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SMOOTHNESS OF STABILISERS IN GENERIC CHARACTERISTIC

BENJAMIN MARTIN, DAVID STEWART AND LEWIS TOPLEY

Abstract. Let R be a commutative unital ring. Given a finitely-presented affine R-group G

acting on a finitely-presented R-scheme X of finite type, we show that there is a prime p0 so that
for any R-algebra k which is a field of characteristic p ě p0, then the centralisers in Gk of all
subsets U Ď Xpkq are smooth. We prove this using the Lefschetz principle together with careful
application of Gröbner basis techniques.

1. Introduction

Let R be a commutative unital ring. We propose to prove the following.

Theorem. Let G be a finitely presented affine R-group and let X be a finitely presented G-scheme
of finite type1. Then there exists p0 P N such that whenever k is an R-algebra which is also a field
of characteristic p ě p0, the centralisers CentGk

pSq of all subsets S Ď Xpkq are smooth.

Examples of affine group schemes over rings abound. The split reductive groups are Z-defined;
so too are the subgroups normalised by a split maximal torus—so called subsystem subgroups.
This class includes all parabolic subgroups, for example.

There are several known special cases of the theorem already in the literature. Possibly the
most influential—at least for Lie theory—is where G is split reductive and X is either G itself
or its Lie algebra, on which G acts by the relevant adjoint action. Then it is well-known that
everything is defined over Z and the centralisers of single elements of Xpk̄q are smooth whenever
p is a very good prime for G. This was first shown by Richardson [Ric67], and enabled him to
give an elegant proof that the number of unipotent and nilpotent orbits of G is finite, among
other things. Richardson’s result was generalised in [BMRT10], to cover arbitrary subgroups of
Gpk̄q and subalgebras of LiepGq. The hypotheses were further weakened in [Her13]. Normalisers,
while much less well-behaved, were thoroughly considered in [HS16], where it was shown that
(necessarily large) bounds on the characteristic exist, depending on the root system, which ensure
the normalisers of subspaces of the Lie algebras in reductive groups are smooth. These results have
all found applications in developing the subgroup structure of simple algebraic groups and their Lie
algebras; recent examples include [LT18] and [PS18]. Beyond that, there have been consequences
for combinatorics, representation theory and geometric invariant theory.

The second author computed explicitly in [Ste16] the orbits of exceptional groups on their Lie
algebras, finding when centralisers and stabilisers of lines were smooth in their actions on their
minimal induced (or dual-Weyl) modules; that non-smoothness only occurred in characteristics 2
or 3 motivated [op. cit., Question 1.4] to which our theorem provides the following strong answer.

Corollary. With the hypotheses of the theorem, let M be a finitely generated G-module. Then
there is a prime pM such that whenever k is an R-field of characteristic p ě pM , the stabilisers
and centralisers of all subspaces of M are all smooth.

1This means that X is a functor from R-algebras to sets admitting an action α : G ˆ X Ñ X such that
X “ X1 Y ¨ ¨ ¨ YXn with each Xi an open affine subscheme of X which is finitely presented, i.e. Xi – Spec

R
pAq for

A a finitely-presented R-algebra.
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We should mention that bounding the dimension of modules even for fixed G will certainly not
suffice for there to exist a p0 satisfying the hypotheses of the theorem—see Remark 3.26 below.

Let us say some words on the proof and the structure of the paper. The key model-theoretic
technique we use is the Lefschetz principle. An elementary survey of this powerful concept, along
with a sketch of the proof, is given in Section 2.2. The version which we employ states that if
there is a sentence φ in the first-order language of rings which is true when interpreted in some
algebraically closed field of characteristic zero, then the same sentence is true when interpreted in
any algebraically closed field of sufficiently large characteristic. The strategy, roughly speaking, is
to use this together with Cartier’s famous theorem, which says that all affine algebraic groups are
smooth in characteristic 0.

Since any first-order statement in the language of rings about algebraically closed fields must
ultimately be a concatenated collection of statements about the solutions of certain polynomial
equations, it is by no means trivial to apply the Lefschetz principle. (Some evidence of this is
provided by Remark 3.26.) To employ Lefschetz, we have had to call on a wide range of techniques
from the theory of Gröbner bases, showing that there are uniform bounds on the output of various
algorithms, given any input bounded in terms of some integer d, say. We can then quantify over
all tuples of elements of k bounded in terms of d which can be put together to form the ingredients
of a Hopf algebra, and ask in a first order way whether this is the Hopf algebra of a smooth group.
(We call such a collection of data a d-bounded Hopf quadruple.) The Lefschetz principle tells us
that it will be if p " d.

Lastly, given the hypotheses of the theorem, we show there is an integer d such that any cen-
traliser appearing the the hypotheses of the theorem must correspond to a d-bouded Hopf quadru-
ple. The theorem follows from this.

Acknowledgements: The third author is grateful for the support of EPSRC grant EP/N034449/1.

2. Preliminaries

Throughout the paper we fix a commutative unital ring R.

2.1. Schemes, group schemes and Hopf algebras. We take the functorial approach to schemes,
as per [DG70] and [Jan03]. Thus for an R-algebra A we think of SpecRpAq as the functor
HomR-AlgpA,´q : R-Alg Ñ Set. A functor X : R-Alg Ñ Set is affine if it is isomorphic to
SpecRpRrXsq for some R-algebra RrXs. We say a subfunctor Y of a functor X : R-Alg Ñ Set
is open if for every R-algebra A and natural transformation β : SpecRA Ñ X , the subfunctor
β´1pY q of SpecRA is isomorphic to SpecRpA{Iq for some ideal I. Then X is a scheme if it is local2

and admits a decomposition X “ Ť
iPIXi for some indexing set I, where the Xi are open affine

subfunctors of X . We say X is of finite type if I is finite and that it is finitely presented if each
krXis is isomorphic to krt1, . . . , tns{I for I a finitely generated ideal.

An affine algebraic group scheme G over R is a functor from R-Alg to Grp, which as a functor to
Set, is naturally equivalent to one of the form SpecRpRrGsq for some finitely generated R-algebra
RrGs; consistent with [Jan03], we consider only the case where RrGs is in fact finitely presented.
The archetypal example of an algebraic group scheme is GLd, which is also an example of a split
reductive group.

A Hopf R-algebra consists of data pRrGs,∆, σ, ǫq where RrGs is an R-algebra, and ∆ : RrGs Ñ
RrGs bR RrGs, σ : RrGs Ñ RrGs and ǫ : RrGs Ñ R are R-algebra homomorphisms satisfying the
dual of the group axioms [Jan03, I.2.3(1–3)]:

2See [DG70, Definition I.1.3.11]
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p∆b idq ˝∆ “ pidb∆q ˝∆ (2.1)

pǫ b̄ idq ˝∆ “ pid b̄ ǫq ˝∆ (2.2)

pσ b̄ idq ˝∆ “ ǭ “ pid b̄ σq ˝∆. (2.3)

Hence by definition, the category of algebraic group schemes over R is dual to the category of
finitely presented Hopf algebras over R.

The Lie algebra LiepGq of a group scheme G over R corresponding to a Hopf algebra pRrGs,∆, σ, ǫq
is defined to be the R-module of all R-linear maps I{I2 Ñ R where I “ Kerpǫq; in other words
it is ker pGpRrǫs{pǫ2qq Ñ GpRqq where Rrǫs{pǫ2q is the algebra of dual numbers and the map takes
ǫ to 0. Following [Jan03, I.7.7(3)] there is a natural R-linear Lie bracket on LiepGq induced by
the comultiplication ∆. Every morphism of group schemes over R induces a natural R-linear
homomorphism of Lie algebras.

When G is a group scheme and k is any R-algebra we can consider the base change Gk, which is a
group scheme over k obtained by viewing k-algebras asR-algebras. IfG – SpecRpRrXsq is algebraic
and RrXs – Rrx1, ..., xns{pg1, ..., gmq then we obtain a map ω : Rrx1, ..., xns Ñ krx1, ..., xns and we
have

Gk – Speck pkrx1, ..., xns{pωpg1q, ..., ωpgmqqq . (2.4)

An action of G on an R-scheme X is a natural transformation α : G ˆ X Ñ X , such that
αpAq : GpAqˆXpAq Ñ XpAq is a group action. In case X is an R-module and GpAq acts through
A-linear transformations of XpAq, then we say X is a G-module. Note that if X is affine, then we
get a coaction map of R-algebras ∆X : RrXs Ñ RrXs b RrGs. In case X is a G-module, this is
the comodule map of [Jan03, I.2.8].

2.2. Model theory and the Lefschetz principle. We include here a short recap of some of
the elements of model theory; a more detailed introduction to the theory may be read in [Mar02].
Since our goal is to explain the Lefschetz principle, we work exclusively with the language of rings.

The language of rings Lring is the collection of first-order formulas which can be built from the
symbols t@, D,_,^, ,`,´,ˆ, 0, 1,“u along with arbitrary choice of variables. For example, for
n ą 0 fixed the following are formulas in Lring:

p@xqp@yqpxn ` yn “ znq; (2.5)

p@xqpDyq ppxy “ 1q _ px “ 0qq ; (2.6)

p@x0qp@x1q ¨ ¨ ¨ p@xn´1qpDyqpyn ` xn´1y
n´1 ` ¨ ¨ ¨ ` x0 “ 0q. (2.7)

We say that a formula is a sentence if every variable is bound to a quantifier; for example for formula
(2.5) is not a sentence because z is a free variable, whilst (2.6) and (2.7) are both sentences in
Lring. For p ě 0 we record one more first-order sentence ψp in Lring:

ψp : 1` ¨ ¨ ¨ ` 1looooomooooon
p times

“ 0. (2.8)

An Lring-structure is a set R together with elements 0R, 1R P R, binary operations `R,´R,ˆR :
R ˆ R Ñ R, and the binary relation “R which is always taken to be the diagonal embedding
R Ď R ˆR. For example, every ring R gives rise to an Lring-structure in the obvious way.

An Lring-theory is a set T of first order sentences in Lring. A theory should be thought of
as a collection of axioms of some class of mathematical object, and in this article our primary
interest is the Lring-theory of fields. The axioms of a field can obviously be written as first-order
sentences in Lring; for instance (2.6) expresses the existence of multiplicative inverses. The theory
AC of algebraically closed fields is obtained by including the sentences (2.7) for all n ą 0. If
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p ą 0 is prime then we may include the sentence ψp, defined in (2.8), to obtain the theory ACp

of algebraically closed fields of characteristic p ą 0. Alternatively we may include the sentences
t ψp | p ą 0u to obtain the theory AC0.

If φ is a sentence and M :“ pR,`R,´R,ˆR, 0R, 1R,“Rq is an Lring-structure then we say that
M is a model of φ, and write M ( φ, if the sentence φ is true when interpreted in M . If T is an
Lring-theory then we say that M is a model of T and write M ( T if M ( φ for all φ P T . For
example, M ( ACp is equivalent to the statement that pR,`R,´R,ˆR, 0R, 1Rq is an algebraically
closed field with charpRq “ p. As such we may slightly abuse terminology and identify the class of
models of ACp with the class of algebraically closed fields of characteristic p. The following result
is Gödel’s first completeness theorem.

Lemma 2.1. Let φ be a first-order sentence and T be any theory in Lring. Then φ is true when
interpreted in every model of T if and only if φ can be deduced from T by means of a formal proof
in Lring.

We say that an Lring-theory T is complete if, for every first-order sentence φ in Lring, either φ
is true when interpreted in every model of T , or  φ is true when interpreted in every model of
T . By Lemma 2.1 this is equivalent to saying that for every sentence φ we can derive either φ or
 φ from T by means of a formal proof. The following well-known result is proven by quantifier
elimination [Mar02, Corollary 3.2.3].

Theorem 2.2. For p “ 0 or p prime, the theory ACp is complete.

As an immediate consequence we obtain:

Corollary 2.3. (Lefschetz principle) If φ is a sentence in Lring then:

(1) If φ is true in some model of ACp where p ě 0 then φ is true in every model of ACp.
(2) If φ is true in some model of AC0 then there exists a p0 P N such that φ is true in any

model of ACp for p ą p0.

Proof. Part (1) is precisely Theorem 2.2. For part (2) suppose that φ is true over some field
satisfying the axioms AC0. Then by part (1) it is true for every such field, and by Lemma 2.1 we
conclude that there exists a formal proof for φ in Lring using only the axioms of AC0. Since the
proof of φ can be written as a finite sequence of sentences in Lring joined by logical connectives, it
follows that the set of primes

Pφ :“ tp |  ψp occurs in the proof of φu
is finite, where ψp is defined in (2.8). Hence for p ą maxpPφq there is a formal proof of φ using the
axioms of ACp. Using Lemma 2.1 once more we see that φ is true for every algebraically closed
field satisfying the axioms of ACp. �

3. Smoothness of centralisers: Proof of the Theorem

3.1. Bounded polynomials and Gröbner bases. For a field k, we will want to quantify over
all k-algebras of bounded presentation, equipped with the structure of a Hopf algebra of bounded
presentation. That is to say that the lengths and degrees of the expressions which appear in the
defining ideal of the underlying affine algebra, together with the comultiplication, antipode and
counit are all of bounded presentation. To do so, we need to formulate statements to say that the
Hopf algebra axioms are satisfied. Our main tool to this end will be to quantify over all Gröbner
bases of bounded degree.

We refer to [Eis95, Ch. 15] for a fulsome introduction to Gröbner bases, but for our purposes
we collect a simplified version here.
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The basic principle is to provide a process for reduction of elements of S :“ krx1, . . . xns by
elements of an ideal which will terminate in a finite number of steps. Hence one wants to know
when the size of an expression is reduced by an operation, and for this one first needs to choose a
total order on monomials. This order needs to be admissible in the sense that m1 ą m2 implies
nm1 ą nm2 ą m2 for any monomials m1, m2, n such that n is non-trivial monomial.

We will mostly demand of the order that for any monomial m P S, there are only finitely many
m1 ă m. Hence we may use the homogeneous lexicographic ordering, in which

m :“ xa11 . . . xann ą m1 :“ xb11 . . . x
bn
n if and only if degm ą degm1

or if degm “ degm1 then ai ą bi for the first index i with ai ‰ bi.

Thus the set of monomials is isomorphic to N as a totally ordered set. We define mk to be the
kth monomial in S and observe that m1 “ 1. For a polynomial expression f P S, we then define a
term of f to be any monomial appearing in f with a nonzero coefficient and the initial term inpfq
to be the greatest term appearing in f with respect to ą. For an ideal I Ď S, we define inpIq to
be the ideal generated by the elements inpfq for all f P I.
Definition 3.1. A Gröbner basis with respect to ą is an ordered list of elements pg1, . . . , gtq P St

such that if I is the ideal of S generated by g1, . . . , gt, then inpg1q, . . . , inpgtq generate inpIq.3

Fix d P N. We wish to view a polynomial as a finite list of its coefficients, where we will ultimately
be quantifying over all possible lists of those coefficients. To that end, we say that a polynomial
f P S is d-bounded if it is a linear combination of the first d monomials. Throughout this section
we identify the set Sd of d-bounded polynomials with the Cartesian product kd: the polynomialřd

i“1 λimi corresponds to pλ1, λ2, . . . , λdq P kd. We say that an ordered list B of polynomials is
d-bounded if |B| “ d and B consists of of d-bounded polynomials. We identify the d-bounded lists

B with Sd
d “ kd

2

. Observe the following:

Remarks 3.2. (i) Any Gröbner basis consisting of d-bounded polynomials can be reduced to a
d-bounded Gröbner basis. If there are at least d ` 1 elements then two, f and g say, must have
the same leading monomial. So for some λ, g ´ λf has a lower leading monomial and replacing g
by g ´ λf we still have a Gröbner basis, directly from Definition 3.1. Inductively we may assume
g is zero, thus it can be removed to produce a smaller Gröbner basis.

(ii) Any finite set of polynomials (resp. Gröbner basis) can be embedded into a d-bounded set
of polynomials (resp. Gröbner basis) for some d by appending an appropriate number of zeros.

(iii) A monomial ordering makes sense for S :“ Rrx1, . . . , xns where R is a ring. Hence, so do
the concepts of a d-bounded polynomial f P S, and a d-bounded ordered list of polynomials in Sd.
If pf1, . . . , fdq is d-bounded, generating an ideal I, and ω : RÑ k is a homomorphism, then I bR k

is generated by the d-bounded list pωpf1q, . . . , ωpfdqq.
Lemma 3.3. Let d P N and let 1 ď e ď d. Then there is a first order formula φe,d in the language
Lring of rings with d free variables such that for any d-bounded polynomial f P S,

φe,dpfq holds ðñ inpfq “ me.

Proof. After identifying Sd with kd and f “ řd

i“1 λimi with pλ1, ..., λdq the required formula is

pλe ‰ 0q ^ pλe`1 “ 0q ^ pλe`2 “ 0q ^ pλd “ 0q. �

Given a d-bounded list of polynomials, we need to check with a first order formula that it forms
a Gröbner basis. For this, we appeal to Buchberger’s criterion [Eis95, Theorem 15.8], which we
reproduce here.

3In contrast to [BW93], but consistently with [Eis95] we do not insist that the elements of a Gröbner basis are
all non-zero.
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Let B “ pg1, ..., gdq P Sd. For each pair of indices 1 ď i, j ď d, we define

mij “ inpgiq{ gcdpinpgiq, inpgjqq P S.
Then it follows from the division algorithm, [Eis95, Prop. 15.6] that

mjigi ´mijgj “
´ÿ

f pijq
u gu

¯
` hij (3.1)

for some f
pijq
u P S with inpmjigi´mijgjq ě inpf pijq

u guq for each 1 ď u ď d, and remainders hij , none
of whose monomials is in pinpg1q, . . . , inpgdqq. Set also hij “ 0 if there does not exist an xk upon
which both mij and mji depend.

Theorem 3.4 (Buchberger’s Criterion). The set B is a Gröbner basis if and only if hij “ 0 for
all i and j.

Lemma 3.5. Let d P N. Then there is a first order formula βd in the language of rings with d2

free variables such that if B is d-bounded list of elements of S, then

βdpBq holds ðñ B is a Gröbner basis.

Proof. Suppose B “ pg1, . . . , gdq P Sd
d . We will produce a first order formula which calculates the

expressions in (3.1) for each pair pgi, gjq. Suppose inpgiq “ ma and inpgjq “ mb and that there is a
formula χa,b such that χa,bpgi, gjq is true when the relevant hij “ 0 in Buchberger’s criterion. Then
using Lemma 3.3 we set βdpBq to be the formula

ľ

1,ďi,jďd

˜
ł

1ďa,bďd

pχa,bpgi, gjq ^ φa,dpgiq ^ φb,dpgjqq
¸
,

and we see that βdpBq is true whenever B satisfies the hypotheses of Buchberger’s Criterion.
Thus we have reduced the problem, without loss of generality, to showing the existence of

χa,bpg1, g2q. For fixed a and b, me1 :“ gcdpma,mbq is also fixed, depending just on the bijec-
tion between N and the monomials in S, hence, so are the monomials m1,2 and m2,1. Now, the
highest monomial appearing in the left-hand side of (*) is at most that d1th monomial where
md1`1 “ pmamb{me1q. Suppose inpmjigi ´ mijgjq “ me. Then there is a finite set of pairs
P “ tpgab ,mabqu1ďbďp such that inpgabmabq ď me. Hence, setting χe,a,bpg1, g2q to be the formula

pDλ1q . . . pDλpqpm21g1 ´m12g2 ´
ÿ

1ďbďp

λbgabmab “ 0q,

we see that χe,a,bpg1, g2q holds whenever Buchberger’s criterion holds for g1 and g2 (given inpmjigi´
mijgjq “ me). Lastly, let χa,bpg1, g2q be the formula

d1ł

e“1

pφe,dpm21g1 ´m12g2q ^ χe,a,bpg1, g2qq . �

Another important thing we need to be able to encode with a first order statement is the
dimension dimpIq “ dimpSpeckpS{Iqq of the scheme determined by an ideal I Ď S “ krx1, ..., xns.
If I “ pg1, ..., gdq then in general it is not easy to read off dim I from the elements tg1, ..., gdu;
however, when tg1, ..., gdu form a Gröbner basis for I there is a simple method: the dimension
is the maximal size of a subset X Ď tx1, ..., xnu such that inpg1q, ..., inpgnq depend only on the
elements of tx1, ..., xnuzX [BW93, Defn. 9.22 & Cor. 9.28]. Using this fact along with Lemma 3.3,
we can determine dimension with a first order formula.
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Lemma 3.6. Let d P N and 0 ď e ď d. Then there is a first order formula δe,d in the language
Lring of rings, with d2 free variables, such that if B is any d-bounded Gröbner basis with I “ pBq,
then

δe,dpBq holds ðñ dimpIq “ e.

Proof. There is obviously a finite collection of lists of monomials which could play the role of initial
terms of the elements of a d-bounded Gröbner basis which define an ideal of dimension e. More
formally, there is a finite set Xe “ tXju where Xj is a d-bounded list of monomials in S satisfying
(i) |Xj | “ d; (ii) there is some ti1, . . . , ieu such that each m P Xj does not involve xi1 , . . . , xie; (iii)
for any ti1, . . . , ie`1u, there is m P Xj depending on xik for some 1 ď k ď e ` 1. For convenience
we assume that the Xj are ordered sets and identify the monomials with their ordinal via the
bijection of monomials of S with N. Then we may set δe,dpBq to be the formula

ł

Xj“pa1,...,adqPXe

φa1,dpg1q ^ φa2,dpg2q ^ ¨ ¨ ¨ ^ φad,dpgdq. �

The next lemma uses the ideal membership algorithm for Gröbner bases to write a first order
formula whose truth determines whether an element is in an ideal. If B is a d-bounded Gröbner
basis and f P Sd then we may identify pB, fq with an element of kd

2`d in the usual manner.

Lemma 3.7. Let d P N. Then there is a first-order formula ιd in Lring with d2 ` d free variables,
so that for any d-bounded polynomial f P S and d-bounded Gröbner basis B with I :“ pBq, then

ιdpB, fq holds ðñ f P I.
Proof. Since the highest monomial amongst those occuring in f and the elements of B has bounded
degree d1 say, then since ă is a homogeneous order, there is only a finite number of monomials m
such that inpmgq ď inpfq for some g P f , where this number depends only on d. Let md2 be the
highest such. Thus we set ιdpB, fq to be the formula

pDλi,jq1ďiďd2,1ďjďdf “ g1p
d2ÿ

i“0

λi,1miq ` g2p
d2ÿ

i“0

λi,2miq ` ¨ ¨ ¨ ` gdp
d2ÿ

i“0

λi,dmiq. (:)

We claim that ιdpB, fq is true if and only if f P I. This follows by induction on e where
inpfq “ me: Since B is a Gröbner basis, by [BW93, 5.35(vii)], f is top-reducible by some gi or is
not in I. In the former case, this means that there is a monomial m such that inpf ´gimq ă inpfq.
By the inductive hypothesis, ιdpB, f´gimq is true whenever f´gim P I ðñ f P I. If f´gim P I
this says that there is an expression of the form p:q with f replaced by f ´ gim; moving gim to
the other side of the equation, this says that there is also one for f . �

In the next lemma we consider certain types of homomorphisms S Ñ Sbr. Observe that
Sbr – krx1,1, . . . , x1,n, . . . , xr,1, . . . , xr,ns and place the homogeneous lexicographic monomial or-
der on Sbr. The monomial order on S induces monomial orders on 1bibSb1br´i`1 for i “ 1, ..., r
which are simultaneously refined by our choice of monomial order on Sbr. We say that an algebra
homomorphism Λ : S Ñ Sbr is d-bounded if Λpx1q, ...,Λpxnq P Sbr

d , and we write Homk´algpS, Sbrqd
for the set of d-bounded algebra homomorphisms. Since every d-bounded homomorphism Λ sat-
isfies Λpxiq “

řd

j1,...,jr“1 λi,j1,...,jrmj1 b ¨ ¨ ¨ b mjr for elements pλi,j1,...,jrq1ďiďn,1ďjkďr of k, and since

the elements Λpx1q, ...,Λpxnq determine Λ uniquely, we may identify Homk´algpS, Sbrqd with the
set knd

r

. Note also that if r “ 0 then every homomorphism is d-bounded for any d P N.
Now if I “ pBq Ď S is an ideal generated by a d-bounded list B “ tf1, . . . , fdu of elements of

S, then we have an isomorphism

ϕr : pS{Iqbr Ñ krx1,1, . . . , x1,n, . . . , xr,1, . . . , xr,ns{Jr, (3.2)
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where the ideal Jr is generated by the fi’s taking values in each set txj,1, . . . , xj,nu. More formally,
write fi “ fipx1, . . . , xnq; then Jr “ pBrq where Br “ tf1,1, . . . , f1,d, . . . , fr,1, . . . , fr,du and fi,j “
fipxj,1, . . . , xj,nq.
Lemma 3.8. Let d, r P N. Then there is a first order formula ζd,r in Lring with ndr ` d2 free
variables such that if Λ : S Ñ Sbr is any d-bounded homomomorphism and B “ tf1, . . . , fdu is
any d-bounded Gröbner basis, with I :“ pBq, then

ζd,rpB,Λq holds ðñ Λ factors to a homomorphism S{I Ñ pS{Iqbr.

Proof. We claim that Br as above is a Gröbner basis for the homogeneous lexicographic monomial
order on the monomials in xi,j . Since this order extends the monomial orders on the subalgebras
krxi,1, ..., xi,ns for any fixed i we see that Buchburger’s criterion (Theorem 3.4) holds for all pairs
pfi,j , fi,kq; furthermore if i ‰ i1 then gcdpinpfi,jq, inpfi,kqq “ 1, so the mij and mji in (3.1) admit no
common divisor amongst the variables txi,ju, and therefore the hij are zero by assumption.

Under ϕr, expressions mj1 b ¨ ¨ ¨bmjr are mapped to monomials in the xi,j where the kth tensor
factor is evaluated in indeterminates xk,1, . . . xk,n and the tensor products replaced by multiplica-
tion. Choose dr “ drpdq sufficiently large so that for any choice of d-bounded homomorphism Λ
and d-bounded Gröbner basis B, we have that the elements of Br and Λpxiq are all contained in
the span of the first dr monomials of Sbr. We can extend the basis Br, adding zeroes to the list,
to get a dr-bounded Gröbner basis, which we also denote Br. Now we may appeal to Lemma 3.7
to get first order formulas ιdr such that ιdrpBr, ϕrpΛpxiqqq holds whenever ϕrpΛpxiqq P Jr. Hence
we set ζd,r to be the formula

nľ

i“1

ιdrpBr, ϕrpΛpxiqqq �

3.2. Bounded Hopf quadruples. Recall the Hopf algebra axioms (2.1–2.3)

Lemma 3.9. Let d P N. There is a formula ηd P Lring with d2 ` npd2 ` d ` 1q free variables
such that if B is any d-bounded Gröbner basis, with I “ pBq and ∆ : S Ñ Sb2, σ : S Ñ S and
ǫ : S Ñ k any d-bounded homomorphisms, then

ηdpB,∆, σ, ǫq holds ðñ pS{I,∆, σ, ǫq is a Hopf algebra.

Proof. Suppose ∆, σ and ǫ factor as S{I Ñ S{Ibr. We must find formulas η
p1q
d , (resp. η

p2q
d , η

p3q
d )

which hold if and only if (2.1), (resp. (2.2), (2.3)) are satisfied. Since the constructions are almost

identical for each formula, we give the details for η
p1q
d . To see that (2.1) holds, it clearly suffices to

check that p∆bidq˝∆pxi`Iq´pidb∆q˝∆pxi`Iq “ 0 P pS{Iqb3 – Sb3{J3 for each 1 ď i ď n, where
J3 “ pB3q is as in (3.2). This amounts to checking that p∆b idq ˝∆pxiq´pidb∆q ˝∆pxiq P J . By
the same argument as used in the previous proof, since ∆ is d-bounded, ϕ2p∆pxiqq is a d1-bounded
polynomial in Sb2 for some d1 “ d1pdq; similarly fi :“ ϕ3pp∆ b idq ˝ p∆pxiqqq is a d2-bounded
polynomial in Sb3 for some d2 “ d2pdq. As in the previous proof we can also arrange that B3 is

e-bounded for some e ě d2. Thus we may set η
p1q
d pB,∆, σ, ǫq to be the formula

nľ

i“1

ιepB3, fiq.

Finally, we set ηdpB,∆, σ, ǫq to be the formula

ζd,2p∆q ^ ζd,1pσq ^ ζd,0pǫq ^ ηp1q
d pB,∆, σ, ǫq ^ ηp2q

d pB,∆, σ, ǫq ^ ηp3q
d pB,∆, σ, ǫq. �

For a quadruple H :“ pB,∆, σ, ǫq as in Lemma 3.9 satisfying ηdpHq, we call H a d-bounded Hopf
quadruple. If I “ pf1, . . . , fdq and pS{I,∆, σ, ǫq is a Hopf algebra, then there is a corresponding
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affine algebraic group G “ pSpecpS{Iq,∆˚, σ˚, ǫ˚q, [Jan03, I.2.3] and we say that the Hopf quadru-
ple H describes the k-group G. As a k-vector space, the Lie algebra LiepGq is the tangent space
TepGq, where e “ ǫ˚ is the identity point of G. Thus its dimension is the nullity of the dˆn matrix
J where Jkl “ ǫpBfk{Bxlq.
Lemma 3.10. Let d P N, and 0 ď e ď d. There is a first order formula τe,d in Lring with d2

free variables such that for any d-bounded Hopf quadruple pB,∆, σ, ǫq defining the affine algebraic
k-group scheme G we have

τe,dpBq holds ðñ dimLiepGq “ e.

Proof. As we identify each fi with its d coefficients λij, partial differentiation by B{Bxi gives a map
kd Ñ kd. Composing with ǫ is then a map kd Ñ k. Hence each Jkl is a fixed linear combination of
the λij ’s. The statement that the nullity of J is e is equivalent to the statement that there are e
linearly independent vectors v1, . . . , ve P kd satisfying J ¨ vi “ 0 and any e` 1 linearly independent
set of v1, . . . , ve`1 P kd contains vj such that J ¨ vj ‰ 0. This statement can be given as a formula
in Lring in an obvious way. �

3.3. Generic smoothness of bounded group schemes. We put together the results of the
previous sections with the Lefschetz principle to show that bounded group schemes are generically
smooth. We use the fact that a group scheme G is smooth if and only if dimpGq “ dimpLiepGqq,
[Jan03, I.7.17].

Lemma 3.11. Let d P N. Then there is a first order formula θd with d2 free variables such that
for any d-bounded Hopf quadruple H :“ pB,∆, σ, ǫq,

θdpBq holds ðñ H describes a smooth k-group.

Proof. The k-group G described by H is a subscheme of SpecpSq – An, so 0 ď dimG ď n. Then
invoking Lemmas 3.10 and 3.6 we may set θdpB,∆, σ, ǫq to be the following formula:

nł

e“0

pδe,dpBq ^ τe,dpBqq . �

Theorem 3.12. Let d P N. Then there is a prime p0 “ p0pdq such that whenever chark ě p0, any
d-bounded Hopf quadruple, pB,∆, σ, ǫq, describes a smooth group scheme G.

Proof. Recall we identify pB,∆, σ, ǫq with a string of d2 ` npd2 ` 2d ` 1q coefficients in the field,

which we write pλiqd
2`npd2`2d`1q

i“1 . Then invoking Lemmas 3.5, 3.9 and 3.11, the following formula
Φd is a sentence in Lring, which is true if and only if all d-bounded Hopf quadruples describe smooth
group schemes:

p@λ1q ¨ ¨ ¨ p@λd2`npd2`2d`1qqpβdpBq ^ ηdpB,∆, σ, ǫq ^ θdpBqq.
By [Jan03, I.7.17(2)], Φ is true for all (algebraically closed) fields of characteristic 0. Therefore the
Lefschetz principle (Corollary 2.3) guarantees a prime p0 so that the same is true for all algebraically
closed fields of characteristic p ě p0. But smoothness is a geometric property, meaning that a k-
group G is smooth if and only if Gk̄ is smooth. The theorem follows. �
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3.4. Primary decomposition and algebraic groups. Recall that for a ring R, an ideal I is
primary if ab P I ñ a P I or br P I for some integer r. If I is primary, it follows that the radical?
I of I is prime, called its associated prime. For R a Noetherian ring, there is [Eis95, Thm. 3.10]

a primary decomposition of any ideal I as an intersection I1 X ¨ ¨ ¨ X In of primary ideals which
is irredundant, in the sense that I ‰ I1 X ¨ ¨ ¨ X pIj X ¨ ¨ ¨ X In where we delete the jth term of the
intersection. We say a primary ideal Ij appearing in a primary decomposition is isolated if

a
Ij

does not properly contain
?
Ik for any k ‰ j and is embedded otherwise.

Remark 3.13. Let G be an affine algebraic group over a field k with krGs – krt1, . . . , tns{I. Then
of course G is a disjoint union of its irreducible components G “ G˝ \G1 \ ¨ ¨ ¨ \Gr.

4 Thus

krGs – krG˝s ˆ krG1s ˆ ¨ ¨ ¨ ˆ krGrs
with krGis “ Ii; as each Gi is irreducible, we have Ii primary. Since Ii ` Ij “ 1 for i ‰ j we have
Ii ¨ Ij “ Ii X Ij and I “ I0 X ¨ ¨ ¨ X Ir. Clearly this is an irredundant intersection thus a primary
decomposition of I. The disjunction of Gi implies that each Ii is isolated. In this case, the primary
decomposition of I is therefore unique by [BW93, Thm. 8.56] and so any primary decomposition
computes the connected components of G.

3.5. Bounded primary decompositions. The purpose of this section is to take the reader
through algorithms of [BW93, §8] and [GTZ88] which calculate primary decompositions of ideals,
where we progressively emphasise the existence of bounds on the degrees of any output monomial
which are independent of k.

Several times we will need to use the following important theorem of Dubé.

Theorem 3.14 ([Dub90]). Let I “ pf1, . . . , frq Ď S be an ideal generated by polynomials whose
maximal degree is d. Then for any admissible monomial ordering there is a Gröbner basis generated
by polynomials whose terms have degree at most 2pd2

2
` dq2n´1 ď 2d2

n

.

To calculate closures, radical ideals and ultimately primary decomposition we must appeal to
elimination. If I Ď S “ krx1, . . . , xns is an ideal then for any r ď n, I X krx1, . . . , xrs is an
ideal. This ideal can be computed easily from a Gröbner basis B of I provided we choose a
monomial ordering so that the monomials in krx1, . . . , xrs are all less than the monomials in
Szkrx1, . . . , xrs. For then, by [Eis95, Prop. 15.29], we have that I X krx1, . . . , xrs has a Gröbner
basis BXkrx1, . . . , xrs. To this end, a suitable monomial ordering is supplied by the lexicographic
ordering.

Lemma 3.15. Let d P N. Then there is an integer e “ epdq such that for any d-bounded list of
polynomials B Ă S, there is an e-bounded Gröbner basis B of the ideal pBqXkrx1, . . . , xrs for any
r ď n.

Proof. The lexicographic order is admissible, so Theorem 3.14 gives a bound on the degrees of the
monomials in a Gröbner basis B of the set B having monomials of a bounded degree depending
only on d. �

Note that elimination in the case r “ 1 produces an ideal of the principal ideal domain krx1s
which has a unique monic generator f , say. We will need the following corollary of Theorem 1.5
of the celebrated paper [Kol88].

Lemma 3.16. For any d P N, there is e “ epdq P N such that whenever I is generated by a
d-bounded list of polynomials of Krx1, . . . , xns then f P

?
I ñ f e P I.

4If G is smooth then its ks points are dense and we therefore see that the Gi are cosets of G0 :“ G˝, but perhaps
this need not be true if G is not smooth?
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We now turn to [GTZ88, Prop. 6.1] which explains how to calculate a primary decomposition
inductively from a zero-dimensional ideal in a polynomial ring over a commutative ring. We will
only need to consider the case where the coefficient ring is the field of fractions of a polynomial
ring over a field. Let R “ krt1, . . . , tms, K “ kpt1, . . . , tmq, S “ krt1, . . . , tm, x1, . . . , xns “ S bk K

and S “ Krx1, . . . , xns “ S bk K “ S bR K. Note that the image of an ideal J Ă S in S is
canonically isomorphic to J bR K.

Lemma 3.17. Let d P N. Then there is an integer e “ epdq such that whenever J Ř S is an ideal
of S generated by a d-bounded list of polynomials, and J bR K is zero-dimensional in S, there
is a list of ideals J1, . . . , Ju Ď S , each generated by an e-bounded list of polynomials, such that
J bR K “ ŞpJi bR Kq is a primary decomposition of J bR K.

Proof. We exhibit e inductively on r, by taking intersections with S 1 :“ Krx1, . . . , xrs. Let also
S 1 :“ krt1, . . . , tm, x1, . . . , xrs. We start with r “ 0, so that S 1 “ K, and note that pJbRKqXS 1 “
0 since J is proper; observe that M “ 0 is then a maximal ideal of S 1 such that pJ bR Kq X S 1 is
M-primary. For the inductive step, assume we are given an ideal I Ď S generated by a dr-bounded
list of polynomials and a maximal ideal M of S 1 such that pI bR Kq X S 1 is M-primary.

Claim: there is dr`1 “ dr`1pdrq and a list I1 . . . Iu1 of ideals of S , each generated by an dr`1-
bounded list of polynomials, together with distinct maximal ideals M1, . . . ,Mu1 Ă S 1rxr`1s such that
I bR K is the intersection of the Ii bR K and pIi bR Kq X S 1rxr`1s is both zero-dimensional and
Mi-primary.

Let Ic “ I X S 1rxr`1s. By taking a Gröbner basis of I Ă S according to an admissible
monomial order in which terms in the variables x1, . . . , xr`1 are less than any other, we have, by
Lemma 3.15, that Ic is generated by an e1 “ e1pdrq-bounded Gröbner basis B in those variables.
Evidently B bR K is a (not necessarily reduced) Gröbner basis for the zero-dimensional ideal
Ic bRK Ă S 1rxr`1s, thus by [GTZ88, Lemma 5.5] we can find g P B such that its leading term in
S 1rxr`1s is α ¨xqr`1 and α is a unit modulo pIcbRKqXS 1 “ pIbRKqXS 1; e1-boundedness implies

q ď e1. Now it follows from [GTZ88, Lemma 5.7] that
?
Ic bR K “

a
g, pI bR Kq X S 1 “ ?g,M .

Since for some field F Ą K, pS 1{Mqrxr`1s – F rxr`1s is a principal ideal domain, we may take a
factorisation

gpxr`1q b 1 “
ź

pipxr`1qsi P S 1rxr`1s (3.3)

such that the images in F rxr`1s the pipxr`1q are all pairwise comaximal irreducible non-units.
Moreover, as S 1 is a gcd domain, by Gauss’s lemma we may assume pipxr`1q is each in S 1rxr`1s, so
that gpxr`1q “

ś
pipxr`1qsi is a factorisation in S 1rxr`1s. Since

ś
psii b1 P pgb1,Mq Ă

?
Ic bR K,

we have, by Lemma 3.16 an s “ spe1q such that pś psii qs b 1 P Ic bR K.
Now since pi b 1 and pj b 1 are coprime inside S 1rxr`1s, we have

č

i

ppsisi b 1, I bR Kq “ p
ź

psisi b 1, I bR Kq “ pg b 1, I bR Kq “ I bR K.

Let Ii “ pI, psisi q; then the intersection pIi bR Kq X S 1rxr`1s contains a power of the maximal
proper ideal Mi “ ppi,Mq Ď S 1rxr`1s. Provided IibRK is proper, we will have IibRK XS 1rxr`1s
being Mi-primary. However if Ii bR K “ p1q then ś

j‰i pj P Ic bR K “
a
pg b 1,Mq, which is

a contradiction of the fact that pi is not a unit. Clearly the given set of generators of Ii is dr`1-
bounded for some dr`1 depending on s, si, e

1, er. Since each of these can be bounded just in terms
of dr we are done and the claim is proved.

To finish off, we set e “ dn. The ideals in the primary decomposition are computed recursively
by the above process; see the algorithm in [GTZ88] for more details. Note that the irredundancy
follows by the evident distinctness of the maximal ideals Mi produced at each stage. �

Question 3.18. In Lemma 3.17, can one also bound the integer u in terms of d?
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For zero-dimensional ideals I Ă S, Lemma 3.17 gives a bound for a list of generators of a
primary decomposition, if a bound is known for the generators of the ideal—just take m “ 0,
so that R “ K “ k. The next lemma uses [BW93] to reduce the general case to the zero-
dimensional one. Suppose I Ă S is of arbitrary dimension. Without loss of generality, we may
assume 0 ď r ď n is such that xr`1, . . . , xn are a maximally independent set of variables with
respect to I. (So dimpIq “ n ´ r.) We will apply Lemma 3.17 in the case R “ krxr`1, . . . , xns,
K “ kpxr`1, . . . , xnq, S “ Rrx1, . . . , xrs – S and S “ Krx1, . . . , xrs; we have I bR K Ă S is
evidently zero-dimensional.

The following result is [BW93, Lem. 8.97(iii)], and explains how one can recover a primary
decomposition and radical of I from that of Ie.

Lemma 3.19. Let R be a ring and M a multiplicative subset of R. Let Jc denote the intersection
of an ideal J Ď RM with R. Then Jc is a primary ideal of R.

Let us set up some notation. For a ring R, f P R and I Ă R an ideal, let pI : fq “ tg P R |
g ¨ f P Iu. Then pI : f iq Ď pI : f i`1q; denote the union by pI : f8q.

Recall the notation just before the above lemma. If J Ă S then the contraction Jc :“ S X
pJ bR Kq can be computed from the highest coefficents of a Gröbner basis B of J in a monomial
order in which the terms in variables x1, . . . , xr are lower than any other. More specifically, define

f :“ lcmtHCpgq | g P Bu,
where HCpgq is a polynomial in xr`1, . . . , xn. Then by [BW93, Lem. 8.91] we have Jc “ pJ : f8q.
As S is Noetherian, there must be s such that pJ : f8q “ pJ : f sq
Lemma 3.20. Let d P N. Then there is s “ spdq such that whenever I Ă S is an ideal generated
by a d-bounded set of polynomials, and f is a d-bounded polynomial, then pI : f sq “ pI : f8q.
Proof. By [BW93, Prop. 6.37], pI : f8q is the ideal J :“ pI, 1´yfqXSrys, which can be generated
by an e “ epdq-bounded list of polynomials using Lemma 3.15. Moreover, if tf1, . . . , fku is a basis
of I and tg1, . . . , gmu is a basis of J with

gi “ hip1´ yfq `
kÿ

j“1

hijfj

then loc. cit. gives
s “ maxtdegyphijq | 1 ď i ď m, 1 ď j ď ku.

Evidently the latter is bounded just in terms of d. �

Since pJ : f8q “ Jc “ pJ bR Kq X S, it is easy to see:

Corollary 3.21. Let d P N. Then there is e “ epdq such that if J Ď S , the contraction Jc is
generated by an e-bounded list of polynomials.

We are ready to put this together. Take I Ď S, generated by a d-bounded list of polynomials.
From Lemma 3.17 we can create a primary decomposition of I bR K, and by Lemma 3.19 this
intersects with S to give one for Ic, say Ic “ Ş

Ii. By [BW93, Lem. 8.95, Prop. 8.96] it is possible
to find f P krxr`1, . . . , xns such that I “ pI ` pf sqq X Iec “ pI ` pf sqq X pI : f sq where f and s are
as predicated in Lemma 3.20 above. In particular, by Corollary 3.21 each term in the intersection
is generated by a list of polynomials bounded just in terms of d. Necessarily, we have I Ř I ` pf sq
so by Noetherian induction, we may assume there is a primary decomposition of I ` pf sq. Indeed,
as I ` f s is e-bounded, by [Sei71, Theorem], the maximal length of a chain of ascending ideals
starting at I ` pf sq is bounded just in terms of e. Thus we may assume that a full primary
decomposition of I ` f s together with that of Ic is a collection of ideals which are generated by
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lists of polynomials which are bounded just in terms of d. We have therefore proved the arbitrary
dimensional analogue of Lemma 3.17.

Proposition 3.22. Let d P N. Then there is e “ epdq such that whenever I Ă krx1, . . . , xns is an
ideal generated by a d-bounded list of polynomials in the xi, there is a list of ideals I1, . . . , Iu, each
generated by an e-bounded list of polynomials, such that I “ Ş

Ii is a primary decomposition of I.

3.6. Bounded actions on schemes: end of the proof. If G is an affine algebraic R-group with
corresponding Hopf algebra RrGs “ Rrx1, . . . , xns{IG with IG “ pg1, . . . , gmq then let X “ Ť

iPIXi

be a finitely presented G-scheme (not necessarily of finite type) with action map α : GˆX Ñ X and
fix isomorphisms RrXis – krt1, . . . , tris{Ii with Ii “ ph1, . . . , hsjq. Let Yij :“ α´1pXiq X pG ˆXjq.
Observe that Yij is an open subscheme of the open affine scheme GˆXj Ď GˆX . In general Yij
will not be affine, but by dominance, we have RrGˆXjs – RrGs bRrXjs Ď RrYijs; moreover, we
have that Yij is a finite union

Ťaij
k“1Dijk of principal open subschemes Dijk “ Dijkpfijkq Ď GˆXj

for some fijk P RrG ˆXjs, which we may assume to be irreducible over R. By standard results,
Dijk is an affine scheme with coordinate ring

RrDijks – RrGˆXjs bR Rrus{puf ´ 1q
– Rru1, . . . , un, t1, . . . , tri, us{pg1, . . . , gm, h1, . . . , hsj , uf ´ 1q.

Dominance of the inclusion map Dijk Ñ Yij gives us RrYijs Ď RrDijks and so we get maps
αijk : RrXis – Rrt1, . . . , tris{Ii Ñ RrDijks.
Definition 3.23. For an integer d, we say that α is a d-bounded action map if for all i, j, k, l,
we have αijkptlq is a d-bounded polynomial in the xm’s after considering all other generators of
RrDijks as constants.

Now let R “ k. The goal is now to prove the following.

Proposition 3.24. Let d, e be integers. Then for any d-bounded Hopf quadruple pB,∆, σ, ǫq
describing a k-group G, a d-bounded action map α : G ˆX Ñ X where X is a finitely presented
k-scheme, and any subset N Ď Xpkq, there is an e-bounded Hopf quadruple pB1,∆, σ, ǫq describing
CGpNq, for some e depending just on d.

Proof. For any v P N , we may find X1pkq, say, containing v. Then α´1pX1q X pG ˆX1q contains
all pg, v b 1q P GpAq ˆ XpAq such that g ¨ pv b 1q “ v b 1; in particular, the projection of
Y11 X pG ˆ tvuq to G contains CGpvq. Now choose f “ f111 P krG ˆX1s such that D111 “ Dpfq,
say, is a principal open subscheme with pe, vq P D111. Setting π to be projection to the first factor,
we have D :“ πpD111 X pCGpvq ˆ tvuqq is an open subset of CGpvq containing the identity point
and so the closure D is a disjoint union of CGpvq˝ and a closed set contained in the complement
of CGpvq˝ in CGpvq. Let g P GpAq. Then the condition g ¨ pv b 1q “ v b 1 translates under α111 to

p@lq α111ptlqpvq “ tlpvq,
where α111ptlq is evaluated on v as a polynomial in the tj . Setting jl “ α111ptlqpvq ´ tlpvq we get
that krDs “ krx1, . . . , xn, us{I, where

I “ pg1, . . . , gm, j1, . . . , jr1, uf̄ ´ 1q,
where f̄ denotes f similarly evaluated on v. Note that the gi and ji are all d-bounded by assump-
tion.

By [Eis95, Prop. 15.30], the ideal of krx1, . . . , xns defining D̄ is J :“ I X krx1, . . . , xns. But from
Lemma 3.15 we have J is e1-bounded for some e1 “ e1pdq. Finally, Proposition 3.22 gives a primary
decomposition J “ Ş

Ji generated by an e-bounded list of ideals. But Remark 3.13 explains why
one of these ideals, J1 say, defines the identity component of CGpvq.
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Now CGpNq “
Ş

vPN pCGpvqq. If Jv denotes the ideal of S defining CGpvq˝, then CGpNq is defined
by

ř
vPN Jv. By concatenating generators, and using the fact that S is Noetherian we see that

CGpNq “ S{J for some e-bounded ideal J . �

The Lefschetz principle now implies the main theorem. To wit, take a finite open cover X “ X1Y
¨ ¨ ¨YXs and for each Xi, a finite collection of principal open sets tDiiku covering α´1pXiqXGˆXi.
By finiteness and finite presentedness, ᾱiik is d-bounded for some d. Proposition 3.24 now implies
that all centralisers of all points are defined by e-bounded Hopf algebras for some e. Now use
Theorem 3.12 to evince the existence of the desired bound on the characteristic.

To prove the corollary from the introduction, we need only explain how to see that the stabilisers
of subspaces are generically smooth. For this, just observe that the action of an affine R-group
G on a G-module M gives rise to the action of G on the Grassmannian X of the r-dimensional
subspaces of M . Of course, X is a scheme (see [DG70, I.1.3.13] for a proof). Since the centraliser
in G of a point of Xpkq is precisely the stabiliser of the corresponding subspace, we are done by
the theorem.

3.7. Remarks and examples.

Remark 3.25. Taking X to be a single point with a trivial action, we recover the fact that an affine
R-group is smooth after base change to fields of sufficiently high characteristic. This fact seems to
be well known when R “ Z under the maxim that ‘a smooth projective variety over Q has only
finitely many places of bad reduction’.5

Remark 3.26. Note that it is essential to our proof that the module M is d-bounded—it does not
suffice that M be finitely generated. If G is a split reductive group over Z and N “ VGpλq is
a Weyl module for G with minuscule highest weight λ, then Nk is irreducible for each field k.

When chark “ p ą 0, let Mk “ pNkqr1s be the Frobenius twist of Nk through F : Gk Ñ G
p1q
k ;

as Gk – F pGkq “ G
p1q
k we have Mk irreducible too. By irreducibility, CGk

pmq Ř Gk for any
0 ‰ m P Mk. The k-group G being connected and smooth it follows that dimkpCGk

pmqq ă dimGk,
yet LiepGkq is in the kernel of the action on Mk. Thus dimk LiepCGk

pmqq “ dimGk; it follows that
CGk

pmq is not smooth.

Remark 3.27. Any hope to extend the theorem to deal with setwise stabilisers of subsets of Xpkq
will fail without first imposing some further hypotheses. For example, [HS16, Ex. 11.11] gives a
smooth subgroup of GL3, the normaliser of which is non-smooth in any characteristic.
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