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Abstract

The transepithelial potential difference (TEP) across the retinal pigment epithelial

(RPE) is dependent on ionic pumps and tight junction “seals” between epithelial

cells. RPE cells release neurotrophic growth factors such as pigment epithelial

derived factor (PEDF), which is reduced in age‐related macular degeneration (AMD).

The mechanisms that control the secretion of PEDF from RPE cells are not well

understood. Using the CCL2/CX3CR1 double knockout mouse model (DKO), which

demonstrates RPE damage and retinal degeneration, we uncovered an interaction

between PEDF and the TEP which is likely to play an important role in retinal age-

ing and in the pathogenesis of AMD. We found that: (a) the expression of ATP1B1

(the Na+/K+‐ATPase β1 subunit) was reduced significantly in RPE from aged mice, in

patients with CNV (Choroidal Neovascularization) and in DKO mice; (b) the expres-

sion of PEDF also was decreased in aged persons and in DKO mice; (c) the TEP

across RPE was reduced markedly in RPE cells from DKO mice and (d) an applied

electric field (EF) of 50‐100 mV/mm, used to mimic the natural TEP, increased the

expression and secretion of PEDF in primary RPE cells. In conclusion, the TEP

across the RPE depends on the expression of ATP1B1 and this regulates the

secretion of PEDF by RPE cells and so may regulate the onset of retinal disease.

Increasing the expression of PEDF using an applied EF to replenish a disease or

age‐reduced TEP may offer a new way of preventing or reversing retinal dysfunc-

tion.

K E YWORD S
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signalling

1 | BACKGROUND

The retinal pigment epithelium (RPE) is a polarized epithelial mono-

layer which lies between the photoreceptor cells of the retina and

the choriocapillaris layer of the choroid. The RPE has many func-

tions, for example light absorption, trans‐epithelial transport, phago-
cytosis, secretion of growth factors and protection of the neural

retina. Dysfunction and death of RPE cells play critical roles in the

pathogenesis of several retinal disorders.1,2 For example, RPE dys-

function occurs very early on in diabetic retinopathy, even before
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visual loss or overt diabetic retinopathy is evident clinically.3 One

feature of healthy RPE is the generation of a trans‐epithelial poten-
tial difference (TEP) of around 3.5 mV (apical side positive).4 Because

the RPE has an average thickness of about ~50 μm, the voltage gra-

dient across the RPE (TEP) gives rise to a physiological electrical field

(EF) of ~70 mV/mm. The TEP is created by the establishment of

ionic gradients across the RPE. These are driven for example by

membrane transporters such as the polarized Na+/K+‐ATPase pumps

and maintained by tight junctions between epithelial cells. These

have a high trans‐epithelial electrical resistance (TEER) of 448 Ω/cm2

that prevents ionic back flux and so preserves the ionic gradients.5

The functional role of the TEP across the RPE is not fully under-

stood, but in other tissues endogenous electrical signals regulate a

variety of cellular and molecular functions.6-9 Direct measurements

have shown that an extracellular electrical signal of 42 mV/mm is pre-

sent at a bovine corneal wound10 and that similar or smaller applied

electric fields (EFs) directed migration of corneal epithelial cells

(CECs)11,12 and RPE cells.13 In addition, division of CECs is oriented

by a small applied EF.14 The TEP also influences the transport of

fluid/substances across the RPE, as it does for instance, in the kidney

and urothelium, where the TEP contributes to tubular reabsorption

and to ATP release.15 We hypothesize therefore that the TEP may

play a functional role in maintaining the normal health of the retina.

Pigment epithelium‐derived factor (PEDF) is a naturally occurring

glycoprotein secreted from the apical side of RPE cells.16-18 It has

broad bioactive properties for the health of normal retina, including

neuroprotective,19-21 antiangiogenic 22-24 and anti‐senescent func-

tions.25,26 Local expression of PEDF is decreased significantly in the

RPE of patients with AMD, and this is responsible in part for the

pathogenesis of the disorder.27

The double knockout mice CCL2/CX3CR1 without rd8 mutation

(DKO mice) which we used here have deletions of the chemokine

CCL2 and receptor CX3CR1 which predispose mice to age‐ and light‐
mediated RPE and retinal damage, but does not include pathogenic

retinal angiogenesis.28-32 In addition, Ccl2‐knockout (Ccl2−/−) mice

develop drusen‐like changes, accumulations of extracellular material

between Bruch's membrane and the RPE and also RPE atrophy.33,34

RPE degeneration occurs by 9 months in Ccl2‐deficient mice33 and a

significant decrease in PEDF expression in mouse retina and RPE was

found in vivo and in cultured DKO RPE cells.35 We sought therefore

to determine the interactions between TEP and PEDF secretion and

also the functional roles of each signal on healthy and diseased RPE.

2 | MATERIALS AND METHODS

2.1 | Animals

Three to fifteen months‐old DKO mice (n = 18, 6 at 3‐4 months, 4 at

6 months, 4 at 9 month and 4 at 15 months) and age‐matched

C57BL/6J wild‐type (WT) control mice were used. CCL2/CX3CR1

DKO mice were kindly supplied by Prof. Xu (Queens University, Bel-

fast). The DKO mice do not carry Crb1 rd8 mutation.32 DKO mice

were maintained in a standard animal housing room with a 12‐hour

light/dark cycle in the Biological Research Unit (BRU) at Queen's

University Belfast. WT mice were obtained from the Medical

Research Facility, University of Aberdeen. All in vivo procedures were

undertaken under the regulation of UK Home Office Animals (Scien-

tific Research) Act 1986. The study was conducted in compliance with

the Association for Research in Vision & Ophthalmology Statement

for the Use of Animals in Ophthalmology and Vision Research.

2.2 | RPE cell isolation and culture

RPE cells were isolated and cultured from WT, DKO mice eyes and

normal person's eyes as described previously.36-38 Using eyes pro-

vided by the Bristol and Manchester Eye Banks and after the cornea

was removed for the purpose of transplantation, RPE cells were

gathered and 9 human RPE cell lines, 3 from persons less than 50

years old (“young”) and 6 from over 70 year old persons (“old”),
established. In brief, after removal of the anterior segment of the

eye and the lens, the neuronal retinas were peeled off from the

eyecups under the dissecting microscope. The RPE/choroid/sclera

cups were filled with 0.5% (w/v) trypsin‐EDTA (ICN Flow, Irvine, UK)

and incubated at 37°C for 1 hour. For mice, the eye was incubated

for digestion after cornea and lens removal. Then, the RPE was

peeled off from the choroid under microscope for cell culture and

Western blotting. The RPE cells were released from the basement

membrane by gentle aspiration. After two washes, single cell suspen-

sions were cultured in a 35‐mm dish with Dulbecco's modified

Eagle's medium (DMEM, Invitrogen) containing 10% (v/v) foetal calf

serum (FCS, Sigma). The first passage was used for protein expres-

sion assays using Western blot. Second and third passage cells were

used for measurement of trans‐epithelial electrical resistance (TEER),

trans‐epithelial potential difference (TEP) and other experiments.

2.3 | TEP detections using Millicell‐ERS system

1‐2 × 105 primary cultured RPE cells from wild type and DKO mice

were seeded on 24‐well cell culture inserts to form monolayers (Mil-

lipore). The inserts contain a 0.4‐μm pore size polycarbonate mem-

brane pre‐coated with collagen type I. The medium was replaced

every 48 hours. TEER and TEP were determined using a Millicell

ERS‐2 Voltmeter (MERS00002, EMD Millipore) at 1‐4 weeks.

2.4 | Measuring the electrical current on the RPE

The scanning vibrating electrode technique (SVET, Applicable Elec-

tronics) was used to determine the endogenous electrical current of

the RPE.39 The probe vibration is controlled by a piezoceramic dis-

placement device allowing vibration amplitudes from 1 to 30 μm

(perpendicular to the sample surface). Every 35‐μm one measure-

ment point of the vertical component of the current density was

recorded to build up the entire current density map. The RPE cells

were seeded in a 35‐mm dish to form a monolayer after 21 days cul-

ture. All system parameters, including the xyz scanning mechanism,

piezo actuator and lock‐in amplifier, are controlled via a PC using

ASET software from Science Wares Inc., USA.

CAO ET AL. | 5553



2.5 | Immunofluorescent staining and imaging

Cells were fixed in 4% paraformaldehyde for 20 minutes, followed

by permeabilization (5 minutes) and blocking (30 minutes). The cells

were stained for 2 hours with antibodies to Na+/K+‐ATPase (α1 and

β1 subunits, EMD Millipore), E‐cad (BD Biosciences) and ZO‐1 (Invit-

rogen, UK), respectively, and then were incubated with secondary

antibodies (Invitrogen) and phalloidin‐TRITC (Sigma‐Aldrich, UK) for
1 hour. Images were obtained with the Zeiss Axio Observer Z1

inverted fluorescence microscope and Confocal Zeiss 710 LSM (Carl

Zeiss, Germany).

2.6 | Immunohistochemistry staining

Mouse eyes were fixed with 2% paraformaldehyde for 2 hours. After

paraffin embedding, the eyeballs were cut into 5‐μm‐thick sections

and mounted on charged glass slides. Slides were de‐paraffinized
and subjected to citrate‐based antigen retrieval. Paraffin sections

were re‐treated with the DAKO high pH antigen retrieval system

(DAKO, Carpinteria, CA) using a domestic 600 kW microwave oven.

Nonspecific antibody binding was blocked by incubating sections in

4% BSA followed by 10% non‐immune goat serum (Zymed Corp.,

San Francisco, CA). Primary antibody was applied at a 1:200 to 400

dilutions overnight at room temperature. Sections then were incu-

bated with secondary antibody for 30 minutes. The localization of

target proteins was demonstrated with pre‐diluted streptavidin‐
horseradish peroxidase (Zymed) and 0.05% 3, 3‐diaminobenzidine in

TBS, with H2O2 as the substrate. All sections were counterstained

lightly with haematoxylin.

2.7 | Western blot

Western blot (WB) was performed as described previously.40 Primary

antibodies used included anti‐ATP1A1 (Abcam), ATP1B1 (EMD Milli-

pore), E‐cadherin (BD Biosciences), ZO‐1 (Invitrogen, UK), PEDF and

GAPDH (Santa Cruz, USA). The immunoblots were detected by Clar-

ity Western ECL Substrate (Bio‐Rad). Cell lysates were collected

using RIPA buffer for further WB experiments.

2.8 | Applied electrical stimulation in vitro

DC electric fields were applied to primary cultured RPE cells in elec-

trotactic chambers as described before41 (Figure 6A). A DC electric

field of 50‐100 mV/mm was applied and measured directly using an

ammeter (34410A digital multimetre, Agilent Technologies). The

samples were exposed to an applied EF for 1 and 3 hours, and then,

cell pellets were prepared for protein assays.

2.9 | Detection of neurotrophic factors secretion
from RPE by ELISA

The conditioned medium was collected from different side of cul-

tured RPE cells in a transwell cell culture system (Mlillicell UK). The

concentration of PEDF, HGF and BDNF was determined by ELISA

using commercial kits (RayBiotech UK). ELISA was performed using

the manufacturer's instructions.

2.10 | Microarray data analysis

The microarray data sources were from the Gene Expression

Omnibus (GEO).42 Two data sets (series accession number of

GSE29801 and GSE10965) were not subjected to any additional

normalization, as all had been normalized when these were

F IGURE 1 The expression of ATP1B1 was down‐regulated in
aged RPE and wet AMD. A, We analysed the data set on the GEO
(gene expression omnibus, NCBI). The expression of ATP1B1 was
reduced significantly in aged mice (4 vs 26 months, P < 0.01). B, the
expression of ATP1B1 and ATP1A1 in normal and AMD retina were
analysed. ATP1B1 expression in normal macula (n = 28) was three
times higher than from extramacular areas (n = 27, P < 0.01).
ATP1B1 expression in both macula with CNV (Choroidal
Neovascularization) and with GA (geographic atrophy) (n = 9) was
reduced significantly compared to that in normal macula (n = 28,
P < 0.05). C, Expression of ATP1A1 was not different between
macula and extramacular or normal and AMD. **P < 0.01, *P < 0.05
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obtained. Using the GSE10965 data set, the gene expression of

retinal pigmented epithelium/choroid from young and old animals

was compared, including 4 samples from young mice and 4 sam-

ples from old mice. Each sample contained 4 retinal pigmented

epithelium/choroid from 2 animals.43 Using GSE29801, a systems‐
level transcriptome analysis of the retina and retinal pigment

epithelium (RPE)‐choroid complex from 31 normal, 26 AMD and

11 potential pre‐AMD human eyes was performed using Agilent‐
014850 Whole Human Genome Microarray.44 We analysed the

expression of ATP1B1 and PEDF in these published microarray

data sets on line. The identity of genes across microarray data sets

was established using public annotations, primarily based on Uni-

gene.45

2.11 | Statistical analysis

A minimum of three replicates was undertaken and analysed for

each experiment presented. Data are shown as the mean ± SEM.

Student's t test was used to test for significant differences between

groups. Differences were considered statistically significant if the

P value was <0.05.

3 | RESULTS

3.1 | Reduced ATP1B1 expression in RPE of aged
mice and retina from patients with AMD

We analysed the microarray data on Gene Expression Omnibus

(GSE29801 and GSE10965).44 In these group microarray data, we

analysed expression of ATP1B1 and ATP1A1 in RPE of young and

old mice and 175 samples from the macular or extramacular

region of human donor eye RPE‐choroids and 118 samples from

the macular or extramacular region of human donor retina with

no reported ocular disease, possible preclinical AMD or AMD. The

results showed that ATP1B1 was down‐regulated significantly in

old mice (Figure 1A). In sample analysis from patients with AMD,

there was much higher expression of ATP1B1 in macula of human

retina (P < 0.001), but no significant difference in expression of

ATP1A1 between macula and extramacula retina (Figure 1B and

C). Importantly, we found that the expression of ATP1B1 was

reduced significantly in macula of AMD with CNV (Choroidal

Neovascularization) and GA (geographic atrophy) (P < 0.05). Our

analysis suggested strongly that the decreased expression of

F IGURE 2 Reduced secretion of neurotrophic factors in aged primary cultured RPE cells. A, under bright field, cultured RPE cells had richly
pigmented cytoplasm at 4 d. By passage 3, RPE cells had lost their pigment after 15‐day culture. B, CRALBP is a specific marker of RPE. It is
significantly expressed in passage 3 primary cultured RPE (immunofluorescent staining). Green is CRALBP and Blue is DAPI. C‐E, In cultured
RPE cells from different aged persons, the secretion of PEDF, BDNF and HGF all were reduced significantly in the “old” group (>70 year old;
n = 6) compared with the younger group (<55 year old; n = 3). *P < 0.05, **P < 0.01. Bar in A and B is 50 μm
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ATP1B1 could be a specific factor which may correlate with wet

AMD and GA.

3.2 | Secretion of PEDF and other neurotrophic
factors was reduced in cultured RPE

Next we checked the secretion of PEDF in cultured RPE cells from peo-

ple of different ages. We confirmed the RPE identity of our cells from

their expression of the RPE‐specific marker CRALBP (Cellular Retinalde-

hyde‐binding Protein, Figure 2A and B). After 2‐week culture, we har-

vested the culture medium and assessed the concentrations of PEDF,

BNDF and HGF from “young” and “old” patients (see Methods: Fig-

ure 2C‐E). We found that PEDF was reduced in the “old” age group from

15 489 ± 230 ng/mL to 7560 ± 180 ng/mL, BDNF from 145.9 ± 62 pg/

mL to 100.2 ± 26 pg/mL and HGF from 5727 ± 1100 pg/mL to

2268.2 ± 230 pg/mL (all statistically significant, P < 0.01). These data

indicate that the expression of ATP1B1 (Figure 1A) and secretion of

PEDF in retina fall off with increasing age (Figure 2C‐E).

3.3 | Reduced ATP1B1 and PEDF expression in
RPE and retina in DKO mice

DKO mice are a well‐recognized model of retinal dysfunction diseases

with RPE degeneration. We compared the expression of ATP1A1 (Na+/

K+‐ATPase alpha1), ATP1B1 (Na+/K+‐ATPase beta1), E‐Cad (adhesion

junction, E‐cadherin) and PEDF in RPE from DKO and age‐matched WT

F IGURE 3 Down‐regulation of ATP1B1, E‐cad and PEDF expression in RPE of DKO mice. A, Schematic diagram of RPE and associated
structures. B, RPE, photoreceptor outer and inner segments (POS) and outer nuclear layer (ONL) stained with haematoxylin and eosin (HE), and
the pigment particles in RPE are outlined by red arrows. C, Left panel, in RPE (red arrows) and POS, the ATP1B1 was stained by IHC
(immunohistochemistry) to show the black particles in RPE and POS (white arrows). Right panel, IF (immunofluorescent staining) showed that
the reduced ATP1B1 (highlighted by white arrow) located at the POS in DKO mice. D, In WT, the expression of ATP1B1 was presented by IF
staining (white and yellow arrow). E, In DKO mice, ATP1B1 expression was reduced significantly on the apical side of RPE, POS and GCL (yellow
and white arrows). F, Western blots showed that the expression of ATP1B1 and E‐cad was reduced markedly, but that ATP1A1 expression was
not reduced in RPE of 6‐mo‐old DKO mice. Actin is loading control. G, Western blots showed that the expression of PEDF was down‐regulated
in RPE of 6‐mo‐old DKO mice. GAPDH is loading control. The histograms in F and G show the relative intensities of ATP1A1, ATP1B1, E‐cad,
PEDF expressed as a ratio with respect to the loading control (n = 4 in WT and DKO each) GCL, ganglion cell layer; INL, inner nuclear layer; IPL,
inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer; POS, photoreceptor outer and inner segments. Bar is 45 μm
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mice. In WT mice, ATP1B1 was located more on the apical side (in-

cluding the photoreceptor layer) than on the basal side of RPE and

was distributed widely in different layers of the retina (Figure 3A‐D).

In DKO mice, the expression of ATP1B1 on the apical side of RPE

and on the photoreceptor outer segment layer was reduced signifi-

cantly by 6 months (Figure 3C and E). Expression of ATP1B1, E‐Cad
and PEDF also was reduced significantly in 6 month DKO RPE (west-

ern blots, Figure 3F and G). ATP1A1 expression, however, was

unchanged in DKO mice (Figure 3F). Formation of tight cell‐cell con-
nections (functions of E‐Cad and ZO‐1) and apical localization of the

subunits of Na+/K+‐ATPase on the RPE are essential to generate the

electrical signal that is the TEP. Collectively, these data indicate that

the TEP may be reduced with AMD, because it depends on the age-

ing epithelium maintaining Na+/K+‐ATPase and tight junction (TJ)

functions in RPE.

3.4 | Age and AMD reduce ATP1B1, ZO‐1 and the
TEP in RPE

Adult human RPE has an apically positive TEP of 3.5 mV.4 The TEP is

an inherent property of transporting epithelia and arises from spatial

variations in ion pumps, channels and leak conductances across layers

of cells.5 The Na+/K+‐ATPase and cell‐cell tight junctions are important

in the generation and maintenance, respectively, of the TEP and incor-

rect localization of Na+/K+‐ATPase can cause disease, for example

autosomal dominant polycystic kidney disease.46,47 We found ATP1B1

expression was reduced in aged mice and mice with AMD. Perhaps

retinal disease is also associated with a reduction in TEP. In cultured

epithelial cells, the expression of Na+/K+‐ATPase increases with time

as the polarity develops.48 We found that the expression of ATP1B1

was up‐regulated in WT mouse RPE cells (3 days in culture;

F IGURE 4 DKO RPE had reduced TEP and reduced expression of ATP1B1. A and B, Western blots show ATP1B1 expression was up‐
regulated in WT RPE cells in 3 d. In DKO mice, the up‐regulation of ATP1B1 was delayed by at least 1 wk appearing only after 14 days in
culture. GAPDH is loading control. The histograms in A and B show the relative intensity of ATP1B1 expressed as a ratio with respect to the
loading control. C, Using transwell culture and Millicell ERS, the trans‐RPE electrical potential difference (TEP) was determined. At 3 wk in
culture, the TEP was fourfold less in DKO RPE compared with WT (1.1 ± 0.2 mV WT and 0.25 ± 0.2 mV DKO, P < 0.05). D, After 3 wk in
culture of RPE monolayers, electrical current was detected using SVET (Scanning vibrating electrode technology) which detects current flowing
through the entire epithelial surface it scans. The average of electrical current was threefold greater in WT than in DKO mice (−0.9 ± 0.12 μA/
cm2 and −0.28 ± 0.2 μA/cm2, respectively, d3). All results were from three or more independent experiments
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Figure 4A), but that expression levels of ATP1B1 and ZO‐1 were

reduced significantly in DKO RPE and became up‐regulated only much

later, after 14 days in culture (Figures 4B and 5A, C and D). In tran-

swell cultures, RPE monolayers polarize and develop a trans‐epithelial
potential difference (TEP) and a transepithelial electrical resistance

(TEER).49 Here, the TEP and TEER were measured using a Millicell

ERS‐2 Voltammeter and a transwell culture system. We found that the

TEP across DKO RPE were as much as fourfold less than that from

WT mice in 3‐week cultures (0.25 ± 0.2 mV DKO, compared to

1.1 ± 0.2 mV, positive apically, P < 0.05; Figure 4C) and the TEER

was reduced significantly in RPE from DKO mice (Figure 5B). Accord-

ing to Ohm's law (I = V/R), we calculated the electric current flowing

across 2 week cultured RPE and found that the IDKO was

0.93 ± 0.21 μA/cm2 nearly 30% less than the Iwt which was

1.19 ± 0.13 μA/cm2 (apical positive, with current directed inward). To

confirm our data, we determined the change of electrical current using

scanning vibrating electrode technology (SVET) which sensitively maps

current flow on the surface of primary cultured RPE cells. We found

an inward electrical current (negative value) that was fourfold lower in

RPE of DKO mice than in WT mice (after 2 weeks in culture;

−0.21 ± 0.1 μA/cm2 compared with −0.92 ± 0.1 μA/cm2, P < 0.01)

(Figure 4D). These data confirm that the TEP was reduced significantly

in mice with a deficiency of CCL2/CX3CR1, most probably because of

the down‐regulation of Na+/K+‐ATPase and the defective TJs.

3.5 | Reduced levels of PEDF and BNDF in DKO
mice are rescued by an applied EF

We showed above that the expression of ATP1B1, E‐Cad, PEDF and

TEP all were reduced significantly in 6 month DKO RPE. These data

F IGURE 5 In DKO mice tight junctions in the RPE were disrupted. A, ZO‐1 was expressed on the membrane of primary cultured RPE
monolayers to delineate clearly junctional borders between cells from WT mice after 8‐wk culture. In DKO mice, ZO‐1 expression was reduced
on the membrane of cells and cell‐cell boundaries were ill‐defined or missing (see lower right panel), N = 3. B, Transepithelial electrical
resistance (TEER) was determined in RPE monolayers in WT and DKO mice using Millicell‐ERS. TEER was inhibited by close to 50% in DKO
mice at 2 and 3 wk of culture, N = 6, P < 0.05. C‐F, The protein lysate of primary cultured RPE cells was harvested at different time‐points
and analysed by Western blots. ZO‐1 expression increased in 3 d and E‐cad increased in 14 d in WT mice. In DKO mice, expression of ZO‐1
and E‐cad were not up‐regulated significantly during 28‐d culture. Histogram shows the relative band intensities of E‐cad and ZO‐1 measured
by ImageJ and normalized as a ratio with GAPDH. GAPDH was a loading control, N = 3. Bar is 20 μm
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indicate again that the TEP (based on Na+/K+‐ATPase and cell‐cell
connections) and PEDF may be linked in retinal degenerative disease.

Here, we used an applied EF, similar in strength to the endogenous

TEP, to stimulate the RPE and determine the correlation between

TEP and PEDF in vitro. First, we showed that PEDF and BNDF

expression increased significantly in WT RPE over time in culture

during the process of monolayer polarization, but that this did not

happen in DKO mice (7 days culture; Figure 6A and D). Then, we

showed that an applied EF of 50‐100 mV/mm (equivalent to the

TEP), markedly up‐regulated PEDF and BNDF expression (in a volt-

age‐dependent manner) in both WT and DKO RPE (Figure 6B, C, E

and F), indicating that the TEP across RPE regulates PEDF expression

and controls the PEDF secretion from RPE. Importantly, an applied

EF restored the reduced PEDF levels in DKO mice to normal. This

suggests that a reduced TEP may contribute to the retinal degenera-

tion which arises from a reduction in PEDF expression in RPE.

Furthermore, our data suggest that EF‐induced secretion of PEDF

may represent a new therapeutic means of treating retinal disease.

3.6 | An applied electric field increased PEDF
secretion

Finally we determined whether the applied EF regulated the secre-

tion of PEDF from RPE (Figure 7A). Firstly, we checked the secretion

of PEDF into the culture medium with/without ouabain which is an

inhibitor of the TEP. We found that ouabain reduced the secretion of

PEDF almost fourfold in transwell cultures of RPE (Figure 7B). Next

we stimulated the RPE cells by applying an EF with the anode at the

apical side, the normal physiological polarity and with a field strength

of 100 mV/mm (similar to the TEP; Figure 7C). After 5 hours, PEDF

secretion had increased about fourfold (from 55.9 ± 12 ng/mL to

200.8 ± 14 ng/mL; Figure 7C) and was still elevated by about 50%

F IGURE 6 An applied EF of similar
strength to the TEP increased expression
of PEDF and BNDF in RPE. A, The
expression of PEDF in primary cultured
RPE from WT and DKO mice was
determined by Western blot. In WT mice,
the expression of PEDF increased over 1‐
3 wk in culture. However, in DKO mice
the expression of PEDF did not increase
over 3 wk. B and C, An applied EF of 50‐
100 mV/mm (similar in strength to the
TEP) increased the expression of PEDF in
2 d of cultured RPE from both WT and
DKO mice. D‐F BDNF showed low
expression in DKO RPE and this was
increased by an applied EF of 50 mV/mm
in WT and DKO RPE. The histograms in A
to F show the relative intensity of PEDF
and BDNF expressed as a ratio with
respect to the loading control. GAPDH is
loading control. All the results were from
three independent experiments
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after 24‐hour EF stimulation (from 310.2 ± 110 ng/mL to

478.2 ± 115 ng/mL; Figure 7C). In striking contrast, PEDF secretion

remained unchanged with an EF of the same physiological strength,

but with the cathode at the apical side, the reverse of the normal

physiological polarity (Figure 7D). These data show that applying an

EF of both physiological magnitude and polarity to mimic the TEP

across the RPE regulated the secretion of PEDF.

4 | DISCUSSION

People with AMD lose their central vision, severely impairing their

ability to read, watch television or drive. The epicentre of the disease

is the retinal pigment epithelium (RPE), a single layer of cells in the

retina adjacent to the photoreceptor cells. Dysfunction and death of

RPE cells play a critical role in the pathogenesis of AMD. Pigment

epithelium‐derived factor (PEDF) is a 50 kDa naturally occurring gly-

coprotein, a member of the serpin superfamily that is secreted by

RPE cells from their apical membranes.16-18 PEDF acts as a neu-

rotrophic factor and has neuroprotective properties. RPE cells secrete

pigment epithelium‐derived factor (PEDF) into the interphotoreceptor

matrix of the retina,50,51 but the regulation of PEDF secretion is

poorly understood. Here, we found that the endogenous TEP (the

electrical potential difference across the RPE) regulates secretion of

PEDF and may maintain the level of PEDF apically as the RPE ages.

4.1 | Reduced ATP1B1 and TJ proteins cause a
lower TEP

The Na+/K+‐ATPase is composed of three major polypeptides, α, β

and γ‐subunit.52,53 The α‐subunit is a multi‐span membrane protein

with a molecular mass of 112 000 Da and is responsible for the

F IGURE 7 An applied EF increased the secretion of PEDF from RPE monolayers. A, Schematic diagram of electrical stimulation in a
transwell plate. B, After 2‐week culture in transwell plate, the renewed medium on the apical side was harvested from control monolayers and
those treated with ouabain for 24 h. The concentration of PEDF in the apical medium of untreated monolayers was 1180 ± 36 ng/mL; from
those treated with ouabain PEDF concentration was almost fourfold less; 305 ± 28 ng/mL (P < 0.01). C. When we stimulated cells with a DC
EF, anode apically, the secretion of PEDF significantly increased after 5 h treatment and this was maintained at 24 h. D, When cells were
exposed to the same strength of EF but with the cathode apically (a non‐physiological polarity), the secretion of PEDF did not increase
compared to untreated monolayers. The strength of applied EF was 100 mV/mm. *P < 0.05, **P < 0.01
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catalytic and ion transport properties.54,55 The β‐subunit is a trans-

membrane polypeptide with a molecular weight between 40 000

and 60 000 Da. The β‐subunit is essential for the normal activity of

the enzyme and may facilitate the processing and insertion of the α‐
subunit into the plasma membrane.55-57 Wetzel et al indicate that

the subunits of sodium pumps in the different apical/basal faces

imply that the Na+/K+‐ATPase has distinct physiological functions in

the epithelium and that its activity is likely to be regulated by differ-

ent mechanisms, for example sodium gradient formation for osmotic

gradient and water diffusion.58 The Na+/K+‐ATPase (sodium pump)

allows Na+ to accumulate in the apical extracellular space of the

RPE, because it pumps three Na+ from the cytoplasm electrogeni-

cally out into the extracellular fluid, in exchange for two K+ ions

entering the cells. In addition, high‐resistance electrical “seals” which

are dependent on specific proteins (eg, TJ protein ZO‐1 and adher-

ent protein E‐cadherin) exist between neighbouring cells in the RPE

and these greatly reduce the electrical conductivity (and increase the

resistance) between the apical and basal extracellular spaces. The

same basic elements of polarized channels, pumps and tight junc-

tions are found in most other epithelia, for example skin, cornea, kid-

ney and also establish a TEP in these tissues. Therefore, normally a

high concentration of Na+ will accumulate at the apical side of RPE

and form a trans‐RPE electrical potential difference with the apical

side positive.4,59 Here we found that the ATP1B1 in older and DKO

mice RPE was lower (by ~50%) than in younger and wild‐type mice.

Consequently, the TEP in older and DKO mice should be lower.

Using transwell culture (the Ussing chamber technique), we con-

firmed a much reduced TEP in DKO mice. These data are consistent

with a conclusion that the reduced expressions of both ATP1B1 and

of cell‐cell tight junction proteins underpin the age‐related decline in

both TEP and TEER. Because the TEP plays functional roles in cell

migration, division, polarization and development, we speculated that

a reduced RPE TEP may play a role in age‐related retinal dysfunction

diseases.

4.2 | A blunted TEP reduced the secretion of PEDF
in AMD

Pigment epithelial derived factor is a potent neurotrophic, anti‐
inflammatory and anti‐senescence glycoprotein that protects the

retinal neurons and photoreceptors against apoptosis during retinal

degeneration and light‐induced retinal damage,60-63 and its down‐
regulation is linked to senescence in cultured fibroblast cells.64

Polarized hES‐RPE (human embryonic stem cell‐derived RPE) and

polarized fRPE (foetal RPE) secreted PEDF at mg/ml levels; in

contrast, non‐polarized hES‐RPE or fRPE and ARPE19 cells (a

human retinal pigment epithelial cell line with differentiated proper-

ties) secreted PEDF at levels approximately 100‐fold less

(P < 0.001).65 In addition, PEDF is one of the more potent antian-

giogenic factors with demonstrable inhibitory activity against ocular

neovascularization in vivo22 and a reduced PEDF expression in

DKO mice contributes to retinal degeneration.35 In transwell cul-

ture, our data showed that the inhibition of ATPase and so the

TEP with ouabain significantly reduced the secretion of PEDF from

RPE cells.

Applied electric fields (EFs) that mimic the endogenous TEP regu-

late the behaviour of a variety of cells by determining their orienta-

tion, proliferation, differentiation, migration, polarization and

expression of growth factors.11,66,67 Electric stimulation triggers NGF

(nerve growth factor) production and secretion by electrically

induced protein kinase C (PKC) activation.68 RPE cells secrete pig-

ment epithelium‐derived factor (PEDF) into the interphotoreceptor

matrix of the retina,50,51 but the regulation of PEDF secretion is

poorly understood. Using an applied EF to mimic the TEP, we found

that the expression of PEDF and secretion of PEDF significantly

increased in RPE cells. In addition, in RPE from DKO mice with defi-

cient expression of ATP1B1, an applied EF still increased the expres-

sion of PEDF, suggesting that the applied EF regulated the

expression of PEDF directly. These data further indicate that the

F IGURE 8 ATP1B1/TEP in AMD formation and possible
therapeutic role. In ageing people (white arrows moving downward),
a reduced TEP mediated by reduced ATP1B1 leads to decreased
secretion of PEDF, which is an important factor in generation of
AMD (white arrows indicate reductions and AMD onset). An applied
EF offsets the reduced TEP and restores it to normal. A restored
TEP increases the secretion of PEDF from RPE and may prevent the
onset and epithelial degeneration associated with AMD (green
arrows show boost to PEDF levels and improvement in course of
AMD)
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TEP and PEDF release may be linked mechanistically and play a role

in retinal degenerative disease (Figure 7).

4.3 | Applying an EF to treat retinal disease

We have shown that applying an EF, to mimic the physiological

TEP, could be of therapeutic use in retinal disease through regula-

tion of secretion of PEDF by the RPE (Figure 7). However, the high

complexity of structure and function in the eye is an obstacle to

applying EFs in vivo. Recently, Ho et al have developed a wireless

method to transfer electrical power deep into tissues. Their

microimplant is 2 mm long, weighs 70 mg and can be transplanted

into the chest to control the heart.69 This technology may be

modifiable to supply an EF to treat retinal degeneration in vivo. In

addition, the TEP can be amplified by specifically targeted drugs,

such as aminophylline, AgNO3, PGE2 (prostaglandin E) and in cor-

neal epithelium a drug‐amplified EF enhanced directed nerve and

epithelial cell growth and promoted faster wound healing.70 There-

fore, chemical regulators of the TEP may provide another clinical

treatment for retinal diseases, perhaps in combination with an

applied EF.

Electrical treatments such as heart pacemakers, deep brain

stimulators and cochlear implants continue to have major clinical

success. Similar treatments for retinal regeneration will only

succeed if effective ways of harnessing and delivering an applied

EF are identified. Our work paves the way for this and opens up

new electrical therapeutic possibilities with significant clinical

potential.
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