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Background:Multiple studies havemade robust associations between differential DNAmethylation and exposure
to cigarette smoke. But whether a DNA methylation phenotype is established immediately upon exposure, or
only after prolonged exposure is less well–established. Here, we assess DNA methylation patterns from periph-
eral blood samples in current smokers in response to dose and duration of exposure, along with the effects of
smoking cessation on DNA methylation in former smokers.
Methods: Dimensionality reduction was applied to DNA methylation data at 90 previously identified smoking–
associated CpG sites for over 4900 individuals in the Generation Scotland cohort. K–means clustering was per-
formed to identify clusters associatedwith current and never smoker status based on thesemethylation patterns.
Cluster assignments were assessed with respect to duration of exposure in current smokers (years as a smoker),
time since smoking cessation in former smokers (years), and dose (cigarettes per day).
Findings: Two clusters were specified, corresponding to never smokers (97·5% of whomwere assigned to Cluster
1) and current smokers (81·1% of whomwere assigned to Cluster 2). The exposure time point fromwhich N50%
of current smokers were assigned to the smoker–enriched cluster varied between 5 and 9 years in heavier
smokers and between 15 and 19 years in lighter smokers. Low–dose former smokers were more likely to be
assigned to the never smoker–enriched cluster in the first year following cessation. In contrast, a period of at
least two years was required before the majority of former high–dose smokers were assigned to the never
smoker–enriched cluster.
Interpretation:Our findings suggest that smoking–associated DNAmethylation changes are a result of prolonged
exposure to cigarette smoke, and can be reversed following cessation. The length of time in which these signa-
tures are established and recovered is dose dependent. Should DNA methylation–based signatures of smoking
status be predictive of smoking–related health outcomes, our findings may provide an additional criterion on
which to stratify risk.
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1. Background

Cigarette smoking is among the leading causes of illness and prema-
ture death worldwide [1]. In addition to multiple cancers [2], it is a
major risk factor for cardiovascular and respiratory disorders [3,4].
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Recent studies suggest that altered DNA methylation may play an im-
portant role in the biological pathways linking smoking to adverse
health outcomes [5–9].

DNA methylation is an epigenetic modification, typically
characterised by the addition of a methyl group to a cytosine–guanine
dinucleotide (CpG). Both genetic and environmental factors can modu-
late DNAmethylation levels, which in turn can regulate gene expression
[10]. To date, the most informative environmental correlate of DNA
methylation has been cigarette smoking. Multiple epigenome–wide as-
sociation studies (EWAS) have been performed on smoking, using
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study

The effects of cigarette smoking on DNA methylation have been
well established. However, fewer studies have investigated:
(1) how long these effects persist upon cessation; (2) the extent
to which they can be reversed; and (3) how long it takes for
such smoking-based methylation patterns to appear.

Added value of this study

We show the extent to which smoking-associated DNA methyla-
tion profiles are time- and dose-dependent in current smokers. In
addition, we demonstrate the reversibility of these changes in for-
mer smokers is dependent on time since cessation and dose prior
to quitting. To our knowledge, this is currently the largest study of
DNA methylation in former smokers. Furthermore, the broad age
range of our cohort has permitted us to investigate DNA methyla-
tion in both recent and long-term smokers (from b1 to N50 years
as a smoker), and recent and long-term quitters (from b1 to
N35 years since quitting).

Implications of all the available evidence

The establishment of smoking-associated DNA alterations pro-
vides an important public health message as a deterrent from
smoking initiation. Furthermore, our reports on the dose-
dependency and reversibility of these changes may encourage a
reduction in the cigarette intake of current smokers (if not cessa-
tion), and an incentive against relapse in former smokers.

Table 1
Summary of the Generation Scotland cohort and variables assessed. Sample numbers are
presented for each variable (N) along with mean and standard deviation (SD) values,
where applicable.

Variable N Mean SD

Sex
Males 1872 – –
Females 3033 – –
Age (years) 4905 48·5 13·9

Smoking status
Current smoker 917 – –
Former smoker 1466 – –
Never smoker 2522 – –

Smoking variablesa

Cigarettes per day (current and former smokers) 2177 11·1 9·8
Cigarettes per day (current smokers) 859 15·2 9·8
Cigarettes per day (former smokers) 1318 8·5 8·8
Pack years (current and former smokers) 2037 15·9 16·8
Pack years (current smokers) 854 23·3 19·7
Pack years (former smokers) 1183 10·6 11·8
Years as a smoker (current and former smokers) 2221 27·7 13·4
Years as a smoker (current smokers) 917 28·7 13·2
Years as a smoker (former smokers) 1304 27·0 13·5
Years since cessation (former smokers only) 1324 9·0 10·0

a Information relating to dose and time since cessation/duration of exposure was not
available for all current and former smokers.
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either status (e.g. current smoker, former smoker, never smoker) or in-
take (e.g. pack years) as the trait of interest [5,7,9], identifying thou-
sands of smoking–associated loci. Moreover, cohort studies have
reported altered DNA methylation in the offspring of women who
smoked during pregnancy [11–13]. These analyses have identified a
large number of loci where methylation is altered by exposure to ciga-
rette smoke, with the cg05572921 locus in the aryl hydrocarbon recep-
tor (AHR) repressor (AHRR) gene being among the most robustly
implicated.[6–8,13] The relationship between exposure to cigarette
smoke and DNA methylation changes has been widely reported. How-
ever, when these effects are established in smokers and whether they
can be recovered by cessation is not well understood. Studying the me-
chanics of smoking–associated DNA methylation changes may provide
a novel means of identifying risk of smoking–related morbidities.

We investigated the extent to which smoking–associated DNA
methylation changes were associated with duration of exposure in cur-
rent smokers and time since cessation in former smokers.We examined
the relationship between DNAmethylation from peripheral blood sam-
ples and smoking in a cohort of over 4900 individuals, incorporating
self–reported years as a smoker and cigarettes per day asmetrics for du-
ration of exposure and dose, respectively.

2. Methods

2.1. The Generation Scotland cohort

Details of the Generation Scotland: Scottish Family Health Study
(GS:SFHS) have been described previously [14,15]. DNA samples were
collected for genotype– and DNA methylation–profiling along with de-
tailed clinical, lifestyle, and sociodemographic data. The current study
comprised 4905 individuals from the cohort for whom both DNA
methylation and smoking data were available. A summary of variables
assessed in this analysis is presented in Table 1.

GS:SFHS smoking data were collected using two different ques-
tionnaires. The first version of the questionnaire was answered by
2158/4905 (44·0%) of the participants and collected data on absolute
values with respect to number of cigarettes smoked, and age started/
stopped smoking. The second version of the questionnaire, which was
answered by the remaining 2747 individuals in the analysis sample
(56·0%), collected data using binned intervals. In order to harmonise
the two sets of measurements, mid–point interval estimates were
calculated for the ordinal data from the second version of the ques-
tionnaire (e.g., 17 years of exposure was assigned to individuals who
had reported smoking between 15 and 19 years). Second–hand
smoking status was assigned based on whether participants reported
exposure to cigarette smoke at home, work or elsewhere, or whether
they reported cohabiting with a smoker. Both questionnaires can
be accessed from the GS:SFHS website (www.generationscotland.co.
uk).

In the current study, exposure data were placed into ten five–year
bins from 0 to 4 years to 45–49 years (N ≥ 32 per bin), with the longest
exposure defined as ≥50 years (N = 23). Data on time since cessation
were placed into five–year bins from 10 to 14 years to 30–34 years (N
≥ 48 per bin). The longest time since cessation was defined as
≥35 years (N = 53), whereas the most recent cessation time points
(0–9 years) were presented as yearly intervals (N ≥ 26). Sample counts
at each exposure and cessation time point are presented in Supplemen-
tary Tables 1–2.

2.2. Ethics

All components of GS:SFHS received ethical approval from the NHS
Tayside Committee on Medical Research Ethics (REC Reference Num-
ber: 05/S1401/89). GS:SFHS has also been granted Research Tissue
Bank status by the Tayside Committee on Medical Research Ethics
(REC Reference Number: 10/S1402/20), providing generic ethical ap-
proval for a wide range of uses within medical research.

2.3. GS:SFHS DNA methylation

Genome–wide DNAmethylationwas profiled from peripheral blood
samples in 5200 individuals using the Illumina HumanMethylationEPIC

http://www.generationscotland.co.uk
http://www.generationscotland.co.uk
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BeadChip. Quality control was conducted in R [16]. ShinyMethyl was
used to plot the log median intensity of methylated versus
unmethylated signal per array, with outliers excluded upon visual in-
spection [17]. WateRmelon was used to remove (1) samples where
≥1% of CpGs had a detection p–value in excess of 0·05 (2) probes with
a beadcount of less than three inmore than five samples, and (3) probes
where ≥0·5% of samples had a detection p–value in excess of 0·05 [18].
Methylation β-values were calculated using the dasen() normalisation
method. Briefly, the dasen method performs background adjustment
and quantile normalises Type I and Type II probes separately. From
these, M-values were calculated using the Beta2M() function in wateR-
melon [18]. ShinyMethyl was used to exclude samples where predicted
sex did not match recorded sex. Ten saliva–derived samples and three
samples from individuals who had answered “yes” for all self–
reported conditions were also excluded (e.g. stroke, Alzheimer's dis-
ease, depression. Further details on these conditions are available in
the GS:SFHS questionnaire, accessible from the GS:SFHS website:
http://www.generationscotland.co.uk). This left a sample of 5088 par-
ticipants with blood–derived samples available for analysis, of whom
4905 had smoking data available.

2.4. Statistical analysis

All analyses were performed in R [16].
Data–driven cluster analysis was performed on the top 100 p–

value–ranked methylation sites from a recent, large meta–analysis
EWAS of current versus never smoking (Joehanes et al. Supplementary
Table 1, Sheet 02) [5,19]. Ninety of the top 100 probes were present in
the GS:SFHS DNA methylation dataset following quality control (Sup-
plementary Table 3). Clusters were visualised by plotting the first two
principal coordinates, identified via data reduction analysis (multi di-
mensional scaling), using the cmdscale() function in the stats package
[16,19]. K–means clustering was performed to partition the data,
using the kmeans() function in the stats package [16]. As the probe set
under consideration was associated with current/never smoker status,
two clusters were specified.

Logistic regression was performed to assess the relationship be-
tween a genetic variant in the CHRNA5–A3–B4 gene cluster that is asso-
ciated with heaviness of smoking (rs1051730) and cluster assignment
in current smokers, adjusting for sex [20]. The relationships between
cluster assignment and batch, sex, and passive smoking were assessed
using Chi–Squared Tests. The relationship between cluster assignment
and alcohol consumption (current, former, and never drinker) was
assessed using a Fisher's Exact Test. The relationship between cluster as-
signment and time since cessation (former smokers) and duration of
exposure (current smokers) was assessed using logistic regression,
adjusting for sex, age and dose.

Data were visualised using “broken stick” regression lines using the
default parameters for the segmented() function in the segmented
package in R [21]. Comprehensive smoking index (CSI) values were cal-
culated for former smokers using themethod described by Dietrich and
Hoffman, using a half-life estimate of 1.5 [22].

3. Results

Descriptive data for the 917 current–, 1466 ex–, and 2522 never–
smokers are summarised in Table 1. On average, current smokers had
a greater duration of exposure compared to former smokers
(28·7 years vs 27·0 years), and a greater cumulative dose (23·3 pack
years vs 10·6 pack years).

3.1. Clustering of current smokers depends on dose and duration smoked

Data reduction was performed on DNA methylation data for 90
smoking-associated sites (multidimensional scaling; Fig. 1). Of the
2522 never smokers, 2459 (97·5%) were assigned to a never smoker–
enriched cluster whereas, of the 917 current smokers, 744 (81·1%)
were assigned to a smoker–enriched cluster (K-means clustering with
two clusters specified). Therewas no association betweenmisclassifica-
tion of current smokers to the never smoker–enriched cluster and sex, al-
cohol consumption, batch, or genotype at the well–established nicotine
addiction genetic variant rs1051730, (P ≥ 0·103; Supplementary
Table 4) [20]. Similarly, there was no association betweenmisclassifica-
tion of never smokers (N= 63) to the smoker–enriched cluster and ex-
posure to second–hand smoke, sex, alcohol consumption, or plate
processing batch (P ≥ 0·179; Supplementary Table 4). The proportion
of current smokers assigned to the smoker–enriched cluster increased
with years as a smoker (Fig. 2 and Supplementary Table 1; ORsmoker-

enriched cluster = 1.07 per year of smoking; 95% CI = 1.03–1.12; P = 2.4
× 10−4). A significant association was also present between cluster as-
signment and cigarettes per day (ORsmoker-enriched cluster = 1.12 per cig-
arette smoked per day; 95% CI= 1.09–1.15; P= 3.9 × 10−14). Of the 32
individuals who reported smoking for 0–4 years prior to DNA methyla-
tion sampling, seven (21·9%) were assigned to the smoker–enriched
cluster; for the 76 individuals who reported smoking for 5–9 years
prior to sampling, 34 (44·7%) were assigned to the smoker–enriched
cluster. The proportion of assignments to the smoker–enriched cluster
increased to 87·3% for current smokers at 20–24 years of exposure, re-
maining stable thereafter. Of the 670 current smokers reporting at least
20 years of exposure, 605 (90·3%) were assigned to the smoker–
enriched cluster.

There was a significant association between dose (cigarettes per
day) and duration of exposure (years as a smoker) in current smokers.
Individuals who had smoked for a longer duration were more likely
to be heavier smokers (age– and sex–adjusted linear regression Beta
= 0·38 cigarettes per day for each year as a smoker; P b 0.0001). To
minimise confounding between dose and duration of exposure, data
for current smokers were split based on the median dose to generate
time point–specific subsets of heavy and light smokers. The proportion
of smoker–enriched cluster assignments increased with duration of
exposure in both dose groups, stabilising at 15–19 years of exposure
in heavy smokers, and 25–29 years in lighter smokers (Fig. 2 and
Supplementary Table 1). The proportion of individuals assigned
to the smoker–enriched cluster over time in heavy smokers was
significantly greater than that in light smokers (Wilcoxon signed rank
test P = 0·002).

3.2. Clustering of former smokers depends on dose and time since cessation

Of the 1466 former smokers assessed, 359 (24·5%)were assigned to
the smoker–enriched cluster. The proportion of smoker–enriched cluster
assignments decreased as time since smoking cessation increased
(Fig. 3 and Supplementary Table 2; ORsmoker-enriched cluster = 0.86 per
year since cessation; 95% CI= 0.83–0.89; P b 2.0 × 10−16). A significant
association was also present between cluster assignment and cigarettes
per day in former smokers (ORsmoker-enriched cluster = 1.08 per cigarette
smoked per day; 95% CI = 1.06–1.10; P = 1.67 × 10−14). The highest
proportion of smoker–enriched cluster assignments (64·4%) was ob-
served in individuals who had quit smoking within a year prior to sam-
pling. The proportion of smoker–enriched cluster assignments fell below
50% by 1 year following cessation. Contrary to the findings in current
smokers, there was a significant negative relationship between dose
and duration of exposure in former smokers (age– and sex–adjusted
linear regression Beta = −0·18 cigarettes smoked per day for each
year as a smoker P b 0.0001). Samples were next split on the median
dose at each cessation time point to obtain a high–dose and low–dose
group. The proportion of smoker–enriched cluster assignments was sig-
nificantly lower in the low–dose group relative to the high–dose group
(Wilcoxon signed rank test P= 1·5× 10−4). The proportion of smoker–
enriched cluster assignments in the low–dose group was consistently
below 50% (Fig. 3 and Supplementary Table 2). The proportion of
smoker–enriched cluster assignments for former smokers exposed to a

http://www.generationscotland.co.uk


Fig. 1. Principal coordinate vectors 1 and 2 from a multidimensional scaling analysis of 90 smoking-associated probes. Points and ellipses are coloured by smoking status (blue circles =
current smokers, orange triangles = former smokers, purple crosses = never smokers). Ellipses represent normal confidence ellipses.
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high dose fell below 50% two years following cessation. From five years
following smoking cessation, the proportion of smoker–enriched cluster
assignments stabilised in high– and low–dose groups. Of the 760 indi-
viduals who had quit at least 5 years prior to sampling, 84 (11·1%)
were assigned to the smoker–enriched cluster. As duration of exposure
was not considered here, the analysis was repeated substituting years
since cessation with pack years (years as a smoker × packs smoked
per day), revealing a similar trend (Supplementary Table 5, Supplemen-
tary Fig. 1). Using pack years as a metric, the proportion of smoker–
enriched cluster assignments in the low–dose group stabilised from
Fig. 2. Proportion of current smokers assigned to Cluster 2 (smoker-enriched cluster) by durat
solid line, square points), high-dose current smokers (orange dashed line, circular points) and
two years following smoking cessation, compared to five years follow-
ing cessation in the high–dose group.

The comprehensive smoking index (CSI) was calculated as an addi-
tional metric to incorporate duration, intensity and recency of exposure
in former smokers, and its relationship with cluster assignment was
assessed [22]. In a five-year period from cessation, individuals with
lower CSI scores were less likely to be assigned to the smoker-enriched
cluster relative to thosewith a higher CSI score. Cluster assignments be-
tweenhigh- and low-CSI individuals stabilised beyond5 years following
cessation (Supplementary Fig. 2).
ion of exposure. “Broken stick” regression lines are presented for all current smokers (red
low-dose current smokers (purple dotted line, diamond points).



Fig. 3. Proportion of former smokers assigned to Cluster 2 (smoker-enriched cluster) by years since smoking cessation. “Broken stick” regression lines are presented for all former smokers
(red solid line, square points), high-dose former smokers (orange dashed line, circular points) and low-dose former smokers (purple dotted line, diamond points).
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Finally, we investigated the trajectories of DNA methylation at
probes where smoking-associated modifications were reported to per-
sist up to 30 years following cessation [5]. Of 36 probes reported by
Joehanes et al., 30 were present in the GS:SFHS DNA methylation data
[5]. Absolute t-statistics for DNA methylation in former smokers versus
never smokers decreasedwith increasing years since cessation (Supple-
mentary Fig. 3; Supplementary Tables 6–7). Four probes (cg05575921,
cg21566642, cg01940273 and cg00706683) remained significantly dif-
ferentially methylated in former smokers relative to never smokers up
to 30 years following cessation.
3.3. Sensitivity analysis

To check the robustness of the predictions, three sensitivity analyses
were considered. In the first analysis, a parsimonious predictor was de-
veloped by selecting CpG sites that discriminated smokers from non–
smokers with an AUC N 0.9 (five out of the 18,760 genome–wide
EWAS sites identified by Joehanes et al. – cg05575921, cg21566642,
cg01940273, cg03636183 and cg21161138) [5]. There was a slight im-
provement in the prediction of current versus never smokers using
this score (Supplementary Table 8; Supplementary Fig. 4). However,
the proportion of current smoker assignments in high–dose former
smokers was consistently higher in the five–CpG predictor compared
with the cluster–based predictor. Moreover, low–dose former smokers
displayed a consistent proportion of current smoker assignments over
time in comparison to the cluster–based assignments (Supplementary
Fig. 5 comparison with Fig. 3).

In the second analysis, two predictors were developed based on
polygenic scores for a subset of the most significant smoking–
associated CpG sites (N = 90), and all smoking–associated sites (N =
17,529) [5]. The 90–probe polygenic predictor yielded similar results
to the cluster– and AUC–based predictors (Supplementary Table 9, Sup-
plementary Figs. 6–7). In contrast, the polygenic score derived from the
larger probe set displayed poorer predictions (Supplementary Table 10,
Supplementary Figs. 8–9).

In the final analysis, DNA methylation-based smoking scores were
generated for former smokers, based on a signature developed from
current and never smokers in the GS:SFHS dataset [23]. Average DNA
methylation scores in former smokers decreased within the first
2–3 years of quitting, remaining stable thereafter (Supplementary
Fig. 10).
4. Discussion

In this study, we showed that smoking–based DNAmethylation pat-
terns are time– and dose–dependent. We identified two clusters from
DNA methylation data in over 4900 individuals – one enriched for cur-
rent smokers and another enriched for never–smokers. It took
15–19 years for the majority of low–dose smokers to display a methyl-
ation profile that assigned them to the smoker–enriched cluster. It took
b1 year for the majority of low–dose ex–smokers to be assigned to the
never smoker–enriched cluster. By contrast, it took 5–9 years for the
majority of heavy–dose smokers to display DNA methylation profiles
corresponding to the smoker–enriched cluster, and up to 2 years since
quitting before the majority of heavy–dose ex–smokers had methyla-
tion patterns thatmore strongly resembled those of never smokers. Fur-
thermore, there is little impact of smoking dose on methylation–based
clustering of smoking for those who had smoked for N25 years or for
those who had stopped smoking for at least 6 years.

These findings suggest that a prolonged period of exposure to ciga-
rette smoke is required before a smoking–related signature can be reli-
ably identified using DNA methylation data. This is supported by
evidence frommultiple studies, which have reported an association be-
tween duration of exposure to cigarette smoke and an increased risk of
oesophageal, lung, and bladder cancers [24–26]. Moreover, a longer du-
ration of exposure has been linked to an increased risk of chronic ob-
structive pulmonary disorder (COPD) and respiratory symptoms [27].
It is thereforeworth considering ourfindings in the context ofmolecular
pathological epidemiology (MPE), an approach that implicates exoge-
nous factors such as lifestyle and the environment on both disease path-
ogenesis and omics measures such as DNA methylation and gene
expression [28,29]. In the current study, we examined DNAmethylation
from blood and not from tumour ormore likely disease-targeted tissues
such as lung. Nonetheless, theremay still be precisionmedicine applica-
tions of blood-based DNA methylation smoking signatures. Should the
DNA methylation profile of smokers be associated with an increased
risk of smoking–related pathologies, the current findings suggest there
is a dose–dependent period of exposure within which this risk is com-
parable to that of never smokers.

Others have reported reversion of smoking–associated DNAmethyl-
ation changes in former smokers persisting beyond 30 years from cessa-
tion,with themost rapid reversion rates occurring in thewithin thefirst
14 years [30]. Moreover, increasedmethylation levels at AHRR has been
reported in smokers undergoing cessation therapy [31]. Examination of
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cluster assignments in former smokers revealed to some degree the re-
versible nature of smoking–associated DNA methylation changes. For-
mer light smokers were more likely to be assigned to the never
smoker–enriched cluster, regardless of time since cessation. In contrast,
a period of two years was required before the rate of never–smoker
cluster assignments for former heavy smokers reached N50%.

A small proportion of never smokers were assigned to the smoker–
enriched cluster. Such misclassifications may be a result of passive
smoking, or other lifestyle–related correlates of smoking status. Al-
though we did not observe an association between alcohol consump-
tion and assignment of never smokers to the smoker–enriched cluster,
it is possible that additional smoking–associated factors contribute to
their misclassification. The effects of passive (i.e. second–hand)
smoking onDNAmethylation have beenwell established,with differen-
tial DNA methylation reported to persist up to decades following expo-
sure to cigarette smoke in–utero [11–13]. It was not possible to
determine whether the individuals profiled in the current study were
exposed to cigarette smoke in utero asmaternal smoking data were un-
available. Second–hand smoke exposure has also been linked to differ-
ential DNA methylation in adults. Similar DNA methylation patterns
have been observed in lung tumours of smokers and second–hand
smokers [32]. Hypomethylation of AHRR at cg05575921 has been linked
to recent exposure to second–hand smoke [33], while others have re-
ported significant associations between second–hand smoke exposure
and differential DNA methylation in bladder cancer [34]. There was no
association between misclassification of never smokers and co–
habitation with, or other exposure to, smokers. However, information
on the duration of co–habitation with smokers was not available, and
there was no information regarding co–habitants and exposures prior
to sampling.

We showed the use of AUC–based prediction of current/never
smoking status using five probes is more accurate than the cluster–
based prediction. However, smoking–associated DNA methylation
changes at four of these five probes have been reported to persist de-
cades following cessation [5]. Moreover, as the prediction thresholds
for the five CpGs were selected to discriminate smoking status in the
current sample, this generates a biased predictor when applied to the
same data. While the predictive performance of the cluster–based pre-
dictions is less accurate for current/never smokers, its application to for-
mer smokers may be more suitable due to the inclusion of sites with
reversible smoking–associated DNA methylation changes. This is
reflected by the consistently higher proportion of current smoker as-
signments over time from the AUC–based predictor relative to the
cluster–based predictor.

In a further sensitivity analysis, Z–score based polygenicmethylation
scores were built from all 18,760 genome–wide significant CpGs (N =
17,529 present in the GS:SFHS dataset) and also from the top 100
CpGs (N= 90 present in the GS:SFHS dataset). In the primary analysis,
clusterswere defined in relation to themethylation values in theGener-
ation Scotland cohort, which may have introduced ascertainment bias.
The polygenic analysis for the 90 CpGs yielded very similar results to
the primary models. In contrast, the polygenic analysis derived from
17,529 probes did not perform as well. This was possibly due to the in-
troduction of noise frommany features of small effects. Conversely, pre-
dictive performance was improved by the inclusion of fewer features of
larger effects.

In addition to the lack of information regarding maternal and past
exposures to second–hand smoke, a further limitation to the current
analysis is the presence of confounding between cigarette dose and du-
ration of exposure to cigarette smoke. In order to minimise this associ-
ation and to focus primarily on duration of exposure, the sample was
stratified on the median dose at each time point assessed. A strength
of this study is the use of a large and homogeneous analysis cohort.
The Generation Scotland cohort comprises participants across a broad
age range (18–99 years) which has permitted the analysis of smoking
exposure in a large number of both recently–started and long–term
smokers, as well as recently–quit and long–term former–smokers.
Moreover, future analysis of smoking phenotypes and related health
outcomes are possible, as a result of data linkage capabilities and sample
collection for longitudinal DNA methylation profiling.

In conclusion, our findings suggest there is a dose–dependent inter-
val withinwhich smoking–associated DNAmethylation are established.
Furthermore, we have demonstrated a degree of reversibility of these
changes in former smokers, whereby the interval of reversion is depen-
dent on dose prior to smoking cessation. Consideration of duration of
exposure in current smokers, and years since cessation in former
smokers, coupled with dose, all measured via DNA methylation pat-
terns, may assist in determining and stratifying risk of smoking–
associated morbidities. Highlighting the establishment of smoking-
associated DNA alterations provides an important public health mes-
sage as a deterrent from smoking initiation. Furthermore, our reports
on the dose-dependency and reversibility of these changesmay encour-
age a reduction in the cigarette intake of current smokers (if not cessa-
tion), and an incentive against relapse in former smokers.
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