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FUSION SYSTEMS WITH BENSON-SOLOMON COMPONENTS

ELLEN HENKE AND JUSTIN LYND

Abstract. The Benson-Solomon systems comprise the one currently known family of simple

exotic fusion systems at the prime 2. We show that if F is a fusion system on a 2-group having a

Benson-Solomon subsystem C which is subintrinsic and maximal in the collection of components

of involution centralizers, then C is a component of F , and in particular, F is not simple. This is

one part of the proof of a Walter’s Theorem for fusion systems, which is itself a major step in a

program for the classification of a wide class of simple fusion systems of component type at the

prime 2.

1. Introduction

This paper is situated within a program to classify a large class of fusion systems of component
type at the prime 2, and then use that result to rework and simplify the corresponding part
of the classification of the finite simple groups. We refer to the survey article [Asc15] and the
memoir [Asc16] for more details on Aschbacher’s outline and first steps of this program. However,
we take the opportunity to motivate and collect much of the background material in Section 2,
and that section can serve as a detailed guide to the proof of the main theorem here for readers
who are not familiar with the classification program.

The component-type portion of the classification of the finite simple groups is concerned with
components in involution centralizers. A quasisimple group is a perfect group which is simple
modulo its center, and a component is a subnormal quasisimple subgroup. A group is of component
type if it has a component in the centralizer of one of its involutions. Proceeding by induction,
one assumes that the components of involution centralizers in such a simple group are known,
and then the objective is to show that the simple group itself is known.

A fusion system is a category F with objects the subgroups of a fixed finite p-group S, with
morphisms injective group homomorphisms between subgroups, and subject to two weak axioms.
The standard example of a fusion system is the category FS(G) induced by a finite group G
and one of its Sylow p-subgroups S, in which the morphisms are the conjugation maps induced
by elements of G. A fusion system is saturated if it satisfies two more axioms which are easily
seen to be satisfied in the standard example. However, there exist exotic fusion systems which
satisfy the saturation axioms while not being the fusion system of any finite group in the above
fashion. Among the most celebrated such examples are the Benson-Solomon systems F = FSol(q)
at the prime 2, in which S is isomorphic to a Sylow 2-subgroup of Spin7(q), q an odd prime
power. This is a one parameter family of simple fusion systems (cf. Lemma 2.34) having a single
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conjugacy class of involutions, and where the centralizer CF (z) ∼= FS(Spin7(q)) for an appropriate
involution z ∈ S. Currently the class of known simple fusion systems at the prime 2 consists of
the Benson-Solomon systems together with fusion systems of finite simple groups.

As suggested implicitly above, many finite group theoretic constructions have been established
in the context of saturated fusion systems, allowing one to speak of centralizers of subgroups, nor-
mal subsystems, quasisimple fusion systems, and so on. Some constructions, such as centralizers
of subsystems, have not been defined in full generality.

We now define the terms necessary to state the main theorem. Precise definitions are given in
Section 2. Fix a saturated fusion system F over the 2-group S. Following Aschbacher, we denote
by C(F) the collection of components of centralizers in F of involutions in S, roughly speaking.
The fusion system F is said to be of component type if C(F) is nonempty. The E-balance Theorem
in the form of the Pumpup Lemma (Subsection 2.4) allows one to define an ordering on C(F),
and thus obtain the notion of a maximal member of C(F). For C ∈ C(F), I(C) denotes the
collection of involutions t such that there is a conjugate (Cα, tα) of (C, t) with Cα a component of
CF (tα), roughly speaking. Finally a member C ∈ C(F) is said to be subintrinsic in C(F) if there
is L ∈ C(C) such that Z(L)∩I(L) is not empty. This means in particular that L itself is in C(F),
as witnessed by some involution in the center of L.

Our main theorem says that there is no simple fusion system F containing a subintrinsic
maximal member of C(F) isomorphic to a Benson-Solomon system.

Theorem 1.1. Fix a saturated fusion system F over a 2-group and a quasisimple subsystem C of
F . Assume that C is a subintrinsic, maximal member of C(F) isomorphic to a Benson-Solomon
system. Then C is a component of F .

Theorem 1.1 is situated within the proof of Walter’s Theorem for fusion systems [Asc17b],
which is one of the major steps in the program. Assuming that each member of C(F) is a known
quasisimple system, Walter’s Theorem implies that if the simple saturated 2-fusion system F has
a member C of C(F) that is the 2-fusion system of a group of Lie type in odd characteristic and
not too small, then either F is the fusion system of a group of Lie type in odd characteristic, or
F ∼= FSol(q).

A simple saturated 2-fusion system with an involution centralizer having a Benson-Solomon
component would necessarily be exotic. Because of the subintrinsic condition, Theorem 1.1 does
not immediately rule out the possibility of this happening. However, when combined with the
information derived from Walter’s Theorem, it gives strong evidence that such a simple system
does not exist. Later, we plan to apply Walter’s Theorem to treat the general case in which C is
not assumed subintrinsic in C(F).

We now give an outline of the paper. Section 2 provides the requisite background material,
most of which is due to Aschbacher, together with motivation coming from the group case. The
proof of Theorem 1.1 begins in Section 3, where we show that a subintrinsic maximal Benson-
Solomon component is necessarily a standard subsystem in the sense of Subsection 2.5. When
combined with results of Aschbacher in [Asc16], this allows the consideration of a subsystem Q
which plays the role of the centralizer of C, and with a little more work shows that the Sylow
subgroup Q of Q is either of 2-rank 1 or elementary abelian. Next, in Section 4, we handle the
case in which Q is elementary abelian. In Section 5, we handle the case in which Q is quaternion
using Aschbacher’s classification of quaternion fusion packets [Asc17a]. In the final Section 6 we
handle the cyclic case and complete the proof of Theorem 1.1.
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2. Preliminaries

2.1. Local theory of fusion systems. Let F be a saturated fusion system over a finite p-group
S. For general background on fusion systems, in particular for the definition of a saturated fusion
system, we refer the reader to [AKO11, Chapter I]. In addition to the notations introduced
there, we will write Ff for the set of fully F-normalized subgroups of S. Conjugation-like maps
will be written on the right and in the exponent. In particular, if E is a subsystem of F over
T and α ∈ HomF (T, S), then Eα denotes the subsystem of F over Tα with HomEα(Pα, Qα) =
{α−1 ◦ ϕ ◦ α : ϕ ∈ HomE(P,Q)} for all P,Q 6 T .

We recall that, for any subgroup X of S, we have the normalizer and the centralizer of X
defined. The normalizer NF (X) is a fusion subsystem of F over NS(X), and the centralizer
CF (X) is a fusion subsystem of F over CS(X). These subsystems are not necessarily saturated,
but if X is fully F-normalized, then NF (X) is saturated, and if X is fully centralized, then CF (X)
is saturated. Thus, we will often move from a subgroup of S to a fully F-normalized (and thus
fully F-centralized) conjugate of this subgroup. In this context it will be convenient to use the
following notation, which was introduced by Aschbacher.

Notation 2.1. For a subgroupX 6 S, denote by A(X) the set of morphisms α ∈ HomF (NS(X), S)
such that Xα ∈ Ff .

Throughout, we will use often without reference that A(X) is non-empty for every subgroup
X of S. In fact, the following lemma holds.

Lemma 2.2. If X 6 S and Y ∈ XF ∩ Ff , then there exists α ∈ A(X) with Xα = Y .

Proof. See e.g. [AKO11, Lemma I.2.6(c)]. �

If x ∈ S, then we often write CF (x), NF (x) and A(x) instead of CF (〈x〉), NF (〈x〉) and A(〈x〉)
respectively. Similarly, we call x fully centralized (fully normalized), if 〈x〉 is fully centralized (fully
normalized respectively). If x is an involution, then the reader should note that CF (x) = NF (〈x〉)
and x is fully centralized if and only if 〈x〉 is fully normalized.

Recall that a subgroup T of S is called strongly closed in F if Pϕ 6 T for every subgroup
P 6 T and every ϕ ∈ HomF (P, S). The following elementary lemma will be useful later on.

Lemma 2.3. Let T be strongly closed in F and suppose we are given two F-conjugate subgroups
U and U ′ of S. If T 6 NS(U) and U ′ is fully normalized, then T 6 NS(U ′).

Proof. By Lemma 2.2, there exists α ∈ A(U) such that Uα = U ′. Then, as T is strongly closed,
T = Tα 6 NS(U)α 6 NS(U ′) and this proves the assertion. �

A subsystem E of F over T 6 S is called normal in F , if E is saturated, T is strongly closed,
Eα = E for every α ∈ AutF (T ), the Frattini condition holds, and a certain technical extra property
is fulfilled (see [AKO11, Definition I.6.1]). Here the Frattini condition says that, for every P 6 T
and every ϕ ∈ HomF (P, T ), there are ϕ0 ∈ HomE(P, T ) and α ∈ AutF (T ) such that ϕ = ϕ0 ◦ α.
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Particularly important cases of normal subsystems include the normal subsystem Op(F) of F
(cf. [AKO11, Theorem I.7.4]) and the (unique) smallest normal subsystem of F over S, which is

denoted by Op
′
(F) (cf. [AKO11, Theorem I.7.7]).

Once normal subsystems are defined, there is then a natural definition of a subnormal subsys-
tem. We will need the following lemma.

Lemma 2.4. If E is a subnormal subsystem of F over T , then every subgroup of T , which is fully
F-normalized, is also fully E-normalized.

Proof. In the case that E is normal in F , this is [Asc08, Lemma 3.4.5]. The general case follows
by induction on the subnormal length. �

Aschbacher [Asc11, Chapter 9] introduced components and the generalized Fitting subsystem
F ∗(F) of F . By analogy with the definition for groups, a component is a subnormal subsystem
of F which is quasisimple. Here F is called quasisimple if Op(F) = F and F/Z(F) is simple.
By [Asc11, 9.8.2,9.9.1], the generalized Fitting subsystem of F is the central product of Op(F)
and the components of F . Moreover, for every set J of component of F , there is a well-defined
subsystem ΠC∈JC, which is the central product of the components in J . Writing E(F) for the
central product of all components of F , F ∗(F) is the central product of Op(F) with E(F). We
will use the following lemma.

Lemma 2.5. If C is a component of F over T then the following hold:

(a) C is normal in F ∗(F).
(b) If γ ∈ HomF (T, S), then Cγ is a component F .

Proof. By definition of a component, C is subnormal and thus saturated. As mentioned above,
by [Asc11, 9.8.2,9.9.1], F ∗(F) is the central product of Op(F) (more precisely FOp(F)(Op(F)))
and the components of F . It is elementary to check that each of the central factors in a central
product of saturated fusion systems is normal. Hence, every component of F is normal in F ∗(F)
and (a) holds.

For the proof of (b) let S0 6 S such that F ∗(F) is a fusion system over S0. The Frattini
condition (applied to the normal subsystem F ∗(F)) says that we can factorize γ as γ = γ0 ◦ α
with γ0 ∈ HomF ∗(F)(T, S0) and α ∈ AutF (S0). By (a), Cγ0 = C and thus Cγ = Cα. As F ∗(F) is
a normal subsystem, α induces an automorphism of F ∗(F). Thus, Cα is normal in F ∗(F) as C is
normal in F ∗(F). So Cγ = Cα is subnormal in F . Hence, Cγ is a component of F , since Cγ ∼= C
is quasisimple. �

Lemma 2.6. Let F be a saturated fusion system which is the central product of saturated sub-
systems F1, . . . ,Fn. If C is a component of F , then there exists i ∈ {1, 2, . . . , n} such that C is a
component of Fi.

Proof. Assume that C is a component of F which, for all i = 1, . . . , n, is not a component of
Fi. Let C be a subsystem on T 6 S, and let Fi be a subsystem on Si for i = 1, . . . , n. Since F
is the central product of F1, . . . ,Fn, each of the subsystems F1, . . . ,Fn is normal in F . So for
each i = 1, . . . , n, it follows from [Asc11, 9.6] and the assumption that C is not a component of
Fi that T centralizes Si. As S = Πn

i=1Si, this yields that T centralizes S and is thus abelian.
Now [Asc11, 9.1] yields a contradiction to C being quasisimple. �
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The following lemma was suggested to us by Aschbacher. By a “known” finite simple group
we mean a group isomorphic to one of the groups appearing in the statement of the classification
of finite simple groups.

Lemma 2.7. Let G be a finite group such that O(G) = 1 and, for each component K of G,
K/Z(K) is a “known” finite simple group. Let S ∈ Syl2(G) and let C be a component of FS(G).
Then there exists a component K of G such that C = FS∩K(K).

Proof. Set F = FS(G) and E = FS∩F ∗(G)(F
∗(G)). Suppose C is a subsystem of F on T . As

F ∗(G) is normal in G, the subsystem E is normal in F by [AKO11, Proposition I.6.2].

Assume first that C is not a component of E . Write J for the set of components of F which
are not a component of E , and set D = ΠC′∈JC′. Then by [Asc11, 9.13], F contains a subsystem
DE which is the central product of D and E . As C ∈ J , it follows in particular that E ⊆ CF (T ).
As E = FS∩F ∗(G)(F

∗(G)), it follows now from [HS15, Theorem B] that T 6 CS(F ∗(G)) 6
CG(F ∗(G)) = Z(F ∗(G)). In particular, T is abelian, which by [Asc11, 9.1] yields a contradiction
to C being quasisimple. Thus, we have shown that C is a component of E .

As O(G) = 1, F ∗(G) is the central product of O2(G) and the components of G. Thus, E
is a central product of FO2(G)(O2(G)) and the subsystems of the form FS∩K(K) where K is a
component of G. Since C is not the fusion system of a 2-group, it follows now from Lemma 2.6
that E is a component of FS∩K(K) for some component K of G. Set K := K/Z(K). As
O(G) = 1, we have that Z(K) 6 S and Z(K) is contained in the centre of FS∩K(K). Moreover,
FS∩K(K)/Z(K) = FK∩S(K). Recall that K is a “known” finite simple group. So by [Asc17a,

Theorem 5.6.18], FS∩K(K) is either simple or S ∩K is normal in K. As C is a component

of FS∩K(K), the image of C in FS∩K(K)/Z(K) = FS∩K(K) is a component of FS∩K(K). So

by [Asc11, 9.9.1], the fusion system FS∩K(K) is not constrained, and thus S ∩K is not normal in

FS∩K(K). Hence, FS∩K(K)/Z(K) = FS∩K(K) is simple. In particular, Z(K) = Z(FS∩K(K)).
As K is quasisimple, we have K = Op(K). Therefore, it follows from Puig’s hyperfocal subgroup
theorem [Pui00, §1.1] and [AKO11, Corollary I.7.5] that Op(FS∩K(K)) = FS∩K(K). So FS∩K(K)
is quasisimple and thus, by [Asc11, 9.4], we have C = FS∩K(K). �

2.2. Automorphisms and extensions of fusion and linking systems. At several points,
we will need to be able to construct various extensions of fusion systems and to determine the
structure of extensions where they arise. For example, if F is a saturated fusion system over S
and E is a normal subsystem of F , then we want to be able to construct certain subsystems of
F containing E and determine their structure from the structure of E . In the category of groups,
this is a relatively painless process when the normal subgroup is quasisimple. However, in fusion
systems there are technical difficulties that necessitate in many cases the consideration of linking
systems associated to F and E .

We refer to [AKO11, Section III.4] or [AOV12] for the definition of an abstract linking system
as used here, and for more details on automorphisms of fusion and linking systems. Fix a linking
system L for F with object set ∆ and structural functors δ and π, which we write on the left of
their arguments. The group of automorphisms of F is defined by

Aut(F) = {α ∈ Aut(S) | Fα = F}.

Then AutF (S) is normal in Aut(F), and the quotient Aut(F)/AutF (S) is denoted Out(F).
5



An automorphism of L is a functor α : L → L that commutes with the structural functors.
Each automorphism of L is indeed an automorphism of the category L (and not merely a self-
equivalence), and we shall write Aut(L) for the group of automorphisms of L. There is always a
conjugation map

c : AutL(S) −→ Aut(L)

which sents an element γ ∈ AutL(S) to the functor cγ ∈ Aut(L) defined on objects by P 7→ P γ :=

P π(γ). For a morphism ϕ ∈ MorL(P,R), the map c sends ϕ to ϕγ , namely the morphism

ϕγ := γ−1|P γ ,P ◦ ϕ ◦ γ|R,Rγ ∈ MorL(P γ , Rγ),

where, for example, γ|R,Rγ is the restriction of γ, uniquely determined by the condition that
δR,S(1) ◦ γ = γ|R,Rγ ◦ δRγ ,S(1) in L. The image of c in Aut(L) is a normal subgroup of Aut(L),
and

Out(L) := Aut(L)/{cγ | γ ∈ AutL(S)}
is the group of outer automorphisms of L.

There are natural maps µ̃ : : Aut(L) → Aut(F) and µ : Out(L) → Out(F) which, at least
when ∆ = Fc, fit into a commutative diagram

1

��

1

��

1

��
Z(F)

incl // Z(S) //

δS
��

Ẑ1(O(Fc),ZF )

λ̃
��

// lim←−
1(ZF ) //

λ

��

1

Z(F) // AutL(S)
c //

πS
��

Aut(L) //

µ̃
��

Out(L) //

µ

��

1

1 // AutF (S) //

��

Aut(F) //

��

Out(F) //

��

1

1 1 1

(2.8)

with all rows and columns exact. Here, Ẑ1(O(Fc),ZF ) is a group of 1-cocycles of the center
functor defined on the orbit category of F-centric subgroups, and lim←−

1ZF is the corresponding

cohomology group; see [AKO11, Section III.5].

Lemma 2.9. Let F be a saturated fusion system over S with associated centric linking system L,
and suppose that µ : Out(L) → Out(F) is injective. Then ker(µ̃) = {cδS(z) | z ∈ Z(S)} consists
of automorphisms of L induced by conjugation by elements of Z(S).

Proof. By assumption on µ, we see from (2.8) that lim1(ZF ) = 0 by the exactness of the third col-
umn. The the assertion follows from exactness of the top row (2.8), together with commutativity
of the square containing Z(S) and Aut(L). �

In the next proof, we reference a normal pair of linking systems L E L1 as defined in [AOV12,
Definition 1.27]. We take the opportunity to write certain maps on the left-hand side of their
arguments, which is more standard when working with linking systems as categories.

6



Proposition 2.10. Let F be a saturated fusion system over the 2-group S, and let F1 be a
saturated subsystem over S1 6 S. Assume that C is a perfect normal subsystem of F1 over
T ∈ Ff having associated centric linking system L such that

(i) CS(T ) 6 S1, and
(ii) µ : Out(L)→ Out(C) is injective.

Then CS(T ) = CS1(C)Z(T ).

Proof. By assumption, C is normal in F1, so we may form the product system C1 := CS1 in this
normalizer, as in [Asc11, Chapter 8] or [Hen13]. Then O2(C1) = O2(C) = C since C is perfect,
so by [AOV12, Proposition 1.31(a)], there is a normal pair of linking systems L E L1 associated
to the pair C E C1 in which Ob(L1) = {P 6 S1 | P ∩ T ∈ Cc}. Note that not only is L is a
subcategory of L1, but the structural functors δ, π for L are the restrictions of the functors for
L1 by definition of an inclusion of linking systems. Because of this, we write δ, π also for the
structural functors for L1.

Now by the definition of a normal pair of linking systems [AOV12, Definition 1.27(iii)], the
conjugation map c : AutL(T )→ Aut(L) lifts to a map AutL1(T )→ Aut(L), which we also denote
by c. So the existence of the pair L E L1 allows one to define a homomorphism ν : S1 → Aut(L)

given by the composition S1
δT−→ AutL1(T )

c−→ Aut(L). This map has kernel

ker(ν) = CS1(C)(2.11)

by [Sem15, Theorem A].
We can now prove the assertion. Clearly CS1(C)Z(T ) 6 CS(T ). For the reverse inclusion, fix

s ∈ CS(T ). Then ν is defined on s by (i). The map µ̃ : Aut(L)→ Aut(C) is more precisely defined

by the equation tµ̃(ϕ) = δ−1
T (δT (t)ϕT ) for all ϕ ∈ Aut(L) and all t ∈ T . Using this for ϕ = ν(s) =

cδT (s), we obtain for all t ∈ T that tµ̃(ν(s)) = δ−1
T (δT (s)−1 ◦ δT (t) ◦ δT (s)) = δ−1

T (δT (ts)) = ts = t,
where the last equality uses s ∈ CS(T ). The automorphism µ̃(ν(s)) ∈ Aut(C) is thus trivial.
Hence by Lemma 2.9 and assumption on µ, ν(s) = cδT (z) = ν(z) for some z ∈ Z(T ). It follows

that ν(sz−1) is the identity on L. Hence, sz−1 ∈ CS1(C) by (2.11), so s ∈ CS1(C)Z(T ), which
completes the proof. �

In the situation where F is realized by a finite group G with Sylow subgroup S, there are maps
which compare certain automorphism groups of G with the automorphism groups of L and F .
For example, there is a group homomorphism κ̃G : Aut(G,S)→ Aut(L), where Aut(G,S) is the
subgroup of Aut(G) consisting of those automorphisms which normalize S. Then κ̃G sends the
image of NG(S) to Im(c) 6 Aut(L), and so induces a homomorphism κ : Out(G)→ Out(L).

Definition 2.12. A finite groupG with Sylow subgroup S is said to tamely realize F if F ∼= FS(G)
and the map κ : Out(G)→ Out(L) is split surjective. The fusion system F is said to be tame if
it is tamely realized by some finite group.

From work of Andersen-Oliver-Ventura and Broto-Møller-Oliver, the fusion systems of all finite
simple groups at all primes are now known to be tamely realized by some finite group [AO16,
Section 3.3]. To give one example of the importance of tameness for getting ahold of extensions
of fusion systems of finite quasisimple groups, we mention the following result of Oliver that will
be useful later.

7



Theorem 2.13. Let F be a saturated fusion system over the finite p-group S and let E be a
normal subsystem over the subgroup T 6 S. Assume that F ∗(F) = Op(F)E with E quasisimple
and that E is tamely realized by the finite group H. Then F is tamely realized by a finite group G
such that F ∗(G) = Op(G)H.

Proof. This is Corollary 2.5 of [Oli16]. �

2.3. Components of involution centralizers. Suppose now that F is a saturated fusion system
over a 2-group S. If F is of component type, then in analogy to the group theoretical case, one
wants to work with components of involution centralizers (or more generally with components
of normalizers of subgroups of S). In fusion systems, the situation is slightly more complicated
than in groups, since only components of saturated fusion systems are defined. Therefore, we can
only consider components of normalizers of fully normalized subgroups. It makes sense to work
also with conjugates of such components. Following Aschbacher [Asc16, Section 6] we will use the
following notation.

Notation 2.14. If C is a quasisimple subsystem of F over T , then define the following sets:

• X (C) is the set of subgroups or elements X of CS(T ) such that CF (X) contains C.
• X̃ (C) is the set of subgroups or elements X of S such that Cα is a component of NF (Xα)

for some α ∈ A(X).

• I(C) is the set of involutions in X̃ (C).
If we want to stress that these sets depend on F , we write XF (C), X̃F (C) and IF (C) respectively.
Moreover, we write C(F) for the set of quasisimple subsystems C of F such that I(C) is nonempty.

Lemma 2.15. Let C be a quasisimple subsystem of F over T and X ∈ X̃ (C). Then for any
ϕ ∈ HomF (〈X,T 〉, S) the following hold:

(a) If Xϕ ∈ Ff , then Cϕ is a component of NF (Xϕ).

(b) We have Xϕ ∈ X̃ (Cϕ).

Proof. Assume first Xϕ ∈ Ff . Let α ∈ A(X) such that Cα is a component of NF (Xα). By
Lemma 2.2, there exists β ∈ A(Xα) such that Xαβ = Xϕ. Then NS(Xα)β = NS(Xϕ) and
β induces an isomorphism from NF (Xα) to NF (Xϕ). So Cαβ is a component of NF (Xϕ). As
Xαβ = Xϕ, the map β−1α−1ϕ is a morphism in NF (Xϕ). Moreover Cαβ is conjugate to Cϕ under
β−1α−1ϕ. Thus, Cϕ is a component of NF (Xϕ) by Lemma 2.5. This proves (a). If we drop the
assumption that Xϕ ∈ Ff and pick α ∈ A(Xϕ), then applying (a) with ϕα in place of ϕ gives
that (Cϕ)α = Cϕα is a component of NF (Xϕα). This gives (b). �

Lemma 2.16. Let C be a quasisimple subsystem of F over T and let X ∈ X̃ (C) be a subgroup of S.

Suppose we are given Y ∈ Ff satisfying [X,Y ] 6 X ∩ Y and C ⊆ NF (Y ). Then X ∈ X̃NF (Y )(C).
In particular, if X has order 2, then C ∈ C(NF (Y )).

Proof. Let β ∈ ANF (Y )(X) so that Xβ ∈ NF (Y )f . Let α ∈ A(Xβ). Then by [Asc10, 2.2.1,2.2.2],

we have that Y α ∈ NF (Xβα)f , (NS(Y ) ∩ NS(Xβ))α = NS(Y α) ∩ NS(Xβα), and α induces an
isomorphism from NNF (Y )(X

β) to NNF (Xβα)(Y
α). By Lemma 2.15(a), we have that Cβα is a

component NF (Xβα). So by [Asc16, 2.2.5.2], Cβα is a component of NNF (Xβα)(Y
α). As α induces

an isomorphism from NNF (Y )(X
β) to NNF (Xβα)(Y

α), this implies that Cβ is a component of

NNF (Y )(X
β). This proves X ∈ X̃NF (Y )(C) and the assertion follows. �
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2.4. Pumping up. Crucial in the classification of finite simple groups of component type is the
Pump-Up Lemma, which leads to the definition of a maximal component. As we explain in more
detail in the next subsection, such maximal components have very nice properties generically,
which ultimately allow one to pin down the group if the structure of a maximal component is
known.

The main purpose of this section is to state the Pump-Up Lemma for fusion systems. However,
to give the reader an intuition, we briefly want to describe the Pump-Up Lemma for groups. Let
G be a finite group. To avoid technical difficulties which do not play a role in the context of
fusion systems, we assume that none of the 2-local subgroups of G has a normal subgroup of odd
order. The results we state here are actually true for all almost simple groups, but to show this
one would have to use the B-theorem whose proof is extremely difficult. Avoiding the necessity
to prove the B-theorem is one of the major reasons why it is hoped that working in the category
of fusion systems will lead to a simpler proof of the classification of finite simple groups.

Let t be an involution of G. If O(G) = 1, then the L-balance theorem of Gorenstein and Walter
gives that E(CG(t)) 6 E(G), where E(G) denotes the product of the components of G. Further
analysis shows that a component C of CG(t) lies in E(G) in a particular way. Namely, either C is
a component of G, or there exists a component D of G such that D = Dt and C is a component
of CD(t), or there exists a component D of G such that D 6= Dt and C = {ddt : d ∈ D} is the
homomorphic image of D under the map d 7→ ddt. If one applies this property to the centralizer
of a suitable involution a rather than to the whole group G, then one obtains the Pump-Up
Lemma. More precisely, consider two commuting involutions t and a centralized by a quasisimple
subgroup C which is a component of CG(t), and thus of CCG(a)(t). The result stated above yields
immediately that one of the following holds:

(1) C is a component of CG(a).
(2) There exists a component D of CG(a) such that D = Dt and C is a component of CD(t).
(3) There exists a component D of CG(a) such that D 6= Dt and C = {ddt : d ∈ D} is a

homomorphic image of D.

This statement is known as the Pump-Up Lemma. If (2) holds then D is called a proper pump-up
of C. The component C is called maximal if it has no proper pump-ups.

We now state a similar result for fusion systems, which was formulated by Aschbacher. Again,
the statement is slightly more complicated than the statement for groups, since we need to pass
from an involution a to a fully centralized conjugate of a for the centralizer to be saturated.

Lemma 2.17 ( [Asc16, 6.1.11]). Let F be a saturated fusion system over a 2-group S and let C
be a quasisimple subsystem of F on T . Suppose we are given two commuting involutions t, a ∈ S
such that t ∈ I(C) and 〈t, a〉 ∈ X (C). Fix α ∈ A(a). Set ā = aα, t̄ = tα and C̄ = Cα. Then one of
the following holds:

(1) (trivial) C̄ is a component of CF (ā), so a ∈ I(C),
(2) (proper) there is ζ ∈ HomCF (ā)(CS(〈ā, t̄〉), CS(ā)) and a t̄ζ-invariant component D of

CF (ā) such that C̄ζ is a component of CD〈t̄ζ〉(t̄
ζ), and we have C̄ζ 6= D,

(3) (diagonal) there is a component D of CF (ā) such that D 6= Dt̄, C̄ 6 D0 := DDt̄, and C is
a homomorphic image of D.

Definition 2.18. Let F be a saturated 2-fusion system and C ∈ C(F).
9



• Whenever the hypotheses of Lemma 2.17 occurs, and D satisfies (2) of the conclusion,
then D is a proper pump-up of C.
• C is called maximal (or a maximal component) if it has no proper pump-ups.

2.5. Standard components. We explain now in more detail how maximal components play a
role in pinning down the structure of a finite simple group G, and in how far these ideas carry
over to fusion systems. As in the previous subsection, we start by explaining the basic ideas for
groups. For that, assume again that G is a finite group in which no involution centralizer has a
non-trivial normal subgroup of odd order.

Write C(G) for the set of components of involution centralizers of G. Using the Pump-Up
Lemma, one can choose C ∈ C(G) such that every element D ∈ C(G) which maps homomorphi-
cally onto C is maximal. For such C, Aschbacher’s component theorem says basically that, with
some “small” exceptions, either C is a homomorphic image of a component of G, or the following
two conditions hold:

(C1’) C does not commute with any of its conjugates; and
(C2’) if t is an involution centralizing C, then C is a component of CG(t).

Assuming that (C1’) and (C2’) hold and C/Z(C) is a “known” finite simple group, the structure
of G is determined case by case from the structure of C. The problem of classifying G from the
structure of such a subgroup C is usually referred to as a standard form problem. The key to
solving such a standard form problem is that properties (C1’) and (C2’) imply that the centralizer
CG(C) is a tightly embedded subgroup of G and thus has (by various theorems in the literature)
a very restricted structure if G is simple. Here a subgroup K of G of even order is called tightly
embedded in G if K∩Kg has odd order for any element g ∈ G−NG(K). A standard subgroup of G
is a quasisimple subgroup C of G such that C commutes with none of its conjugates, K := CG(C)
is tightly embedded in G, and NG(C) = NG(K). If C is a component of an involution centralizer
which satisfies properties (C1’) and (C2’), then it is straightforward to prove that C is a standard
subgroup. So if G is simple, then with some small exceptions, Aschbacher’s component theorem
implies that there exists a standard subgroup C of G.

We will now explain the theory of standard components of fusion systems, which Aschbacher
[Asc16] has developed roughly in analogy to the situation for groups as far as this seems possible.
For the remainder of this subsection let F be a saturated fusion system over a 2-group S, and
let C be a quasisimple subsystem of F on T . The situation for fusion systems is significantly
more complicated, most importantly since the definition of a standard component of a group
involves a statement about its centralizer, and the centralizer of C in F is currently only defined
in certain special cases. For example, Aschbacher has defined the normalizer and the centralizer
of a component of a fusion system [Asc16, Sections 2.1 and 2.2]. In particular, if C is a component
of CF (t) for a fully centralized involution t, then CCS(t)(C) is defined inside CF (t). If C ∈ C(F),
then this allows us to define a subgroup of S which centralizes C, dependent on an involution
t ∈ I(C).

Notation 2.19 (cf. (6.1.15) in [Asc16]). If t ∈ I(C) and α ∈ A(t), then define

Pt,α := CCS(tα)(Cα) ∩ CS(t)α

and

Qt := Qt,α = Pα
−1

t,α
10



By [Asc16, 6.6.16.1], Qt,α 6 CS(t) is independent of the choice of α and so Qt is indeed well-
defined. With this definition in place, one can formulate conditions on C which roughly correspond
to conditions (C1’) and (C2’). If C ∈ C(F) fulfills such conditions, then C is called terminal. The
precise definition is given below in Definition 2.21.

Notation 2.20 (cf. (6.1.17) and (6.2.7) in [Asc16]).

• ∆(C) is the set of F-conjugates C1 of C such that, writing T1 for the Sylow of C1, we have

T#
1 ⊆ X̃ (C) and T# ⊆ X̃ (C1).

• ρ(C) is the set of pairs (tϕ, Cϕ) such that t ∈ I(C) and ϕ ∈ HomF (〈t, T 〉, S).

• ρ0(C) is the set of (t1, C1) ∈ ρ(C) such that all nonidentity elements of Qt1 lie in X̃ (C1).

By Lemma 2.15(b), we have t1 ∈ I(C1) for any (t1, C1) ∈ ρ(C). In particular, in the definition
of ρ0(C), the subgroup Qt1 is well-defined.

Definition 2.21. A subsystem C ∈ C(F) is called terminal if the following conditions hold:

(C0) T ∈ Ff ,
(C1) ∆(C) = ∅, and
(C2) ρ(C) = ρ0(C).

In this definition, property (C2) corresponds roughly to property (C2’) above. Moreover,
assuming (C2), property (C1) should be thought of as roughly corresponding to property (C1’)
above.

Aschbacher proved a version of his component theorem for fusion systems [Asc16, Theo-
rem 8.1.5]. Suppose C ∈ C(F) is such that every D ∈ C(F) mapping homomorphically onto
C is maximal. The component theorem for fusion systems states essentially that, with some small
exceptions, either C is the homomorphic image of a component of F , or C is terminal. This
statement is similar to the statement of the component theorem in the group case. However, it
is not clear that the centralizer of a terminal component is defined and “tightly embedded” in F .
This makes it more complicated to define standard subystems. We will work with Aschbacher’s
definition of a standard subsystem, which we state next.

Definition 2.22. The quasisimple subsystem C of F is called a standard subsystem of F if the
following four conditions are satisfied:

(S1) X̃ (C) contains a unique (with respect to inclusion) maximal member Q.
(S2) For each 1 6= X 6 Q and α ∈ A(X), we have Cα ENF (Xα).
(S3) If 1 6= X 6 Q and β ∈ A(X) with Xβ 6 Q, then T β = T .
(S4) AutF (T ) 6 Aut(C).

If C satisfies conditions (S1),(S2),(S3), then C is called nearly standard.

Remark 2.23. In the above definition, the first condition (S1) says essentially that the central-

izer of C in S is well-defined. Namely, the unique maximal member Q of X̃ (C) should be thought
of as this centralizer. Given a standard subsystem C of F , this allows Aschbacher [Asc16, Defini-
tion 9.1.4] to define a saturated subsystem Q of F over Q which plays the role of the centralizer
of C in F . More precisely, Q centralizes C in the sense that F contains a subsystem which is a
central product of Q and C (cf. [Asc16, 9.1.6.1]). Also, by [Asc16, 9.1.6.2], Q is a tightly embedded
as defined in the next subsection (cf. Definition 2.26). We will refer to Q as the centralizer of C
in F .
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In general, it is difficult to get control of CS(T ) when T is the Sylow subgroup of a member C
of C(F). However, CS(T ) 6 NS(Q) when C is standard. This gives much needed leverage, as is
shown in the next lemma.

Lemma 2.24. Let F be a saturated fusion system over the 2-group S. Suppose C is a standard
subsystem of F with centralizer Q over Q. Let L be a centric linking system associated to C. If
µ : Out(L)→ Out(C) (see Section 2.2) is injective, then CS(T ) = QZ(T ).

Proof. As Q is fully F-normalized by [Asc16, 9.1.1], F1 := NF (Q) is a saturated fusion system
over S1 = NS(Q). Further, (S2) says that C is normal in F1. Finally, by [Asc16, Proposition 5],
Q is normal in NF (T ) and CNS(Q)(C) = Q. In particular, CS(T ) 6 S1 = NS(Q). Thus, if µ is
injective, then CS(T ) = CNS(Q)(C)Z(T ) = QZ(T ) by Proposition 2.10. �

When considering involution centralizer problems for fusion systems, we generally need to verify
in each individual case that the terminal component we consider is standard. In constrast with
the group case, this is not a straightforward task. Indeed, in some cases a terminal component is
provably not standard. However, it develops that many of these technically difficult configurations
are ultimately unnecessary to treat, because they arise for example in almost simple fusion systems
that are not simple, or in wreath products of a simple system with an involution. Thus, we will
usually need assumptions that go beyond supposing merely that the structure of the terminal
component we consider is known, but also information about the embedding of that subsystem in
the ambient system. Such stronger assumptions can be made if one classifies, as was proposed by
Aschbacher, the simple “odd systems” rather than the simple fusion systems of component type
(cf. [Asc16]). The hypothesis in Theorem 1.1 that C is subintrinsic should be seen in this context.

Definition 2.25. Let C ∈ C(F). Then C is said to be subintrinsic in C(F) if there exists H ∈ C(C)
such that IF (H) ∩ Z(H) 6= ∅.

It follows fairly straightforwardly from results of Aschbacher that a subintrinsic Benson-Solomon
component C is terminal. Rather than use the component theorem for fusion systems, it is more
convenient in our case to show that C is terminal using [Asc16, Theorem 7.4.14], which is a major
ingredient of the proof of the component theorem. As suggested above, a nontrivial amount of
work is then required to go on and show that C is standard; see Section 3.

2.6. Tightly embedded subsystems and tight split extensions. Recall from the previous
subsection that a subgroup K of a finite group G is called tightly embedded if K has even order and
K ∩Kg has odd order for every g ∈ G\NG(K). This definition does not translate well to fusion
systems as it is, but there exist suitable reformulations. It follows from Aschbacher [Asc16, 0.7.1]
that a subgroup K of G of even order is tightly embedded if and only if the following two conditions
hold:

(T1’) K is normalized by NG(X) for every non-trivial 2-subgroup X of K.

(T2’) For every involution x of K, xG ∩K = xNG(K).

If K is tightly embedded and Q is a Sylow 2-subgroup of K, then note furthermore that
NG(Q) 6 NG(K) and NG(K) = KNG(Q) by a Frattini argument. This leads to a definition of
tightly embedded subsystem of saturated fusion systems at arbitrary primes.

Definition 2.26 (cf. [Asc16, Chapter 3]). Let F be a saturated fusion system on a p-group S,
and let Q be a saturated subsystem of F on a fully normalized subgroup Q of F . Then Q is
tightly embedded in F if it satisfies the following three conditions:

12



(T1) For each 1 6= X ∈ Qf and each α ∈ A(X),

Op
′
(NQ(X))α is normal in NF (Xα).

(T2) For each X 6 Q of order p,

XF ∩Q = XAutF (Q)Q

where XAutF (Q)Q := {Xαϕ : α ∈ AutF (Q), ϕ ∈ HomQ(Xα,Q)}.
(T3) AutF (Q) 6 Aut(Q).

When working with standard subsystems later on, we will need the following lemma on tightly
embedded subsystems.

Lemma 2.27. Let F be a saturated fusion system on S, and suppose Q is a tightly embedded
subsystem of F on an abelian subgroup Q of S. Then FQ(Q) is tightly embedded in F .

Proof. As Q is abelian, by Alperin’s fusion theorem (cf. [AKO11, Theorem I.3.6]), the following
holds:

(*) The p-group Q, and thus the subsystem FQ(Q), is normal in any saturated fusion system
on Q.

Let 1 6= X 6 Q and α ∈ A(X). By (*), we have Q = NQ(X) E NQ(X) and thus Q =

Op
′
(NQ(X)). As Q is tightly embedded, it follows NQ(X)α = Qα = Op

′
(NQ(X))αENF (Xα). So

(T1) holds for FQ(Q).
Let X 6 Q be of order p. Again using (*), we have Q EQ. So every morphism in Q extends

to an element of AutQ(Q) 6 AutF (Q), and this implies XAutF (Q)Q = XAutF (Q). Hence, as Q is

tightly embedded, XF ∩ Q = XAutF (Q)Q = XAutF (Q) = XAutF (Q)FQ(Q). This shows that (T2)
holds for FQ(Q). Clearly (T3) holds for FQ(Q). �

To exploit the existence of standard subsystems, it is useful in many situations to study certain
kinds of extensions involving tightly embedded subsystems. We summarize the main definitions:

Definition 2.28. Let F0 be a fusion system on a 2-group S0.

• A split extension of F0 is a pair (F , U), where
– F is a saturated fusion system over a 2-group S,
– F0 is normal in F ,
– O2(F) = O2(F0), and
– U is a complement to S0 in S.

• The split extension (F , U) is tight if FU (U) is tightly embedded in F .
• A critical split extension is a tight split extension in which U is a four group.
• F0 is said to be split if there exists no nontrivial critical split extension of F0; that is, for

each such extension (F , U), the fusion system F is the central product of F with CS(F0).

Suppose F is a saturated 2-fusion system and C is a standard component with centralizer Q
on Q. If C is split, then by [Asc16, Theorem 8], C is either a component of F , or Q is elementary
abelian, or the 2-rank of Q equals 1. We show in Lemma 2.38 that the Benson–Solomon fusion
systems are split. So after showing that a component C as in Theorem 1.1 is standard, we know
that, unless C is a component of F , its centralizer Q in S is either elementary abelian or quaternion
or cyclic. Accordingly, these are the cases we will treat.
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Lemma 2.29. Let C be a quasisimple saturated fusion system over the 2-group T , and let (F , U)
be a critical split extension of C over the 2-group S. Then

(a) AutF (U) = 1 and so NF (U) = CF (U); and
(b) 〈u〉 ∈ Ff and CF (u) = CF (U) for each 1 6= u ∈ U .

Proof. By definition of critical split extension, U is a four subgroup of S tightly embedded in F
and a complement to T in S. Also, O2(F) = O2(C) = C, as C is quasisimple. Since O2(F) = C,
this means hyp(F) = T . Since S/hyp(F) ∼= U is abelian, we see from [AKO11, Lemma I.7.2] that
also foc(F) = T . Thus, AutF (U) = 1, since otherwise T ∩ U = foc(F) ∩ U > [U,AutF (U)] > 1,
which is not the case. This proves the first assertion in (a), and the second then follows by
definition of the normalizer and centralizer systems.

Now by definition of tight embedding, U is fully normalized in F . Fix 1 6= u ∈ U . By (T2)
and part (a), it follows that uF ∩ U = {u}. However, (3.1.5) of [Asc16] says that 〈u〉 has a fully
F-normalized F-conjugate in U , so 〈u〉 ∈ Ff . Then taking α to be identity in (T1), we see that
U is normal in NF (〈u〉) = CF (u), so that CF (u) 6 NF (U) = CF (U) by (a). This completes the
proof of (b), as the other inclusion is clear. �

2.7. The fusion system of Spin7(q) and FSol(q). Our main references for FSol(q) and for 2-
fusion systems of Spin7(q) are [LO02,LO05,COS08,AC10,HL17].

We aim to follow Section 4 of Aschbacher and Chermak fairly closely [AC10], except that it
will be convenient to restrict the choice of the finite fields Fq over which the systems in question
are defined, and to make changes to notation so as to not conflict with our later choices. For
example, we will later take T to be a Sylow 2-subgroup of H = Spin7(q) and FSol(q), so we shall
write a split maximal torus of H in a different way. For concreteness, we consider a fixed but

arbitrary nonnegative integer l, and set ql = 52l .
Let F̄ be an algebraic closure of the field with 5 elements (thus, we take p = 5 in [AC10,

Section 4]). Let H̄ = Spin7(F̄), and T̄ a maximal torus of H̄. Let ψ be a Frobenius endomorphism

of H̄ which induces the 5-th power map on T̄ , and set ψl = ψ2l . Then as H̄ is of universal type,
H := CH̄(ψl) = Spin7(ql) and CT̄ (ψl) is the aforementioned split maximal torus. From [AC10,
Lemmas 4.8,4.9], the normalizer of CT̄ (ψl) in H contains a Sylow 2-subgroup of H, which we fix
and denote by T for the remainder.

Write H := Hl := FSpin(ql) for the fusion system FT (H). Fix also a fusion system C over T
isomorphic to a Benson-Solomon system C := Cl := FSol(ql) in such a way that CC(z) = H where
〈z〉 = Z := Z(T ) is of order 2. We next set up notation for some common subgroups of T , and
we recall the various parts of the set up appearing in [AC10, §4] that are needed later.

Notation 2.30. Set k = l + 2, let Tk = T ∩ T̄ be the 2-power torsion subgroup of the maximal
torus CT̄ (ψl) of H, and let w0 ∈ T be the element of order 2 fixed in [AC10, Lemma 4.3]. Thus,
w0 inverts T̄ and is centralized by ψm for all m > 0. The 2-group T has a sequence of elementary
abelian subgroups

1 < Z < U < E < A,

each of index 2 in the next, with Z = Z(T ) as above, U the unique normal four subgroup of
T , E = Ω1(Tk), and A = E〈w0〉, an elementary abelian subgroup of order 16. We also set
R = CT (E) = Tk〈w0〉 = TkA.

The following lemma collects a number of properties of these subgroups and their automorphism
groups.
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Lemma 2.31. The following hold.

(a) For each 2 6 k0 6 k, Tk0 is the unique homocyclic abelian subgroup of T of rank 3 and
exponent 2k0, and Tk0 is inverted by w0.

(b) Tk is C-centric, T/Tk ∼= C2 ×D8, and AutC(Tk) ∼= C2 ×GL3(2).
(c) R is characteristic in T .
(d) A is an elementary abelian subgroup of T of maximum order, and so T has 2-rank 4.
(e) AutC(X) = Aut(X) for X ∈ {Z,U,E,A}, and OutC(R) ∼= GL3(2).

Proof. By Lemma 4.9(b) of [AC10], T2 6 Tk0 is the unique homocyclic subgroup of T of rank 3
and exponent 4. Moreover, Tk = CH(T2) = CT̄ (ψl) is of rank 3 and of exponent 2k. This shows
that T2, and more generally, Tk0 = Ωk0(Tk) for 2 6 k0 6 k is the unique subgroup of T of its
isomorphism type. Also, w0 inverts Tk0 by [AC10, Lemma 4.3(a)].

This completes the proof of (a). Again as Tk = CH(T2), it follows that Tk is C-centric. The
second statement in part (b) follows from [AC10, Lemma 4.3(c)], while the third is the content of
[AC10, Theorem 5.2]. Since Tk is characteristic in T by (a), also R = CT (Ω1(Tk)) is characteristic
in T , which is the statement in (c).

Now as E = Ω1(Tk) is elementary abelian of order 8 by (a), and w0 inverts Tk, it follows that
A is elementary abelian of order 16. There are no elementary abelian subgroups of T of rank 5
by [AC10, Lemma 7.9(a)], so (d) holds. We refer to Lemma 3.1 of [LO02] for the C-automorphism
groups of X ∈ {Z,U,E,A}, where A is denoted “E∗”. Finally, as Tk is fully C-normalized by (a)
and as R/Tk is of order 2 and induces O2(AutC(Tk)) on Tk, the restriction map ρ : AutC(R) →
AutC(Tk) is surjective by the Extension Axiom. Let ϕ ∈ ker(ρ). Then by [BLO03, Lemma A.8]
and the first statement in (b), ϕ is conjugation by an element of Z(Tk) = Tk. It follows that
ker(ρ) = AutTk(R) is of index 2 in Inn(R). Thus, OutC(R) ∼= AutC(Tk)/O2(AutC(Tk)) ∼= GL3(2)
by the last statement in (b). �

Lemma 2.32. Let F ∈ {C,H}, and let L be the centric linking system for F . Then the natural
map µ : Out(L)→ Out(F) is an isomorphism.

Proof. This follows from [LO02, Lemma 3.2] and the obstruction sequence in [AKO11, Proposi-
tion 5.12] (that is, from (2.8) above). �

Our choice of ql = 52l is motivated by the next two lemmas, especially Lemma 2.33(a).
Lemma 2.34 is not strictly needed for the sequel, but we feel it is helpful for context.

Lemma 2.33. Let H be the 2-fusion system of Spin7(q) for some odd q, let l + 3 be the 2-adic

valuation of q2 − 1, and set H = Spin7(52l) as above. Then the following hold.

(a) H is tamely realized by H.
(b) With R as in Notation 2.30, each automorphism of H that normalizes T and centralizes

R is conjugation by an element of E = Z(R).

Proof. Let L be the centric linking system for H. Then the composition Out(H) → Out(H) of

µ with κ (see Section 2.2) is an isomorphism with ql = 52l by [BMO16, Proposition 5.16]. Thus,
part (a) follows from Lemma 2.32 and the definition of tame (Definition 2.12).

Set k = l + 2 as before. For the sake of brevity, we make appeals to [BMO16, §5] also for
(b). Note that by choice of ql, H satisfies Hypotheses 5.1(III.1) of that reference. Let α be
an automorphism of H that normalizes T and centralizes R. Since R > Tk (recall Tk is the
2-power torsion in T̄ ∩H), α centralizes Tk. Thus, by [BMO16, Lemma 5.9], α ∈ Inndiag(H) =
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Inn(H) AutT̄ (H), and so there is h ∈ H and t ∈ T̄ such that α is conjugation by ht. Then also
h ∈ CH̄(Tk) = T̄ , with the last equality by [BMO16, Lemma 5.3(a)], so that ht ∈ T̄ . However,
R contains the element w0 inverting T̄ by Lemma 2.31(a), and so it follows that ht ∈ Ω1(Tk) =
Z(R). �

Lemma 2.34. The following hold.

(a) The collection {FSol(5
2l) | l > 0} gives a nonredundant list of the isomorphism types of

the 2-fusion systems FSol(q) as q ranges over odd prime powers.

(b) The collection {FSpin(52l) | l > 0} gives a nonredundant list of the isomorphism types of
the 2-fusion systems FSpin(q) as q ranges over odd prime powers.

Proof. Part (a) is the content of [COS08, Theorem B]. For each odd prime power q, the fusion
system of Spin7(q) is isomorphic to some fusion system in the given collection by Lemma 2.33(a).

Then (b) follows as a Sylow 2-subgroup of Spin7(52l) has order 210+3l by Lemma 2.31(a,b). �

The next lemma augments the results of [HL17] on automorphisms and extensions.

Lemma 2.35. Let D be a saturated fusion system over the 2-group S such that F ∗(D) = C =

FSol(5
2l). Then all involutions in S − T are D-conjugate. If f ∈ S − T is an involution such that

〈f〉 is fully D-centralized, then O2(CD(〈f〉)) ∼= FSol(5
2l−1

).

Proof. The almost simple extensions of C were determined in [HL17]. By [HL17, Theorem 3.10,
Theorem 4.3], we may fix a complement F to T in S such that F is cyclic of order 2l0 with
1 6 l0 6 l, and such that the conjugation action of F on T is the restriction of the conjugation
action of a group of field automorphisms of H to T . We may therefore assume that |F | = 2, and
that F is generated by the standard field automorphism f := ψl−1|H fixed at the beginning of this
subsection. By Lemma 2.33(a) and Theorem 2.13, CD(z) is the fusion system of the extension
H〈f〉, a semidirect product.

Let k = l+2, and let H1 = NH̄(H). ThenH1/Z(H) ∼= Inndiag(H) by [GLS98, Lemma 2.5.9(b)],
and hence H1 = HNT̄ (H). As Outdiag(H) has order 2, we may fix t ∈ NT̄ (H)−H with order 2k+1

and powering to z, so that H1 = H〈t〉. Considered as an endomorphism of H̄, ψl−1 normalizes
H and T̄ , and thus induces an automorphism of H1. Set g = ψl−1|H1 , so that g has order 4, and

g|H = f has order 2. Set G1 := H1〈g〉, G := H〈f〉, Ĝ1 = G1/CG1(H), and G̃ = G/Z(H). Note
that CG1(H) = 〈g2, z〉. Since g2 centralizes H, 〈g2〉 is normal in H〈g〉, and H〈g〉/〈g2〉 ∼= H〈f〉
via an isomorphism which sends g〈g2〉 to f . Hence, there is an isomorphism Ĥ〈ĝ〉 → H̃〈f̃〉 = G̃

which is the identity on Ĥ = H/Z(H) = H̃ and which sends ĝ to f̃ .

By [GLS98, Theorem 4.9.1(d)], Inndiag(H) ∼= Ĥ1 acts transitively on the involutions in Ĥĝ−Ĥ,

and so each involution in Ĥĝ is Ĥ-conjugate to ĝ or ĝt̂. As tg = tψl−1 = t5
2l−1

and 52l−1 − 1 has

2-adic valuation l + 1 = k − 1, we see that there is an element u ∈ 〈t2k−1〉 6 H of order 4, such

that [g, u] = 1, u2 = z, and tg = tu. Then gt = gu−1, so that ĝt̂ = ĝû−1. From the isomorphism

Ĥ〈ĝ〉 ∼= H̃〈f̃〉, we conclude that each involution in H̃〈f̃〉 is H̃-conjugate to either of f̃ or f̃ ũ−1.

However, the two preimages of f̃ ũ−1 in H〈f〉 are fu−1 and fu = fu−1z, both of which are of order
4 as [f, u] = 1. Thus, all four subgroups of H〈f〉 which are not contained in H and contain 〈z〉
are H-conjugate. Since 〈f, z〉 is such a four subgroup, it is enough to show that f is H-conjugate
to fz. But fs = fz where s = t2 ∈ H. This completes the proof that all involutions in Hf −H
are H-conjugate, and this implies the first part of the assertion. It then follows from the choice
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of f that f is fully D-centralized. Hence, O2(CD(f)) ∼= FSol(5
2l−1

) by [LO02, Proposition 3.3(d)],
so the second assertion of the lemma follows from the first. �

Lemma 2.36. Let P ∈ Ce be an essential subgroup. Then either AutC(P ) = AutH(P ) or P =
CT (U).

Proof. Recall that an essential subgroup in a fusion system is in particular both centric and
radical. In [LS17], the centric radical subgroups and their outer automorphism groups in H and C
are explicitly tabulated. From Tables 1 and 4 there, the only outer automorphism groups having
a strongly embedded subgroup are S3 and a Frobenius group of order 32 · 2. In all cases, either P
is essential in H and OutC(P ) = OutH(P ), or P = CT (U). �

Both in the work of Levi-Oliver and Aschbacher-Chermak, the Benson-Solomon systems are
exhibited by constructing a group K containing NH(U) with index 3, and then defining FSol(q)
to be the fusion system on T generated by H and K. We will need slightly different generation
statements in the process of showing that a subintrinsic maximal Benson-Solomon subsystem is
standard.

Lemma 2.37. The following hold.

(a) C is generated by H and NC(CT (U)).
(b) C is generated by H and NC(R).

Proof. Part (a) follows from Lemma 2.36 and the Alperin-Goldschmidt fusion theorem [AKO11,
Theorem I.3.6]. As U 6 E, R = CT (E) 6 CT (U). Further, Tk is abelian and weakly C-closed
by Lemma 2.31(a), hence also R = CT (Ω1(Tk)) is weakly C-closed. It follows that NC(CT (U)) 6
NC(R), and so (b) follows from (a). �

We close this section by verifying that the Benson-Solomon systems are split. This allows
one, via Theorem 8 of [Asc16], to severely restrict the Sylow subgroup of the centralizer of a
Benson-Solomon standard subsystem.

Lemma 2.38. C is split.

Proof. Let (F , U) be a critical split extension of C, where F a saturated fusion system over S.
Let L be the centric linking system for C. Note that S/CS(C)T embeds in Out(L) by [Sem15,
Theorem A], while Out(L) is cyclic of 2-power order by [HL17, Theorem 3.10]. Hence

U ∩ CS(C)T > 1.(2.39)

Write U = 〈u, v〉 with u ∈ U ∩ CS(C)T . Then either U ∩ CS(C) > 1, or there exist elements
c ∈ CS(C) and 1 6= t ∈ T such that u = ct.

In the former case, i.e. if U ∩CS(C) > 1, we have by (T1) that U is normal in NF (U ∩CS(C)) =
F , and hence that U 6 Z(F) by Lemma 2.29(a). Thus F is the central product of U = CS(C)
and C, as desired.

Consider the latter case. As CS(C) ∩ T 6 Z(C) = 1 and u is an involution, t is an involution.
Then, as C has one class of involutions, u is F-conjugate to cz ∈ Z(S). However, 〈u〉 is itself
fully F-centralized by Lemma 2.29(a), and so u ∈ Z(S). As 〈v〉 is fully F-centralized and
CF (u) = CF (v) by Lemma 2.29, we have v ∈ Z(S). But then, using Lemma 2.32 to see that
Proposition 2.10 applies, we have U 6 Z(S) = CS(T ) = CS(C)Z(T ) by that proposition applied
with F1 = F , so that CS(C)T = UT = S. Thus, F is the central product of CS(C) with C in this
case as well. �
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3. Subintrinsic maximal Benson-Solomon components

We assume the following hypothesis throughout this section.

Hypothesis 3.1. Let F be a saturated fusion system over the 2-group S. Fix an odd prime
power q and assume C ∼= FSol(q) over T ∈ Ff is maximal in C(F). Let z be the involution in
Z(T ), set H = CC(z), and suppose that z ∈ I(H). Assume that C is not a component of F . Fix
t ∈ I(C).

The purpose of this section is to prove the following theorem.

Theorem 3.2. Assume Hypothesis 3.1. Then C is standard.

Proof. This is the content of Lemmas 3.8 and 3.9 below. �

Lemma 3.3. Let α ∈ HomF (T, S). Then Cα is maximal in C(F), Hα = CCα(zα), zα ∈ I(Hα),
and Cα is not a component of F .

Proof. By Lemma 2.5(b), Cα is not a component of F as C is not a component of F . As T ∈ Ff ,
it is follows from [Asc16, 6.2.13] that Cα is maximal in C(F). As α induces an isomorphisms from
C to Cα, we have Hα = CCα(zα). Since z ∈ I(H), Lemma 2.15(b) gives zα ∈ I(Hα). �

Lemma 3.4. The following hold.

(a) C is terminal in C(F).
(b) For each α ∈ A(t), Cα is normal in CF (tα).

Proof. By [Asc16, 8.1.2.3], property (b) follows from (a). So we only need to show (a). By
Hypothesis 3.1, C is maximal and subintrinsic in C(F). Since m(T ) = 4 by Lemma 2.31(d),
Theorem 7.4.14 of [Asc16] shows that ∆(C) = ∅. It remains to verify the last condition of
terminality. Let ϕ ∈ HomF (〈t, T 〉, S) so that (tϕ, Cϕ) ∈ ρ(C). We need to show that (tϕ, Cϕ) ∈
ρ0(C). In other words, fixing 1 6= a ∈ Qtϕ , we need to show that a ∈ X̃ (Cϕ). Note that a ∈ X (Cϕ).

So if ã is the unique involution in 〈a〉 and ã ∈ X̃ (Cϕ), then a ∈ X̃ (Cϕ) by [Asc16, 6.1.5]. So we
may assume without loss of generality that a is an involution. Fix α ∈ A(a). It remains to show

that Cϕα is a component of CF (aα) and thus a ∈ X̃ (Cϕ).

Note first that, by definition of Qtϕ , Cϕ ⊆ CF (a) and thus Cϕα ⊆ CF (aα). By Lemma 2.15(b)

applied with (〈t〉, ϕα) in place of (X,ϕ), we have tϕα ∈ X̃ (Cϕα). Moreover, [tϕ, a] = 1 by definition
of Qtϕ and thus [tϕα, aα] = 1. Hence, Lemma 2.16 yields Cϕα ∈ C(CF (aα)).

We will argue next that Cϕα is subintrinsic in C(CF (aα)). By Lemma 3.3, we have CCϕα(zϕα) =
Hϕα and zϕα ∈ I(Hϕα). Recall that Hϕα ⊆ Cϕα ⊆ CF (aα). In particular, [Tϕα, aα] = 1 and
thus [zϕα, aα] = 1. Hence, by Lemma 2.16 applied with (〈zϕα〉, 〈aα〉,Hϕα) in place of (X,Y, C),
we have zϕα ∈ ICF (aα)(Hϕα). As zϕα ∈ Z(Hϕα), this implies that Cϕα is indeed subintrinsic in
C(CF (aα)) as we wanted to prove.

As we have verified that Cϕα is a subintrinsic member of C(CF (aα)), it follows now from [Asc17b,
1.9.2] applied with CF (aα) in the role of F and with Cϕα in the role of M that Cϕα is contained
in some component of CF (aα). Since Cϕ is maximal in C(F) by Lemma 3.3, it follows from
Lemma 2.17 applied with (tϕ, Cϕ) in place of (t, C) that Cϕα is a component of CF (aα). As argued
above this shows (a). �

By Lemma 2.34, we can and will assume that q = 52l for some l > 0. Moreover, for the
remainder of this section, we will adopt Notation 2.30.
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Lemma 3.5. The following hold:

(a) We have AutF (R) = CAutF (R)(E) AutC(R) and O2(AutF (R)) = CAutF (R)(E).
(b) We have NS(R) = NS(T ) = CS(E)T .
(c) R is fully F-normalized.
(d) We have OutF (R) = O2(OutF (R)) × OutC(R) and O2(AutF (R)) = AutCS(E)(R). In

particular, O2(AutF (R)) = O2(AutC(R)).

Proof. Set C := CAutF (R)(E). Observe that AutF (R)/C embeds into Aut(E) ∼= GL3(2). As
AutC(R)/ Inn(R) ∼= GL3(2) and CAutC(R)(E) = Inn(R), it follows that AutF (R) = C AutC(R).

By Lemma 2.31(a), Tk is homocyclic of rank 3 and exponent 2k. Clearly, Tk is characteristic in
R. So for every 1 6 i < k, the map Ωi+1(Tk)/Ωi(Tk)→ Ωi(Tk)/Ωi−1(Tk), xΩi(Tk) 7→ x2Ωi−1(Tk)
is an isomorphism of AutF (R)-modules. So in particular, C acts trivially on Ωi+1(Tk)/Ωi(Tk) for
all 1 6 i < k. As |R/Tk| = 2, C acts also trivially on R/Tk. Hence, C is a 2-group and thus
contained in O2(AutF (R)). As E is an irreducible AutF (R)-module, it follows C = O2(AutF (R)).
This shows (a).

As R is characteristic in T by Lemma 2.31(c), we have NS(T ) 6 NS(R). By (a), C AutT (R) is
the unique Sylow 2-subgroup of AutF (R) containing AutT (R). As AutS(R) is a 2-group containing
AutT (R), it follows AutS(R) 6 C AutT (R) and thus NS(R) 6 CS(E)T 6 CS(z). Let now
x ∈ CS(E) 6 CS(z). As z ∈ I(H), there exists α ∈ A(z) such that Hα is a component of
CF (zα). Then xα ∈ CS(Eα) 6 CS(zα) and (Hα)x

α
is a component of CF (zα) by Lemma 2.5.

So by [Asc11, 9.8.2], either Hα = (Hα)x
α

or Hα and (Hα)x
α

form a commuting product. In the
latter case, Eα = (Eα)x

α
6 Z(Hα), a contradiction to Z(Hα) = 〈zα〉. Hence, Hα = (Hα)x

α
and

thus (T x)α = (Tα)x
α

= Tα. This implies x ∈ NS(T ). So we have shown that CS(E) 6 NS(T )
and thus NS(R) 6 CS(E)T 6 NS(T ) 6 NS(R). This yields (b).

For the proof of (c), let γ ∈ A(R). Recall from (b) that T 6 NS(T ) = NS(R). So in particular,
as T ∈ Ff , we have T γ ∈ Ff and NS(T )γ = NS(T γ). Thus it follows from Lemma 3.3 that we
can apply (b) with tγ , zγ , Cγ and Rγ in place of t, z, C and R to obtain NS(Rγ) = NS(T γ). This
gives NS(T γ) = NS(T )γ = NS(R)γ 6 NS(Rγ) = NS(T γ) and therefore NS(R)γ = NS(Rγ). Since
Rγ is fully normalized, it follows that R is fully normalized. This shows (c). In particular, by
the Sylow axiom, AutS(R) ∈ Syl2(AutF (R)) and so C = O2(AutF (R)) 6 AutS(R). Thus, C =
AutCS(E)(R). By (b), [CS(E), T ] 6 CS(E)∩T = CT (E) = R. Hence, [C,AutT (R)] 6 Inn(R). As

AutC(R) = 〈AutT (R)AutC(R)〉 and C is normalized by AutC(R), it follows [C,AutC(R)] 6 Inn(R).
This together with (a) implies that (d) holds. �

Lemma 3.6. There exists σ ∈ A(t) such that zσ is fully F-centralized, and T σ ∈ Ff .

Proof. Step 1: We show that there exists χ ∈ A(t) with Tχ = T . For the proof let α ∈ A(t). As
T ∈ Ff , there exists β ∈ A(Tα) with Tαβ = T . It follows from Lemma 3.4(b) that Tα E CS(tα),
i.e., CS(tα) 6 NS(Tα). Hence, as tα is fully centralized, tαβ is fully centralized and αβ ∈ A(t).
So χ := αβ has the required properties.

Step 2: We show the existence of σ. By Step 1, we can choose χ ∈ A(t) with Tχ = T . Let
γ ∈ A(z). As Tχ = T and Z(T ) = 〈z〉, we have zχ = z and NS(T ) 6 CS(z). By Lemma 3.4(b),
we have Cχ E CF (tχ) and thus CS(tχ) 6 NS(Tχ) = NS(T ) 6 CS(z). Since tχ is fully centralized,
it follows that tχγ is fully centralized and σ := χγ ∈ A(t). Similarly, as Tχ = T ∈ Ff , we conclude
that T σ = T γ ∈ Ff . By the choice of γ, zσ = zγ is fully centralized. �
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Recall that t centralizes T . So by Lemma 3.3 and Lemma 3.6, we may assume that t and z are
fully centralized. Moreover, we set

VR := RCS(R) and Q0 := CS(T ).

Lemma 3.7. The following hold.

(a) We have H ⊆ CF (Q0).
(b) We have CS(R) = ECS(T ), and hence VR = RCS(T ).
(c) NNF (R)(VR) is a constrained fusion system and NC(R) ⊆ NNF (R)(VR).

(d) Let GR be a model for NNF (R)(VR) and N := CGR(VR/R). Then N1 := 〈TN 〉 = O2(N)R
is a model for NC(R).

(e) We have Q0 = 〈z〉 ×Q where Q = CQ0(N1) with N1 as in (d).
(f) If Q is as in (e), then Q is the unique largest subgroup of S centralized by C. More

precisely, C ⊆ CF (Q) and X 6 Q for all X 6 S with C ⊆ CF (X).

(g) If Q is as in (e), then Q is the unique largest member of X̃ (C).

Proof. We start by proving (a) and (b). Recall that E = Z(R). As R 6 T , clearly ECS(T ) 6
CS(R), so for (b) we must show the other inclusion. Since z ∈ R, we have CS(R) = CCS(z)(R) 6
CS(z). Now by our choice of notation, 〈z〉 is fully F-centralized, so CF (z) is a saturated fusion
system on CS(z). By Hypothesis 3.1, H is a component of CF (z). The normalizer of a component
is constructed in [Asc16, §2.1], and thus, we may form NCF (z)(H) over the 2-group NS(T ) =
NCS(z)(T ). By Lemma 3.5(b), CS(R) 6 NS(R) = NS(T ), so we may form the product system

Ĥ := HCS(R) as in [Asc11, Chapter 8] or [Hen13] in the normalizer NCF (z)(H). Thus Ĥ is a

saturated subsystem of CF (z) with O2(Ĥ) = O2(H) = H = E(Ĥ). So Ĥ is a small extension
of H/Z(H) in the sense of [AO16, Definition 2.21]. By Lemma 2.33(a), H is tamely realized by

H := Spin7(52l), so that by [AO16, Lemma 2.22], there is an extension Ĥ = HCS(R) of H that

tamely realizes Ĥ. By Lemma 2.33(b), each automorphism of H normalizing T and centralizing
R is conjugation by an element of E. Hence, Q0 6 CS(R) 6 ECS(H) 6 ECS(T ). This implies
CS(R) = ECS(T ) and Q0 = CE(T )CS(H) = 〈z〉CS(H) = CS(H). The first property gives (b),
and the latter property yields (a).

Since R is fully normalized by Lemma 3.5(c), NF (R) is saturated. Note that VR is weakly
closed and thus fully normalized in NF (R). So NNF (R)(VR) is saturated. Clearly NNF (R)(VR) is
constrained, as VR is a centric normal subgroup of this fusion system. We show next that NC(R) ⊆
NNF (R)(VR). Let R 6 P 6 T and ϕ ∈ AutNC(R)(P ). By Alperin’s fusion theorem [AKO11,
Theorem I.3.6], it is enough to show that ϕ extends to an element of AutF (PVR) normalizing
VR. Let α ∈ A(P ) and observe that ϕα ∈ AutF (Pα). By (b), VR = RCS(T ) 6 PCS(P ). Thus
V α
R 6 P

αCS(Pα) 6 Nϕα . As Pα is fully normalized, it follows from the extension axiom that ϕα

extends to a morphism ψ : PαV α
R → S in F . Note that Rαψ = (Rα)ϕ

α
= Rα as Rϕ = R. Since R

is fully normalized and thus fully centralized, we have CS(R)αψ = CS(Rαψ) = CS(Rα) = CS(R)α

and thus V αψ
R = RαCS(R)α = V α

R . So ψ ∈ AutF (PαV α
R ) extends ϕα and normalizes V α

R . Hence,

ϕ̂ := ψα
−1 ∈ AutF (PVR) extends ϕ and normalizes VR. This proves (c).

Let now GR and N be as in (d), and set N1 := 〈TN 〉. (The model GR for NNF (R)(R) exists
and is unique up to isomorphism by [AKO11, Proposition III.5.8]. Moreover, CGR(VR) 6 VR.)
Note that S0 := NS(R) ∈ Syl2(GR). By (b), [VR, T ] 6 R. As VR and R are normal in GR,
it follows [VR, 〈TGR〉] 6 R and thus N1 6 〈TGR〉 6 N . Let P 6 T be essential in NC(R). As
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OutC(R) ∼= GL3(2), we observe that R 6 P , P/R ∼= C2 × C2 and OutNC(R)(P ) ∼= GL2(2) ∼=
S3. In particular, AutNC(R)(P ) = 〈AutT (P )AutNC(R)(P )〉. Since AutNC(R)(P ) 6 AutGR(P ) by
(c), it follows that AutNC(R)(P ) 6 Aut〈TGR 〉(P ) 6 AutN (P ). Now we conclude similarly that

AutNC(R)(P ) 6 〈AutT (P )AutN (P )〉 6 AutN1(P ). As P was arbitrary, the Alperin–Goldschmidt
Fusion Theorem yields that NC(R) ⊆ FS0∩N1(N1).

Note that N/CN (R) embeds into AutF (R). As CGR(VR) 6 VR, and CN (R) centralizes VR/R
and R, CN (R) is a normal 2-subgroup of N . So it follows from Lemma 3.5(d) that N/O2(N) ∼=
OutC(R) ∼= GL3(2) and O2(N) = CN (E) 6 CS0(E). Using Lemma 3.5(b), we conclude that
O2(N) 6 CS(E) 6 NS(T ) and thus [O2(N), T ] 6 CT (E) = R. Since O2(N) and R are nor-
mal in N , this implies [O2(N), N1] 6 R. In particular, noting O2(N1) = O2(N) ∩ N1 and

setting N := N/R, it follows that O2(N1) is abelian. Observe that T/(T ∩ O2(N)) = T/R is
isomorphic to a Sylow 2-subgroup of GL3(2). Thus, TO2(N)/O2(N) is a Sylow 2-subgroup of
N/O2(N) and so TO2(N) is a Sylow 2-subgroup of N . In particular, TO2(N1) = (TO2(N))∩N1

is a Sylow 2-subgroup of N1. Note that T ∩ O2(N1) = T ∩ O2(N) = CT (E) = R. Thus T

is a complement to O2(N1) in the Sylow 2-subgroup TO2(N1) of N1. So by a Theorem of

Gaschütz [KS04, Theorem 3.3.2], there exists a complement N0 of O2(N1) in N1. We choose
a preimage N0 of such a complement N0 with R 6 N0 6 N1. As N/O2(N) ∼= GL3(2) is simple,

we have N = O2(N)N1 = O2(N)N0. Since O2(N) ∩ N0 = O2(N1) ∩ N0 = R and O2(N) is

centralized by N1, it follows N = O2(N) × N0. In particular, N0 = O2(N)R is normal in GR.
As NC(R) ⊆ FS0∩N1(N1) ⊆ FS0∩N (N), we have hyp(NC(R)) 6 hyp(FS0∩N (N)) 6 O2(N). Hence
T = hyp(NC(R))R 6 O2(N)R = N0. In particular, N0 = N1, O2(N1) = R, T ∈ Syl2(N1)
and N1/R ∼= GL3(2). We show next that NC(R) = FT (N1). We have seen already that
NC(R) ⊆ FT (N1). If P is essential in FT (N1), then it follows from N1/R ∼= GL3(2) that
R 6 P 6 T , P/R ∼= C2 × C2 and OutN1(P ) ∼= GL2(2). As GL2(2) ∼= OutNC(R)(P ) 6 OutN1(P ),
it follows AutN1(P ) = AutC(P ). Hence, we have NC(R) = FT (N1). Since CN1(O2(N1)) 6
N1∩CN (E) = N1∩O2(N) = O2(N1), we conclude that N1 is a model for NC(R). This completes
the proof of (d).

We consider now the action of N1/R ∼= GL3(2) on UR := CS(R) = CVR(R). Note that
E = Z(R) is central in UR and recall that UR = ECS(T ) by (b). In particular, UR/Φ(CS(T )) is
elementary abelian and thus Φ(UR) 6 Φ(CS(T )). If E ∩ Φ(UR) were non-trivial, then we would
have E 6 Φ(UR) as N1 acts irreducibly on E. So it would follow that E 6 CS(T ) contradicting
E 66 Z(T ). This shows that E ∩ Φ(UR) = 1. Set

ŨR = UR/Φ(UR).

As ŨR = ẼC̃S(T ) is elementary abelian, there is a complement to Ẽ in ŨR which lies in C̃S(T ).

So by a Theorem of Gaschütz [KS04, Theorem 3.3.2], applied in the semidirect product N1 n ŨR,

there exists a complement Q̃ to Ẽ in ŨR which is normalized by N1. We choose the preimage Q

of Q̃ such that Φ(UR) 6 Q 6 UR.

As [UR, N1] 6 [VR, N ] 6 R, we have [Q,N1] 6 [UR, N1] 6 UR ∩ R = Z(R) = E. In particular,

[Q̃,N1] 6 Q̃ ∩ Ẽ = 1. So [Q,N1] 6 Φ(UR) ∩ E = 1. Recalling Q0 = CS(T ), we conclude

Q 6 CQ0(N1). Observe that Q has index 2 in Q0 = CS(T ) as Ẽ ∩ C̃S(T ) = 〈z̃〉 has order 2.
Hence, since [z,N1] 6= 1, it follows Q = CQ0(N1) and Q0 = 〈z〉 ×Q. This proves (e).
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By (a), Q0 centralizes H, and by Lemma 2.37(b), we have C = 〈H, NC(R)〉. So if X 6 Q0 =
CS(T ), then X contains C in its centralizer if and only if it contains NC(R) in its centralizer. As
NC(R) = FT (N1) by (d) and Q is centralized by N1, clearly every subgroup of Q contains NC(R)
in its centralizer. Fix X 6 CS(T ) with NC(R) ⊆ CF (X). To complete the proof of (f), we need
to show that X 6 Q. To prove this let Θ be the set of all pairs (Y, ϕ) such that RX 6 Y 6 VR,
ϕ ∈ AutF (Y ), [Y, ϕ] 6 R, ϕ|X = idX , and ϕ|R ∈ AutC(R) has order 7. As AutC(R)/ Inn(R) ∼=
GL3(2), there exists an element ϕ0 of order 7 in AutC(R). As NC(R) ⊆ CF (X), ϕ0 extends to
an automorphism ϕ ∈ AutF (RX) with ϕ|X = ϕ0, and for such ϕ we have (RX,ϕ) ∈ Θ. Thus
Θ 6= ∅ and we may fix (Y, ϕ) ∈ Θ such that |Y | is maximal. Assume first that Y = VR. Then
ϕ is a morphism in NNF (R)(VR) and thus realized by conjugation with an element of GR. Recall

that H1 = O2(H)R is normal in GR and contains T . Hence, Q = CVR(H1) is normal in GR
and thus ϕ-invariant. As [VR, ϕ] 6 R by definition of Θ, it follows [Q,ϕ] 6 R ∩ Q = 1. As
UR = ECS(T ) = EQ and ϕ|R acts fixed-point-freely on E#, it follows Q = CUR(ϕ). By definition
of Θ, we have ϕ|X = idX and thus X 6 CUR(ϕ) = Q. So X 6 Q if Y = VR.

Assume now Y < VR. Recall from above thatNF (R) is saturated. So we can fix α ∈ ANF (R)(Y ).
Then ϕα ∈ AutF (Y α) and [Y α, ϕα] 6 R as [Y, ϕ] 6 R by definition of Θ. Recall also that
ϕ|R ∈ AutC(R) has order 7. By Lemma 3.5(d), we have O2(AutF (R)) = O2(AutC(R)). So we
can conclude that ϕα|R = (ϕ|R)α ∈ O2(AutF (R))α = O2(AutF (R)) 6 AutC(R). As NC(R) =
FT (N1) by (d), there exists thus n ∈ N1 with ϕα|R = cn|R. Set ψ := cn|VR ∈ AutF (VR). As
N1 6 N , we have [VR, ψ] 6 R. In particular, as R 6 Y α 6 VR, we have (Y α)ψ = Y α. Thus,
χ := (ψ|Y α)−1 ◦ϕα ∈ AutF (Y α) is well-defined. Observe also that χ|R = idR and [Y α, χ] 6 R, as
[Y α, ψ] 6 [VR, ψ] 6 R and [Y α, ϕα] 6 R. So χ is an element of CAutF (Y α)(R)∩CAutF (Y α)(Y

α/R),

which is a normal 2-subgroup of AutNF (R)(Y
α). Since Y α ∈ NF (R)f , the Sylow axiom yields that

AutNS(R)(Y
α) is a Sylow 2-subgroup of AutNF (R)(Y

α). Hence, there exists s ∈ NCS(R)(Y
α) with

χ|Y α = cs|Y α . So ϕα = ψ|Y α ◦ cs|Y α extends to ρ = ψ ◦ cs|VR ∈ AutF (VR). Since [VR, ψ] 6 R, the
automorphism ρ acts on VR/R in the same way as cs|VR . So writing m for the order of s, we have
[VR, ρ

m] 6 R. Moreover, ρm extends (ϕα)m. Since Y < VR, we have Y < W := NVR(Y ). Note
that R 6 Y α 6 Wα 6 VR, so [Wα, ρm] 6 [VR, ρ

m] 6 R and ρm|Wα ∈ AutF (Wα). Therefore,

ϕ̂ := (ρm|Wα)α
−1 ∈ AutF (W ) with [W, ϕ̂] 6 Rα

−1
= R. Moreover, ϕ̂|R = (ϕ|R)m ∈ AutC(R) has

order 7, as ϕ|R ∈ AutC(R) has order 7 and m is a power of 2. Moreover, ϕ̂|X = (ϕ|X)m = idX as
ϕ|X = idX . This shows (W, ϕ̂) ∈ Θ. As |W | > |Y | and (Y, ϕ) ∈ Θ was chosen such that |Y | is
maximal, this is a contradiction. So we have shown that Y = VR. As argued before, this yields
X 6 Q and thus shows (f).

It remains to prove (g). By (f), C ⊆ CF (Q) and X 6 Q for every X 6 CS(T ) with C ⊆ CF (X).

In particular, X 6 Q for every X ∈ X̃ (C). Moreover, t ∈ Q and Q ∈ X (C). As t ∈ I(C) ⊆ X̃ (C),
it follows thus from [Asc16, 6.1.5] that Q ∈ X̃ (C). This shows (g). �

Lemma 3.8. C is nearly standard.

Proof. By Lemma 3.4(a), C is terminal in C(F). By Lemma 3.7(g), the collection X̃ (C) has a
unique maximal member. Hence, C is nearly standard by [Asc16, Proposition 7]. �

Lemma 3.9. AutF (T ) 6 Aut(C).

Proof. Let α ∈ AutF (T ) and note that α ∈ CF (z). Recall that z was chosen to be fully normalized.
Thus, H is a component of CF (z) as z ∈ I(H). It follows from [Asc11, 9.7] that there is a unique
component of CF (z) with Sylow group T , so that Hα = H by Lemma 2.5(b). Since T is fully
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F-normalized by Hypothesis 3.1, α extends to an automorphism α̃ of Q0T = CS(T )T = CS(R)T
with the last equality by Lemma 3.7(b). From Lemma 2.31(c), R is characteristic in T , so we have
that Rα = R, and hence that α̃ normalizes CS(R). Thus, α ∈ NNF (VR)(R), a model for which is,
by definition, GR. We may therefore choose g ∈ NGR(T ) such that α = cg|T . As H := CGR(VR/R)
is a normal subgroup of GR, g leaves invariant O2(H)R = 〈TH〉, which is a model for NC(R) by
Lemma 3.7(d), whence α normalizes NC(R). Thus, α ∈ Aut(〈H, NC(R)〉) = Aut(C), the equality
coming from the generation statement of Lemma 2.37(b), and now the assertion follows as α was
chosen arbitrarily. �

4. The centralizer of C

We operate for the remainder of the paper under the following hypothesis, although we will
sometimes state it again for emphasis.

Hypothesis 4.1. Suppose F is a saturated 2-fusion system on S and C ∈ C(F) is a standard
subsystem of F over T ∈ Ff . Assume C ∼= FSol(q) and C is not a component of F . Write Q for
the centralizer of C (cf. Remark 2.23), and let Q be the Sylow group of Q.

Lemma 4.2. One of the following holds.

(a) Q is elementary abelian, or
(b) Q is of 2-rank 1.

Proof. This is a direct consequence of Hypothesis 4.1, Lemma 2.38, and [Asc16, Theorem 8]. �

Proposition 4.3. Assume Hypothesis 4.1. Then Q has 2-rank 1.

Proof. Write Z(T ) = 〈z〉. The subsystem Q is tightly embedded by [Asc16, 9.1.6.2]. Assume that
Q has 2-rank larger than 1. Then by Lemma 4.2, Q is elementary abelian and |Q| > 2. Moreover,
by Lemma 2.27, FQ(Q) is tightly embedded in F . By [Asc16, 9.4.11], we can fix P ∈ QF such
that P 6 NS(Q) and P 6= Q. By [Asc16, 3.1.8], we have

P ∩Q = 1.

As C is standard, we have CENF (Q). In particular, we can form the product CP inside of NF (Q).
As Q is normal in NF (Q), we have Q 6∈ P CP . Furthermore, if α ∈ HomCP (P, TP ) then α induces
the identity on PT/T by the construction of CP in [Hen13] and since P ∼= Q is abelian. So
TP = TPα. Hence, replacing P by a suitable CP -conjugate of P , we may assume

P ∈ (CP )f .

Then by [Asc16, Theorem 3.4.2], FP (P ) is tightly embedded in CP .

By [HL17, Theorem 3.10], Out(C) is cyclic. Note that NS(Q) induces automorphisms of C via
conjugation as C E NF (Q). Moreover, the elements of NS(Q) inducing inner automorphisms of
C are precisely the elements in TCS(T ). Thus, NS(Q)/TCS(T ) is cyclic. By Lemma 2.24 and
Lemma 2.32, CS(T ) = 〈z〉Q and so TCS(T ) = TQ. Since P ∼= Q is elementary abelian, it follows
P ∩ (TQ) 6= 1. Let 1 6= x ∈ P ∩ (TQ) and write x = uv with u ∈ T and v ∈ Q. Note that u and
v commute. As x is an involution, it follows that u and v have order at most 2. If u = 1 then
x = v ∈ P ∩Q contradicting P ∩Q = 1. Hence u is an involution. Let α ∈ HomCP (CTP (x), TP )
such that xα ∈ (CP )f . We proceed now in several steps to reach a contradiction.

Step 1: We show that xα ∈ CS(T ) and xα = zvα with vα ∈ Q. For the proof note first
that, as C E NF (Q), we have T E NS(Q) and thus Z(T ) = 〈z〉 E NS(Q). Hence, z is central in
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NS(Q) and thus fully centralized in CP . As u ∈ T is an involution and all involutions in T are
by [LO02, Theorem 2.1] C-conjugate, the element u is CP -conjugate to z. Hence, there exists
ϕ ∈ HomCP (CTP (u), TP ) such that uϕ = z. Note that x, v ∈ CTP (u), since x = uv and u and v
commute. We obtain xϕ = zvϕ, where vϕ ∈ Q 6 CS(T ), as v ∈ Q and ϕ is a morphism in NF (Q).
Since z ∈ Z(T ), it follows T 6 CS(xϕ). Recall that α was chosen such that xα ∈ (CP )f . Thus,
using Lemma 2.3, we can conclude that T 6 CS(xα) and so xα ∈ CS(T ). Note that u, v ∈ CTP (x)
as u and v commute. Moreover, since α is a morphism in NF (Q), we have vα ∈ Q 6 CS(T ). So
xα = uαvα and uα = xα(vα)−1 ∈ CS(T ). As T is strongly closed in NF (Q), we have uα ∈ T and
thus uα ∈ Z(T ) = 〈z〉. As u 6= 1, it follows uα = z and xα = zvα with vα ∈ Q. This completes
Step 1.

Step 2: We show CC(z) ⊆ CCP (xα). For the proof, we may assume that xα 6= z. By definition
of Q, we have C ⊆ CF (Q). By Step 1, xα ∈ Q〈z〉. Therefore CC(z) ⊆ CF (Q〈z〉) ⊆ CNF (Q)(x

α).

Let R ∈ CC(z)fc and let χ ∈ AutCC(z)(R) be an arbitrary element of odd order. Then χ extends

to some χ̂ ∈ AutNF (Q)(R〈xα〉) with (xα)χ̂ = xα. The order of χ̂ equals the order of χ and
is therefore odd. As xα 6= z is by Step 1 an involution centralizing T , we have xα 6∈ T and
thus (R〈xα〉) ∩ T = R. Moreover, clearly [R〈xα〉, χ̂] 6 R and χ̂|R = χ is a morphism in C.
By [BLO03, Lemma 6.2], we have R ∈ Cc. So it follows from the definition of CP in [Hen13] that
χ̂ is a morphism in CP . Hence, χ is a morphism in CCP (xα). By Alperin’s fusion theorem [AKO11,
Theorem I.3.6], CC(z) is generated by Inn(T ) and all the automorphism groups O2(AutCC(z)(R))

with R ∈ CC(z)fc. As T 6 CS(xα), it follows that CC(z) ⊆ CCP (xα).

Step 3: We show that Pα E CCP (xα) and Pα ∩ T 6 〈z〉. As remarked above, FP (P ) is tightly
embedded in CP . Hence, it follows from (T1) that Pα E NCP (〈xα〉) = CCP (xα). In particular,
as CC(z) ⊆ CCP (xα) by Step 2, it follows that Pα ∩ T is strongly closed in CC(z). As Pα ∩ T is
abelian, [AKO11, Corollary I.4.7] gives that Pα∩T is normal in CC(z). Since CC(z)/〈z〉 is simple,
this implies Pα ∩ T 6 〈z〉 as required.

Step 4: We show that [T, Pα] = 1. As CC(z) = Op(CC(z)), we have

T = hyp(CC(z)) = 〈[Y, β] : Y 6 T, β ∈ AutCC(z)(Y ) of odd order〉.

Let Y 6 T and β ∈ AutCC(z)(Y ) of odd order. We will show that [Y, β, Pα] = 1, which is
sufficient to complete Step 4. By Step 2, CC(z) ⊆ CCP (xα). As Pα E CCP (xα) by Step 3, we

can thus extend β to β̂ ∈ AutCP (Y Pα) with (Pα)β̂ = Pα. By the definition of CP in [Hen13]

and since P is abelian, we have [Pα, β̂] 6 Pα ∩ T 6 〈z〉, where the last inclusion uses Step 3. In

particular, [Pα, β̂, Y ] = 1. As Pα E CCP (xα) and T centralizes xα by Step 1, T normalizes Pα.

Hence, again using Step 3, we conclude [Y, Pα] 6 [T, Pα] 6 T ∩ Pα 6 〈z〉 and so [Y, Pα, β̂] = 1.

It follows now from the Three-Subgroup-Lemma that [Y, β, Pα] = [β̂, Y, Pα] = 1. This finishes
Step 4.

Step 5: We now derive the final contradiction. By Step 4, we have Pα 6 CS(T ). As we
saw above, CS(T ) = Q〈z〉 and thus Q has index 2 in CS(T ). Since |Pα| = |Q| > 2, it follows
Pα ∩ Q 6= 1. However, as Q 6∈ P CP , the subgroup Pα is an F-conjugate of Q not equal to Q.
Hence, by [Asc16, 3.1.8], we have Pα ∩Q = 1. This contradiction completes the proof. �

Assuming Hypothesis 4.1, we are thus left with the case that Q has 2-rank 1, i.e. is either cyclic
or quaternion. We end this section with a lemma which handles a residual situation occuring in
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this context. It will be needed both in Section 5 to exclude the quaternion case and in Section 6
to handle the case that Q is cyclic.

Lemma 4.4. Assume Hypothesis 4.1 with Q of 2-rank 1. Let t be the unique involution in Q and
fix a subnormal subsystem F0 of F over S0 6 S such that t ∈ S0. Then the following hold:

(a) 〈t〉 is fully F0-normalized.
(b) If [T,CS0(t)] 6= 1, then C is a component of CF0(t). Moreover,

Ω1(CS0(CS0(t))) = Ω1(Z(CS0(t))) = 〈t, z〉.

(c) Assume that Q 6 S0 and C ⊆ CF0(t). If 〈t〉 6 Z(S0) is weakly F0-closed in Z(S0), then
〈t〉 is weakly F0-closed.

Proof. As Q is tightly embedded, there is a fully F-normalized F-conjugate of 〈t〉 in Q by [Asc16,
3.1.5]. It follows that 〈t〉 is fully F-normalized, since t is the unique involution in Q. So (a) follows
from 2.4. In particular, CF0(t) is saturated.

In the proof of (b) and (c), we will use that C is normal in CF (t) by (S2). In particular C
is a component of CF (t). In addition, we will use that CS(T ) = 〈z〉Q from Lemma 2.24 and
Lemma 2.32.

For the proof of (b) assume that [T,CS0(t)] 6= 1. By (a) and [Asc11, 8.23.2], CF0(t) is subnormal
in CF (t). So by [Asc11, 9.6], C is a component of CF0(t) as [T,CS0(t)] 6= 1. In particular,
T 6 CS0(t). As C is normal in CF (t), we have T E CS(t) and in particular, z 6 Z(CS0(t)). As
CS(T ) = 〈z〉Q, we obtain 〈t, z〉 6 Ω1(Z(CS0(t))) 6 Ω1(CS0(CS0(t)) 6 Ω1(CS(T )) = 〈t, z〉 and this
implies that (b) holds.

For the proof of (c) assume now that Q 6 S0, C ⊆ CF0(t), and 〈t〉 6 Z(S0) is weakly F0-closed
in Z(S0). Then in particular, S0 = CS0(t) and CF0(t) is saturated. As T 6 CS0(t) is non-abelian,
(b) gives that C is a component of CF0(t) and Ω1(Z(S0)) = 〈t, z〉. As C is normal in CF (t), one
easily checks that C is CF0(t)-invariant (using the equivalent definition of F-invariant subsystems

given in [AKO11, Proposition I.6.4(d)]). Hence, by a Theorem of Craven [Cra11], C = Op
′
(C) is

normal in CF0(t).
Assume now there exists and F0-conjugate f of t with f 6= t and fix such f . We proceed in

three steps to derive a contradiction.

Step 1: We show that f 6∈ QT and t is weakly F0-closed in QT . Assuming f ∈ QT , we would
have f 6 Ω1(QT ) 6 T 〈t〉. So f ∈ T or f = ut with u ∈ T . In the latter case, since t 6 Q 6 CS(T )
and f is an involution, u is an involution. By [LO02, Theorem 2.1(b)] all involutions in T are
C-conjugate. Moreover C ⊆ CF0(t). So if f ∈ T , then f is F0 conjugate to z, and if f = ut for
some involution u ∈ T , then f is F0-conjugate to zt. In both cases we get a contradiction to the
assumption that t is F0-closed in Z(S0). So f 6∈ QT . Because of the arbitrary choice of f , this
completes Step 1.

We adopt Notation 2.30. In particular, E is the elementary abelian subgroup of order 23

specified there. As C is normal in CF0(t), we can form the product system C〈f〉 (as defined
in [Hen13]) in CF0(t) over the 2-group T 〈f〉.

Step 2: We show that f is C〈f〉-conjugate to every member of the coset fE.
Note first that F ∗(C〈f〉) = C. Thus, by [HL17, Theorem 4.3], C〈f〉 is uniquely determined as

the split extension of C by a field automorphism of order 2. As all involutions in T 〈f〉−T are C〈f〉-
conjugate by Lemma 2.35, after conjugating in C〈f〉, we may take f to be this field automorphism.
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Appealing again to Lemma 2.35, we have CC〈f〉(f) = 〈f〉×C1, where C1 = O2(CC〈f〉(f)) has Sylow

group CT (f) and is isomorphic to FSol(q
1/2). Then Tk−1 = f1(Tk) is the torus of C1. Moreover,

there is an element of Tk that conjugates f to fz (for example, an element in Tk − Tk−1 that
powers to z). Recall from Notation 2.30 that E = Ω1(Tk) = Ω1(Tk−1). Since AutC1(Tk−1) acts
transitively on E# by Lemma 2.31(b), we see that indeed f is C〈f〉-conjugate to every element of
fE.

Step 3: We derive the final contradiction. Since C is normal in CF (t) and S0 6 CS(t), S0

induces automorphisms of C by conjugation. As CS(T ) = Q〈z〉 and Aut(C) is cyclic by [HL17,
Theorem 3.10], it follows that QT = TCS(T ) is normal in S0 and S0/QT cyclic. Now let α ∈
AF0(f) with fα = t. Then α is defined on 〈f〉E and, hence t is F0-conjugate to every member
of the coset tEα by Step 2. Since Eα is of 2-rank 3, while S0/QT is cyclic, it follows that
Eα ∩QT 6= 1. For 1 6= e ∈ Eα ∩QT , t is conjugate to te ∈ QT . This contradicts Step 1. �

5. Q quaternion

In this section, we show that Q is not quaternion using Aschbacher’s classification of quaternion
fusion packets [Asc17a]. When combined with Proposition 4.3, the results of this section reduce
to the case in which Q is cyclic, which is handled in Section 6.

The Classical Involution Theorem identifies the finite simple groups which have a classical
involution, that is, an involution whose centralizer has a component (or solvable component) iso-
morphic to SL2(q) (or SL2(3)) [Asc77a, Asc77b]. With one exception (M11) the simple groups
having a classical involution are exactly the groups of Lie type in odd characteristic other than
L2(q) or 2G2(q), where the SL2(q) components in involution centralizers are fundamental sub-
groups generated by the center of a long root subgroup and its opposite.

In a group with a classical involution, the collection of these SL2(q) subgroups satisfies special
fusion theoretic properties that were identified and abstracted by Aschbacher in [Asc77a, Hy-
pothesis Ω]. More recently, Aschbacher has formulated these conditions in fusion systems in the
definition of a quaternion fusion packet, and his memoir [Asc17a] classifies all such packets.

Definition 5.1. A quaternion fusion packet is a pair τ = (F ,Ω), where F is a saturated fusion
system on a finite 2-group S, and Ω is an F-invariant collection of subgroups of S such that

(QFP1) There exists an integer m such that for all K ∈ Ω, K has a unique involution z(K) and is
nonabelian of order m.

(QFP2) For each pair of distinct K,J ∈ Ω, |K ∩ J | 6 2.
(QFP3) If K,J ∈ Ω and v ∈ J − Z(J), then vF ∩ CS(z(K)) ⊆ NS(K).
(QFP4) If K,J ∈ Ω with z = z(K) = z(J), v ∈ K, and ϕ ∈ HomCF (z)(〈v〉, S), then either vϕ ∈ J

or vϕ centralizes J .

We assume the following hypothesis until the last result in this section.

Hypothesis 5.2. Hypothesis 4.1 and its notation hold with Q quaternion. Let t be the unique
involution in Q. Set Ω = QF , denote by F◦ the subnormal closure of Q in F over the subgroup
S◦ 6 S, and set Ω◦ = QF

◦
.

A tightly embedded subsystem with quaternion Sylow 2-subgroups, such as the centralizer
system Q in Hypothesis 5.2, always yields a quaternion fusion packet in a straightforward way.

Lemma 5.3. (F ,Ω) is a quaternion fusion packet.
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Proof. We go through the list of axioms. (QFP1) holds by definition of Ω. Note that Ω ⊆ P∗ in
the sense of Definition 3.1.9 of [Asc16]. Hence, by [Asc16, 3.1.12.2], K ∩ J = 1 for each pair of
distinct K,J ∈ Ω. This shows that (QFP2) holds, and that any element of S centralizing z(K)
must normalize K, so that (QFP3) also holds. Finally, under the hypotheses of (QFP4), K = J
in the current situation. Fix 1 6= v ∈ K and ϕ ∈ HomCF (z(K))(〈v〉, S). Then z(K) ∈ 〈v〉, and
z(K)ϕ = z(K). Also, 〈v〉 ∈ P, and K ∈ P∗, in the sense of Definition 3.1.9 of [Asc16]. Since
〈v〉ϕ ∩K > 1, we see from [Asc16, 3.1.14] (applied with 〈v〉, ϕ, and K in the role of P , ψ, and R)
that 〈v〉ϕ 6 K. This shows that (QFP4) holds. �

Lemma 5.4. Let F0 be a subnormal subsystem of F over the subgroup S0 6 S. Assume that
Q 6 S0, and that C 6 CF0(t). Then QF0 6= {Q}.

Proof. Suppose on the contrary that QF0 = {Q}. Then Q is normal in S0, and so t ∈ Z(S0).
Let α be a morphism in F0 with tα ∈ Z(S0). By the extension axiom, we may assume that α is
defined on Q, and then Qα = Q by assumption, so that tα = t. This shows that 〈t〉 is weakly
F0-closed in Z(S0). Thus, 〈t〉 is weakly F0-closed by Lemma 4.4(b).

Now as 〈t〉 6 Z(S0) is weakly closed in F0, we have that 〈t〉 6 Z(F0) by Alperin’s Fusion
Theorem [AKO11, Theorem I.3.6]. Hence, C is a component of CF0(t) = F0 by Lemma 4.4(b).
So C is a component of F contrary to Hypothesis 4.1. �

Lemma 5.5. C is a component of CF◦(t). In particular, C is contained in CF◦(t).

Proof. Define sub0(F , Q) = F , S0 = S, and for each i > 0, define subi+1(F , Q) to be the normal
closure of Q in subi(F , Q) with Sylow group Si+1. Then Fi+1 E Fi for each i > 0, and F◦ is by
definition the terminal member of this series. By Lemma 4.4(a), 〈t〉 is fully normalized in Fi for
i > 0, so CFi(t) is saturated for each i.

We argue by contradiction, and fix the least nonnegative integer i such that C is not a component
of CFi+1(t). Thus, as C is normal in CF (t) by (S2), we have that i > 0 and that C is a component

of CFi(t). By Lemma 5.4, we have that QFi 6= {Q}. Fix Q′ ∈ QFi − {Q}. As Q is tightly
embedded in F , we have Q ∩Q′ = 1 by [Asc16, 3.1.12.2], and we have

Q′ 6 CSi(Q) 6 CSi(t)

by [Asc16, 3.3.5]. By definition of Fi+1, we have Q′ 6 Si+1 and thus Q′ 6 CSi+1(t). As CS(T ) =
Q〈z〉 by Lemma 2.24 and Lemma 2.32, it follows [Q′, T ] 6= 1. and thus [T,CSi+1(t)] 6= 1. Hence,
C is a component of CFi+1(t) by Lemma 4.4(b), and this contradicts our choice of i. �

Lemma 5.6. The pair (F◦,Ω◦) is a quaternion fusion packet, F◦ is the normal closure of Q in
F◦, and F◦ is transitive on Ω◦.

Proof. Note that (F◦,Ω◦) is a quaternion fusion packet by Lemma 5.3 and [Asc17a, Lemma 6.4.2.1].
Recall that F◦ is the subnormal closure of Q in F . So the second statement follows from the
definition of subnormal closure, while the third holds by definition of Ω◦. �

Let r be an odd prime. The class of finite groups denoted Chev(r) in [Asc17a, Chapter 0] is the
same as the class denoted Lie(r) in [GLS98, Definition 2.2.2]; see also [GLS98, Theorem 2.2.7].
(But this is not the same as the class “Chev(r)” appearing in [GLS98, Theorem 2.2.8].) In the
next lemma, we write Lie(r) for the class of groups appearing in [GLS98, Definition 2.2.2].

Lemma 5.7. Let r be an odd prime, let G ∈ Lie(r) and let t ∈ G be an involution. Then for
each component K̄ of CG(t)/O(CG(t)), K̄/Z(K̄) is a known finite simple group.
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Proof. Let C := CG(t) and denote quotients by O(C) with bars. By [GLS98, Theorem 4.2.2],
C has a normal subgroup L which is a central product of groups Li ∈ Lie(r), and with C/L
solvable. By [GLS98, Theorem 2.2.7], each central product factor Li of L is either quasisimple or
solvable, and hence each component of C̄ is the image of a component of C under the quotient
map C → C̄. Hence, if K̄ is a component of C̄, then there is a component K of C covering
K̄, and K 6 E(C) = E(L) as C/L is solvable. It follows that K = Li for some i. Hence,
K̄/Z(K̄) ∼= Li/Z(Li) is known. �

Now remove the standing assumption that Hypothesis 5.2 holds.

Proposition 5.8. Assume Hypothesis 4.1. Then Q is cyclic.

Proof. We argue by contradiction, so that Q is quaternion by Proposition 4.3. Hence, Hypothe-
sis 5.2 holds, and so we adopt the notation there. By Lemma 5.6, the pair (F◦,Ω◦) satisfies the
hypotheses of Theorem 1 of [Asc17a]. Hence, by that theorem, one of the following holds: either

(1) t ∈ Z(F◦), or
(2) t ∈ O2(F◦)− Z(F◦), or
(3) there is a finite group G with Sylow 2-subgroup S◦ such that F◦ = FS◦(G), and one of

the following holds,
(a) S◦ has 2-rank at most 3, or
(b) G ∈ Lie(r) for some odd prime r, or
(c) G is quasisimple with Z(G) a 2-group, and G/Z(G) ∼= Sp6(2) or Ω+

8 (2).

Note that in all cases,

C is a component of CF◦(t),(5.9)

by Lemma 5.4.
In Case (1), C is a component of CF◦(t) = F◦. Hence C is a component of F since F◦ is

subnormal in F , contrary to Hypothesis 4.1. In Case (2), the hypotheses of [Asc17a, Theorem 2]
hold for (F◦,Ω◦), and then by [Asc17a, Lemma 6.7.3], we have that F◦ is constrained. Thus,
CF◦(t) is also constrained, and hence C 6 E(CF◦(t)) = 1, a contradiction.

Case (3)(a) yields a contradiction, since QT 6 S◦ is of 2-rank 5 by Lemma 2.31(d). In Case
(3)(b), note that CF◦(t) is the fusion system of CG(t)/O(CG(t)) by [AKO11, I.5.4]. So by (5.9) and
Lemma 5.7, the hypothesis of Lemma 2.7 hold, and so there is a component K of CG(t)/O(CG(t))
such that C is the 2-fusion system of K by that lemma. This contradicts the fact that C is
exotic [LO02, Proposition 3.4].

In Case 3(c) we may assume that Case (2) does not hold, so that t /∈ Z(F◦). Then t /∈ Z(G).
As Sp6(2) and Ω+

8 (2) are of characteristic 2-type and as t /∈ Z(G), we have that CG(t) is of
characteristic 2. Hence CF◦(t) is constrained. We therefore obtain the same contradiction here
as in Case (2). �

6. Proof of Theorem 1.1

In this section, we finish the proof of Theorem 1.1 by handling the case in which Q is cyclic.
We therefore assume the following hypothesis and notation for this section.

Hypothesis 6.1. Hypothesis 4.1 holds with Q cyclic and C subintrinsic in C(F). Write Ω1(Q) =
〈t〉, St = CS(t), and Ft = CF (t).
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Lemma 6.2. The following hold.

(a) 〈t〉 ∈ Ff ,
(b) CS(T ) = Q〈z〉,
(c) Ω1(CS(St)) = Ω1(Z(St)) = 〈t, z〉, and
(d) t is not F-conjugate to z.

Proof. Parts (a) and (c) follow from Proposition 4.4(a),(b) applied with F0 = F , while (b) follows
from Lemma 2.24 and Lemma 2.32.

It remains to prove (d). By (T1) in the definition of tight embedding (Definition 2.26), we have
Q = Q E Ft. Further, Q = CSt(C) by [Asc16, 9.1.6.3]. Write quotients by Q with bars. Note
that CS̄t(C̄) is trivial by [Lyn15, Lemma 1.14], and C̄ ∼= C. Thus, F ∗(F̄t) = C̄ is isomorphic to a

Benson-Solomon system. By [HL17, Theorem 4.3], this quotient is therefore a split extension of C̄
by a 2-group of outer automorphisms, and in particular, O2(F̄t) = C̄. It follows that O2(Ft) 6 QC.
Since O2(QC) = C and since O2(O2(Ft)) = O2(Ft), we have that O2(Ft) = C. Hence, t is fully
normalized and not in the hyperfocal subgroup of Ft, while zα is contained in the hyperfocal
subgroup of Hα 6 CF (zα) for every α ∈ A(〈z〉). Thus, t and z are not F-conjugate. �

The assumption that C is subintrinsic in C(F) in Hypothesis 6.1 is important for the relative
simplicity of the proof of the next lemma.

Lemma 6.3. t ∈ Z(S), and 〈t〉 is weakly F-closed in Z(S).

Proof. Assume first that t /∈ Z(S). Then St < S, so that St < NS(St). Fix a ∈ NS(St) − St.
Then ta = tz and za = z by Lemma 6.2(c,d).

Since za = z and since H is a component of CF (z) on T by Hypothesis 6.1, we see that Ha
is a component of CF (z) on T a. However, if Ha 6= H, then since Sylow subgroups of distinct
components commute, we would have T a 6 CSt(T ) 6 Q〈z〉 by Proposition 2.10, and we would
be forced to conclude that T is abelian. Since this is not the case, a normalizes T . Thus, by
(S4) in Definition 2.22, conjugation by a restricts to an automorphism of C. Thus, a acts also on
Q = CSt(C), so that ta = t. This contradicts the choice of a.

We have shown that t ∈ Z(S). Then Lemma 6.2(c) yields Ω1(Z(S)) = Ω1(Z(St)) = 〈t, z〉,
while Lemma 6.2(d) says that t is not F-conjugate to z. Hence, 〈t〉 is weakly F-closed in Z(S)
by Burnside’s fusion lemma. �

Lemma 6.4. 〈t〉 is weakly F-closed.

Proof. This is a combination of Lemma 6.3 and Lemma 4.4(b). �

We now remove the standing assumption that Hypothesis 6.1 holds, and complete the proof of
Theorem 1.1.

Theorem 6.5. Assume Hypothesis 3.1 holds. Then C is a component of F .

Proof. By Theorem 3.2, Hypothesis 4.1 holds. Then Proposition 5.8 yields that Q is cyclic, so
that Hypothesis 6.1 holds. By Lemma 6.4, 〈t〉 is weakly F-closed. It follows that 〈t〉 is preserved
by each F-automorphism of an F-centric radical subgroup of S. Hence t ∈ Z(F) by Alperin’s
fusion theorem, so that C is a component of CF (t) = F . �
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