | 0.04   |
| Achieved 25OHD                   | <50 nmol/L               | 2, 0.25 (-0.60, 1.11)    | 50+ nmol/L               | 26, 0.78 (0.43, 1.14)                             |       |                       | 0.26   |
| High vs low dose                 | <75 nmol/L               | 11, 0.95 (0.28, 1.61)    | 75+ nmol/L               | 17, 0.64 (0.26, 1.02)                             |       |                       | 0.43   |
| within study                     |                          | 8, 0.59 (-0.05, 1.23)    |                          |                                                   |       |                       |        |
|                                  |                          |                          |                          |                                                   |       |                       |        |
| <u>Forearm</u>                   |                          |                          |                          |                                                   |       |                       |        |
| Age                              | <65 years                | 2, -0.18 (-1.10, 0.73)   | 65+ years                | 9, -0.16 (-0.47, 0.15)                            |       |                       | 0.96   |
| BMI                              | <30 kg/m2                | 6, -0.28 (-0.84, 0.28)   | 30+ kg/m2                | 4, -0.11 (-0.48, 0.26)                            |       |                       | 0.62   |
| Duration                         | ≤12 m                    | 5, 0.11 (-0.43, 0.66)    | >12 m                    | 6, -0.27 (-0.62, 0.07)                            |       |                       | 0.24   |
| Trial size                       | ≤200                     | 8, -0.06 (-0.51, 0.38)   | >200                     | 3, -0.24 (-0.63, 0.15)                            |       |                       | 0.56   |
| Site                             | Community-<br>dwelling   | 11, -0.16 (-0.46, 0.13)  | Residential Care         | -                                                 |       |                       |        |
| Risk of bias                     | Low                      | 7, -0.12 (-0.44, 0.21)   | Moderate/High            | 4, -0.37 (-1.05, 0.30)                            |       |                       | 0.50   |
| Vit D Dose                       | >800 IU/d                | 6, 0.06 (-0.43, 0.55)    | ≤800 IU/d                | 3, -0.32 (-0.71, 0.07)                            |       |                       | 0.24   |
| Dose Frequency                   | Daily                    | 8, -0.18 (-0.48, 0.13)   | Intermittent             | 3, -0.01 (-0.99, 0.96)                            |       |                       | 0.75   |
| Coadministered                   | -                        |                          |                          |                                                   |       |                       | 0.50   |
| therapy                          | No                       | 4, -0.06 (-0.68, 0.55)   | Yes                      | 5, -0.21 (-0.56, 0.15)                            |       |                       | 0.69   |
| Therapy                          | 25 1/7                   | 0.016(0.47.015)          | Calcium                  | 5, -0.21 (-0.56, 0.15)                            |       |                       | 0.05   |
| Baseline 250HD                   | <25 nmol/L               | 9, -0.16 (-0.47, 0.15)   | 25 + nmol/L              | 1, -0.30 (-4.90, 4.30)                            |       |                       | 0.95   |
|                                  | <50 nmol/L               | 5, -0.11 (-0.46, 0.23)   | 50+ nmol/L               | 5, -0.34 (-1.02, 0.33)                            |       |                       | 0.56   |
|                                  | <75 nmol/L               | 1, -0.26 (-1.59, 1.07)   | 75 + nmol/L              | 9, -0.16 (-0.47, 0.16)                            |       |                       | 0.88   |
| Achieved 25OHD                   | <50 nmol/L<br><75 nmol/L | - 3, -0.11 (-0.96, 0.73) | 50+ nmol/L<br>75+ nmol/L | 11, -0.16 (-0.46, 0.13)<br>8, -0.17 (-0.48, 0.14) |       |                       | 0.90   |
| High vs low dose                 | <75 IIII01/L             | 5, -0.11 (-0.90, 0.75)   | 75+ IIII01/L             | 8, -0.17 (-0.48, 0.14)                            |       |                       | 0.90   |
| within study                     |                          |                          |                          |                                                   |       |                       |        |
| Total hady                       |                          |                          |                          |                                                   |       |                       |        |
| <u>Total body</u><br>Age         | <65 years                | 3, 0.18 (-0.27, 0.63)    | 65 L VOORG               | 13, 0.11 (-0.25, 0.48)                            |       |                       | 0.82   |
| BMI                              | <05 years<br><30 kg/m2   | 11, 0.05 (-0.31, 0.42)   | 65+ years<br>30+ kg/m2   | 5, 0.30 (-0.14, 0.73)                             |       |                       | 0.82   |
| Duration                         | <30 kg/m2<br>≤12 m       | 11, 0.05 (-0.19, 0.73)   | >12 m                    | 5, -0.03 (-0.25, 0.18)                            |       |                       | 0.39   |
| Trial size                       | <u>≤</u> 200             | 7, 0.23 (-0.91, 1.37)    | >200                     | 9, 0.07 (-0.07, 0.20)                             |       |                       | 0.78   |
|                                  | Community-               |                          | 200                      | ), 0.07 ( 0.07, 0.20)                             |       |                       | 0.70   |
| Site                             | dwelling                 | 16, 0.13 (-0.16, 0.42)   | Residential Care         | -                                                 |       |                       |        |
| Risk of bias                     | Low                      | 10, 0.21 (-0.23, 0.65)   | Moderate/High            | 6, 0.04 (-0.20, 0.28)                             |       |                       | 0.50   |
| Vit D Dose                       | >800 IU/d                | 6, 0.59 (-0.14, 1.32)    | ≤800 IU/d                | 6, -0.36 (-0.89, 0.17)                            |       |                       | 0.04   |
| Dose Frequency<br>Coadministered | Daily                    | 8, -0.17 (-0.57, 0.23)   | Intermittent             | 7, 0.56 (0.03, 1.08)                              | Mixed | 1, 0.05 (-0.74, 0.84) | 0.10   |
| therapy                          | No                       | 8, 0.13 (-0.63, 0.90)    | Yes                      | 3, 0.04 (-0.19, 0.27)                             |       |                       | 0.82   |
| Therapy                          |                          |                          | Calcium                  | 3, 0.04 (-0.19, 0.27)                             |       |                       |        |
| Baseline 25OHD                   | <25 nmol/L               | 1, -2.04 (-2.92, -1.16)  | 25+ nmol/L               | 13, 0.27 (-0.05, 0.59)                            |       |                       | < 0.01 |
|                                  | <50 nmol/L               | 6, -0.15 (-0.78, 0.47)   | 50+ nmol/L               | 8, 0.37 (-0.12, 0.87)                             |       |                       | 0.20   |
|                                  | <75 nmol/L               | 14, 0.15 (-0.22, 0.51)   | 75+ nmol/L               | -                                                 |       |                       |        |
| Achieved 25OHD                   | <50 nmol/L               | 1, -2.04 (-2.92, -1.16)  | 50+ nmol/L               | 15, 0.22 (-0.03, 0.47)                            |       |                       | < 0.01 |
|                                  | <75 nmol/L               | 2, -0.99 (-2.99, 1.01)   | 75+ nmol/L               | 14, 0.24 (-0.03, 0.51)                            |       |                       | 0.23   |
| High vs low dose<br>within study |                          | 7, -0.02 (-0.52, 0.47)   |                          |                                                   |       |                       |        |
| within study                     |                          | 7, -0.02 (-0.32, 0.47)   |                          |                                                   |       |                       |        |

N- number of studies; mean- weighted mean between group difference in bone density; BMI- body mass index; vit D- vitamin D; 25OHD- 25-hydroxyvitamin D. <sup>a</sup> P values are for the test of interaction between subgroups.

## e15: References in the appendix