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Abstract: We assessed the hydrological implications of climate effects on vegetation 

phenology in northern environments by fusion of data from remote-sensing and local 

catchment monitoring. Studies using satellite data have shown earlier and later dates 

for the start (SOS) and end of growing seasons (EOS), respectively, in the Northern 

Hemisphere over the last 3 decades. However, estimates of the change greatly depend 

on the satellite data utilized. Validation with experimental data on climate-vegetation-

hydrology interactions requires long-term observations of multiple variables which are 

rare and usually restricted to small catchments. In this study, we used two NDVI 

(normalized difference vegetation index) products (at ~25 & 0.5 km spatial resolutions) 

to infer SOS and EOS for six northern catchments, and then investigated the likely 

climate impacts on phenology change and consequent effects on catchment water yield, 

using both assimilated data (GLDAS: global land data assimilation system) and direct 

catchment observations. The major findings are: (1) The assimilated air temperature 

compared well with catchment observations (regression slopes and R2 close to 1), 

whereas underestimations of summer rainstorms resulted in overall underestimations 

of precipitation (regression slopes of 0.3-0.7, R2 ≥ 0.46). (2) The two NDVI products 

inferred different vegetation phenology characteristics. (3) Increased mean pre-season 

temperature significantly influenced the advance of SOS and delay of EOS. The 

precipitation influence was weaker, but delayed SOS corresponding to increased pre-

season precipitation at most sites can be related to later snow melting. (4) Decreased 
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catchment streamflow over the last 15 years could be related to the advance in SOS and 

extension of growing seasons. Greater streamflow reductions in the cold sites than the 

warm ones imply stronger climate warming impacts on vegetation and hydrology in 

colder northerly environments. The methods used in this study have potential for better 

understanding interactions between vegetation, climate and hydrology in observation-

scarce regions. 

Key words: vegetation phenology; climate; hydrology; temperature; precipitation; 

streamflow 

1 Introduction 

Climate change, particularly warming induced by increasing atmospheric greenhouse 

gases, has been suggested as the main cause of recent alterations in vegetation 

phenology (Penuelas, 2001; Zhou et al., 2001; Estrella and Menzel, 2006). Climate-

driven variations in phenology can have major impacts on the functioning of terrestrial 

ecosystems by altering carbon, water and energy balances (Ziska et al., 2011; Piao et 

al., 2015). Exploring the relationships between vegetation phenology and climate 

variability can improve our understanding of how ecosystems will react to climate 

change and affect hydrological processes governing the water balance. This will 

improve our understanding of the likely effects of future climate change on phenology 

and improve conceptualisation of the role of vegetation in global carbon and water cycle 

modelling (Mendoza et al., 2017; Hwang et al., 2018). 
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The high latitudes of the Northern Hemisphere are particularly sensitive to climate 

change (IPCC, 2014). The hydrological implications can be especially profound, as 

slight changes in air temperature can alter the form, timing, and magnitude of 

precipitation (Brown and Mote, 2009), snowmelt and the consequent influence on 

streamflow and water storage dynamics (Barnett et al., 2005). Such hydrological effects 

have the potential to change further the structure and function of terrestrial and aquatic 

ecosystems in the long term, which may include feedbacks on plant water use strategies 

(Kruitbos et al., 2012; Richardson et al., 2013; Wang et al., 2018).  

A number of studies have demonstrated that the onset dates of vegetation green-up and 

dormancy (here used interchangeably with start and end of growing season, 

respectively, and denoted as SOS and EOS) in the high-latitude North have advanced 

and delayed, respectively (Lucht et al., 2002; Garonna et al., 2016). However, due to 

differences in ecosystem composition, geographic location and study period, a wide 

range of growing season changes has been reported (Wu and Liu, 2013; Jeong et al., 

2011; Tao et al., 2017). The detected changes in growing seasons have been mostly 

related to climatic drivers such as air temperature (Ta), precipitation (P) and 

atmospheric CO2 concentration (Estrella and Menzel, 2006; Forkel et al., 2015; Piao et 

al., 2015). These studies indicate that seasonal vegetation cycles are regulated by 

multiple, often interacting, factors whose relative importance is likely to be region-

specific (Buitenwerf et al., 2015). For example, studies have variously shown strong 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

5 

temperature controls on leaf-out, but not on senescence, in Europe (Menzel et al., 2006), 

contrasting roles of increasing temperature and elevated CO2 concentration on leaf-out 

and senescence in a North American grassland (Reyes-Fox et al., 2014), and the co-

control of temperature, elevation, snow cover and sunshine hours on leaf green-up and 

dormancy on the Tibetan Plateau (Piao et al., 2011; Wang et al., 2013, 2015).  

Changes in growing season duration (GSD) induced by these factors have tended to 

enhance vegetation growth (Ivits et al., 2014), which has been reported positively 

affecting annual carbon exchange (indicated by e.g., increased gross primary 

productivity) (Keeling et al., 1996; Myneni et al., 1997; Piao et al., 2007). Extended 

growing seasons have also increased terrestrial evapotranspiration (ET) at several 

northern sites (White et al., 1999; Hwang et al., 2014; Kim et al., 2018). Compared to 

the causal mechanisms, such ecohydrological implications of growing season changes 

are relatively under-explored. In particular, the effects of changes in vegetation 

phenology timing on catchment water partitioning, especially the relative importance 

of “green” water fluxes in ET and “blue” water fluxes to groundwater recharge and 

runoff, are not well documented. This is due mainly to the lack of concurrent long-term 

field observations of both vegetation phenology and hydrometeorology, which are 

crucial for empirical understanding of catchment processes and validation of modelled 

or remotely sensed data (Burt and McDonnell, 2015; Tetzlaff et al., 2017).  
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Data assimilation systems in hydroclimatology provide continuous estimations of 

meteorological and hydrological components globally with increasing accuracy and 

finer temporal resolution, although the spatial resolution remains relatively coarse, such 

as the 25-100 km grid size of the Global Land Data Assimilation System (GLDAS) 

(Rodell et al., 2004). Nevertheless, such assimilated data may help bridge investigations 

of climate-vegetation-hydrology interactions from the regional to local scales. Similar 

to assimilation data, remote sensing data also have extensive spatial coverage and 

temporal dynamics for the observed variables, and are less constrained by high costs 

and logistical difficulties of data acquisition in remote areas; nevertheless, they need 

local calibrations (e.g., Menzel, 2000; Schwartz and Reiter, 2000). For vegetation 

phenology studies, two NDVI (Normalized Difference Vegetation Index) products are 

commonly used: one is derived from the AVHRR (Advanced Very High Resolution 

Radiometer) provided by the GIMMS group (Global Inventory Monitoring and 

Modeling Studies) at ~8 km resolution (Tucker et al., 2005), and the other from the 

MODIS (Moderate Resolution Imaging Spectroradiometer) at 0.25-5.6 km resolution 

(Didan, 2015).   

In this study, we assessed the implications of phenological changes for catchment 

hydrology. To do this, we combined satellite NDVI data, assimilated and observed 

hydrometeorological data in six northern high-latitude catchments, aiming to 

investigate the climate-vegetation-hydrology interactions. Specifically, we addressed 
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the following questions: (1) How has vegetation phenology changed as inferred by 

remote sensing NDVI data? (2) How do antecedent climatic conditions influence the 

changes in vegetation phenology? And (3) what are the hydrologic implications of these 

phenology changes for streamflow variations in the growing season?  

2 Data and methods 

2.1 The six experimental catchments 

<Figure 1 Here> 

The six headwater catchments (Figure 1a) are the Bruntland Burn in Scotland, Krycklan 

in Sweden, Dorset, Moss Creek and Wolf Creek in Canada, and Dry Creek in the United 

States. These catchments are located in natural areas with very limited human activities. 

The comparison of mean annual temperature (MAT) and mean annual precipitation 

(MAP) across the catchments are shown in Figure 1b. Details of hydroclimates, 

vegetation, soils and geology in these catchments can be found in Tetzlaff et al., (2014), 

Laudon et al., (2013), Buttle and Eimers (2009), Spence et al., (2009), McCartney et 

al., (2006), and McNamara et al. (2017). A summary and comparison of hydrology 

among these catchments was given in Carey et al., (2010) and Tetzlaff et al., (2015). 

In brief, along a temperature gradient, Moss Creek is the coldest and driest catchment, 

with around 42% of MAP falling as snow. The predominant vegetation is open black 

spruce (Picea mariana) forest that occupies 25% of the basin. Wolf Creek is the second 
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coldest site and has the second lowest precipitation. 40% of MAP falls as snowfall. 

Vegetation consists of willow (Salix) and birch (Betula) shrubs at lower elevations and 

tundra at higher elevation. Krycklan, the third coldest, is the most easterly and northerly 

site, with 40% of MAP as snow. Forest cover consists largely of Scots pine (Pinus 

sylvertris) and Norway spruce (Picea abies). Dorset and Bruntland Burn are mild in 

temperature with the highest amount of precipitation. In Dorset, approximately 33% of 

MAP falls as snow, while Bruntland Burn has only ~5% of MAP as snow. Vegetation 

consists of mixed deciduous-conifer forest of primarily white pine (Pinus strobus), 

eastern hemlock (Tsuga Canadensis), red oak (Quercus rubra), and red maple (Acer 

rubrum) on the drier uplands and white cedar (Thuja occidentalis) in low-lying wetland 

areas (Watmough and Dillon, 2001).. Vegetation cover is characterized by heather 

(Calluna vulgaris) shrubs on steeper slopes and Sphagnum spp and Molina caerulea-

dominated blanket bog in riparian areas. Dry Creek is the warmest catchment. Most 

precipitation falls in the winter months as snow in the uplands and rain in the lowlands. 

This catchment was selected to include a snow-influenced area with higher energy 

inputs in contrast to the other catchments of low energy. Vegetation is predominantly 

sagebrush (Artemisia tridentata) and a variety of riparian vegetation at lower elevations. 

Higher elevations contain forested areas composed mostly of Douglas Fir (Pseudotsuga 

menziesii) and Ponderosa pine (Pinus ponderosa).  
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2.2 Data  

Details of the data used in this study are given in Table 1. Onset dates of growing season 

were derived from normalized difference vegetation index (NDVI) data from GIMMS 

(Global Inventory Monitoring and Modeling Studies) and MODIS (Moderate 

Resolution Imaging Spectroradiometer). As NDVI is calculated from surface 

reflectance (Huete et al., 2002) which is a result of the integrated surface conditions 

such as vegetation types and density, the spatial coverage of NDVI pixels is therefore 

important for interpretation of surface phenology. Meteorological data including air 

temperature (Ta) and precipitation (P) were obtained from two sources: the GLDAS 

(Global Land Data Assimilation System) assimilation system with the Noah land 

surface model (Rodell et al., 2004), and direct measurements from automatic weather 

stations within the catchments. Streamflow was measured at the outlet of each 

catchment to quantify the integrated response of catchment hydrology to climate and 

vegetation changes. To match the spatial resolution of GLDAS assimilation data for 

analysis of climatic impacts on vegetation phenology, we aggregated the 8-km 

GIMMS-NDVI to 25 km.  

<Table 1 Here> 
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2.3 Methods 

To ensure the full coverage of the catchments, we extracted the pixels of GLDAS and 

NDVI data that intersect with and are located in the catchment boundaries. Pixels 

dominated by urban, cropland, water and snow were excluded in the analysis due to the 

lack of distinct seasonality in greenness (Yang et al., 2015). To assist the filtering, land 

cover types were obtained from MODIS MCD12Q1 in 2013 which is based on the 

International Geosphere-Biosphere Programme classification method (Friedl et al., 

2002), with the assumption that the land cover types do not change significantly with 

time due to limited human activities.  

We modified the method in Piao et al., (2006) to determine SOS and EOS using NDVI 

series. First, average NDVI at each 16-day time step over all years was calculated and 

fitted by a 6-degree polynomial function to reconstruct the daily NDVI series (Yang et 

al., 2015). Derivatives of the fitted curve were then calculated to pinpoint the steepest 

rates of change on each side of the curve. The NDVI values at these two changing points 

were taken as the thresholds for the start and end of a growing season. Second, onset 

dates were estimated by applying the threshold values on reconstructed daily NDVI 

curves for each year. This was done for each catchment to obtain SOS and EOS for 

1982-2015 using GIMMS-NDVI, and for 2001-2016 using MODIS-NDVI. Linear 

regression was then applied to estimate the trend of SOS and EOS change over years; 
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t-test p values were given to indicate statistical significance. Temporal variability of 

estimated SOS and EOS was indicated by standard deviation of the results over all years.  

To test the performance of regional assimilation data for local scale studies, we 

compared the monthly 25 km GLDAS estimates of Ta and P with measurements in each 

catchment. Linear regression slope (k), coefficient of determination (R2) and root mean 

square error (RMSE) were used to test the goodness of fit. Furthermore, to investigate 

the climatic effects on vegetation change, we examined relationships between pre-

season mean temperature, precipitation and vegetation onset dates using partial 

correlation analysis (Piao et al., 2015), which can eliminate effects of alternative factors 

while examining one potential control. Previous studies have shown that climate 

conditions in the 1-2 month period prior to onset are most important in influencing 

vegetation phenology (Fitter and Fitter, 2002; Piao et al., 2006). Therefore, we only 

tested the relationships for 0 to 3 months prior to the onset month of each year inferred 

by NDVI data. The partial correlation coefficient (r) was used to indicate the degree of 

influence, i.e. a higher r infers a likely stronger influence of climate on vegetation 

phenology. 

Lastly, we tested relationships between SOS, EOS (and thus growing season duration, 

GSD) and growing season streamflow for each catchment, to investigate potential 

vegetation impacts on catchment hydrology. SOS and EOS in this test were obtained 
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from the MODIS-NDVI data only, because the streamflow was measured directly at 

the catchment scale. Linear regression slope, R2 and p-values were given to describe 

and evaluate the impacts. Streamflow is directly affected by precipitation in addition to 

growing season duration; therefore, to differentiate the effects of both factors on 

streamflow, we applied multiple linear regression (equation 1) after standardizing 

streamflow, precipitation and growing season duration. To standardize the variables the 

mean values were subtracted first and then divided by standard deviations. In this way, 

the regression coefficients can be directly used to infer the relative degree of influence 

of P and GSD on streamflow. 

𝑠𝑄 = 𝑐0 + 𝑐𝑝 × 𝑠𝑃 + 𝑐𝑔 × 𝑠𝐺𝑆𝐷   (1) 

where sQ, sP and sGSD are standardized streamflow, precipitation and growing season 

duration; c0, cp and cg are regression coefficients. c0 is zeros when using standardized 

variables. 

3 Results 

3.1 Growing season changes based on NDVI datasets 

<Figure 2 Here> 

Onset dates inferred by the NDVI datasets differed in general as did several of the linear 

trend directions (Figure 2), with the longer GIMMS time series showing relatively 
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higher levels of statistical significance. The Krycklan, Dorset and Bruntland Burn sites 

all showed advanced SOS and delayed EOS based on GIMMS-NDVI (1982-2015), 

while the other sites showed delayed SOS and advanced EOS. In contrast, all sites 

showed advanced SOS and delayed EOS based on MODIS-NDVI (2001-2016), except 

for advanced EOS in Bruntland Burn and Wolf Creek. Meanwhile, the magnitudes of 

SOS and EOS trends were variable. For example, SOS advanced by 0.5 days/year 

inferred by GIMMS-NDVI compared to 1.1 days/year by MODIS-NDVI at Bruntland 

Burn; the SOS advance rates for Krycklan were 0.5 and 0.2 days/year, and for Dorset 

were 0.3 and 0.1 days/year, respectively.  

The temporal variability in SOS and EOS reflected by the standard deviation was 

smaller at the coarse resolution relative to the fine resolution. Linear trends of onset 

dates were overall more statistically significant at 25 km resolution where datasets were 

longer. Interestingly, SOS inferred by fine resolution NDVI occurred earlier at almost 

all sites while EOS occurred later (thus showing a longer growing seasons), compared 

to results from the coarse NDVI. Although values of SOS from two NDVI datasets in 

the most recent 15 years were different, the temporal dynamics were similar at Krycklan, 

Moss Creek and Dorset, indicated by high correlation coefficients (0.63, 0.72, and 0.80, 

respectively). Dynamics of EOS in the same period were similar only at Krycklan with 

a correlation coefficient of 0.45. At the other sites, the overall temporal correlations of 

SOS and EOS were weak even if there was similarity among a few years. 
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3.2 Comparison of assimilated and observed climate data 

<Figure 3 Here> 

To assist the analysis of climatic influences on vegetation phenology and to test the 

suitability of regional climate data for local catchment studies, we compared the 

assimilated temperature and precipitation from GLDAS to catchment observations at 

each site from 2000 onwards (Figure 3). Monthly temperature from GLDAS was in 

good agreement with measurements in all catchments (k≈1.0, R2≈1.0), although there 

was slight overestimation at Wolf Creek (k=1.2) and underestimation at Bruntland Burn 

(k=0.9). Precipitation data from both assimilation system and field measurements were 

also consistent in temporal dynamics (R2 ranges from 0.46 to 0.66); however, consistent 

underestimations by GLDAS were evident at all sites (especially Wolf Creek and Moss 

Creek) with the regression slope ranging from 0.3 at Wolf Creek to 0.7 at Dry Creek. 

Underestimation largely resulted from the mismatch in summer months.  

3.3 Climatic influence on vegetation growing seasons 

<Figure 4 Here> 

Based on the temperature and precipitation from GLDAS and field observations and 

vegetation phenology results from the two NDVI datasets, we calculated the partial 

correlation coefficient between mean pre-season Ta and cumulative P and SOS, EOS 

in Figure 4 to evaluate the climatic influences on growing season changes. The pre-

season temperature imposed a stronger influence on growing seasons than precipitation, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

15 

indicated by generally higher correlation coefficients between SOS, EOS and Ta than 

between SOS, EOS and P. Negative correlation coefficients between SOS and Ta, and 

positive correlation coefficients between EOS and Ta imply that higher temperature in 

preceding months caused advanced SOS and delayed EOS, respectively. Nevertheless, 

pre-season P at Wolf Creek and Dorset also seem to be strongly correlated with 

phenology. And, the influence of Ta on phenology was mostly strongly evident when 

based on the MODIS-NDVI and local meteorological measurements compared to the 

GIMMS-NDVI and GLDAS data.  

The importance of mean pre-season Ta in affecting the growing season varies among 

sites. Generally, mean Ta over the 1-3 months prior to onset played a significant role in 

advancing vegetation green-up. Thus, a warm winter leads to an early start of growing 

season. Temperature in the onset month or 1 month earlier influenced the end of 

growing season the most. The influence of pre-season P on SOS and EOS was weaker 

than Ta, although more precipitation in preceding months led to delayed SOS almost in 

all catchments, while higher pre-season precipitation was correlated with earlier EOS 

at Wolf Creek and Krycklan.  
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3.4 Impacts of vegetation change on growing season streamflow 

<Figure 5 Here> 

Climate-driven changes in vegetation growth have the potential to trigger hydrologic 

responses. As streamflow (Q) is an integrated residual of other catchment hydrologic 

fluxes, and easiest to measure, we examined the relationships (Figure 5) between 

catchment streamflow during the growing season (from April to October) and the 

growing season changes inferred by MODIS-NDVI. Decreased streamflow during 

April-October was coincident with advanced SOS at all sites. It is notable that the 

relationships were only statistically significant at the two driest sites: Dry Creek and 

Wolf Creek (p<0.05). The decrease in streamflow was more strongly related to an 

earlier start, rather than a later end, of the growing season at all catchments, showing 

larger regression slopes between streamflow and SOS than between streamflow and 

EOS. As expected, streamflow in all catchments decreased with prolonged growing 

seasons. The rate of streamflow reduction with increasing GSD was higher at Moss 

Creek, Wolf Creek, and Krycklan (~3.0 mm/day) compared to the other three 

catchments. Interestingly, we also found that the reduction in catchment streamflow 

with extended growing seasons generally became smaller along the increasing gradient 

of temperature from coldest Moss Creek to warmest Dry Creek (decreasing slopes in 

the 3rd column of Figure 5).  
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Of course, independent of any vegetation changes, growing season streamflow is also 

likely to be strongly related to precipitation. Therefore, linear regression analysis was 

carried out between precipitation and streamflow at a monthly scale. Results show that 

strong correlations occur at Wolf Creek, Bruntland Burn and Dry Creek with R2 values 

of 0.45, 0.80 and 0.53, respectively (p<0.05). Regression slopes (0.5, 0.4 and 0.3, 

respectively) indicate that these catchments have higher mean monthly runoff 

coefficients compared to other catchments. In addition to the above regression analysis, 

we also performed multiple linear regression analysis using standardized variables to 

differentiate the influence of precipitation and vegetation growing season on 

streamflow. Standardized coefficients are given in Table 2. 

<Table 2 Here> 

The cg coefficients at Moss Creek and Wolf Creek are larger than cp, which implies that 

vegetation growing season change affects streamflow more strongly than precipitation 

at these two sites. In contrast, the effect of precipitation was much stronger than 

vegetation changes at the other sites, especially Krycklan, Bruntland Burn and Dry 

Creek. The effects of precipitation and growing season duration were similar at Dorset. 

Therefore, combining the results of relationships between GSD and Q and between P 

and Q as well as the coefficients in Table 2, it seems that at the colder sites the 
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vegetation growing season duration has a greater influence on streamflow, whilst at the 

warmer sites the effects of precipitation on streamflow are stronger.  

4 Discussion  

4.1 Vegetation phenology in response to climatic factors  

Vegetation phenology is estimated from remote sensing NDVI data which are based on 

surface reflectance (Huete et al., 2002). The reflectance of each grid cell represents the 

combined information of vegetation species composition, distribution and growth status 

(Vermote, 2015). Therefore, the spatial resolution of NDVI data matters for the actual 

vegetation information derived from a pixel. It is not surprising then to have different 

phenology onset dates obtained from the two NDVI datasets. The growing season 

durations inferred by MODIS-NDVI are more consistent with the empirical knowledge 

in the catchments linked to the dominant vegetation types: longest growing season at 

Bruntland Burn, followed by Dorset, and shortest at Dry Creek.  

Vegetation phenology is affected by climatic conditions. Warmer winter temperature 

correlated with earlier SOS, whereas warmer summer temperatures correlated with 

delayed EOS. The same temperature controls in vegetation growing seasons have been 

consistently reported elsewhere (Tanino et al., 2010; Richardson et al., 2013; Zhang et 

al., 2013). The influence of temperature on SOS is stronger than on EOS, similar to 

some studies in northern regions (Menzel et al., 2006; Güsewell et al., 2017). 
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Furthermore, we observe that the temperature control on phenology is generally 

stronger at the colder sites (Figure 4). The influence of precipitation on vegetation 

change is expected to be stronger in dry areas than humid areas (Ramos et al., 2015; 

Tao et al., 2017), for example, a stronger influence of precipitation than that of 

temperature was discovered in water-limited biomes such as the arid desert (Yang et 

al., 2015) and dry steppe (Zhu and Meng, 2014). In this study, precipitation influence 

was not evident at most of these northern catchments; however, the pre-season 

precipitation influence on SOS is positive at the cold sites (Wolf Creek, Krycklan and 

Dorset), indicating that more winter precipitation is correlated with a delayed start of 

growing season. As radiation is the primary controlling factor for vegetation growth in 

the northern high latitudes (Wang et al., 2017). This phenomenon is likely to be 

attributable to low radiation available for vegetation growth due to increased surface 

albedo after winter precipitation occurs, which is mostly snowfall in almost all sites 

except Bruntland Burn. In addition, the snowpack is usually thicker with increased 

winter precipitation at the colder sites and would need a longer time to melt in spring, 

postponing the timing when the threshold temperature that triggers vegetation growth 

is reached (Fu et al., 2015; Piao et al., 2015). In summary, based on the results from 

this and previous studies, the responses of vegetation phenology to climate variability 

appear to be regionally specific, and the controlling mechanisms, and their interactions, 

do not seem consistent across sites.  
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4.2 Using regionally-assimilated data in catchment ecohydrologv 

Direct observations are fundamental for understanding atmospheric and hydrologic 

processes and their interactions. In remote, sparsely monitored areas, substitute data 

may be obtained from assimilation systems such as GLDAS (as used in this study) and 

others such as ERA-Interim by ECMWF (Berrisford et al., 2011). However, assimilated 

data need to be validated before they can be used for quantitative purposes. In this study, 

GLDAS 25 km assimilated monthly temperature shows very good agreement with 

measurements at all six northern catchments. The good performance of GLDAS 

temperature assimilation has also been shown by others in different regions (e.g. Wang 

et al., 2011; Zhou et al., 2013; Ji et al., 2015), implying small variability of temperature 

across spatial scales. Meanwhile, the assimilated precipitation underestimates local 

measurements significantly. Underestimation is most pronounced during summer 

periods, particularly at the two coldest sites Moss Creek and Wolf Creek. High intensity 

rain events seem poorly captured by the assimilation system. In addition, the 

deteriorated performance of GLDAS for precipitation assimilation compared to 

temperature may reflect the greater spatial variability of precipitation (Tokay et al., 

2014; Cristiano et al., 2017). The mismatch of summer rainfall has also been reported 

by other comparative studies, such as in Qi et al., (2016) over an east China basin. 

Underestimation of precipitation by GLDAS was also observed at six sites in the United 

States where winter precipitation was the main factor attributable to the underestimation 
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(Broxton et al., 2016). Inaccurate precipitation inputs for hydrologic models would 

result in large uncertainty in streamflow simulations (Zaitchik et al., 2010; Liu et al., 

2017), especially for summer high flows (Cristiano et al., 2017). This stresses the need 

for assimilation model improvement towards better hydrological insight and 

understanding. 

4.3 The hydrologic consequences of vegetation phenology change 

In terms of vegetation impacts on catchment hydrology, previous studies have shown 

that a prolonged growing season can enhance plant growth and thus increase 

transpiration (Berninger, 1997; Hwang et al., 2014). In these low-energy northern 

catchments, soil evaporation is limited, and transpiration contributes most of the total 

evapotranspiration (Sprenger et al., 2018; Wang et al., 2018). Increases in transpiration 

can result in a decline in streamflow (Deutscher et al., 2016; Kim et al., 2018). Although 

the response time of streams to ET losses is often unclear, here we simply looked at the 

growing season as first indicator in the study catchments. Streamflow decline in 

response to extended growing season was observed in this study, though only 

statistically significant at two sites despite being consistent across the catchments. The 

impact of advanced SOS on reduced streamflow is more marked than that of delayed 

EOS. This could be a result of both transpiration and water storage change, because 

transpiration is usually higher at the early stage of growing season when water storage 

and energy input are both at an optimal condition for plant growth (Wang et al., 2016). 
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In contrast,, at the late stage of growing season transpiration rates can decrease due 

mainly to the decline in soil water storage (Manzoni et al., 2014). The delayed EOS 

showed varying impacts on streamflow across sites: streamflow at Moss Creek, Wolf 

Creek and Bruntland Burn decreased with delayed EOS, whereas an opposite 

relationship was apparent at the other catchments. This supports the non-universal 

relationships between vegetation changes and water fluxes proposed by Richardson et 

al. (2010, 2013).  

Precipitation is also closely related to streamflow (Tetzlaff and Uhlenbrook, 2005; 

Penna et al., 2015), and we found statistically significant relationships at Wolf Creek, 

Bruntland Burn and Dry Creek. Moreover, the standardized multiple linear regression 

analysis, which we used to compare the influences of precipitation and growing season 

duration on streamflow, shows that GSD exerts a stronger impact than precipitation at 

the two coldest sites (Moss Creek and Wolf Creek) whereas at other catchments the 

opposite relationship holds. Previous hydrologic studies in the catchments showed that 

the seasonality of precipitation, storage (both in soil and snowpack) and topography 

affect streamflow generation. The P-Q relationships are usually strong in catchments 

with high precipitation inputs or steep topography (Soulsby et al., 2009). For 

catchments with significant snow storage, a spring freshet will clearly reduce the 

correlation between monthly P and Q (Carey et al., 2010). In addition to these factors 

affecting streamflow, taking the advantage of long-term observations in the catchments, 
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here we found indications that the rate of reduction of streamflow with extended 

growing season decreased from cold to warm sites (3rd column in Figure 5). This 

observation tentatively implies that the more marked vegetation change induced by 

global warming has imposed a stronger alteration in catchment hydrology in the cold 

rather than warm areas. This stresses the importance of efforts to identify and tackle 

potential challenges to water resources due to future climate change, particularly in 

summers when the water consumption is usually high. 

5 Conclusion 

This study provides an analysis of climatic controls on vegetation phenology and the 

potential hydrologic responses to vegetation change in six northern high-latitude 

catchments. The major findings and conclusions are summarized below: 

(1) Estimates of vegetation growing seasons differ with remote sensing vegetation 

index data used.  

(2) Pre-season temperature exhibited strong controls on vegetation phenology, 

whereas the influence of precipitation was weaker, although at some sites delayed start 

of the growing season corresponded to increased winter precipitation which may be 

related to later snow melting. 
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(3) A decrease in streamflow corresponded to advanced SOS and extended 

growing seasons, and the rates of streamflow reduction decreased along an increasing 

temperature gradient. This pattern suggests that warming-induced vegetation change 

has more discernable impacts on catchment hydrology in colder high latitudes in terms 

of changes in water fluxes.  

(4) In addition, the application of assimilated climate data demonstrates the 

usefulness of large-scale data for local scale ecohydrological studies, especially 

temperature, whilst precipitation data may need closer evaluation.  

This study shows the potential for investigating climate, vegetation and hydrology 

interactions in sparsely monitored regions by fusion of remote sensing and assimilation 

data with limited empirical observations. It also underlines that the northern high 

latitudes are sensitive to climate change impacts, reflected by the changes in vegetation 

phenology and catchment hydrology. The findings bring us forward regarding the study 

of impacts of vegetation on catchment hydrology and provides a basis for future 

integration of data sources.  
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Table 1 A summary of data used in this study, including remote sensing 

vegetation index (NDVI), assimilated (temperature and precipitation) and measured 

data (temperature, precipitation, and streamflow). 

Variables NDVI 
Temperature & 

precipitation 
Streamflow 

Data 

sources 

GIMMS-

NDVI3g v1 

MODIS 

MOD13A1 

v006 

GLDAS-Noah 

v2.0 & v2.1 

Observations 

in each 

catchment 

Observations 

in each 

catchment 

Spatial 

resolution 
~8 km 0.5 km ~25 km - - 

Temporal 

resolution 
Biweekly 16-day Monthly Sub-daily Sub-daily 

Temporal 

coverage 
1982-2015 2001-2016 1982-2015 2000-2016 2000-2016 
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Table 2 Coefficients of multiple linear regression based on standardized 

streamflow, precipitation (in April-October) and growing season duration in equation 

(1). Coefficient c0 for all site is zero, cp is coefficient for precipitation, and cg is 

coefficient for growing season duration. 

coefficient Moss 

Creek 

Wolf 

Creek 

Krycklan Dorset Bruntland 

Burn 

Dry 

Creek 

cp 0.28 0.13 0.81 0.45 0.79 0.68 

cg -0.67 -0.56 -0.18 -0.30 -0.09 -0.35 
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Figure 1 (1) locations of the studied catchments; (b) characterization of mean annual 

hydroclimates across the catchments based on field measurements. The centers of the 

lines are the mean annual values of the relevant variables. The lines represent annual 

values in all the years, showing also the difference from the mean annual values. 
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Figure 2 Start and end of growing seasons (SOS & EOS) inferred by NDVI for the six 

catchments. In the legend, 25 km refers to results from GIMMS NDVI in blue; 0.5 km 

refers to results from MODIS NDVI in red. Linear regression slope is in unit of days 

per year; positive means delayed, and negative means advanced. Bars on the curves are 

standard deviations to show temporal variability of SOS and EOS. 
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Figure 3 Comparison of temperature (Ta) and precipitation (P) between GLDAS 

assimilation data and field measurements for the six catchments. Slopes (k) less than 1 

means GLDAS underestimates observations. RMSE is root mean square error, and unit 

is ºC for Ta and mm for P. Note the data availability across catchments is different so 

the time in horizontal axis is not necessarily continuous or the same. 
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Figure 4 Partial correlation coefficients between start and end of growing season (SOS, 

EOS) and pre-season mean temperature (Ta) and pre-season accumulated precipitation 

(P) during 1982-2015 based on 25 km data, and during 2001-2015 based on 0.5 km 

data. preS0 refers to the onset month; preS1-3 refer to a period from preceding 1-3 

months to the onset months. For example, if SOS is in April, preS0 refers to April, preS1 

refers to March and April. 
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Figure 5 Relationship between growing season (April-October) streamflow and start, 

end and duration of growing seasons (SOS, EOS, and GSD) at the six catchments 

during 2001-2016. Plots are arranged in an increasing order of annual mean temperature 

from top to bottom (i.e. cold to warm sites). SOS and EOS are based on MODIS NDVI. 

k (mm/day) in the plots is linear regression slope, p indicates statistical significance 

level. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

40 

 

Graphical abstract 
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Highlights 

 We examined the climate-vegetation-hydrology interactions in northern 

catchments 

 Regional climate assimilation data are useful for local ecohydrological studies 

 Pre-season temperature had stronger influence on phenology than precipitation 

 Streamflow decline corresponded to advanced green-up and extended growing 

seasons 

 Global warming appears to be affecting ecohydrology strongest at colder sites 
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