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resistance in the human pathogen Candida albicans 
 

 

 

ABSTRACT 

 

 

Drug resistance and cellular adhesion are two key elements of both dissemination and 

prevalence of the human fungal pathogen Candida albicans. Smi1 belongs to a family of hub 

proteins conserved among the fungal kingdom whose functions in cellular signaling affect 

morphogenesis, cell wall synthesis and stress resistance. The data presented here indicate that 

C. albicans SMI1 is a functional homolog of Saccharomyces cerevisiae KNR4 and is involved 

in the regulation of cell wall synthesis. Expression of SMI1 in S. cerevisiae knr4Δ null 

mutants rescued their sensitivity to caspofungin and to heat stress. Deletion of SMI1 in C. 

albicans resulted in sensitivity to the cell-wall-perturbing compounds Calcofluor White and 

Caspofungin. Analysis of wild-type and mutant cells by Atomic Force Microscopy showed 

that the Young’s Modulus (stiffness) of the cell wall was reduced by 85 % upon deletion of 

SMI1, while cell surface adhesion measured by Force Spectroscopy showed that the surface 

expression of adhesive molecules was also reduced in the mutant. Over-expression of SMI1, 

on the contrary, increased cell surface adhesion by 6 fold vs the control strain. Finally, Smi1-

GFP localized as cytoplasmic patches and concentrated spots at the sites of new cell wall 

synthesis including the tips of growing hyphae, consistent with a role in cell wall regulation. 

Thus, Smi1 function appears to be conserved across fungi, including the yeast S. cerevisiae, 

the yeast and hyphal forms of C. albicans and the filamentous fungus Neurospora crassa.  

 

 

INTRODUCTION  

 

 Fungal infections are responsible of the death of an estimated 1.5 million people per 

year worldwide. Yeasts of the Candida  genus are the second most numerous agents of fungal 

infections, with a prominent contribution by Candida albicans, which causes over 400,000 

cases of life-threatening systemic infections and 200,000 deaths per year (Brown et al., 2012). 

Only four classes of antifungal drugs are available for patient treatment and the emergence of 

resistance is becoming a serious concern. The fungistatic group of azoles and the more 

recently-developed fungicidal group of echinocandins constitute the two major classes of 

antifungals used to treat patients. Azoles block the biosynthesis of ergosterol - an essential 

sterol for fungal cell membranes - by targeting the cytochrome P450 14-α demethylase 

enzyme, Erg11, which catalyzes the  conversion  of  lanosterol  to  ergosterol, thereby 

affecting membrane integrity and inhibiting fungal growth (Kathiravan et al., 2012; Vanden 
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Bossche et al., 1995). On the other hand, echinocandins, a class of compounds developed 

between 2001 and 2006, target the catalytic subunit of the β-1,3 glucan synthase protein 

complex (Odds et al., 2003). Studies of the molecular mechanisms of resistance to these two 

classes of antifungal compounds (recently reviewed in (Scorzoni et al., 2017)) have revealed 

that there are three major mechanisms leading to resistance in C. albicans: overexpression of 

multidrug efflux pump-encoding genes, notably CDR1, CDR2 and MDR1 (Sanglard and 

Odds, 2002; Sanglard et al., 1995), amino acid substitutions in the target proteins (ex: Erg11, 

Fks1) and alteration in the levels of proteins involved in sensitivity to the drug (ex: Erg3, 

Erg11). In addition, the formation of fungal biofilms can also be considered as a form of 

antifungal resistance mechanism due to the ability of the biofilm extracellular matrix (ECM) 

to bind and entrap antifungal compounds, particularly azoles and amphotericin B  (Desai et 

al., 2014; Taff et al., 2013; Vediyappan et al., 2010; Zarnowski et al., 2014).  

 In this context, alternative antifungal targets and/or ways to improve the fungicidal 

effect of existing antifungals are being sought. Such approaches notably involve targeting 

chaperones such as Hsp90 or components of stress signaling pathways, since these targets are 

more likely to simultaneously affect resistance to different classes of antifungals, 

morphogenesis mechanisms, cellular fitness and adaptation to changing environments. Key 

studies have been conducted in these areas by, for example, Brown and colleagues (Brown et 

al., 2010) and Cowen and coworkers (Singh et al., 2009). Works by this latter group 

established the complex connections between Pkc1, Hsp90 and calcineurin suggesting 

interesting new strategies to treat fungal infections (LaFayette et al., 2010). However, these 

cellular targets suffer from a major drawback in that they are conserved in mammalian host 

cells, which makes achieving fungal specificity a real challenge. Factors that regulate the 

pathogen’s cell wall therefore remain a strong target for new, fungus-specific, therapeutic 

approaches. 

 Here we describe the role of Smi1, a C. albicans protein homologous to the 

Saccharomyces cerevisiae hub protein, Knr4, which interacts physically with both the Slt2 

MAP kinase and calcineurin, thus connecting the two primary signaling pathways involved in 

cell wall maintenance during stress: the cell wall integrity pathway (CWI) and the calcineurin 

pathway (Dagkessamanskaia et al., 2010; Martin-Yken et al., 2016). Although its precise 

molecular mode of action is currently unknown, it has been shown that two conserved serine 

residues, S200 and S203, phosphorylated in vivo, are essential for Krn4 function in signal 

transmission (Ficarro et al., 2002; Basmaji et al., 2006). Knr4 is required for resistance to cell 

wall stress induced by elevated temperature or by the presence of antifungal compounds, 

including caspofungin (Lesage et al., 2004; Markovich et al., 2004). Knr4 also plays a role in 

filamentous and pseudohyphal growth, mucin secretion and agar invasion (Birkaya et al., 

2009). Similarly, GS1 protein, the homolog of Knr4 and Smi1 in the model filamentous 

fungus, Neurospora crassa, is also involved in the control of morphogenesis, caspofungin 

sensitivity and the synthesis of cell wall constituents, notably -glucans (Enderlin and 

Selitrennikoff, 1994; Resheat-Eini et al., 2008; Seiler and Plamann, 2003). 

 The C. albicans genome encodes two homologs of KNR4: SMI1 and SMI1B. Previous 

studies have shown that deletion of SMI1 affects cell wall -glucan synthesis, biofilm 

formation and biofilm extracellular matrix production, as well as  biofilm-associated 

resistance to fluconazole (Nett et al., 2011). Global transcriptomic studies indicate that SMI1 
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expression is induced in hyphal and planktonic cells by the Cyr1 adenylate cyclase, a positive 

regulator of C. albicans hyphal morphogenesis, and is also biofilm-induced, while it is 

repressed by the Hap43 regulatory protein and caspofungin (Liu et al., 2005). Much less is 

known about SMI1B, although it appears to be the closest homolog of S. cerevisiae KNR4 

according to phylogeny.  

 In this work we further characterize the function of SMI1 in C. albicans. We provide 

evidence that Smi1 is a functional homolog of S. cerevisiae Knr4, that its correct expression is 

critical for the regulation of fungal cell wall integrity and biophysical properties, and that the 

cellular localization of Smi1-GFP in yeast and hyphal cells is consistent with those observed 

for its counterparts, i.e. Knr4 in S. cerevisiae yeasts and GS1 in the hyphae of N. crassa. 

 

  



  

5 
 

MATERIAL AND METHODS  

 

Strains and growth media: 

The C. albicans and S. cerevisae strains used in this study are listed in Table 1.  

Depending on experimental conditions, yeast strains were grown in YPD (1 % (W/V) yeast 

extract, 2 % peptone, and 1 % dextrose), YP (1 % (W/V) yeast extract, 2 % peptone) 

supplemented with 10 % Fetal Bovine Serum (FBS), or SD (synthetic dextrose, 0.67 % (W/V) 

yeast nitrogen base (YNB; Difco) with 2 % glucose) supplemented as necessary with 

arginine, histidine or uridine (20 mg/l). Agar (2 %) was used for growth on solid medium. 

Escherichia coli strains TOP10 (Invitrogen) or DH5α were used for DNA cloning and 

maintenance of the plasmid constructs.  

 

Plasmid construction and generation of epitope-tagged or mutant strains: 

C. albicans SMI1 gene was PCR amplified with primers: Sense SMI1 New start and  

Antisense SMI1 (sequences in Supplementary material Table S1). The PCR product was then 

cloned in the S. cerevisiae expression vector YEplac195 PGK/CYC1 between the S. cerevisiae 

PGK1 promotor PPGK1 and the S. cerevisiae CYC1 terminator sequences (personal gift of Dr 

J.L. Parrou, based on YEplac195 (Gietz and Sugino, 1988)), thus yielding the pSMI1 plasmid. 

Plasmid pKNR4 expressing the S. cerevisae KNR4 gene with its own promotor and terminator 

on a multicopy vector has been described previously (Martin et al., 1999). 

S. cerevisiae cells were transformed using the lithium acetate method (Gietz and Woods, 

2006). C. albicans cells were transformed using the lithium acetate protocol of (Walther and 

Wendland, 2003), followed by selection of transformants for uridine, arginine or histidine 

prototrophy when using the URA3, ARG4 or HIS1 markers, respectively.  

Construction of C. albicans original smi1 and smi1B knock-out mutants used PCR-

generated ARG4 and HIS1 disruption cassettes flanked by 120 base pairs of target homology 

region (primer sequences are provided in Supplementary material Table S1) as described by 

(Gola et al., 2003) and (Schaub et al., 2006). Independent transformants were produced and 

the gene replacements were verified by PCR on whole yeast cells as described previously 

(Gola et al., 2003; Schaub et al., 2006).  

The SMI1 (C1_07870C_A) gene was amplified using primers: SMI1 Forward and SMI1 

Reverse (sequences provided in Supplementary material Table S1). The resulting 1.8Kb PCR 

product was purified and inserted into the GTW sequences of pEntry (Gateway
TM 

system, 

Invitrogen). Recombination of pEntry-SMI1 plasmid and CIp10-PTDH3-GTW plasmid  

(Chauvel et al., 2012) was performed also using the Gateway
TM

 (system Invitrogen). CIp10-

PTDH3-GTW vector is a derivative of plasmid CIp10 (Murad et al., 2000) that carries the 

sequence for integration at the RPS1 locus on C. albicans Chr1, the URA3 gene, and a 

Gateway
TM

 cassette flanked by the attR sequences and preceded by the C. albicans PTDH3 

constitutive promoter  (Delgado et al., 2003). The resulting CIp10-PTDH3-SMI1 construct was 

then used to transform by genome integration through targeted homologous recombination at 

the genomic RPS10 locus the host strain BWP17, yielding SMI1-OE strain, as well as the 

smi1original mutant, yielding smi1PTDH3 SMI1. To allow phenotype comparisons 

with the SMI1-OE strain, we used as control strain BWP17 AHU (Moreno-Ruiz et al., 2009) 

and the smi1original mutant was also transformed by the empty Clp10 vector, ensuring 
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that all of these strains carry a functional URA3 allele (see Table 1 for full genotypes of the 

yeast strains used in this study). 

 

GFP tagging of Smi1: 

Smi1 was C-terminally-tagged with GFP by amplifying GFP-NAT cassette from the pGFP-

NAT1 plasmid (Milne et al., 2011) using primers gSmi1 _F
a
 and gSmi1_R

a
 containing 100 bp 

of flanking homology to the SMI1 terminator and the C-terminus of the SMI1 ORF 

(C1_07870C_A), respectively (primer sequences are provided in Supplementary material 

Table S1). Transformants were selected on YPD agar containing 300 µg/ml nourseothricin 

(Sigma). Integration of the GFP-NAT cassette was confirmed by PCR using primers sSmi1_F 

and sFP_R, which anneal to the chromosome outside the targeted region and within the 

cassette, respectively (primer sequences in Supplementary material Table S1).  

 

Microscopy of Smi1-GFP: 

Yeast were grown for 2 h at 30 °C in YNB medium containing amino acids and (NH4)2SO4 

(Sigma Aldrich).  Morphogenesis was induced at 37 °C for 3 h in 20 % foetal calf serum 

(FCS), 2 % glucose.  Cells were imaged on µ-slides (Ibidi, Martinsried, Germany). Images of 

Smi1-GFP localization were captured on an UltraVIEW® VoX spinning disk confocal 

microscope (Nikon, Surrey, UK), using a 488 nm laser. Multiple Z-stack images were 

acquired and Z-stack projections at maximum intensity were created using Volocity 6.3 

software (Perkin Elmer). 

 

Phenotypic Sensitivity tests: 

Drop tests to evaluate the sensitivity of different strains and mutants to cell wall affecting 

drugs were performed as previously described (Ram et al., 1998) with minor modifications 

(Martin et al., 1999).  Briefly, yeast cells were grown in liquid YPD to OD600 of 1 +/- 0.1, 

then concentrated by centrifugation and resuspended in sterile water to an OD600 of 8. Serial 

dilutions of 1/1, 1/10, 1/100 and 1/1000 were then spotted on solid media containing either 

calcofluor white or Caspofungin at the indicated concentrations. Growth was scored and 

photographs taken after 48h of incubation at 30 °C, or at 37 °C for testing the sensitivity to 

elevated temperature. 

 

Atomic Force Microscopy (AFM):  

Sample preparation for AFM experiments. Yeast cells were concentrated by centrifugation, 

washed two times in acetate buffer (18 mM CH3COONa, 1 mMCaCl2, 1 mMMnCl2, pH5.2), 

resuspended in the same buffer, and immobilized on polydimethylsiloxane (PDMS) stamps 

prepared as described by (Dague et al., 2011; Formosa et al., 2014a). Briefly, freshly oxygen-

activated microstructured PDMS stamps were covered with a total of 100 l of cell 

suspension and allowed to stand for 15 min at room temperature. Yeast cells were then 

deposited into the stamps microstructures by convective (capillary) assembly.  

AFM procedures. For imaging and force spectroscopy, we used an AFM Nanowizard III (JPK 

Instruments, Berlin, Germany). Force curves were then recorded in acetate buffer in 

quantitative-imaging mode (JPK Instruments, 2011, QITM mode-quantitative imaging with 

Nano-Wizard 3 AFM)(Chopinet et al., 2013; Formosa et al., 2014b; Smolyakov et al., 2016) 
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with MLCT AUWH cantilevers (nominal spring constants: 0.01, 0.1, and 0.5 N/m). For 

imaging, cantilevers with a spring constant of 0.01 N/m were used. For force spectroscopy 

experiments, cantilevers with spring constants of 0.1 and 0.5 N/m were used. The maximal 

applied force was kept at 1 nN, the force curves lengh (Z-range) at 2 m and the 

approach/retract speed at either 20 or 2 m.sec
-1

 for both imaging and force spectroscopy. 

The spring constant of each cantilever was determined by the thermal-noise method (Hutter 

and Bechhoefer, 1993). For elasticity measurements, force maps of 32 by 32 or 64 by 64, 

hence either 1024 or 4096 force curves were recorded on an area of 1 m
2
 to 4 m

2 
on top of 

the cells, always avoiding any bud or budscar. The force-distance curves recorded were 

transformed into force-indentation curves by subtracting the cantilever deflection on a solid 

surface. The indentation curves were then fitted to the Hertz model (Hertz, H., 1881). 
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RESULTS 

   

1. Conservation of cellular function between S. cerevisiae Knr4 and C. albicans Smi1: 

The genome of the human fungal pathogen C. albicans contains two distinct homologs of the 

S. cerevisiae KNR4 gene, SMI1 (C1_07870C_A) and SMI1B (C3_05350C_A). Gene deletion 

mutants for each gene were generated and initial phenotypic analysis showed a strong 

phenotype (sensitivity to Calcofluor White (CFW) or SDS) for the smi1 mutant but only a 

milder one for the smi1B mutant (Supplementary material, Figure S1). We therefore 

focused on the role of Smi1 in this study.   

The SMI1 open reading frame was amplified and cloned into a S. cerevisiae expression 

vector, under the control of the strong and constitutive ADH1 promoter. The SMI1 coding 

sequence is 1,863 bp and contains two CTG codons at positions 1717 and 1762, which have a 

97 % chance of translation as a Serine in C. albicans through non-canonical codon usage in 

this fungus, compared to a Leucine in S. cerevisiae (White et al., 1995). These two codons are 

located within the C-terminus of Smi1, which is less conserved than the central domain 

among members of the fungal Knr4/Smi1 super-family of proteins (See Supplementary 

material, Figure S2). The C-terminus of Knr4 is largely unstructured and not directly 

necessary for protein function in S. cerevisiae (Dagkessamanskaia et al., 2010; Martin-Yken 

et al., 2016). Hence, we tested the ability of the C. albicans SMI1 gene, retaining its two 

ambiguous codons, to complement the cell wall-related phenotypes of S. cerevisiae knr4 null 

mutants. Our phenotypic screen included sensitivity to CFW, SDS, caspofungin and elevated 

temperature in haploid and diploid S. cerevisiae genetic backgrounds. CFW is a compound 

that binds to nascent chitin fibrils and has been used to identify fungal cell wall mutants (Ram 

et al., 1994). Expression of SMI1 in S. cerevisiae was able to complement these phenotypes 

(Figure 1A and data not shown), including the growth defect at elevated temperature (Figure 

1B), a specific defect in this organism that is linked to cell cycle progression through START 

(Fishel et al., 1993, Martin-Yken et al., 2003). The function of the Smi1/Knr4 proteins thus 

appears to be conserved between the two species despite their phylogenetic distance and the 

differences between the two protein sequences, which share only 34% identity and 49% 

similarity (Figure S2).  

 

 

2. Deletion of SMI1 renders C. albicans sensitive to cell wall targeting drugs:   

We further investigated the role of Smi1 in maintaining cell wall integrity using a medically-

relevant β-glucan synthase-targeting drug, the echinocandin caspofungin. The influence of 

Smi1 on the sensitivity to CFW was also retested in parallel. Deletions of both alleles of SMI1 

in the C. albicans BWP17 strain background (but bearing a functional URA3 allele) led to a 

marked increase in sensitivity to caspofungin and CFW at 30 °C (Figure 2). These phenotypes 

are consistent with those observed for the S. cerevisiae knr4 mutant and the proposed role of 

these proteins in stress signaling pathways (See discussion). Re-integration of the SMI1 open 

reading frame under the constitutive promoter PTDH3 in the smi1 deletion mutant restored 

the wild-type phenotype (Fig. 2).   
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3. Cell Wall Biophysics  

 

3.1 Cell Wall Strength / Elasticity:  

Atomic Force Microscopy (AFM) under liquid conditions can be used to investigate the 

nanomechnical properties of live wildtype and mutant  cells (Dague et al., 2010; Ene et al., 

2015; Formosa et al., 2013; Liu et al., 2015). Here we first measured the cell surface elasticity 

of three C. albicans strains: the control strain, BWP17 AHU, the homozygous deletion mutant 

smi1 and the strain over-expressing the SMI1 from the PTDH3 promoter in the BWP17 

genetic background, SMI1-OE. Using the Atomic Force Microscope in the Force Volume 

mode, we collected between 1024 and 4160 force curves per cell on a minimum of 12 cells 

from 4 independent cultures for each strain. The elasticity of the cells was quantified from 

these curves by calculating the Young’s Modulus (YM) as previously described (Dague et al., 

2010).The Young’s Modulus represents the cell’s stiffness: the higher the YM, the stiffer the 

cell. In the control strain, BWP17 AHU, the mean value ± SEM of the YM was 782 ± 70 kPa 

(Figure 3, Table 2), significantly higher than that of the homozygous deletion mutant (mean ± 

SEM =  93 +/-33 kPa). The YM of the over-expression strain (mean ± SEM = 298 +/- 62 kPa) 

lay between the control strain and the deletion mutant, suggesting either a gene dosage effect 

for SMI1 expression or an effect of uncoupling the expression of this gene from the cell cycle. 

Figure 3A shows maps of the recorded YM on square areas on the surfaces of three 

characteristic cells for each cell type, together with the corresponding topography maps. In 

this figure, the first line of maps (YM values of the control strain) is to compare with the third 

line (YM values of the homozygous deletion mutant) and the fifth line (YM values of the 

SMI1 over-expressing strain). In addition, all the YM values recorded are represented for each 

cell individually on Figure 3B, to allow visualization of cell-to-cell variability. Finally, Figure 

3C shows selected representative individual force curves for the three strains. These curves 

represent the force encountered while approaching the AFM tip vertically toward the cell 

surface. Before the tip touches the cell it does not encounter any resistance and the curve is 

simply horizontal. When the tip touches the cell (contact point), the curve starts to bend. 

Moving the tip further down results in indenting into the cell surface, where distinct resistance 

levels can be met. Hence, the slope of the second part of each curve represents the cell surface 

resistance against the ongoing progression of the tip: the steeper the slope, the harder the 

surface. These results therefore demonstrate that the deletion of both alleles of SMI1 resulted 

in a reduction in cell wall stiffness by eight to ten folds, indicating that the cell wall integrity 

is compromised in this mutant.  

 

 

3.2 Adhesion:  

Another cell surface feature that can be easily and precisely measured by AFM is the ability 

to adhere to surfaces, using Single Molecule Force Spectroscopy (Axner et al., 2010; Benoit 

et al., 2000; Formosa et al., 2014a; Hinterdorfer et al., 1996; Neuman and Nagy, 2008). Here, 

adhesion between the cell surface and the AFM bare tips, constituted of Si3N4, was measured 

by scanning areas of 1 µm
2
 on the top of individual yeast cells. We recorded force curves 

whose retraction values were used to generate adhesion maps where the intensity of each 
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pixel corresponds to the force required to dissociate the AFM tip from the sample, i.e. the 

adhesion force, expressed in picoNewtons pN (Figure 4). These data, represented as two-

dimensional matrixes, show that the adhesion between the probe and the cell surface of the 

smi1 mutant was minimal compared to the control strain, while the cells of the SMI1 over-

expression strain displayed a marked increase in their surface adhesion. Cellular adhesion was 

also evaluated by three quantitative parameters: the mean adhesion force, the specific energy 

of each adhesion event observed, and the overall frequency of these adhesive events among 

all the recorded force curves. In order to quantify these values, we defined as an adhesive 

event any force curve showing an adhesion force above 50pN. Using this threshold level, we 

calculated the percentage of adhesive events for each cell type and measured the area situated 

below the retraction curves, which represent the adhesion energy of the event (Table 2). These 

values indicated that adhesive events were encountered more frequently at the surface of the 

over-expressing strain SMI1-OE (63% of the recorded 21,500 force curves) than on the 

control strain (46% of over 13,500 force curves), and less frequently on the deletion mutant 

surface (19% of over 12,300 force curves). The mean adhesion force measured for the control 

strain was 127 +/- 33 pN, calculated from 6,200 adhesive force curves. This is to be compared 

with a mean ± SEM force of 70 +/-16 pN (barely above threshold) for 2,300 force curves for 

the smi1 mutant. For the SMI1-OE-strain, adhesive events were more frequent (63 %) and 

they were also much stronger, with forces measured up to 2,176 pN with a mean value ± SEM 

of 712 +/- 102 pN, calculated over 13,000 adhesive force curves. The specific energy of these 

adhesive events also differed; with adhesion energies for the over-expressing strain an order 

of magnitude stronger than that for the control strain, while they were approximately seven 

times lower on the surface of the deletion mutant. Hence, the homozygous deletion of SMI1 

gene abrogates almost entirely the ability of the mutant cell to adhere using the chemistry 

described here, while SMI1 over-expression leads to a highly adhesive phenotype.  

 

 

4. Cellular Localization:  

GS-1, the homolog of Smi1 and Knr4 in the model filamentous fungus, N. crassa, localizes at 

the growing tip of hyphae as a sphere positioned at the “Spitzenkörper” (Verdin et al., 2009). 

The Spitzenkörper (or apical body) is a fungal structure specific to true hyphae, located at the 

hyphal tip. It is composed of the secretory vesicles that are required for continuous polarized 

growth (Girbardt, 1957; Harris et al., 2005). GS-1-GFP and Knr4-GFP have been imaged at 

the tip of N. crassa hyphae (Riquelme et al., 2011; Sánchez-León et al., 2011; Verdin et al., 

2009) and at the tip of elongated shmoos in S. cerevisiae, respectively ((Martin-Yken, 2012) 

and our unpublished data). To test whether the C. albicans homolog would be similarly 

positioned, a GFP-tag was integrated at the C-terminus of the Smi1 protein at its 

chromosomal locus and its cellular localization was visualized by confocal fluorescent 

microscopy in yeast and hyphal cells. This Smi1-GFP fusion protein is functional, as attested 

by its ability to complement the caspofungin and CFW hypersensitivity phenotypes of the 

smi1 mutant (not shown).  

In yeast cells, Smi1-GFP appeared both as punctate patches in the cytoplasm and localized 

transiently to nascent buds (Figure 5). This localization is similar to that reported for Knr4 in 
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S. cerevisiae (Dagkessamanskaia et al., 2010; Martin et al., 1999). Punctate patches and a 

more diffuse cytoplasmic distribution were observed in C. albicans hyphae (Figure 5), but, 

unlike in yeast, Smi1-GFP signal was consistently retained as a bright spot at the growing 

hyphal tip throughout the cell cycle, reminiscent of N. crassa GS-1 localization at the tip of 

growing hyphae (Verdin et al., 2009). Smi1-GFP was occasionally observed at hyphal septa 

as a dim signal, but this presence did not reflect specific stages of the cell cycle. Hence, Smi1 

in C. albicans appears to associate with intracellular organelles and localizes to sites of new 

cell wall growth, a pattern which reflects those observed for homologs of Smi1 in S. cerevisae 

in yeast cells and the hyphae of N. crassa.  

 

 

DISCUSSION  

 

Our results indicate that there is significant conservation of Knr4/Smi1 function in cell wall 

regulation between S. cerevisiae and C. albicans and demonstrate the role of Smi1 in 

tolerance to caspofungin, regulation of cell wall integrity and cell surface adhesion properties 

of this major human fungal pathogen. These features suggest that Smi1 might be relevant as a 

new drug target for combination therapies. Previous work by Nett and colleagues identified a 

role for Smi1 in the production of extracellular matrix during biofilm formation and hence the 

associated resistance to Fluconazole (Nett et al., 2011). Their results indicated that these 

effects were linked to the cell wall integrity pathway but were in fact regulated by Smi1 

independently of the CWI pathway, suggesting a control pathway for Smi1 distinct from that 

of the PKC pathway. Lafayette and colleagues dissected the mechanisms through which PKC 

regulates resistance to both azoles and echinocandins in the two yeast models, C. albicans and 

S. cerevisiae (LaFayette et al., 2010). They showed that, in C. albicans, Pkc1 and calcineurin 

signaling pathways independently regulate antifungal resistance via a common unknown 

target, which they designed as “X” (see (LaFayette et al., 2010), Fig 9B thereof). Considering 

the knowledge accumulated on Knr4 in budding yeast together with the data obtained for C. 

albicans and presented here, we propose that Smi1 is a candidate for this previously 

unidentified “X”, a common target of the Pkc1 and calcineurin signaling pathways. The 

marked reduction in cell-wall stiffness of the smi1 cell wall, as indicated by its Young’s 

Modulus (Fig. 3, Table 2) compared to the milder phenotype observed for the S. cerevisiae 

knr4 mutant (Dague et al., 2010), suggests a more central role for Smi1 in the cell-wall 

integrity signaling network in C. albicans than that of Knr4 in the baker’s yeast, which is in 

agreement with the hypothesis of LaFayette and colleagues (LaFayette et al., 2010). The fact 

that the homozygous deletion mutant smi1 is so strongly affected, despite the presence in 

this strain of both functional alleles of SMIB, argues for a major role for the SMI1 gene, at 

least in the conditions tested (30°C, liquid rich medium, yeast form of C. albicans cells). 

 

 Our results show that homozygous deletion of SMI1 leads to an increase in the 

sensitivity of C. albicans to both CFW and caspofungin at 30 °C. Caspofungin tolerance has 

been reported in C. albicans mutants that have elevated cell-wall chitin  (Perlin, 2015; Plaine 

et al., 2008; Walker et al., 2013; Yang et al., 2017), yet others report that elevated chitin can 
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induce hypersensitivity to CFW (Elorza et al., 1983; Roncero and Durán, 1985). However, 

this dual sensitivity is consistent with the phenotype observed for the S. cerevisiae knr4 

mutant (Lesage et al., 2004; Martin et al., 1999). Our cell wall stiffness measurements 

indicated that organization of the cell wall is significantly modified in the deletion mutant 

smi1consistent with a possible upstream role of Smi1 in cell-wall regulatory pathways. 

Early results obtained in bakers’ yeast established a role for Knr4 in the transcriptional control 

of all S. cerevisiae chitin synthase genes (Martin et al., 1999), so the role of Smi1 in C. 

albicans may also include control of expression levels of cell wall biosynthesis genes. The 

complex interplay of cellular signaling pathways controlling C. albicans susceptibility to 

echinocandins has been described by Munro and colleagues (Walker et al., 2010), and it now 

seems possible that Smi1 is one piece of this puzzle. Indeed, a previous study investigating 

the effects of caspofungin on the cell walls of S. cerevisiae and C. albicans by AFM revealed 

that treatment with this echinocandin increased C. albicans cell wall stiffness and at the same 

time enhanced cell surface adhesion (Formosa et al., 2013). Although the high level of 

sensitivity to caspofungin of the C. albicans smi1Δ/Δ mutant meant that it was not possible to 

test this in this fungus, we speculate that Smi1 is a key player in the cellular response to 

caspofungin in C. albicans.   

In S. cerevisiae, Knr4 is proposed to link the Ca
2+

/calcineurin/Crz1 signaling pathway with 

the Slt2/Mpk1 cell-wall integrity pathway. The cellular localization observed for Smi1-GFP 

in C. albicans yeasts and hyphae, as cytoplasmic patches and concentrated spots at the 

polarized growth sites, is consistent with the localizations reported for the MAP kinase Slt2 

and calmodulin, the activator of calcineurin in S. cerevisiae (Brockerhoff and Davis, 1992; 

van Drogen and Peter, 2002). Therefore, Smi1 in C. albicans could act as a similar link 

between these two signaling pathways, giving it a central role in cell-wall integrity signaling. 

In the model filamentous fungus, N. crassa, GS1, the homolog of Smi1, localizes at the 

Spitzenkörper within the hyphal tip (Verdin et al., 2009; Sánchez-León et al., 2011). This 

localization is conserved in another ascomycete filamentous fungus, A. nidulans (also called 

Emericella nidulans) (Schultzhaus et al., 2015). The results presented here indicate that Smi1 

also localizes in or around the Spitzenkörper of C. albicans hyphae in a similar manner to that 

observed for GS-1 in N. crassa. Given the cell wall related phenotypes reported for GS-1 

mutants of N. crassa (Enderlin and Selitrennikoff, 1994; Resheat-Eini et al., 2008; Seiler and 

Plamann, 2003), the function of these proteins appears to be not only conserved between C. 

albicans and S. cerevisiae, but also to some extent in filamentous fungi.  

Finally, the role of Smi1 in the control of cell wall synthesis, cellular adhesion and drug 

resistance is relevant to the search for new antifungal targets. An advantage of Smi1 as a drug 

target over Hsp90, calcineurin, Pkc1 or other MAP kinases is the specificity of the Knr4/Smi1 

superfamily of proteins to the Fungal Kingdom as it is absent from host cells (Martin-Yken et 

al., 2016). In addition, since this protein family is conserved among fungi, including other 

fungal pathogens of mammals (C. glabrata and Aspergillus species notably) and also plants 

(ex: Magnaporthe grisea), developing drugs that target Smi1 might lead to broader antifungal 

applications in domains such as agriculture. 
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TABLES 

 

Table 1. Yeast strains used in this study. 

 

Strain name Genotype Reference or Source 

Candida albicans strains : 

BWP17 ura3∆::λimm434/ura3∆::λimm434, arg4∆::hisG/arg4∆::hisG, 

his1∆::hisG/his1∆::hisG 

(Wilson et al., 1999)  

CEC161 Isogenic to BWP17 but arg4∆::hisG/ARG4, his1∆::hisG/HIS1  (Firon et al., 2007)  

BWP17 AHU 

(= CEC 369) 

Isogenic to CEC161 but ura3::limm434/URA3 (Moreno-Ruiz et al., 

2009) 

smi1 Isogenic to BWP17 but smi1∆::HIS1/smi1∆::ARG4, RPS1/rps1::CIp10 This study 

smi1PTDH3 

SMI1 

Isogenic to smi1∆/∆ but RPS1/rps1::CIp10-PTDH3-SMI1 This study 

SMI1-OE Isogenic to CEC161 but RPS1/rps1::CIp10-PTDH3-SMI1 This study 

DAY185 ura3::imm434/ura3::imm434 his1::hisG::HIS1/his1::hisG 

arg4::hisG::ARG4-URA3/arg4::hisG 

(Davis et al., 2000) 

SMI1-GFP  DAY185 SMI1::SMI1-GFP-NAT This study 

Saccharomyces cerevisiae strains : 

BY4741a MAT a; his3∆1 leu2∆0; met15∆0; ura3∆0 (Brachmann et al., 

1998) 

knr4  BY4741a YGR229c::KanMX4 YKO Collection 

(Open Biosystems) 

W303-2N MAT a/ ura3-1/ura3-1 leu2-3,112/leu2-3,112 trp1- 

1/trp1-1 his3-11,15/his3-11,15 ade2-1/ade2-1 can1- 

100/can1-100 

Rodney Rothstein. 

HM1315 W303-2N YGR229c::KanMX4/ YGR229c::KanMX4 This study. 
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Table 2. Summary of Atomic Force Microscopy measurements for BWP17 AHU, 

smi1, and SMI1-OE strains. 

 

Cell Type 
Young Modulus 

(kPa)
a 

% of Adhesive 

Events
a 

 

Mean Adhesion 

Force (pN)
c 

Adhesion Energy  

(=Area below the 

force curve) (J)
d 

BWP17 AHU 782 (+/- 70)  46.1 
 

127 (+/- 33) 1.77 x10
-17

 

smi1  93 (+/- 33) 19.4 
 

70 (+/- 16) 0.26 x10
-17

 

SMI1-OE 298 (+/- 62) 62.9 
 

712 (+/- 102) 15.82 x10
-17

 

a
Mean values with standard deviation of Young’s Moduli calculated from force curves 

obtained as described above (3.1).  
b
Percentage of adhesive events measured by AFM, calculated from at least 12,000 force 

curves for each cell type, with a threshold level for the definition of an adhesive event as 

50pN on the retraction curve.  
c
Mean values of Adhesion forces for each cell type, calculated from adhesive force curves 

obtained as described above. 
d
Mean values of the Adhesion Energy for each strain, calculated from the area below the force 

curves presenting an adhesion event.  
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LEGENDS TO FIGURES 

 

 

Figure 1. C. albicans SMI1 gene expression suppresses the cell wall associated 

phenotypes of S. cerevisiae knr4 mutants.  

A) Transformed haploid control strain BY4741a and mutant strain knr4 with either empty 

plasmid YEplac195 PGK/CYC1, pSMI1 (Yeplac195 bearing C. albicans SMI1 gene under 

PPGK1) or pKNR4 bearing S. cerevisiae KNR4 gene, were grown  in liquid SD medium lacking 

uracil at 30°C to an OD600 of 1, and concentrated to OD600 8±0. Serial dilutions of yeast 

cultures were spotted on YPD plates in the absence or presence of 150 ng caspofungin ml
−1

. 

Growth was scored after 2 days at 30°C. 

B) Transformed diploid control strain W3032N and mutant strain HM1315 knr4 with 

either empty YEplac195 PGK/CYC1 plasmid, pSMI1 bearing C. albicans SMI1 gene or 

pKNR4, were grown overnight in liquid SD medium lacking uracil at 30°C and concentrated 

to OD600 8±0. Serial dilutions of yeast cultures were spotted on YPD plates. Growth was 

scored after 2 days at 30°C and 37°C. 

 

Figure 2. Calcofluor White and caspofungin sensitivity of the C. albicans smi1 

mutant.  

The control strain BWP17 AHU, the mutant strain smi1  and the deletion mutant with 

SMI1 gene re-integrated smi1  + PTDH3-SMI1 were grown in liquid YPD medium at 30°C 

to an OD600 of 1, and concentrated to OD600 8±0. Serial dilutions of yeast cultures were 

spotted on YPD plates in the absence or presence of 40mg of CFW or 150 ng caspofungin 

ml
−1

. Growth was scored after 2 days at 30°C. 

 

Figure 3.  

A: Elasticity maps recorded on independent cells of BWP17 AHU, smi1 and SMI1-

OE strains.  

Maps of Young’s Moduli (YM =1 / Elasticity) measured by Atomic Force Microscopy on 

independent cells of control strain BWP17 AHU, smi1 mutant and SMI1-OE strain. YM 

scales are shown (bright yellow: maximum at 500kPa; dark red: minimum at 0.0 kPa). The 

corresponding topography map is presented below each elasticity map, also with scale (bright 

yellow: maximum at 500nm; dark red: minimum at 0.0 nm). Analyzed areas cover squares of 

1×1 to 2×2 µm
2
. 

B: Young’s Moduli of smi1 mutant and SMI1-OE vs control strain BWP17 AHU.  

Atomic Force Microscope was used to collect over 12,300 force curves for each strain on the 

control strain BWP17 AHU, the smi1 mutant and the SMI1-OE strain. The Young’s 

Moduli quantified from these curves are presented here as a dot on the mean YM value, with 

SEM for each cell. The bar represents the mean of the YM values with each SEM. Statistical 

analysis was done using the One-way ANOVA test, **** = p value < 0.0001. 

C: Representative Approach Force Curves of BWP17 AHU, smi1 and SMI1-OE. 

Forces measured by AFM in nN as a function of the indentation (tip position) in nm, for the 

three strains. BWP17 AHU: red curves, smi1 black curves and SMI1-OE: blue. These 
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force curves are obtained upon approaching the AFM tip towards the cell surface (horizontal 

part), touching the cell (contact point: where the curve starts to bend), further indenting into 

the cell surface and facing distinct resistance levels. The slope of the second part of each 

curve corresponds to the cell surface resistance against the tip progression.  

 

Figure 4. Adhesion Maps recorded on the cellular surfaces of smi  mutant and SMI1-

OE vs control strain.   

Adhesion force measurements were performed by Single Molecule Force Spectroscopy on C. 

albicans cells of the control strain BWP17 AHU, the smi1 mutant and the SMI1-OE strain 

over-expressing the SMI1. The adhesion maps presented have been recorded on three 

independent and representative C. albicans cells for each cell type. Each analyzed area covers 

1×1 to 2x2 µm
2
. Adhesion scales are shown and read as follows: bright yellow = maximum 

adhesion force at 2 nN; dark red = minimum at 0.0 nN.  

 

Figure 5. Smi1-GFP localizes as patches concentrated to apical growth sites in yeasts 

and hyphae. Cells were grown on Ibidi µ-slides in YNB medium at 30°C for 2h (yeast) and 

20 % FBS, 2 % glucose at 37°C for 3h (hyphae). Smi1-GFP localized transiently to emerging 

bud tips in yeasts (arrows) and to septa in hyphae (asterisks) but was maintained consistently 

at hyphal/branch tips (arrows). Punctate fluorescence patches were also observed throughout 

yeast and hyphal cells. Images are maximum projections of individual z-stacks. 
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