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 10 

Abstract: The Faroe-Shetland Basin, NE Atlantic continental margin, hosts a number of important 11 
hydrocarbon fields, though deep water and narrow weather windows mean drilling costs are 12 
considerably higher than other parts of the UK Continental Shelf. Any additional drilling complications 13 
are therefore important to predict and negate as such issues can result in avoidable multi-million pound 14 
cost implications. This study focuses on the Corona Ridge, an intra-basinal high which contains the 15 
Rosebank Field, where a plethora of drilling issues, of enigmatic origin, are common within a key 16 
stratigraphic marker known as the Balder Formation. Drilling fluid loss, bit balling, wellbore breakouts, 17 
and wellbore “ballooning”, where lost drilling fluid returns to the wellbore, are all recognised within 18 
the Balder Formation along the Corona Ridge. We find that many of the drilling incidents can be traced 19 
back to both the lithological character of the Balder Formation, and the mid-Miocene tectonic 20 
inversion of the Corona Ridge. Moreover, we find that this geological explanation has wider 21 
implications for exploration in the region, including mitigation of drilling incidents in future wells 22 
through drill bit selection.  23 

 24 

The Faroe-Shetland Basin, located on the NE Atlantic continental margin, represents one of the last 25 

remaining exploration frontiers of the UK Continental Shelf, with arguably the greatest remaining 26 

potential for significant new discoveries (Ellis & Stoker 2014; Austin et al. 2014). One particularly 27 

prospective area of the Faroe-Shetland Basin is the Corona Ridge (Fig. 1), an intra-basinal high which 28 

hosts a number of oil and gas discoveries, notably the ~240 million barrels of oil equivalent Rosebank 29 

Field (Austin et al. 2014). A challenging aspect of exploring around the Corona Ridge area, though, is 30 

high drilling costs associated with deep water (up to 1.5 km in places) and extreme weather conditions 31 

(Austin et al. 2014), necessitating the use of either fifth generation semi-submersible drill rigs 32 

($125,000/day) or dynamically positioned drillships ($145,000/day) (IHS Markit 2018) in order to drill 33 

exploration and appraisal wells. Further exploration costs result from a myriad of drilling 34 

complications, particularly through thick volcanic sequences. Previous research has focused on drilling 35 

efficiency through these volcanic sequences, emphasising how key lithological properties contribute to 36 
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different drilling and well control issues (Archer et al. 2005; Millet et al. 2014; Millet et al. 2015; Millet 37 

et al. 2016; Mark et al. 2018). However, a critical aspect of drilling operations around the Corona Ridge 38 

that has been overlooked is drilling issues encountered within a volcanic unit in the uneconomic 39 

overburden: specifically, the Balder Formation, an early Eocene aged unit consisting of interbedded 40 

volcanic tuffs (lithified ash), claystone and siltstone (Watson et al. 2017). These drilling issues have 41 

included drilling fluid loss, bit balling (clogging), borehole breakouts and wellbore “ballooning”, where 42 

lost drilling fluid later returns to the wellbore. We propose that these drilling events can be linked 43 

back to the regional geological history, particularly given their concentration along, or close to, the 44 

Corona Ridge. By synthesising these findings with wider regional knowledge, we highlight that many 45 

of the drilling issues can be traced back to the tectonic event that enhanced the Corona Ridge. 46 

Furthermore, our findings have wider implications for future exploration in the region, including 47 

suggestions for mitigation of drilling issues (leading to cost reduction) in future exploration wells, for 48 

example through selecting a PDC drill bit as opposed to a tricone bit.  49 

 50 

Geological setting 51 

The Faroe-Shetland Basin (FSB) is located along the NE Atlantic continental margin, situated between 52 

the Faroe Islands and the Shetland Islands (Fig. 1). The FSB is a series of SW-NE trending sub-basins, 53 

formed through multiple phases of Palaeozoic to Cenozoic rifting (Ritchie et al. 2011). These sub-54 

basins are delineated by intra-basinal highs of Precambrian crystalline basement capped by Mesozoic 55 

sediments (Lamers & Carmichael 1999). During the Palaeocene to early Eocene the FSB was 56 

characterised by widespread volcanism, associated with the presence of a mantle plume and the 57 

commencement of rifting and crustal thinning between Greenland and NW Europe (White & 58 

McKenzie 1989; Schofield et al. 2015; Hardman et al. 2018a). Later, during Eocene-Miocene times, the 59 

FSB experienced several punctuated phases of compression, resulting in large scale inversion of the 60 

intra-basinal highs, and the formation of elongate anticlines with four-way closure at Cretaceous-61 

Cenozoic level (Boldreel & Andersen 1993; Dore et al. 2008; Ritchie et al. 2008; Holford et al. 2009; 62 



Holford et al. 2016). This study adopts the lithostratigraphy of Ritchie et al. (2011) and Stoker & 63 

Varming (2011) (Fig. 2).  64 

 65 

Corona Ridge exploration history 66 

The FSB has been the focus of petroleum exploration since the 1970s. The basin hosts the prolific 67 

Kimmeridge Clay marine source rock, thought to be responsible for sourcing the majority of the 68 

hydrocarbons discovered in the region (Scotchman et al. 2006; Scotchman et al. 2016). A number of 69 

hydrocarbon fields are present throughout the basin, generally overlying or close to intra-basinal highs 70 

(Fig. 1a). This study concerns the Corona Ridge, an intra-basinal high located in the centre of the basin 71 

(Fig. 1b). Figure 3 shows a seismic line cross-section running parallel through the Corona Ridge, 72 

depicting the location of wells and structures examined in this study; the details of the seismic line can 73 

be found in the methodology section of this work. 74 

The first well located along the Corona Ridge was drilled in 1998 and tested the Eribol Prospect 75 

(well 213/23-1), which encountered oil shows within Lower-Middle Carboniferous sandstones.  The 76 

Tobermory prospect (214/4-1), drilled in 1999, marked the first discovery of sizeable quantities of 77 

hydrocarbons, when it encountered dry gas in Mid-Eocene turbidite fan sandstones. In the year 2000 78 

the Bunnehaven exploration well (214/9-1, 17 km south of Tobermory) encountered oil (and 79 

associated gas) within Palaeocene-Eocene fluvial-deltaic sandstones in addition to gas in Upper 80 

Cretaceous marine sandstones. At present Bunnehaven and Tobermory are undeveloped, being 81 

classed as uneconomic (as of 2018), though further nearby exploration (e.g. Lyon Prospect to be drilled 82 

in 2019; Siccar Point Energy 2018) may lead to an economic cluster of gas fields in the north of the 83 

FSB.  84 

In 2004, 140 km southwest of Bunnehaven, the Chevron exploration well 213/27-1 encountered 85 

oil and associated gas within Palaeocene-Eocene sandstones present between basalt lava flows 86 

(Rosebank prospect), and oil within Upper Jurassic sandstones (Lochnagar prospect) (Duncan et al. 87 

2009; Helland-Hansen 2009; Schofield & Jolley, 2013; Poppit et al. 2016; Hardman et al. 2018b). A 88 

further six wells, two exploration and four appraisal, have established the extent of the Rosebank 89 



Field, though has yet to be developed; Lochnagar is planned to remain undeveloped (Poppit et al. 2016). 90 

Later North Uist (213/25c-1), drilled in 2012, encountered significant gas shows above background 91 

within the Balder Fm., the Kimmeridge Clay and the Carboniferous. Finally well 6104/25-1, drilled in 92 

2014 within the Faroese sector, encountered only water-bearing sediments, within the Early Eocene 93 

Colsay (Sula prospect) and Hildasay targets (Stelkur prospect).   In terms of trapping mechanisms, 94 

generally the Palaeocene-Eocene plays along the Corona Ridge, such as Rosebank, rely on inversion-95 

induced anticlines. Meanwhile, older Mesozoic plays, principally the Jurassic, are hosted within tilted 96 

fault blocks sealed by Cretaceous mudstones (Duncan et al. 2009) (Fig. 3). 97 

Within several of the wells drilled along the Corona Ridge, however, a variety of drilling issues are 98 

recorded within the Balder Formation (see text boxes in Fig. 3), which in practical terms forms part 99 

of the overburden. The cause of these drilling issues, which this study investigates, is currently 100 

unknown, and have a significant cost implication given that future exploration wells near Bunnehaven 101 

and the potential development wells of the Rosebank Field, will both have to drill through the Balder 102 

Formation to reach intended targets.  103 

 104 

Data and Methodology 105 

The main dataset used for this study is the released commercial borehole data from wells drilled in 106 

the UK Continental Shelf, from the Common Data Access (CDA). The wells used as case studies are 107 

listed in Table 1. For consistency with previous work (Mark et al. 2018), a table detailing definitions of 108 

the terminology adopted by the offshore exploration and drilling industry is provided (supplementary 109 

material). Several seismic lines are also exhibited in this study, which are from the regional Faroe-110 

Shetland PGS MegaSurvey Plus 3D seismic dataset, to place the wells examined in a tectono-111 

stratigraphic context.  112 

Well Prospect/  

Field name 

Year 

Drilled 

Balder depth 

[m MDBRT] 

(& Calculated 

Thickness [m]) 

Drilling 

fluid 

Drill bit 

through 

Balder 

Issues/notes 

within the 

Balder 



205/1-1 Rosebank 

(Main) 

2007 2472-2537 

(55) 

WBM PDC None 

213/26-1* Rosebank 

(Main) 

2007 2448-2514 

(66) 

WBM Tricone Drilling fluid loss 

213/27-1* Rosebank 

(Main)/ 

Lochnagar 

2004 2395-2465 

(70.5) 

WBM Tricone Drilling Fluid loss 

213/27-2 Rosebank 

(Main) 

2007 2471-2532 

(56) 

WBM PDC Cement loss 

during liner 

placement 

6104/25-1 Sula/Stelkur 2014 2471-2535 

(63.5) 

WBM Hybrid Drilling fluid losses 

and break-outs 

213/27-3 Rosebank 

(North) 

2008 2440-2471 

(43.7) 

WBM PDC None 

213/23-1 Eribol 1998 2644-2677 

(32.3) 

WBM Tricone LOT- weak 

formation 

213/25c-1* North Uist 2012 3017-3076† 

(69.1) 

WBM 

& OBM‡ 

Tricone Fluid losses, hole 

collapse, BHA lost 

in hole 

214/27-1 Flett Ridge 1985 2301-2367 

(67.1) 

WBM Tricone Cement loss 

during casing 

214/9-1 Bunnehaven 2000 3524-3726 

(189) 

WBM Tricone Drilling fluid loss & 

ballooning.  

214/4-1 Tobermory 1999 3456-3734 

(80) 

WBM Tricone Drilling fluid losses 

& pack offs 

Table 1: List of well case studies from south to north within the FSB.  Note the drilling parameters, 113 

which will be referred to in the results section of this work. Depths are in Measured Depth Below 114 

Rotray Table (MDBRT). * = includes sidetracks. † = base depth projected from deviated sidetrack. 115 

WBM = water based mud, which in each instance is a KCl polymer. ‡ = OBM, Oil-based mud, used in 116 



final side-track where no drilling issues recorded. PDC = Polycrystalline diamond compact, a type of drill 117 

bit. BHA = Bottom Hole Assembly. LOT = Leak Off Test.  118 

Character and identification of the Balder Formation 119 

The Balder Formation is an early Eocene lithostratigraphic unit, characterised by an interbedded 120 

assemblage of siltstone, claystone, and volcanic tuffs (lithified ash) (Knox & Holloway 1992; Mudge 121 

2014; Watson et al. 2017). During burial the volcanic tuffs are almost entirely altered to smectitic or 122 

bentonitic clays (Knox & Morton 1983; Malm et al. 1984; Knox & Morton 1988). As a consequence of 123 

the original volcanic component, the Balder Formation has a prominent well log character (Fig. 4), 124 

manifested as low gamma akin to sandstone (Fig. 4a), resistivity moderately higher than shale (4b), a 125 

density/neutron positive separation of a shale (4c), and a fast interval transit time that has a bell-shaped 126 

log signature (4d) (Watson et al. 2017). The Balder Formation is also laterally extensive and a 127 

prominent seismic marker (due to a marked acoustic impedance contrast with the surrounding 128 

claystones).   129 

 130 

Drilling the Balder Formation 131 

A major focus of this study is drilling behaviour through the Balder Formation, which is best 132 

understood in the context of the drilling window (Fig. 5). The drilling window is a wellbore pressure 133 

profile governing safe drilling, bounded on the lower limit by pore pressure, and the fracture pressure 134 

on the upper limit (Cook et al. 2011). The wellbore pressure profile is represented by the mud 135 

pressure, governed by the weight of the drilling fluid (expressed in pounds per gallon [ppg]) (Cook et 136 

al. 2011). When examining drilling issues recorded within the Balder Formation, we either utilised a 137 

pre-existing drilling window (present in end of well reports), or constructed our own, to help establish 138 

the cause of particular drilling problems.  139 

Pore pressure is the pressure exerted by the fluids within the rock and represents the lower 140 

limit of the drilling window (Osborne & Swarbrick 1997). If the mud pressure is set too low, below 141 

the pore pressure, then there is a danger of an unwanted influx of fluid from the wellbore, known as 142 

a “kick” (Cook et al. 2011). The most reliable way to determine pore pressure is from Wireline 143 



Formation Tester (WFT) data, where pressures are measured from the formation directly downhole 144 

(Rider & Kennedy 2011). Marked increases in rates of penetration (ROP), known as “drilling breaks”, 145 

are also helpful in highlighting potential zones of overpressure (Ablard et al. 2012). 146 

 The fracture pressure, the upper limit of the drilling window, represents the mud pressure 147 

above which the tensile strength of the rock is exceeded causing failure and hydraulic fracturing of the 148 

formation (Osborne & Swarbrick 1997; Cook et al. 2011; Millet et al. 2016). A consequence of 149 

unintentionally fracturing the formation can be the loss of drilling fluid, which is both costly (as mud is 150 

often on loan to the operator of a well), and unsafe as the wellbore pressure may drop, leading to loss 151 

of the pressure barrier and the influx of formation fluid (i.e. a kick). In order to establish the fracture 152 

pressure a Formation Integrity Test (FIT) or Leak-off Test (LOT) is performed at the start of each 153 

new section of a well. A LOT is where the well is shut in, and a surface pressure is applied on top of 154 

the pressure of the drilling mud column. The surface pressure is increased gradually until the pressure 155 

is sufficiently high to fracture the formation, causing leaking off of drilling fluid. If the test is stopped 156 

before fracturing then it is an FIT, providing an upper limit for the mud weight (the Equivalent 157 

Circulating Density [ECD]) used when drilling the next section (Gaarenstroom et al. 1993).  158 

 159 

Drill bits and drilling fluids 160 

Drilling issues which occur through the Balder Formation occur in some wells (e.g. 213/26-1) but not 161 

in others (e.g. 205/1-1), even when in relatively close proximity (both examples within Rosebank Main), 162 

suggesting that drilling parameters play a crucial role in operational complications. Two important 163 

drilling variables between different wells, outwith of the geology, is the type of drill bit and type of 164 

drilling fluid used. Drill bit selection is a critical pre-drill consideration as different bits perform more 165 

effectively in different lithologies. The two most common drill bit types are (1) roller cone bits and (2) 166 

fixed cutter bits. Roller cone bits (Fig. 6a) consist of three (a tricone bit) or four cone shaped steel 167 

noses that turn on the rock surface at the bottom of the wellbore as the bit rotates. Fixed cutters (Fig. 168 

6b) consist of a single head that rotates with no separately moving parts (Schlumberger 2018), chipping 169 



and cutting away at the rock surface.  A third, less common drill bit variant is a hybrid drill bit (Fig. 6c), 170 

which consists of a fixed head cutter and 2 or 3 roller cones.  171 

Roller cone bits are predominantly used to drill mixed successions of soft (e.g. coal and shale) 172 

and moderately hard lithologies (such as sandstone and limestone) (Warren 1987). Fixed cutter bits, 173 

such as Polycrystalline Diamond Compacts (PDC), are typically more expensive than roller cones, 174 

though have more durable wear and therefore are more effective in very hard and abrasive formations 175 

such as chert (German et al. 2015) and crystalline volcanic rocks (Grindhaug 2012). Hybrid bits are 176 

used to drill an interbedded succession of very hard (e.g. basalt) and markedly softer rocks (e.g. 177 

claystone) (Rickard et al. 2014). Of note within the separate drill bits utilised, are the location of the 178 

nozzles, which pump out the drilling fluid at the front of the drill bit, in a similar fashion to the nozzle 179 

on a garden hose. In both roller cone and hybrid drill bits, the nozzles tend to be located above and 180 

slightly to the side of the main cutting cones, whereas the nozzles in a fixed cutter bit are more 181 

centrally located and closer to the cutting surface  (Fig. 6).  182 

In terms of drilling fluids, the most common types used are water-based mud (WBM) and oil-183 

based mud (OBM). OBM provides greater wellbore stability, as clay bearing formations can interact 184 

with WBM and cause swelling and ultimately formation damage (McLean & Addis 1990). In terms of 185 

drilling in the UK Continental Shelf, OBM is generally reserved for drilling reservoir intervals. 186 

Additives, such as potassium chloride (KCl) are often added to WBM in order to inhibit clays from 187 

swelling (Caenn & Chillingar 1996). 188 

 189 

Results: Drilling characteristics of the Balder Formation around the Corona Ridge area 190 

Geomechanical properties 191 

An important initial step in determining the cause of drilling issues within the Balder Formation is to 192 

establish its drilling window parameters; chiefly, what the pore pressure and fracture gradient of the 193 

formation is across the Corona Ridge, and what mud weight was used to drill through the formation 194 

in each well.  195 



 Any evidence of overpressure, i.e. pore fluid pressures in excess of hydrostatic pressure at a 196 

specific depth (Osborne & Swarbrick 1997; Zoback 2010), is important to recognise as it is linked to 197 

a number of drilling incidents, such as kicks and drilling fluid losses, which have been historically 198 

encountered in wells in the FSB (Mark et al. 2018). There is, however, a lack of WFT data within the 199 

Balder Formation as the lithologies such as tuffs and claystones present have permeability too low to 200 

be measured with conventional WFTs. We therefore examined WFT data acquired from a variety of 201 

formations throughout the Corona Ridge, in order to establish the study area pore pressure profile 202 

around the depths at which the Balder Formation is intersected. When plotted, these WFT points 203 

indicate that the depth zone at which the Balder Formation is encountered around the Corona Ridge 204 

is normally pressured (e.g. Fig. 5), that is, it follows a normal hydrostatic gradient that would be 205 

anticipated for pore connection up to the seabed. However, low permeability Palaeogene-aged shales 206 

globally commonly exhibit overpressure beyond depths of 1500 m (Swarbrick & Osborne 1998).  207 

There is also a scarcity of FIT and LOT data, the most reliable way to determine fracture 208 

gradients, within the Balder Formation in the FSB, owing to the fact casing points are rarely set within 209 

the Balder Formation itself. In this study we therefore examined a number of individual LOTs acquired 210 

within the Balder Formation from five wells within the FSB and a further 7 wells from the contiguous 211 

North Sea Basin; the latter of which hosts the Balder Formation and is lithologically similar to the FSB 212 

(Mudge 2014; Watson et al. 2017). When plotting these LOT points (Fig. 7), the fracture gradient 213 

measured within the Balder Formation displays a gradual increase with depth, as would be expected. 214 

The fracture pressure measured along the Corona Ridge, acquired within the Balder from the Eribol 215 

well (213/23-1), represents a marginal departure from this trend line, hydraulically fracturing 274 psi 216 

(1.9 MPa) lower than the fracture gradient projected from the regional trend.  217 

 218 

Drilling phenomena which occur within the Balder Formation 219 

There is a variety of drilling problems recorded through the Balder Formation around the Corona 220 

Ridge, such as bit balling (clogging up of the bit) and drilling fluid losses, which contribute to non-221 

productive time (NPT) for drilling activity and even necessitate pulling out of the hole (POOH), at 222 



great cost to troubleshoot and solve the problem. One “trip”, the process of pulling the drill string 223 

out of the hole, can take up to 24 hours to complete, equating to $125,000 in cost at the current 224 

semi-submersible drill rig daily rate (IHS Markit 2018). The following section details specific drilling 225 

issues encountered within the Balder Formation around the Corona Ridge, though with particular 226 

emphasis on the Rosebank wells, all of which were drilled within the last 15 years and therefore have 227 

a good selection of publicly available data, including drilling mechanics logs and wellbore image logs, 228 

with which to investigate the nature and cause of drilling problems. In the southern part of Rosebank 229 

Main (e.g. 213/26-1z) these drilling incidents typically occur within narrow ranges (~20 m) (Fig. 8).  230 

 231 

Bit Balling 232 

The initial drilling issue to occur in this narrow, 20 m depth range through the Balder Formation is bit 233 

balling, which is when the formation interacts with the drilling fluid, and then proceeds to swell and 234 

stick to the drill bit (Fig. 9) (Cheatham & Nahm 1990). Bit balling can significantly reduce rates of 235 

penetration (ROP), preventing the drill bit from contacting the formation, and the built up mass of clay 236 

can make the bottom hole assembly behave like a piston in a cylinder, producing additional surge and 237 

swab pressures (Hariharan & Azar 1996). Unless balling is treated downhole, it may require pulling 238 

out of the hole (POOH) to clean the drill bit, resulting in non-productive drilling time.  239 

Bit balling is noted in drilling reports throughout Rosebank Main (213/26-1, 213/26-1z & 240 

213/27-1z) and in the Bunnehaven (214/9-1) well. In Rosebank Main well 213/27-1z, bit balling was 241 

recognised through the Balder Formation as ROP dropped to <1 m/hour at 2417.7 m measured depth, 242 

after only the top 20 meters of the Balder Formation having been drilled. Forty-Five barrels (6,120 243 

litres) equivalent worth of caustic material and seawater was put down the hole, in an attempt to 244 

breakdown the build-up of swelling materials. However, the unballing strategy was unsuccessful and 245 

eventually required POOH to clean the drill bit, resulting in approximately 24 hours of NPT. Taken 246 

as a proportion of the £14.09 million total well cost of 213/27-1z, drilled over 51.6 days, cleaning of 247 

the bit due to balling equates to a cost of £273,062 (1.94% of the entire well cost).  A full suite of 248 

drilling mechanics logs is not available for well 213/27-1z. However, drilling mechanics logs are available 249 



for well 213/26-1z (Rosebank Main), drilled three years later, where balling was again encountered 250 

within the Balder Formation. Within the drilling mechanics logs, balling causes a reduction in the rate 251 

of penetration (ROP) (Fig. 8a), despite the weight on bit (WOB) being increased (Fig. 8b). Significantly, 252 

the balling is concomitant with a gradual increase in standpipe pressure (Fig. 8c) (which represents 253 

pressure in the circulating drilling fluid system), which eventually spikes (at 2582 psi), just prior to the 254 

commencement of drilling fluid losses (Fig. 8d).  255 

 256 

Drilling fluid losses and gains (ballooning) 257 

In the narrow, 20 m depth range in 213/26-1z within the Balder Formation, dynamic drilling fluid loss 258 

(losses as the drilling fluid is circulating during drilling) occurs immediately after the spike in standpipe 259 

pressure associated with bit balling (Fig. 8c&d). Fluid losses also occur further down in the Balder and 260 

in total occur in three separate zones (149 bbl/hr at 2522.8 m; 90 bbl/hr at 2529 m; 298 bbl/hr at 261 

2575.6 m) (Fig. 8), categorising them as moderate, minor and severe losses, respectively (Millet et al. 262 

2016). In an attempt to “cure” the losses, 110 barrels (14,960 litres) of Lost Circulation Material (LCM) 263 

was pumped down the hole to plug the permeable zones. However, the resulting reduction in mud 264 

supplies, in combination with a deteriorating weather forecast, resulted in POOH. During the 265 

subsequent bad weather, 100 hours of NPT were ultimately accrued before the recommencement of 266 

drilling; when taken as a proportion of the 57 days taken to drill 213/26-1z, this equates to £1.16 267 

million. Including sidetracks, drilling fluid loss is recorded within the Balder Formation in six out of the 268 

eleven wells (54.5 %) along the Corona Ridge: in 6104/25-1 (Sula/Stelkur), in 213/26-1 & 213/27-1 269 

(Rosebank Main), North Uist (213/25-1c), Tobermory (214/4-1) and in Bunnehaven (214/9-1). In total, 270 

more than 550 barrels (74,800 litres) of drilling fluid have been lost to the Balder Formation in these 271 

Corona Ridge wells, equating to ~ £25,300 cost for just the mud alone.  272 

Within three of these Corona Ridge wells which encountered drilling fluid losses through the 273 

Balder Formation (213/26-1, Rosebank Main; 214/4-1, Tobermory; 214/9-1, Bunnehaven), the lost 274 

drilling fluid later returned to the wellbore in a process called wellbore ballooning (Helstrup et al. 275 

2004). Ballooning can be problematic as returning drilling fluid can be interpreted wrongly as an influx 276 



of formation fluid (known as a “kick”). In the case of misinterpretation as a kick, consequently mud 277 

weights may be increased to compensate for this influx, with the inadvertent effect of fracturing the 278 

formation, and exacerbating drilling fluid loss (Helstrup et al. 2004; York et al. 2009). During 279 

connections (the process of adding more pipe to the drillstring) circulation of the drilling mud is 280 

stopped, and only the pressure of the static mud column holds back formation fluids from entering 281 

the wellbore, which includes any lost drilling mud. Ballooning can therefore occur as the pressure of 282 

the static mud column can be lower than the pressure of the lost drilling mud within the formation 283 

(Ward & Clark 1998).  284 

 285 

Drilling Fractures 286 

The Balder Formation is characterised from mud logs as a series of low permeability interbedded 287 

mudstone, siltstone and volcanic tuffs in wells around the Corona Ridge.  Drilling fluid losses within 288 

the Balder Formation therefore appear to be linked to several sets of electrically conductive fractures 289 

recognised within Rosebank Main, specifically 213/26-1 and its sidetrack 213/26-1z where losses 290 

occurred through the Balder. In well 213/26-1 these fractures appear as thin, electrically conductive 291 

fractures sub-parallel with the wellbore, 180˚ apart (Fig. 10a), characteristic of drilling induced fractures 292 

(Zoback et al. 2003). In well 213/26-1z, a more complex fracture pattern is recognised, with “one 293 

winged” drilling induced, or at least enhanced, fractures (i.e. a single sub-parallel fracture with no pair) 294 

(Fig. 10b) (Barton et al. 1995; Jepson et al. 2018) and several smaller fracture splays exhibiting an 295 

irregular, dendritic pattern.  296 

The fractures within 213/26-1 are typical of drilling induced fractures, though the fracture 297 

network within 213/26-1z is more complex to characterise. One way to determine whether the 298 

fractures within 213/26-1z are natural, i.e. pre-existing before drilling, is to examine whether 299 

background gas increases in that interval, which is otherwise impossible with drilling induced fractures 300 

(Rider & Kennedy 2011). Drilling fluid losses can complicate gas readings whilst drilling, though in 301 

213/26-1z electrically conductive fractures are also observed deeper, where no drilling fluid losses 302 

occurred. Between 2522-2525 m, where the fractures are located, methane levels increase from 1000 303 



ppm at 2522 m, to 1900 ppm at 2525 m. Smaller pre-existing fractures are also recognised in well 304 

205/1-1 in Rosebank Main (Fig. 10c) where the Balder Formation was drilled incident free. These 305 

fractures are also associated with a small increase in background gas (methane increases from 4000 306 

ppm at 2514 m, to 7000 ppm at 2515 m), suggesting they are, at least in part, pre-existing, fractures 307 

that have been drilling enhanced (Rider & Kennedy 2011). Ultimately, there appears to be both drilling 308 

induced and enhanced fractures in wells where losses occur (213/26-1 & 213/26-1z), and smaller pre-309 

existing fractures in wells where no drilling incidents were observed (e.g. 205/1-1). 310 

Drilling induced and enhanced fractures also provide important evidence of regional stress, 311 

and hence their underlying tectonic origin, which has important economic implications given that these 312 

fractures are associated with costly drilling fluid losses. Fracture enlargement, including induced and 313 

enhanced fractures, forms parallel to contemporary maximum horizontal stress (SHmax) (Fig. 11) (Dart 314 

& Zoback 1989; Hillis & Williams 1992). The drilling induced (213/26-1) and drilling enhanced fractures 315 

(213/26-1z) within the Balder Formation overlying the Corona Ridge are orientated NW-SE (Fig. 10a) 316 

and NNW-SSE (Fig. 10b), respectively, approximately parallel with the predominant present day stress 317 

field of WNW-SSE (Holford et al. 2016).  318 

Unfortunately, drilling mechanics logs, including mud weights, are not available for well 213/26-319 

1, though are available from the sidetrack 213/26-1z. An unusual aspect of the drilling induced and/or 320 

enhanced fractures within 213/26-1z is that the mud weight used (ECD of ~2407 psi) does not appear 321 

to have exceeded the fracture gradient of the Balder Formation around the Corona Ridge (~2539 psi) 322 

(Fig. 8). 323 

 324 

Discussion 325 

Synthesising geology and drilling data - why the drilling issues occur 326 

In this study we have outlined how a number of drilling incidents encountered within the Balder 327 

Formation occur in a narrow, ~20m depth range (e.g. Fig. 8). Image logs from Rosebank Main (Fig. 10) 328 

highlight that within this zone there are large conductive fractures, up to 15 m  long, interpreted as 329 

either drilling induced (213/26-1) or enhanced (213/26-1z), which likely represent the source of 330 



permeability by which the drilling fluid escapes from the wellbore. However, the mud pressure does 331 

not appear to have exceeded the modelled fracture gradient of the Balder Formation, suggesting an 332 

alternative mechanism for hydraulically fracturing the Balder is in effect.  333 

Notably, examination of the standpipe pressure (pressure in the drilling fluid system) can be 334 

seen to markedly increase from background readings, spiking just prior to occurrence of loss of drilling 335 

fluid. When plotted, the pressure combination of mud pressure (ECD) and the excess in standpipe 336 

pressure exceeds the modelled fracture pressure of the Balder (Fig. 12). Operationally, this is 337 

interpreted as the bit baling creating a restricted flow, causing a spike in mud pressure which reaches 338 

the fracture pressure, leading to drilling induced or enhanced fractures. We therefore suggest that the 339 

drilling issues- including bit balling, drilling induced/enhanced fracturing, drilling fluid losses and 340 

ballooning- occur in an inter-related chain reaction (visually depicted in Fig. 13) and detailed below:  341 

 342 

1. Normal drilling conditions within the Balder Formation, no operational issues initially. 343 

2. Balder Formation clays start to swell, causing balling of the drill bit and leading to a 344 

reduction in ROP. An increase in WOB likely exacerbates this effect (akin to a car 345 

continuing to accelerate wheels stuck in mud). Tricone and hybrid bits are more adversely 346 

affected by this balling, as their drilling nozzles are located at the side of the bit and are 347 

therefore less effective at clearing away the build-up of clay material.  348 

3. The swelling clays cause restriction of flow, preventing communication between the area 349 

in front of the drill bit (where the cuttings are being generated) to the rest of the wellbore 350 

(termed a “pack-off”). When the well packs off the trapped pressure causes the formation 351 

below the pack-off to be subject to higher pressure than calculated by mud weight and 352 

ECD, to the point where the natural fractures within the Balder are enhanced. Drilling 353 

fluid is then lost to those fractures.  354 

4. The drilling fluid losses are “cured” by putting Lost Circulation Material (LCM) pills 355 

pumped down the hole, plugging the facture network and allowing drilling to recommence. 356 



5. The lost fluid later returns to the wellbore (ballooning), often during drill pipe connections 357 

as only the static mud column is holding back formation fluids (which includes lost drilling 358 

mud).   359 

 360 

Wider geological context- Why drilling issues occur around the Corona Ridge 361 

In this study we have detailed a range of drilling incidents observed within the Balder Formation around 362 

the Corona Ridge area of the FSB. There are two critical features of the Balder Formation observed 363 

in these wells: the formation is both (1) highly swelling and (2) a NW-SE principal stress orientation.  364 

The swelling aspect can clearly be linked back to the lithological character of the Balder 365 

Formation, particularly the volcanic tuffs which are now largely altered to smectite (Knox & Morton 366 

1983), a clay type particularly prone to swelling (Norrish 1954; Cheatham & Nahm 1990). An 367 

important aspect of the Balder Formation tuffs is that their distribution is regionally variable, 368 

particularly when associated with marginal to non-marine deposition compared to marine settings 369 

(Watson et al. 2017). In marginal to non-marine settings (Fig. 14), such as the southern (e.g. quads 204, 370 

205) and eastern (e.g. Rona Ridge) flanks of the basin, tuff preservation is more limited, appearing 371 

within discontinuous, relatively thin (2-12 m thick) packages. In marine settings such as the Flett Sub-372 

basin and the Corona Ridge, in contrast, tuffs are better preserved within predominantly siltstone and 373 

claystone rich successions.  374 

The drilling induced and enhanced fractures recognised within the Balder Formation along the 375 

Corona Ridge document a principal horizontal stress orientated NW-SE. This orientation is parallel 376 

with the dominant horizontal stress within the basin (Holford et al. 2016), and also coincident with 377 

the orientation of Miocene-aged North Atlantic ridge-push compression, a postulated mechanism for 378 

the inversion of SW-NE trending anticlines such as those overlying the Corona Ridge (Boldreel & 379 

Andersen 1993; Ritchie et al. 2008). We therefore propose that the compression event that caused 380 

inversion of the Corona Ridge lead to horizontal stresses sufficient to induce brittle deformation within 381 

the Balder Formation, manifested as a fracture network that is later enhanced during the drilling 382 

process.  383 



Therefore, specifically in the case of the Corona Ridge, it appears that the combination of (1) 384 

marine Balder Formation with tuffs that are susceptible to swelling during drilling and (2) a mechanically 385 

weak Balder Formation subjected to NW-SE horizontal stress overlying intra-basinal highs, result in 386 

drilling issues related to the opening of pre-existing fractures (Fig. 14). To the south-west of Rosebank, 387 

wells around the Cambo intra-basinal high (e.g. Cambo Field) have not experienced drilling issues 388 

through the Balder Formation likely due to Cambo’s closer proximity to the Balder palaeocoastline 389 

(Hardman et al. 2018a) and therefore more marginal marine sedimentation (greater proportion of 390 

non-tuffaceous siltstone and sandstone less prone to swelling). 391 

 392 

Mitigation against drilling issues for future wells 393 

Issues related to drilling through the Balder Formation around the Corona Ridge have led to 394 

a number of highly undesirable operational events, such as reduced ROP and loss of drilling fluid. 395 

Cumulatively, in total >550 barrels (74,800 litres) of drilling fluid have been lost, and at least 124 hours 396 

of NPT have been accrued, whilst drilling the Balder Formation around the Corona Ridge, which 397 

equates to approximately £1.5 million in cost. Therefore any mitigations which can be put in place to 398 

minimise drilling issues within the Balder Formation have a significant efficiency and monetary 399 

implication. Table 2 summarises a number of mitigations to prevent drilling issues through the Balder, 400 

addressed in further detail below.  401 

Operation 

Mitigations 

Selection Impact 

Mud type Oil-based mud (OBM) No reaction with swelling clays.    

Bit choice PDC bit PDC bit nozzles more centrally located, likely more 

effective at clearing away build-up of swelling clays. 

Mud pressure Reduced mud pressure 

through the Balder 

In the event of a sudden downhole increase in pressure, a 

lower mud pressure would provide a wider drilling 

window. 



Weight on Bit 

(WOB) 

Not immediately increasing 

WOB if ROP drops through 

Balder 

Drop in ROP through Balder can indicate bit balling, which 

would only be exacerbated by an increase in WOB. 

Fracture 

characterisation 

Acquire LWD image logs 

through the Balder 

Identification of fracture networks within the Balder prone 

to drilling issues.  

Casing points Avoid setting casing points 

within the Balder 

Interbedded, mechanically weak formations make poor 

locations for casing points. 

Table 2: List of actions to mitigate against encountering drilling issues through the Balder Formation 402 

around the Corona Ridge area. 403 

 404 

Swelling clays and bit balling have been reported through the Balder Formation in a number 405 

of the Corona Ridge wells examined (e.g. 213/26-1) despite the use of KCl water-based mud (KCl 406 

being an additive meant to inhibit clay swelling). Oil-based muds (OBM) eliminate water from the 407 

external phase and therefore would offer greater clay swelling inhibition for future wells drilling 408 

through the Balder around the Corona Ridge.  409 

In the majority of the wells where drilling issues occur a tricone drill bit was used, with the 410 

exception of the Sula/Stelkur well (6104/25-1) in the Faroese sector, where a hybrid bit was used 411 

(combination of fixed cutter and roller cone). A key feature of both tricone and hybrid bits is that the 412 

nozzles which expel the drilling fluid are located slightly behind and to the side of the drill bit, and are 413 

therefore less effective at clearing away a build-up of swelling clays.  Therefore, use of a PDC drill bit 414 

with central nozzles through the Balder may help retard bit balling, a phenomenon which appears to 415 

precede fracture enhancement and drilling fluid loss; see Table 1 where all three uses of PDC bits has 416 

not lead to the problems associated with other bits. However, the use of a PDC bit often can lead to 417 

a degradation in cuttings quality, and consequently biostratigraphic observations, which has shown to 418 

be a critical component in correlating reservoir intervals along the Corona Ridge (Schofield & Jolley 419 

2013; Hardman et al. 2018). 420 

 A further drilling consideration for future wells around the Corona Ridge is the placement of 421 

casing points. Formations which are interbedded and mechanically weak, such as the Balder Formation 422 



around the Corona Ridge, tend to form poor locations to set casing shoes. Future wells around the 423 

Corona Ridge therefore may be best cased off before or after the Balder Formation is penetrated. 424 

Future studies could also examine the impact a weakened Balder Formation may have on the stability 425 

of the overlying Stronsay Group sediments. The North Uist well (213/25-1c) along the Corona Ridge 426 

for instance, had major difficulties getting casing through the base of these Stronsay Group sediments, 427 

just above a potentially weakened Balder Formation.   428 

 429 

Wider Implications for the Petroleum System 430 

The widespread occurrence of drilling fluid losses in wells around the Corona Ridge betrays the 431 

presence of permeability within the Balder Formation. The exact nature of this permeability away from 432 

the wellbore is unclear, be it within pre-existing fractures, fractures enhanced during drilling or 433 

permeable turbidite sediment stringers. However, an increase in background gas within the Balder 434 

both in North Uist (213/25-1c) and in Rosebank Main (205/1-1) associated with smaller fractures 435 

where no drilling issues occur signifies that the permeability is to an extent natural, and not solely 436 

drilling induced. The presence of permeability within the Balder Formation is slightly counter intuitive 437 

as it is a laterally extensive formation composed of relatively low permeability claystone, siltstone and 438 

volcanic tuffs.  439 

It is well established that the Balder Formation forms an effective top seal in other parts of 440 

the UK Continental Shelf, notably within the Bressay Discovery in the contiguous North Sea Basin 441 

(Underhill 2001). When comparing the Bressay and Rosebank structures side-by-side (Fig. 15), the 442 

sands underlying the Balder at Rosebank are water-bearing, despite being within a four-way closure, 443 

in contrast to the oil charged sands of Bressay. Fluorescence is, however, reported in ditch cuttings 444 

from the Hildasay Member in Rosebank well 213/27-3, suggesting hydrocarbons have migrated through 445 

the Hildasay. Notably the Bressay structure has an entirely different genesis to Rosebank and the 446 

Corona Ridge. Bressay formed as a result of differential compaction due to an incised fluvial channel 447 

(which forms the reservoir) which the Balder Formation drapes (Underhill 2001). Traps formed 448 

through differential compaction, or “drape anticlines”, form shortly after reservoir deposition and 449 



without tectonic disturbance (Allen & Allen 2005; p. 483). In contrast, inversion anticlines, such as the 450 

Rosebank trap (Duncan et al. 2009), form due to the reversal of extensional faults during compression 451 

(Williams et al. 1989). The compressional tectonism associated with the formation of the Rosebank 452 

anticline trap therefore may have generated a permeable fracture network which ultimately retarded 453 

the sealing capability of the Balder Formation.  454 

  455 

Application to other sedimentary basins 456 

This study deconstructs the chain-reaction of events which occur whilst drilling the Balder Formation, 457 

which in the study area specifically is prone to swelling. These drilling events all occurred with the use 458 

of a water-based drilling mud, which despite the presence of KCl as an inhibitor, still caused the Balder 459 

to swell and ball the bit. The swelling within the Balder Formation is linked to the presence of smectitic 460 

clays, which are a product of alteration of the original volcanic ash (Knox & Morton 1983; Malm et al. 461 

1984; Knox & Morton 1988). In addition to volcanic input, smectite-rich sedimentary successions can 462 

also be sourced from drainage of large continents (Griffin et al. 1968). Within the Gulf of Mexico, for 463 

example, swelling smectite clays are termed “gumbo shale” and widely known for drilling issues such 464 

as low rates of penetration (Allred & McCaleb 1973; Klein et al. 2003; Sameni & Chamkalani 2018). 465 

This study’s multidisciplinary approach of placing drilling incidents within the context of regional 466 

geological observations, including the tectonic history and environment of deposition, could therefore 467 

be applied to other sedimentary basins where similar drilling issues are recorded. We emphasise the 468 

need to properly integrate the geological understanding with drilling planning and parameters.  This is 469 

important in the current exploration drilling backdrop where water-based drilling muds are being 470 

increasingly deployed because they are viewed as more environmentally acceptable (Anderson et al. 471 

2010), and therefore the prospect of swelling clays will continue to be a risk during drilling operations. 472 

Conclusions 473 

A myriad of drilling incidents have been observed whilst drilling the Balder Formation around the 474 

Corona Ridge area of the FSB,  including bit balling, drilling fluid loss, wellbore ballooning and wellbore 475 

collapse, often with multi-million pound cost implications. These drilling phenomena appear linked, 476 



effectively forming a drilling chain reaction- bit balling preceding drilling fluid loss, followed by wellbore 477 

ballooning. These drilling events can be linked back to the geological history of the basin, in particular 478 

to Miocene compression which appears to have inherently weakened the Balder Formation along the 479 

Corona Ridge. However, these drilling issues can be mitigated by drill bit selection, particularly through 480 

the use of a PDC bit, rather than a tricone (Table 2). Furthermore, the recognition of a permeable 481 

Balder Formation around the Corona Ridge has important ramifications for quantifying risk in 482 

exploration of the Hildasay sandstone play.  483 

Ultimately, this study highlights the importance of integrating regional geological observations, 484 

such as tectonic histories, to help fully understand the origin of drilling issues. This multidisciplinary 485 

approach, between geology and drilling operations, could be applied to other sedimentary basins 486 

globally where drilling issues such as swelling clays and mud losses are reported.  487 
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 719 
 720 
Fig. 1. (A) Map of the Faroe-Shetland Basin with main tectonic elements. (B) More localised map, 721 
showing the location of this study’s focus, including the wells and seismic lines described in this paper. 722 
Base map adapted from Ellis et al. (2009), and Corona Ridge elements modified based on Hardman et 723 
al. 2018b.  724 
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 726 

 727 



 728 

Fig. 2. Lithostratigraphy of the Palaeocene to lower Eocene in the FSB, and their lateral equivalents 729 
in the North Sea. Chart adapted from Ritchie et al. (2011), with revision of Colsay and Hildasay 730 
members of the Flett Fm. from Schofield et al. 2017.  731 

 732 



 733 

Fig. 3. Seismic line transect (from the PGS FSB MegaSurveyPlus) through the Corona Ridge, 734 
exhibiting the regional geology, major hydrocarbon discoveries, and many of the key wells examine 735 



in this study. Boxes note the range of drilling issues encountered specifically within the Balder 736 
Formation. 737 
 738 

 739 
 740 
Fig. 4. Typical well log character of the Balder Formation in the FSB, from well 6104/25-1, manifested 741 
in a low, serrated gamma profile (a), resistivity slightly higher than shale (b), a density/neutron 742 
separation typical of shale (c) and a bell-shaped interval-transit time profile (d). 743 

 744 



 745 

 746 

Fig. 5. An example of a drilling window plot, from Tobermory (well 214/4-1) End of Well Report. In 747 
this example, as well as all other wells examined, the mud weight (pounds per gallon [ppg]) does not 748 
appear to be set higher than the fracture gradient of the Balder Formation, yet drilling fluid losses still 749 
occurred.  750 
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 752 



 753 

 754 

Fig. 6. Different types of drill bit commonly used to dill through the Balder Formation around the 755 
Corona Ridge. The nozzles in (a) tricone and (c) Kymera bits are located to the side and further back 756 
from the front of the bit, compared to a (b) PDC bit. Tricone and PDC bits from Schlumberger drilling 757 
catalogue (2018), and hybrid bit from Baker Hughes catalogue (2018).  758 
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 760 

Fig. 7. Regional fracture pressure gradient for the Balder Formation around the Corona Ridge. The 761 
LOT data is from the Balder Formation from wells in the FSB and North Sea. 762 
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 765 



766 
Fig. 8. Drilling properties through the Balder Formation in well 213/26-1z. A notable reduction in the 767 
rate of penetration is observed (a), despite the fact the weight on the bit (b) is increased. The increase 768 
in standpipe pressure (c) in therefore indicative of bit balling. Drilling fluid loss (d) is initiated shortly 769 
after the recognition of bit balling. The fluid losses are associated with a conductive fracture network 770 
(e), recognised in image logs. Three separate zones of drilling fluid loss occur (highlighted on the depth 771 
track on the left).  772 
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 776 

Fig. 9. Examples of bit balling of a tricone drill bit. Images courtesy of John Jong & Jon Royds, JX 777 
Nippon Oil & Gas Exploration.  778 
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 780 

 781 

Fig. 10. The drilling induced fractures within 213/26-1 (A) are orientated NW-SE, implying a 782 
maximum compressive stress (σHmax) in the same direction. Drilling enhanced fractures within 783 
213/26-1z (B) are orientated NNW-SSE. There are also natural fractures (C) within the Balder in 784 
205/1-1; note this image log was not able to be orientated.  785 

 786 



 787 

 788 
Fig. 11. Fracture enlargement (i.e. drilling induced and enhanced fractures) form parallel with the 789 
maximum horizontal stress (SHmax). From Hillis & Williams (1992). 790 
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 792 

Fig. 12.  Drilling window plot for well 213/26-1z with geomechanical explanation behind drilling 793 
induced fractures within the Balder Formation. The mud pressure (the ECD, in ppg) is not set 794 



sufficiently high to induce fractures within the Balder Formation (i.e. it is below the regional Balder 795 
fracture pressure gradient). However, when the observed marked increase in standpipe pressure 796 
(called the Excess Standpipe Pressure in this plot) is combined with the ECD, then this pressure would 797 
exceed the anomalously low fracture pressure gradient of the Balder Formation around the Corona 798 
Ridge, at the exact depth where the losses occur.  799 
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 801 

 802 

Fig. 13.  Sequence of events leading to drilling issues encountered in the Balder Formation along the 803 
Corona Ridge. Stage 1 represents normal drilling conditions, though by Stage 2 the Balder 804 
Formation begins to react with drilling fluid and balls the drill bit, clogging the nozzles at the front of 805 
the bit, and leading to plugging of the wellbore above the bit and nozzles (a pack off), trapping pressure 806 
below. In Stage 3 the trapped pressure below the pack-off causes the underlying formation to be 807 
subject to shock, causing pressures higher than measured and a drilling enhancement of natural 808 
fractures. Drilling fluid is lost to the fractures. These losses are cured (Stage 4), and drilling continues, 809 
though the drilling mud later returns to the wellbore (Stage 5), likely during connections (when more 810 
pipe is added to the drillstring) as the only thing holding back the formation fluids (including the drilling 811 
fluid lost earlier) is the pressure of the static mud column.  812 
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 814 

Fig. 14. Balder palaeogeography (adapted from Watson et al. 2017) showing areas of high risk of 815 
drilling issues through the Balder Formation (dashed red), corresponding to a marine setting overlying 816 
the Corona Ridge.  817 
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 819 

 820 

Fig. 15. Geoschematic comparison between the Bressay (a) and Rosebank (b) structures (location of 821 
Bressay and Rosebank displayed on Fig. 1). The Bressay structure formed as a result of differential 822 
compaction, with the Balder Formation acting as the top seal. In Rosebank, the structure formed 823 
tectonically due to regional compression, resulting in horizontal stresses that may have exceeded the 824 
fracture gradient of the Balder Formation. This fracture network, and associated permeability, would 825 
account for the water-bearing sandstones below the Balder Formation at Rosebank. Bressay cross-826 
section adapted from Underhill (2001).  827 
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