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Abstract 

Factor (F)XIII is a tranglutaminase enzyme that catalyses the formation of -(-glutamyl)lysyl 

isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2 has an established function in 

hemostasis, where its primary substrate is fibrin.  A deficiency in FXIII manifests as a severe bleeding 

diathesis underscoring its importance in this pathway.  The cellular form of the enzyme, a 

homodimer of the A subunits, denoted FXIII-A, has not been studied in as extensive detail.  FXIII-A 

was generally perceived to remain intracellular, due to the lack of a classical signal peptide for its 

release.  In the last decade emerging evidence has revealed that this diverse transglutaminase can 

be externalised from cells, by an as yet unknown mechanism, and can cross-link extracellular 

substrates and participate in a number of diverse pathways.  The FXIII-A gene (F13A1) is expressed in 
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cells of bone marrow and mesenchymal lineage, notably megakaryocytes, monocytes/macrophages, 

dendritic cells, chrondrocytes, osteoblasts and preadipocytes.  The biological processes that FXIII-A is 

coupled with reflect its expression in these cell types, such as wound healing, phagocytosis and bone 

and matrix remodelling.  This review describes the mounting evidence that this cellular 

transglutaminase can be externalised, usually in response to stimuli, and participate in extracellular 

cross-linking reactions.  A corollary of being involved in these biological pathways is the participation 

of FXIII-A in pathological processes.  In conclusion, the functions of this transglutaminase extend far 

beyond its role in hemostasis and our understanding of this enzyme in terms of its secretion, 

regulation and substrates is in its infancy.   

 

Key words: Factor XIII, Cross-link, Transglutaminases, F13A1, Cellular 

 

Introduction 

In 1948 Laki and Lorand characterised a labile component of blood that when combined with Ca2+ 

rendered a clot insoluble [1]. The protein was later isolated and named fibrin stabilising protein [2].  

Duckert et al [3] then reported that deficiency of fibrin stabilizing factor manifests as a severe 

bleeding diathesis.  Subsequently in 1963, the International Committee on Blood Clotting Factors 

acknowledged this protein as a clotting factor and termed it factor XIII (FXIII).  Our knowledge of FXIII 

has progressed significantly since these early informative observations.  It is now clear that in 

addition to the essential role of FXIII in hemostasis it functions in a variety of other systems ranging 

from wound healing and angiogenesis [4] to stabilisation of the bone matrix [5]. Once activated FXIII 

(FXIIIa) elicits transamidase activity that introduces -(-glutamyl)lysyl isopeptide cross-links into 

protein substrates. It can incorporate cross-links into single protein substrates, such as fibrin, or can 

cross-link different proteins to each other, which can impact on their biological function [6].   

 

In plasma, FXIII exists as a zymogen heterotetramer (FXIII-A2B2) [7] with two catalytic A subunits and 

two inhibitory carrier B subunits. [8].  FXIII-B is synthesised and secreted by hepatocytes [9, 10], 

however the source of plasma FXIII-A subunit has been debated for some years.  The gene, F13A1, is 

largely expressed in cell of bone marrow origin, but it lacks an identifiable endoplasmic reticulum 

(ER) signal sequence and is excluded from the classical ER-Golgi pathway in nucleated cells [11].  

Platelets were projected to be the source of the FXIII-A subunit in plasma [12, 13], but this was ruled 

out, as levels were unchanged in thrombocytopenic mice [14].  Recent observations, in tissue 

specific mouse knockouts of FXIII-A, now pinpoint resident tissue macrophages as the cellular source 

of plasma FXIII-A [15].  Plasma FXIII-A2B2 requires the concerted action of thrombin and calcium to 

be activated [16, 17]. The activation peptides which flank each of the FXIII-A subunits are initially 

cleaved by thrombin, which destabilizes the interaction between the FXIII-A and FXIII-B subunits 

[18]. The subsequent binding of calcium ions to defined sites on the FXIII-A subunits instigates 

dissociation of the FXIII-B subunits and activation peptides [19]. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The cellular form of FXIII is a homodimer of the A-subunits, termed FXIII-A throughout this review 

[20].  Cellular FXIII-A is non-proteolytically activated by modest increases in intracellular Ca2+ 

concentrations [21, 22].  FXIII-A has been localized in a wide variety of different cells including 

platelets [23-25], megakaryocytes [26] monocytes [27, 28], circulating [27, 29], and tissue 

macrophages [29], dendritic cells [30], chondrocytes [31-33] osteoblasts [5] and preadipocytes [34].  

The mechanism of FXIII-A release from these cells remains an enigma, due to the lack of signal 

sequence as stated, and it is also absent from the ER-Golgi secretory pathway in nucleated cells [11]. 

However, FXIII-A in monocyte-macrophages is reportedly directed to the plasma membrane in 

association with Golgi vesicles [14] indicating that it is secreted via an alternative pathway. This 

review will focus on the multifarious actions of cellular FXIII-A and discuss whether it is capable of 

mediating extracellular cross-linking as well as intracellular functions despite its clear lack of a signal 

peptide for secretion. 

 

FXIII-A in Platelets  

Platelets harbour remarkably high concentrations of FXIII-A within their cytoplasm [35, 36], with a 

single platelet accruing 60 ± 10 fg, corresponding to 3% of total platelet protein [37].  -granules 

reportedly contain a minor pool of FXIII in the A2B2 form which is endocytosed from plasma 

alongside fibrinogen [35, 38], however the concentrations are so low  it is often not detectable in the 

platelet secretome [39, 40].  Early studies on platelet FXIII-A concluded that it was not involved in 

haemostasis, as it did not form part of the platelet secretome [39], but our recent observations 

indicate that FXIII-A is translocated from the cytoplasm to the surface of activated platelets where is 

actively retained [40].      

 

Platelet FXIII-A in hemostasis 

The role of plasma FXIIIA2B2 in haemostasis is well-established; it confers mechanical stability to 

thrombi by cross-linking the - and -chains of fibrin, and provides protection against fibrinolytic 

breakdown by cross-linking inhibitors of fibrinolysis to fibrin [41-43]. Our laboratory has shown that 

flow is required to visualize the impact of FXIIIA2B2 on fibrinolysis [44] and that the antifibrinolytic 

action of this transglutaminase is mediated exclusively by cross-linking 2-antiplasmin (2AP) to 

fibrin [45].  Rijken and colleagues subsequently reported that compaction or retraction of fibrin clots 

reveals the strong antifibrinolytic effect of FXIIIA2B2 [46].  The authors also confirm our observations 

that cross-linking of 2AP is required for the antifibrinolytic effect of FXIII to be visualised rather 

than by fibrin-fibrin cross-links [46]. Plasma FXIIIA2B2, but not platelet FXIII-A, also aids in the 

retention of red blood cells in clots through fibrin -chain cross-linking which has a direct impact on 

the overall size of clots [47-49].  
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Platelet FXIII-A was previously shown to stabilize clots, by inducing the formation of high molecular 

weight -dimer and -polymer [50-54] and cross-linking 2AP to fibrin [50, 53]. The conundrum is 

that FXIII-A was not found within the secretome of platelets.  Our laboratory has now shown that 

strong agonist stimulation of platelets induces translocation of FXIII-A from the cytoplasm to the 

platelet membrane where it is actively retained and can participate in extracellular cross-linking 

reactions [40]. The intensity of FXIII-A staining on the surface of activated platelets increases as a 

function of time, particularly in those platelets directly associated with collagen fibres (Figure 1A).  

Our work clearly highlights a role for FXIII-A, externalised during platelet activation, in stabilizing 

thrombi via cross-linking of 2AP to fibrin [40].  The relative contribution of plasma FXIIIA2B2 versus 

platelet-derived FXIII-A to thrombus stability requires clarification, but it is unlikely to be uniform 

throughout the thrombus, with the balance tipping toward FXIII-A in platelet-rich areas of the 

hemostatic plug, where solute transport of plasma FXIIIA2B2 is low.  

 

Distribution of FXIII-A on the activated platelet surface is dependent on the subpopulation of 

platelets (Figure 1B), with PS-negative or spread platelets exhibiting diffuse staining across the 

membrane with a high concentration over the granulomere [40].  In PS-positive procoagulant 

platelets, FXIII-A was present only in the protruding ‘cap’ [40]. These ‘caps’ bind a number of other 

hemostatic proteins including fibrinogen [55], plasminogen and PAI-1 [56]. The ‘caps’ of platelets 

have recently been described as the ‘platelet body’ which the authors speculate is the remnant of 

organelles following ballooning of the platelet following strong agonist stimulation [57].  Ballooning 

transpires due to expansion of the platelet membrane, as a result of rapid influx of water and Na+ 

and Cl- ions. These platelets bind both procoagulant factor Xa and factor Va to the ballooned area 

and the platelet body thereby augmenting thrombin generation [58]. The collection of both 

procoagulant and pro- and anti-fibrinolytic proteins in these PS-positive platelets suggests they 

participate not only thrombus formation, but also the stability and breakdown of the thrombus.  

FXIII-A also functions in the formation of PS-positive platelets [59], by acting in concert with calpain 

to reduce the adhesive function of IIbβ3, in a process that appears to be a prerequisite for their 

formation.  

 

The method of externalization of platelet FXIII-A remains to be elucidated, but clearly occurs in 

response to external stimuli [40]. Reduced levels of FXIII-A were detected on stimulation of platelets 

with TRAP-6, compared to thrombin, and when platelets were treated with the Gly-Pro-Arg-Pro 

peptide, which inhibits fibrin polymerisation. The connection between platelet-associated fibrin and 

FXIII-A exposure suggests that IIbβ3 may serve as a ‘bridge’ for FXIII-A to traverse to access the 

fibrin network [40].  Fibrin associated directly with the platelet surface is exceptionally resilient to 

fibrinolysis [56, 60-63], suggesting that platelet-derived FXIII-A and other anti-fibrinolytic proteins 

contribute to this heightened resistance at least in the early stages of thrombus formation.  
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Platelet FXIII-A in clot retraction 

Clot retraction is the process by which fully-formed clots are compacted to limit vessel blockage and 

prevent leakage from the wound site. Platelets operate contractile machinery to reel in the 

surrounding fibrin network, expedited by bi-directional IIbβ3 signalling [64]. The integrin IIbβ3 

acts as a molecular bridge between extracellular fibrinogen and the intracellular actin cytoskeleton 

via sphingomyelin-rich lipid rafts [65]. The cytoskeleton interacts with the 3 subunit tails via the 

adapter proteins talin and vinculin [66]. During clot retraction, fibrin bound to IIbβ3 triggers 

outside-in signalling [67], resulting in the contraction of the actin cytoskeleton.  FXIIIA2B2 contributes 

to the strength and rigidity of the condensed clot by cross-linking fibrin, and by enhancing platelet 

spreading [68]. Conflicting evidence exists on the effects of platelet FXIII-A on clot retraction. Early 

reports found that clot retraction was normal in FXIII-deficient patients [69-71]. More recently, 

Kasahara et al., [65, 72], have demonstrated that clot retraction was significantly impaired in the 

absence of platelet FXIII-A transglutaminase activity in PRP from FXIII-A knockout mice [65, 72]. In 

contrast, Kattula et al., [49] found that platelet FXIII-A did not contribute to the weight of clots 

formed from reconstituted FXIII-depleted plasma reconstituted with red blood cells compared with 

those containing FXIII-deficient platelets. Methodological differences in the two studies may account 

for these reported discrepancies, however, it is evident that further studies are required to confirm 

the role of platelet FXIII-A functions in clot retraction in vivo.   

 

Other roles of platelet FXIII-A 

The adhesive ability of IIbβ3 is thought to be negatively regulated by FXIII-A and calpain, which 

limits platelet aggregate formation and thrombus growth [59].  These observations were made 

primarily in collagen-adherent platelets with prolonged elevations in cytosolic calcium, leading to a 

specific reduction in IIbβ3 adhesive function.  During thrombus formation, a number of 

phenotypically different platelet populations arise [59, 73-75]. These populations play different roles 

in the regulation of the thrombus microenvironment. Adherent platelets, with activated IIbβ3, bind 

other platelets and fibrin and ensure thrombus stability [76], while procoagulant platelets lack 

functional IIbβ3.  Platelet FXIII-A also drives formation of a specific subtype of procoagulant 

platelets that retain an alpha-granule protein ‘coat’ on their surface [77-79].  Transglutaminase 

activity cross-links -granule proteins to serotonin where they can then be retained on the platelet 

surface by binding to low affinity serotonin binding sites on fibrinogen or thrombospondin [77, 79].  

It has been proposed that platelet FXIII-A is not a requirement for generation of coated platelets, 

due to their formation in FXIII deficient mice [80].  However, this could be due to a compensatory 

upregulation of other transglutaminases in FXIII-A deficient platelets [80].  In line with this FXIII-A 

deficient platelets have also been found to accelerate cross-linking [53].  
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Under low shear conditions fibrin formation on platelets forms a ‘star-like’ pattern on the platelet 

surface [81].  FXIII-A and IIbβ3 play synergistic roles in aiding formation of these fibrin protrusions. 

In the absence of FXIII-A and IIbβ3, fibrin formation still occurs on the platelet surface, however 

fibres are orientated in the direction of flow [78], suggesting that early cross-links facilitate fibrin 

polymerisation against the direction of flow. 

 

It has been suggested that FXIII-A functions in formation of protrusions such as filopodia and 

lammelipodia which aid in platelet adhesion, spreading and clot retraction [82]. A number of 

proteins involved in cytoskeletal remodelling are cross-linked by FXIII-A, including; actin [83, 84], 

GPIIb, GPIII, myosin, tropomyosin [84], talin, vinculin, filamin [82], and Thymosin beta4 [85].  FXIII-A 

associates with the cytoskeleton upon platelet activation, however, this is dependent on actin 

polymerisation, as the phallotoxin cytochalasin D inhibited this translocation [82].  Interestingly, 

cross-linking of vinculin was dependent on aggregation.  Vinculin cannot be cross-linked to itself, but 

is cross-linked to a number of other cytoskeletal proteins [82], suggesting FXIII-A may localise key 

cytoskeletal proteins during remodelling.  FXIII-A directly associates with HSP27 in activated platelets 

[86].  HSP27 functions as a molecular chaperone and rapidly interacts with the actin cytoskeleton 

upon platelet stimulation.  It is plausible that HSP27 acts as a chaperone for translocation of FXIII-A 

from the platelet cytoplasm to the outer membrane via the actin cytoskeleton.  

 

FXIII-A in leukocytes 

FXIII-A is located in the cytoplasm of macrophages and monocytes [87], Leukocyte FXIII-A has been 

implicated in a number of intra-and extracellular processes, but as yet there is no defined route of 

externalisation  

 

FXIII-A is expressed on the cell surface of monocytes and macrophages [88] in response to 

stimulation with certain immune modulators, which is akin to the situation in platelets [40]. The 

expression of FXIII-A in macrophages is dynamic in nature and can be altered in response to the 

external stimulus and the phenotype of the activated macrophage.  Macrophages can be 

‘alternatively’ or ‘classically’ activated depending on the activating stimulus. ‘Classically activated’ or 

M1 macrophages are generated in response to stimulation with the immune mediators, IFN-, LPS or 

TNF [89].  These pro-inflammatory ‘type 1’ macrophages [90] tend to exhibit down-regulation of 

FXIII-A [91, 92]. ‘Alternatively activated’, or M2 macrophages are stimulated in response to anti-

inflammatory mediators, such as IL-4 and IL-13 [90].  M2 macrophages are reported to function in 

matrix remodelling, wound healing, allergy and parasite killing [89] and it is this subtype of 

macrophages that reveal upregulation of FXIII-A [92-94]. The selective expression of FXIII-A in M2 

macrophages is in line with the capacity of this transglutaminase to act as an anti-inflammatory and 

pro- wound healing molecule. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Phagocytosis is the active ingestion and breakdown of microbes or other foreign particles by cells 

such as monocytes and macrophages.  Phagocytic processes are driven by a finely controlled 

rearrangement of the actin cytoskeleton [95].  Considering the key role of FXIII-A in regulating 

cytoskeletal proteins it is perhaps not surprising that it is directly linked to this process [82-84]. 

Studies have indicated that FXIII-A activity may play a role in increasing the amount of phagocytosis 

in monocytes and macrophages [96].  

 

Phagocytosis is positively correlated with FXIII-A expression in myelomonocytic cells [97].  In 

accordance with this Fc and complement receptor mediated phagocytosis is impaired in monocytes 

and macrophages following inhibition of FXIII-A and in FXIII-A-deficient mice [96]. FXIII-A is known to 

be upregulated during the maturation of monocyte-derived dendritic cells and actively assists 

migration of these cells [98].  Together these data implicate FXIII-A in the phagocytic and/or 

migration capacity of these cells, however there may be a degree of redundancy in the system, as 

phagocytosis is only slightly impaired in the absence of FXIII-A [96].  

 

The role of cellular FXIII-A in lymphocytes in haemostasis has not been widely explored, however 

macrophages and monocytes are able to cross-link fibrin- and -chains [88, 99], suggesting a 

potential role in thrombus stabilisation. Interestingly, thrombin treatment of monocytes does not 

augment exposure of FXIII-A [88], suggesting these cells may contribute to haemostasis in a situation 

where there is also an increase in the type 2 immune response, for example in a wound healing 

capacity. 

 

FXIII-A in bone 

Bone is a dynamic mineralized tissue which undergoes continuous remodelling in the form of bone 

resorption by osteoclasts and formation by osteoblasts. The processes of bone formation and 

resorption are influenced by many chemical and mechanical factors and an imbalance can severely 

impact on bone quality [100].  FXIII-A is present in a number of cell types in mineralized tissues 

including chondrocytes [31-33], osteocytes [101] and osteoblasts [5, 101] where it is both expressed 

on the cell surface and secreted into the extracellular matrix.  FXIII-A contributes to the formation 

and stabilisation of connective tissue in bone by cross-linking a number of different substrates. 

Secreted osteoblast FXIII-A aids in the incorporation of fibronectin into the bone matrix [102, 103] 

thereby promoting formation of an insoluble matrix.  This matrix forms a scaffold for other proteins 

to adhere to, including type 1 collagen [104].  Surface-associated osteoblast FXIII-A is involved in 

stabilizing the interaction between microtubules and the plasma membrane, which in turn enhances 

the secretion of collagen [102, 105-107].  Collagen is the principal component of bone matrix and it 

appears that both FXIII-A activity and fibronectin are essential for normal collagen deposition [102, 

103].  Extracellular collagen is a prerequisite for secretion of FXIII-A from osteoblasts and in line with 

this observation, increased levels of collagen enhance expression of FXIII-A mRNA [106].  Osteoblast 
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FXIII-A also contributes to bone quality where its absence has a negative effect on alkaline 

phosphatase activity, lysyl oxidase levels and bone mineralisation. On an intracellular level, a 

regulatory role for FXIII-A and other transglutaminase enzymes has been identified in the different 

stages of osteoclastogenesis, including differentiation, migration and osteoclast fusion. FXIII-A 

contributed to these processes through its ability to influence actin dynamics [108], suggesting it 

may also be involved in cytoskeletal-mediated processes in other cell types.  Evidence of FXIII-A 

involvement at the intracellular signalling level in osteoblast calveolae has also been identified in 

mineralised tissues. Calveolae are lipid raft plasma membrane invaginations involved in the 

regulation of endocytosis and intracellular signal transduction, via the clustering of receptors and 

signalling molecules. In differentiating osteoblasts FXIII-A colocalises intracellularly with caveolin-1 

on the inner leaflet of calveolae, where it is involved in intracellular signalling by regulating 

interactions between Cav-1 and c-SRC kinase [109]. This regulatory signalling role in osteoblasts 

suggests that FXIII-A may also be involved in signalling pathways in other cells.   

 

There are divergent reports on the size of FXIII-A in various cell types including those of mineralized 

tissue and adipocytes. In preadipocytes two bands of FXIII-A have been identified, one at the 

expected size of 80 kDa and another of 50-75 kDa [34].  FXIII-A has also been detected as a 37 kDa 

fragment in chondrocytes [110], cultured MC3T3-E1 osteoblast cells [101, 102] primary mouse 

osteoblast cells, mouse macrophage and chondrocyte extracts and in rat bone [101]. The 37 kDa 

fragment, postulated to arise from proteolytic cleavage of the full-length form, has a different 

subcellular localisation to full length FXIII-A in osteoblasts [101]. However, Cordell and colleagues 

[111] suggest that the mAb-AC-1A1 antibody used in these studies cross-reacts with transaldolase-1 

(37 kDA) and other off-target antigens in cultured cells. Furthermore, this 37 kDa band is present in a 

number of cell types that lack FXIII-A protein and mRNA [111] and in bone and heart tissue from 

FXIII-A deficient mice [111]. FXIII-A and TG2 deficient mice also appear to exhibit normal bone 

deposition [111], suggesting that transglutaminase activity is not required for these processes in 

vivo.  It is evident from the tangled literature that further work is necessary to define the forms of 

FXIII-A in bone and confirm its role in the formation, maintenance and repair of mineralized tissues 

in vivo. 

 

Cellular FXIII-A in disease 

The vast number of functions carried out by cellular FXIII-A has inevitably resulted in its contribution 

to a number of different disease states, where it has been found to play beneficial and detrimental 

roles.  
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FXIII-A in lung disease 

Cellular FXIII-A and plasma FXIIIA2B2 have been implicated in the pathogenesis of lung diseases. In 

many forms of acute and chronic lung inflammation, fibrin deposition occurs as a result of increased 

vascular permeability eventually leading to fibrosis [112].  Cellular FXIII-A from injured alveolar 

macrophages and plasma FXIIIA2B2 from leaky capillaries have been detected in the bronchoalveolar 

lavage fluid of children with chronic bronchoalveolar inflammatory conditions, along with D-dimer 

[113].  These data suggest that FXIII is involved in stabilising fibrin deposits in the extravascular 

compartment of the lung tissues in these diseases. Increased FXIII-A release from dendritic cells is 

also detectable in bronchiolar lavage fluid following allergen challenge in asthmatic patients.  This 

suggests a potential role for FXIII-A in airway obstruction in this disease [114], perhaps through the 

reinforcement of fibronectin deposits, which are involved in pathogenic airway remodelling in 

asthma [115].  

 

FXIII-A in vascular disease 

Long-term alterations in blood flow ultimately give rise to vascular remodelling [116], a process in 

which FXIII-A has been implicated [117]. Blood vessel widening occurs in response to increased 

blood flow, decreased blood flow results in vessel narrowing [118, 119] and vessel walls thicken in 

response to high blood pressure [120]. Macrophage FXIII-A may participate in flow-induced 

remodelling of vessels [121].  Zhou et al., [121] demonstrated that expression of the CXCR3 receptor 

is necessary for inward perivascular remodelling induced by alterations in blood flow. This CXCR3-

dependant accumulation of macrophages during perivascular remodelling enhanced expression of 

FXIII-A mRNA [121], suggesting that the transglutaminase may function by stabilizing the remodelled 

vascular wall. 

 

Hypertension is characterized as long term elevation in blood pressure and is a significant risk factor 

for the development of atherosclerosis.  Infiltration of the arterial wall by monocytes, macrophages 

and T-cells leads to formation of new connective tissue, which together with the infiltrating 

leukocytes, forms an atherosclerotic lesion [122]. The angiotensin II (ATII) signalling system is 

involved in multiple regulatory processes, including the control of blood pressure through 

vasoconstriction.  ATII signalling is also implicated in a number of pathological diseases, such as 

hypertension and atherosclerosis [123]. Monocyte FXIII-A plays a pathogenic role in hypertensive 

disease due to its ability to increase the signalling capacity of the angiotensin receptor (ATI) [124].  

ATI receptor dimerization occurs in the presence of ATII, and FXIII-A subsequently facilitates covalent 

cross-linking of the ATI monomers, resulting in increased receptor capacity for signalling and 

desensitization [124]. Hypertensive patients display an increase in both monocyte FXIII-A and 

angiotensin-converting-enzyme (ACE)-dependant ATII production and storage [124]. Increased cross-

linked AT1 dimers have been found in an ApoE-/- model of atherosclerotic mice and inhibition of 

ACE and cellular FXIII-A reduced atherosclerotic lesion area and attenuated the recruitment of 
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leukocytes into the aorta [124].  Platelet-derived FXIII-A has also been identified in atherosclerotic 

plaques [125], suggesting that the function of platelet FXIII-A is not confined to hemostasis and may 

function in pathogenic situations, such as stabilization of atherosclerotic lesions. 

 

FXIII-A in cardiac disease 

Plasma FXIIIA2B2 and platelet FXIII-A have been found to contribute to the integrity of the cardiac 

vessel wall. A number of cardiac pathologies are observed in FXIII deficient mice, most of which are 

exacerbated by the combined absence of both cellular and plasma FXIII [126].  In these cases, 

hemorrhage and fibrosis resulting from lack of plasma FXIIIA2B2 induce initial damage to cardiac 

tissue, this is followed by delayed wound healing, due to the absence of cellular FXIII-A in leukocytes 

in these tissues [126].  FXIII-A is present in resident monocytes and macrophages in normal cardiac 

tissue, and following coronary ligation [127].  FXIII deficient mice exhibit an increased incidence of 

cardiac rupture, which can be circumvented by infusion of FXIIIA2B2, although ventricular 

remodelling in these mice remained diminished [127]. High levels of FXIII transglutaminase activity 

was observed in healing infarct tissue, suggesting its active participation in the wound healing 

response.  A reduction in leukocytes has been documented in cardiac tissue in FXIII-A deficient mice 

[128], which could be attributed to the role of FXIII-A in cell migration, thus exacerbate the impaired 

wound healing observed.     

 

FXIII-A in inflammatory disease  

 

The expression of FXIII-A in a number of inflammatory cells also implicates it in the pathogenesis of 

certain inflammatory disorders.  In ulcerative colitis, reduced expression of both cellular FXIII-A and 

plasma FXIIIA2B2 is evident due to upregulation of the M1 immune response. The reduction of FXIII 

levels in this case will affect its capacity to aid in phagocytosis and cell migration and may contribute 

to the prolongation and severity of the disease [129]. The contribution of FXIII-A to inflammatory 

arthritis is also evident in collagen-induced arthritis models FXIII-A deficient mice.  There was a 

significant reduction in osteoclast differentiation in FXIII-A deficient mice which limited disease 

progression. FXIII-A deficient mice also displayed reduced deposition of fibrin in the extracellular 

spaces within the knee joints leading to a reduction in the retention of inflammatory macrophages 

[130].  These results clearly show that eliminating FXIII-A limits inflammatory arthritis and protects 

from cartilage and bone destruction, thus suggesting that inhibition of this transglutaminase is a 

potential therapeutic strategy in arthropathies and other degenerative bone diseases.  

 

FXIII-A in diabetes and obesity 

Pancreatic islet  cells harbours FXIII-A which exerts transglutaminase activity in response to 

prolonged spikes in cytosolic Ca2+ [131].  Glucose-stimulated insulin secretion in -cells is inhibited 

upon treatment with a transglutaminase inhibitor, suggesting that FXIII-A activity is involved in 
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insulin regulation [131].  Interestingly, a recent study has identified a possible connection between 

FXIII-A and type 2 diabetes in a mouse model of obesity-induced chronic low-grade inflammation, 

mimicking that found in type 2 diabetes [132].  Mice treated with low dose pro-inflammatory 

cytokines exhibited reduced glucose-stimulated insulin secretion and increased basal Ca2+ levels, 

resulting in reduced expression of the FXIII-A gene (F13A1) [132].  Identification of F13A1 as a novel 

stress-inhibited gene in islets provides a promising lead to pursue in the dysfunction that occurs in 

these cells during the development of type 2 diabetes. 

 

Single nucleotide polymorphisms SNPs in F13A1 correlate with increased body mass index and an 

increased incidence of type 2 diabetes [133].  A recent study performed by Myneni et al., [34] 

suggests that FXIII-A may contribute to obesity and weight gain.  FXIII-A is expressed in adipose 

tissue where it is enhances proliferation of preadipocytes and stabilises the fibronectin matrix. [34].  

In line with these observations, FXIII-A deficient mice are protected against insulin resistance, they 

show signs of metabolically healthy obesity [134].  Further work is urgently required to clarify the 

direct role of FXIII-A in attenuating type 2 diabetes and obesity. 

 

FXIII-A in cancer 

FXIII-A has been identified in a number of leukemic cell types including megakaryoblasts, 

promyeloblasts, monoblasts and lymphoblasts[135, 136] and FXIII-A expression in leukemic cells is 

associated with reduced patient survival in acute promyelocytic leukemia [137]. In contrast, a recent 

study has shown that FXIII-A expression in children with B-cell precursor acute lymphoblastic 

leukemia was associated with patient survival [138]. Further studies in this area are essential to 

delineate the role of FXIII-A in leukemic cells in contributing towards disease progression.   

 

Summary and future perspectives 

Plasma FXIIIA2B2 was classified as a coagulation factor in the 1960’s and is largely found in complex 

with the precursor of its principal target protein, fibrinogen.  The clear bleeding phenotype of 

individuals deficient in FXIII is testimony to its essential function in hemostasis.  However, there has 

been ambiguity surrounding the true function of the cellular form of FXIII-A.  This can in part be 

ascribed to the fact that while FXIII-A is expressed by numerous cell types, mainly those of 

hematopoietic origin, it does not contain a classical endoplasmic reticulum signal peptide for 

secretion in nucleated cells [11].  This has hampered research into FXIII-A, but accumulating 

evidence now indicates that it is a diverse cellular enzyme that cross-links numerous substrates 

within the intracellular and extracellular environment (summarised in Figure 2).  Recent 

observations accrediting the cellular source of the plasma FXIII-A subunit to resident tissue 

macrophages [15] has significantly advanced our knowledge, but as yet the mechanism involved in 

its secretion remain an enigma.  Given the nature of this enzyme, and the fact that isopeptide bonds 

can be formed between glutamine donors and lysine acceptor residues in a wide range of proteins, it 
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is perhaps not surprising that FXIII-A functions in such an array of biological processes.  Nonetheless, 

the absence of an inhibitor of FXIII-A suggests that the environment and kinetics of this 

transamidase enzyme must regulate its function, but direct evidence on this is scant.  In conclusion, 

it is evident that FXIII-A is a broad spectrum enzyme that is largely indiscriminate in its ability to 

cross-link protein substrates, but there is still much to be uncovered in relation the mechanism of 

secretion from cells of bone marrow lineage and direction of its function in different biological and 

pathophysiological processes.   

 

Disclosure of Conflict of Interest 

The authors state that they have no conflict of interest.  

 

References 

1 Laki K, Lorand L. On the Solubility of Fibrin Clots. Science. 1948; 108: 280.  
2 Lorand L. Fibrin clots. Nature. 1950; 166: 694-5.  
3 Duckert F, Jung E, Shmerling DH. A hitherto undescribed congenital haemorrhagic diathesis 
probably due to fibrin stabilizing factor deficiency. Thromb Diath Haemorrh. 1960; 5: 179-86.  
4 Dardik R, Solomon A, Loscalzo J, Eskaraev R, Bialik A, Goldberg I, Schiby G, Inbal A. Novel 
proangiogenic effect of factor XIII associated with suppression of thrombospondin 1 expression. 
Arterioscler Thromb Vasc Biol. 2003; 23: 1472-7.  
5 Nurminskaya M, Kaartinen MT. Transglutaminases in mineralized tissues. Front Biosci. 2006; 
11: 1591-606.  
6 Folk JE, Finlayson JS. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of 
transglutaminases. Adv Protein Chem. 1977; 31: 1-133.  
7 Schwartz ML, Pizzo SV, Hill RL, McKee PA. The subunit structures of human plasma and 
platelet factor XIII (fibrin-stabilizing factor). J Biol Chem. 1971; 246: 5851-4.  
8 Katona E, Penzes K, Csapo A, Fazakas F, Udvardy ML, Bagoly Z, Orosz ZZ, Muszbek L. 
Interaction of factor XIII subunits. Blood. 2014; 123: 1757-63.  
9 Ikematsu S. An approach to the metabolism of factor XIII. Nihon Ketsueki Gakkai Zasshi. 
1981; 44: 1499-505.  
10 Nagy JA, Henriksson P, McDonagh J. Biosynthesis of factor XIII B subunit by human 
hepatoma cell lines. Blood. 1986; 68: 1272-9.  
11 Kaetsu H, Hashiguchi T, Foster D, Ichinose A. Expression and release of the a and b subunits 
for human coagulation factor XIII in baby hamster kidney (BHK) cells. J Biochem. 1996; 119: 961-9.  
12 Poon MC, Russell JA, Low S, Sinclair GD, Jones AR, Blahey W, Ruether BA, Hoar DI. 
Hemopoietic origin of factor XIII A subunits in platelets, monocytes, and plasma. Evidence from bone 
marrow transplantation studies. J Clin Invest. 1989; 84: 787-92.  
13 Inbal A, Muszbek L, Lubetsky A, Katona E, Levi I, Karpati L, Nagler A. Platelets but not 
monocytes contribute to the plasma levels of factor XIII subunit A in patients undergoing autologous 
peripheral blood stem cell transplantation. Blood Coagul Fibrinolysis. 2004; 15: 249-53.  
14 Cordell PA, Kile BT, Standeven KF, Josefsson EC, Pease RJ, Grant PJ. Association of 
coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: implications for 
subcellular trafficking and secretion. Blood. 2010; 115: 2674-81.  
15 Beckers CML, Simpson KR, Griffin KJ, Brown JM, Cheah LT, Smith KA, Vacher J, Cordell PA, 
Kearney MT, Grant PJ, Pease RJ. Cre/lox Studies Identify Resident Macrophages as the Major Source 
of Circulating Coagulation Factor XIII-A. Arterioscler Thromb Vasc Biol. 2017; 37: 1494-502.  
16 Lorand L, Konishi K. Activation of the Fibrin Stabilizing Factor of Plasma by Thrombin. Arch 
Biochem Biophys. 1964; 105: 58-67.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

17 Schwartz ML, Pizzo SV, Hill RL, McKee PA. Human Factor XIII from plasma and platelets. 
Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and 
fibrin. J Biol Chem. 1973; 248: 1395-407.  
18 Lorand L, Jeong JM, Radek JT, Wilson J. Human plasma factor XIII: subunit interactions and 
activation of zymogen. Methods Enzymol. 1993; 222: 22-35.  
19 Hornyak TJ, Shafer JA. Interactions of factor XIII with fibrin as substrate and cofactor. 
Biochemistry. 1992; 31: 423-9.  
20 Adany R, Bardos H. Factor XIII subunit A as an intracellular transglutaminase. Cell Mol Life 
Sci. 2003; 60: 1049-60.  
21 Polgar J, Hidasi V, Muszbek L. Non-proteolytic activation of cellular protransglutaminase 
(placenta macrophage factor XIII). Biochem J. 1990; 267: 557-60.  
22 Muszbek L, Polgar J, Boda Z. Platelet factor XIII becomes active without the release of 
activation peptide during platelet activation. Thromb Haemost. 1993; 69: 282-5.  
23 Buluk K. [An unknown action of blood platelets; preliminary communication]. Pol Tyg Lek 
(Wars). 1955; 10: 191.  
24 Kiesselbach TH, Wagner RH. Fibrin-stabilizing factor: a thrombin-labile platelet protein. Am J 
Physiol. 1966; 211: 1472-6.  
25 Luscher EF. [Fibrin-stabilizing factor from thrombocytes]. Schweiz Med Wochenschr. 1957; 
87: 1220-1.  
26 Kiesselbach TH, Wagner RH. Demonstration of factor XIII in human megakaryocytes by a 
fluorescent antibody technique. Ann N Y Acad Sci. 1972; 202: 318-28.  
27 Henriksson P, Becker S, Lynch G, McDonagh J. Identification of intracellular factor XIII in 
human monocytes and macrophages. J Clin Invest. 1985; 76: 528-34.  
28 Muszbek L, Adany R, Szegedi G, Polgar J, Kavai M. Factor XIII of blood coagulation in human 
monocytes. Thromb Res. 1985; 37: 401-10.  
29 Adany R, Belkin A, Vasilevskaya T, Muszbek L. Identification of blood coagulation factor XIII 
in human peritoneal macrophages. Eur J Cell Biol. 1985; 38: 171-3.  
30 Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. Characterization of dermal 
dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive 
subsets. J Immunol. 1993; 151: 6535-45.  
31 Nurminskaya M, Linsenmayer TF. Identification and characterization of up-regulated genes 
during chondrocyte hypertrophy. Dev Dyn. 1996; 206: 260-71.  
32 Nurminskaya M, Magee C, Nurminsky D, Linsenmayer TF. Plasma transglutaminase in 
hypertrophic chondrocytes: expression and cell-specific intracellular activation produce cell death 
and externalization. J Cell Biol. 1998; 142: 1135-44.  
33 Rosenthal AK, Masuda I, Gohr CM, Derfus BA, Le M. The transglutaminase, Factor XIIIA, is 
present in articular chondrocytes. Osteoarthritis Cartilage. 2001; 9: 578-81.  
34 Myneni VD, Hitomi K, Kaartinen MT. Factor XIII-A transglutaminase acts as a switch between 
preadipocyte proliferation and differentiation. Blood. 2014; 124: 1344-53.  
35 Lopaciuk S, Lovette KM, McDonagh J, Chuang HY, McDonagh. Subcellular distribution of 
fibrinogen and factor XIII in human blood platelets. Thromb Res. 1976; 8: 453-65.  
36 Sixma JJ, van den Berg A, Schiphorst M, Geuze HJ, McDonagh J. Immunocytochemical 
localization of albumin and factor XIII in thin cryo sections of human blood platelets. Thromb 
Haemost. 1984; 51: 388-91.  
37 Katona EE, Ajzner E, Toth K, Karpati L, Muszbek L. Enzyme-linked immunosorbent assay for 
the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates. J Immunol 
Methods. 2001; 258: 127-35.  
38 Marx G, Korner G, Mou X, Gorodetsky R. Packaging zinc, fibrinogen, and factor XIII in platelet 
alpha-granules. J Cell Physiol. 1993; 156: 437-42.  
39 Joist JH, Niewiarowski S. Retention of platelet fibrin stabilizing factor during the platelet 
release reaction and clot retraction. Thromb Diath Haemorrh. 1973; 29: 679-83.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

40 Mitchell JL, Lionikiene AS, Fraser SR, Whyte CS, Booth NA, Mutch NJ. Functional factor XIII-A 
is exposed on the stimulated platelet surface. Blood. 2014; 124: 3982-90.  
41 Sakata Y, Aoki N. Cross-linking of alpha 2-plasmin inhibitor to fibrin by fibrin-stabilizing 
factor. J Clin Invest. 1980; 65: 290-7.  
42 Valnickova Z, Enghild JJ. Human procarboxypeptidase U, or thrombin-activable fibrinolysis 
inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking 
to fibrin. J Biol Chem. 1998; 273: 27220-4.  
43 Ritchie H, Robbie LA, Kinghorn S, Exley R, Booth NA. Monocyte plasminogen activator 
inhibitor 2 (PAI-2) inhibits u-PA-mediated fibrin clot lysis and is cross-linked to fibrin. Thromb 
Haemost. 1999; 81: 96-103.  
44 Mutch NJ, Koikkalainen JS, Fraser SR, Duthie KM, Griffin M, Mitchell J, Watson HG, Booth NA. 
Model thrombi formed under flow reveal the role of factor XIII-mediated cross-linking in resistance 
to fibrinolysis. J Thromb Haemost. 2010; 8: 2017-24.  
45 Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively 
expressed through alpha(2)-antiplasmin cross-linking. Blood. 2011; 117: 6371-4.  
46 Rijken DC, Abdul S, Malfliet JJ, Leebeek FW, Uitte de Willige S. Compaction of fibrin clots 
reveals the antifibrinolytic effect of factor XIII. J Thromb Haemost. 2016; 14: 1453-61.  
47 Aleman MM, Byrnes JR, Wang JG, Tran R, Lam WA, Di Paola J, Mackman N, Degen JL, Flick 
MJ, Wolberg AS. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest. 
2014; 124: 3590-600.  
48 Byrnes JR, Duval C, Wang Y, Hansen CE, Ahn B, Mooberry MJ, Clark MA, Johnsen JM, Lord ST, 
Lam WA, Meijers JC, Ni H, Ariens RA, Wolberg AS. Factor XIIIa-dependent retention of red blood cells 
in clots is mediated by fibrin alpha-chain crosslinking. Blood. 2015; 126: 1940-8.  
49 Kattula S, Byrnes JR, Martin SM, Holle LA, Cooley BC, Flick MJ, Wolberg AS. Factor XIII in 
plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in 
mice. Blood Adv. 2018; 2: 25-35.  
50 Reed GL, Matsueda GR, Haber E. Fibrin-fibrin and alpha 2-antiplasmin-fibrin cross-linking by 
platelet factor XIII increases the resistance of platelet clots to fibrinolysis. Trans Assoc Am Physicians. 
1991; 104: 21-8.  
51 Reed GL, Matsueda GR, Haber E. Platelet factor XIII increases the fibrinolytic resistance of 
platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin. Thromb Haemost. 
1992; 68: 315-20.  
52 Francis CW, Marder VJ. Rapid formation of large molecular weight alpha-polymers in cross-
linked fibrin induced by high factor XIII concentrations. Role of platelet factor XIII. J Clin Invest. 1987; 
80: 1459-65.  
53 Hevessy Z, Haramura G, Boda Z, Udvardy M, Muszbek L. Promotion of the crosslinking of 
fibrin and alpha 2-antiplasmin by platelets. Thromb Haemost. 1996; 75: 161-7.  
54 Rubens FD, Perry DW, Hatton MW, Bishop PD, Packham MA, Kinlough-Rathbone RL. Platelet 
accumulation on fibrin-coated polyethylene: role of platelet activation and factor XIII. Thromb 
Haemost. 1995; 73: 850-6.  
55 Abaeva AA, Canault M, Kotova YN, Obydennyy SI, Yakimenko AO, Podoplelova NA, Kolyadko 
VN, Chambost H, Mazurov AV, Ataullakhanov FI, Nurden AT, Alessi MC, Panteleev MA. Procoagulant 
platelets form an alpha-granule protein-covered "cap" on their surface that promotes their 
attachment to aggregates. J Biol Chem. 2013; 288: 29621-32.  
56 Whyte CS, Swieringa F, Mastenbroek TG, Lionikiene AS, Lance MD, van der Meijden PE, 
Heemskerk JW, Mutch NJ. Plasminogen associates with phosphatidylserine-exposing platelets and 
contributes to thrombus lysis under flow. Blood. 2015; 125: 2568-78.  
57 Agbani EO, van den Bosch MT, Brown E, Williams CM, Mattheij NJ, Cosemans JM, Collins PW, 
Heemskerk JW, Hers I, Poole AW. Coordinated Membrane Ballooning and Procoagulant Spreading in 
Human Platelets. Circulation. 2015; 132: 1414-24.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

58 Agbani EO, Hers I, Poole AW. Temporal contribution of the platelet body and balloon to 
thrombin generation. Haematologica. 2017; 102: e379-e81.  
59 Kulkarni S, Jackson SP. Platelet factor XIII and calpain negatively regulate integrin 
alphaIIbbeta3 adhesive function and thrombus growth. J Biol Chem. 2004; 279: 30697-706.  
60 Collet JP, Montalescot G, Lesty C, Mishal Z, Soria J, Choussat R, Drobinski G, Soria C, Pinton P, 
Barragan P, Thomas D. Effects of Abciximab on the architecture of platelet-rich clots in patients with 
acute myocardial infarction undergoing primary coronary intervention. Circulation. 2001; 103: 2328-
31.  
61 Collet JP, Montalescot G, Lesty C, Soria J, Mishal Z, Thomas D, Soria C. Disaggregation of in 
vitro preformed platelet-rich clots by abciximab increases fibrin exposure and promotes fibrinolysis. 
Arterioscler Thromb Vasc Biol. 2001; 21: 142-8.  
62 Collet JP, Montalescot G, Lesty C, Weisel JW. A structural and dynamic investigation of the 
facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ Res. 2002; 90: 
428-34.  
63 Shenkman B, Einav Y, Livnat T, Budnik I, Martinowitz U. In vitro evaluation of clot quality and 
stability in a model of severe thrombocytopenia: effect of fibrinogen, factor XIII and thrombin-
activatable fibrinolysis inhibitor. Blood Transfus. 2014; 12: 78-84.  
64 Ginsberg MH, Du X, Plow EF. Inside-out integrin signalling. Curr Opin Cell Biol. 1992; 4: 766-
71.  
65 Kasahara K, Kaneda M, Miki T, Iida K, Sekino-Suzuki N, Kawashima I, Suzuki H, Shimonaka M, 
Arai M, Ohno-Iwashita Y, Kojima S, Abe M, Kobayashi T, Okazaki T, Souri M, Ichinose A, Yamamoto N. 
Clot retraction is mediated by factor XIII-dependent fibrin-alphaIIbbeta3-myosin axis in platelet 
sphingomyelin-rich membrane rafts. Blood. 2013; 122: 3340-8.  
66 Knezevic I, Leisner TM, Lam SC. Direct binding of the platelet integrin alphaIIbbeta3 (GPIIb-
IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic domains of both alphaIIb 
and beta3. J Biol Chem. 1996; 271: 16416-21.  
67 Shattil SJ. Signaling through platelet integrin alpha IIb beta 3: inside-out, outside-in, and 
sideways. Thromb Haemost. 1999; 82: 318-25.  
68 Cohen I, Gerrard JM, White JG. Ultrastructure of clots during isometric contraction. J Cell 
Biol. 1982; 93: 775-87.  
69 Jelenska M, Kopec M, Breddin K. On the retraction of collagen and fibrin induced by normal, 
defective and modified platelets. Haemostasis. 1985; 15: 169-75.  
70 Niewiarowski S, Markiewicz M, Nath N. Inhibition of the platelet-dependent fibrin retraction 
by the fibrin stabilizing factor (FSF, factor 13). J Lab Clin Med. 1973; 81: 641-50.  
71 Rao KM, Newcomb TF. Clot retraction in a factor XIII free system. Scand J Haematol. 1980; 
24: 142-8.  
72 Kasahara K, Souri M, Kaneda M, Miki T, Yamamoto N, Ichinose A. Impaired clot retraction in 
factor XIII A subunit-deficient mice. Blood. 2010; 115: 1277-9.  
73 Alberio L, Safa O, Clemetson KJ, Esmon CT, Dale GL. Surface expression and functional 
characterization of alpha-granule factor V in human platelets: effects of ionophore A23187, 
thrombin, collagen, and convulxin. Blood. 2000; 95: 1694-702.  
74 Heemskerk JW, Vuist WM, Feijge MA, Reutelingsperger CP, Lindhout T. Collagen but not 
fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant 
activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ 
responses. Blood. 1997; 90: 2615-25.  
75 Kempton CL, Hoffman M, Roberts HR, Monroe DM. Platelet heterogeneity: variation in 
coagulation complexes on platelet subpopulations. Arterioscler Thromb Vasc Biol. 2005; 25: 861-6.  
76 Munnix IC, Kuijpers MJ, Auger J, Thomassen CM, Panizzi P, van Zandvoort MA, Rosing J, Bock 
PE, Watson SP, Heemskerk JW. Segregation of platelet aggregatory and procoagulant microdomains 
in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol. 
2007; 27: 2484-90.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

77 Dale GL, Friese P, Batar P, Hamilton SF, Reed GL, Jackson KW, Clemetson KJ, Alberio L. 
Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell 
surface. Nature. 2002; 415: 175-9.  
78 Mattheij NJ, Swieringa F, Mastenbroek TG, Berny-Lang MA, May F, Baaten CC, van der 
Meijden PE, Henskens YM, Beckers EA, Suylen DP, Nolte MW, Hackeng TM, McCarty OJ, Heemskerk 
JW, Cosemans JM. Coated platelets function in platelet-dependent fibrin formation via integrin 
alphaIIbbeta3 and transglutaminase factor XIII. Haematologica. 2015.  
79 Szasz R, Dale GL. Thrombospondin and fibrinogen bind serotonin-derivatized proteins on 
COAT-platelets. Blood. 2002; 100: 2827-31.  
80 Jobe SM, Leo L, Eastvold JS, Dickneite G, Ratliff TL, Lentz SR, Di Paola J. Role of FcRgamma 
and factor XIIIA in coated platelet formation. Blood. 2005; 106: 4146-51.  
81 Cosemans JM, Schols SE, Stefanini L, de Witt S, Feijge MA, Hamulyak K, Deckmyn H, 
Bergmeier W, Heemskerk JW. Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet 
activation-dependent fibrin formation at low shear flow. Blood. 2011; 117: 651-60.  
82 Serrano K, Devine DV. Intracellular factor XIII crosslinks platelet cytoskeletal elements upon 
platelet activation. Thromb Haemost. 2002; 88: 315-20.  
83 Cohen I, Blankenberg TA, Borden D, Kahn DR, Veis A. Factor XIIIa-catalyzed cross-linking of 
platelet and muscle actin. Regulation by nucleotides. Biochim Biophys Acta. 1980; 628: 365-75.  
84 Cohen I, Glaser T, Veis A, Bruner-Lorand J. Ca2+-dependent cross-linking processes in human 
platelets. Biochim Biophys Acta. 1981; 676: 137-47.  
85 Yu FX, Lin SC, Morrison-Bogorad M, Atkinson MA, Yin HL. Thymosin beta 10 and thymosin 
beta 4 are both actin monomer sequestering proteins. J Biol Chem. 1993; 268: 502-9.  
86 Zhu Y, Tassi L, Lane W, Mendelsohn ME. Specific binding of the transglutaminase, platelet 
factor XIII, to HSP27. J Biol Chem. 1994; 269: 22379-84.  
87 Adany R. Intracellular factor XIII: cellular distribution of factor XIII subunit a in humans. 
Semin Thromb Hemost. 1996; 22: 399-408.  
88 Kradin RL, Lynch GW, Kurnick JT, Erikson M, Colvin RB, McDonagh J. Factor XIII A is 
synthesized and expressed on the surface of U937 cells and alveolar macrophages. Blood. 1987; 69: 
778-85.  
89 Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for 
reassessment. F1000Prime Rep. 2014; 6: 13.  
90 Spellberg B, Edwards JE, Jr. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis. 
2001; 32: 76-102.  
91 Pabst MJ, Pabst KM, Handsman DB, Beranova-Giorgianni S, Giorgianni F. Proteome of 
monocyte priming by lipopolysaccharide, including changes in interleukin-1beta and leukocyte 
elastase inhibitor. Proteome Sci. 2008; 6: 13.  
92 Torocsik D, Szeles L, Paragh G, Jr., Rakosy Z, Bardos H, Nagy L, Balazs M, Inbal A, Adany R. 
Factor XIII-A is involved in the regulation of gene expression in alternatively activated human 
macrophages. Thromb Haemost. 2010; 104: 709-17.  
93 Chaitidis P, O'Donnell V, Kuban RJ, Bermudez-Fajardo A, Ungethuem U, Kuhn H. Gene 
expression alterations of human peripheral blood monocytes induced by medium-term treatment 
with the TH2-cytokines interleukin-4 and -13. Cytokine. 2005; 30: 366-77.  
94 Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin-4 and dexamethasone 
counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J 
Immunol. 2005; 61: 10-7.  
95 May RC, Machesky LM. Phagocytosis and the actin cytoskeleton. J Cell Sci. 2001; 114: 1061-
77.  
96 Sarvary A, Szucs S, Balogh I, Becsky A, Bardos H, Kavai M, Seligsohn U, Egbring R, Lopaciuk S, 
Muszbek L, Adany R. Possible role of factor XIII subunit A in Fcgamma and complement receptor-
mediated phagocytosis. Cell Immunol. 2004; 228: 81-90.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

97 Kavai M, Adany R, Pasti G, Suranyi P, Szucs G, Muszbek L, Bojan F, Szegedi G. Marker profile, 
enzyme activity, and function of a human myelomonocytic leukemia cell line. Cell Immunol. 1992; 
139: 531-40.  
98 Jayo A, Conde I, Lastres P, Jimenez-Yuste V, Gonzalez-Manchon C. Possible role for cellular 
FXIII in monocyte-derived dendritic cell motility. Eur J Cell Biol. 2009; 88: 423-31.  
99 Conkling PR, Achyuthan KE, Greenberg CS, Newcomb TF, Weinberg JB. Human mononuclear 
phagocyte transglutaminase activity cross-links fibrin. Thromb Res. 1989; 55: 57-68.  
100 Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of Bone Tissue: 
Structure, Function, and Factors That Influence Bone Cells. BioMed research international. 2015; 
2015: 421746.  
101 Nakano Y, Al-Jallad HF, Mousa A, Kaartinen MT. Expression and localization of plasma 
transglutaminase factor XIIIA in bone. J Histochem Cytochem. 2007; 55: 675-85.  
102 Al-Jallad HF, Nakano Y, Chen JL, McMillan E, Lefebvre C, Kaartinen MT. Transglutaminase 
activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast 
cultures. Matrix Biol. 2006; 25: 135-48.  
103 Cui C, Wang S, Myneni VD, Hitomi K, Kaartinen MT. Transglutaminase activity arising from 
Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in 
osteoblast cultures. Bone. 2014; 59: 127-38.  
104 McKee MD, Addison WN, Kaartinen MT. Hierarchies of extracellular matrix and mineral 
organization in bone of the craniofacial complex and skeleton. Cells Tissues Organs. 2005; 181: 176-
88.  
105 Al-Jallad HF, Myneni VD, Piercy-Kotb SA, Chabot N, Mulani A, Keillor JW, Kaartinen MT. 
Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and 
deposition by affecting microtubule dynamics. PLoS One. 2011; 6: e15893.  
106 Piercy-Kotb SA, Mousa A, Al-Jallad HF, Myneni VD, Chicatun F, Nazhat SN, Kaartinen MT. 
Factor XIIIA transglutaminase expression and secretion by osteoblasts is regulated by extracellular 
matrix collagen and the MAP kinase signaling pathway. J Cell Physiol. 2012; 227: 2936-46.  
107 Wang S, Cui C, Hitomi K, Kaartinen MT. Detyrosinated Glu-tubulin is a substrate for cellular 
Factor XIIIA transglutaminase in differentiating osteoblasts. Amino Acids. 2014; 46: 1513-26.  
108 Sun H, Kaartinen MT. Transglutaminase activity regulates differentiation, migration and 
fusion of osteoclasts via affecting actin dynamics. J Cell Physiol. 2018.  
109 Wang S, Kaartinen MT. Cellular Factor XIIIA Transglutaminase Localizes in Caveolae and 
Regulates Caveolin-1 Phosphorylation, Homo-oligomerization and c-Src Signaling in Osteoblasts. J 
Histochem Cytochem. 2015; 63: 829-41.  
110 Ulici V, James CG, Hoenselaar KD, Beier F. Regulation of gene expression by PI3K in mouse 
growth plate chondrocytes. PLoS One. 2010; 5: e8866.  
111 Cordell PA, Newell LM, Standeven KF, Adamson PJ, Simpson KR, Smith KA, Jackson CL, Grant 
PJ, Pease RJ. Normal Bone Deposition Occurs in Mice Deficient in Factor XIII-A and Transglutaminase 
2. Matrix Biol. 2015; 43: 85-96.  
112 Idell S, Mazar AP, Bitterman P, Mohla S, Harabin AL. Fibrin turnover in lung inflammation 
and neoplasia. Am J Respir Crit Care Med. 2001; 163: 578-84.  
113 Katona E, Nagy B, Kappelmayer J, Baktai G, Kovacs L, Marialigeti T, Dezso B, Muszbek L. 
Factor XIII in bronchoalveolar lavage fluid from children with chronic bronchoalveolar inflammation. 
J Thromb Haemost. 2005; 3: 1407-13.  
114 Esnault S, Kelly EA, Sorkness RL, Evans MD, Busse WW, Jarjour NN. Airway factor XIII 
associates with type 2 inflammation and airway obstruction in asthmatic patients. J Allergy Clin 
Immunol. 2015.  
115 Meerschaert J, Kelly EA, Mosher DF, Busse WW, Jarjour NN. Segmental antigen challenge 
increases fibronectin in bronchoalveolar lavage fluid. Am J Respir Crit Care Med. 1999; 159: 619-25.  
116 Langille BL. Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol. 1996; 
74: 834-41.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

117 Bakker EN, Pistea A, Spaan JA, Rolf T, de Vries CJ, van Rooijen N, Candi E, VanBavel E. Flow-
dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: possible 
compensation by macrophage-derived factor XIII. Circ Res. 2006; 99: 86-92.  
118 Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine 
carotid artery. Am J Physiol. 1980; 239: H14-21.  
119 Langille BL, Bendeck MP, Keeley FW. Adaptations of carotid arteries of young and mature 
rabbits to reduced carotid blood flow. Am J Physiol. 1989; 256: H931-9.  
120 Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. 
Hypertension. 1989; 13: 968-72.  
121 Zhou J, Tang PC, Qin L, Gayed PM, Li W, Skokos EA, Kyriakides TR, Pober JS, Tellides G. 
CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for 
homeostatic arterial remodeling to hemodynamic stresses. J Exp Med. 2010; 207: 1951-66.  
122 Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of 
atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new 
perspective. Hypertension. 1995; 25: 155-61.  
123 Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects 
in the cardiovascular system. Am J Physiol Cell Physiol. 2007; 292: C82-97.  
124 AbdAlla S, Lother H, Langer A, el Faramawy Y, Quitterer U. Factor XIIIA transglutaminase 
crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell. 2004; 119: 343-54.  
125 Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, 
Fitzgerald DJ, Maguire PB. Characterization of the proteins released from activated platelets leads to 
localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004; 103: 2096-104.  
126 Souri M, Koseki-Kuno S, Takeda N, Yamakawa M, Takeishi Y, Degen JL, Ichinose A. Male-
specific cardiac pathologies in mice lacking either the A or B subunit of factor XIII. Thromb Haemost. 
2008; 99: 401-8.  
127 Nahrendorf M, Hu K, Frantz S, Jaffer FA, Tung CH, Hiller KH, Voll S, Nordbeck P, Sosnovik D, 
Gattenlohner S, Novikov M, Dickneite G, Reed GL, Jakob P, Rosenzweig A, Bauer WR, Weissleder R, 
Ertl G. Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac 
remodeling in mice with myocardial infarction. Circulation. 2006; 113: 1196-202.  
128 Jaffer FA, Sosnovik DE, Nahrendorf M, Weissleder R. Molecular imaging of myocardial 
infarction. J Mol Cell Cardiol. 2006; 41: 921-33.  
129 Soendergaard C, Kvist PH, Seidelin JB, Pelzer H, Nielsen OH. Systemic and intestinal levels of 
factor XIII-A: the impact of inflammation on expression in macrophage subtypes. J Gastroenterol. 
2015.  
130 Raghu H, Cruz C, Rewerts CL, Frederick MD, Thornton S, Mullins ES, Schoenecker JG, Degen 
JL, Flick MJ. Transglutaminase factor XIII promotes arthritis through mechanisms linked to 
inflammation and bone erosion. Blood. 2015; 125: 427-37.  
131 Bungay PJ, Owen RA, Coutts IC, Griffin M. A role for transglutaminase in glucose-stimulated 
insulin release from the pancreatic beta-cell. Biochem J. 1986; 235: 269-78.  
132 Sharma PR, Mackey AJ, Dejene EA, Ramadan JW, Langefeld CD, Palmer ND, Taylor KD, 
Wagenknecht LE, Watanabe RM, Rich SS, Nunemaker CS. An Islet-Targeted Genome-Wide 
Association Scan Identifies Novel Genes Implicated in Cytokine-Mediated Islet Stress in Type 2 
Diabetes. Endocrinology. 2015; 156: 3147-56.  
133 Naukkarinen J, Surakka I, Pietilainen KH, Rissanen A, Salomaa V, Ripatti S, Yki-Jarvinen H, van 
Duijn CM, Wichmann HE, Kaprio J, Taskinen MR, Peltonen L, Consortium E. Use of genome-wide 
expression data to mine the "Gray Zone" of GWA studies leads to novel candidate obesity genes. 
PLoS genetics. 2010; 6: e1000976.  
134 Myneni VD, Mousa A, Kaartinen MT. Factor XIII-A transglutaminase deficient mice show 
signs of metabolically healthy obesity on high fat diet. Sci Rep. 2016; 6: 35574.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

135 Invernizzi R, De Fazio P, Iannone AM, Zambelli LM, Rastaldi MP, Ippoliti G, Ascari E. 
Immunocytochemical detection of factor XIII A--subunit in acute leukemia. Leuk Res. 1992; 16: 829-
36.  
136 Kiss F, Hevessy Z, Veszpremi A, Katona E, Kiss C, Vereb G, Muszbek L, Kappelmayer JN. 
Leukemic lymphoblasts, a novel expression site of coagulation factor XIII subunit A. Thromb 
Haemost. 2006; 96: 176-82.  
137 Raval JS, Berg AN, Djokic M, Roth CG, Rollins-Raval MA. Factor XIII Subunit A 
Immunohistochemical Expression is Associated With Inferior Outcomes in Acute Promyelocytic 
Leukemia. Appl Immunohistochem Mol Morphol. 2018; 26: 202-5.  
138 Karai B, Hevessy Z, Szantho E, Csathy L, Ujfalusi A, Gyurina K, Szegedi I, Kappelmayer J, Kiss C. 
Expression of Coagulation Factor XIII Subunit A Correlates with Outcome in Childhood Acute 
Lymphoblastic Leukemia. Pathol Oncol Res. 2018; 24: 345-52.  

 

 

 

Legends 

Figure 1:  Platelets externalise FXIII-A during activation.  (A) Washed platelets (5 x 107/ml) were left 

unstimulated or activated with 20 g/ml collagen/ 20 M TRAP-6 and stained using FITC-labelled 

anti-FXIII-A antibody (green) and Alexa-fluor®647 Annexin-V to detect phosphatidylserine (red).  A 

time course of activation is shown.  Scale bar represents 10 M. (B) Platelets were stimulated and 

FXIII-A and annexin detected as described in (A).  Images focus on phosphatidylserine (PS)-positive 

and PS-negative staining.  Scale bar represents 5 M. Representative images of n=4 separate 

experiments.  (C) Three dimensional reconstructions of platelets stimulated as above showing PS-

positive platelets (red) with FXIII-A (green) concentrated in the ‘cap’.  PS-negative platelets that stain 

only for FXIII-A can also be visualised.  Images were recorded on a Zeiss LSM70 confocal microscope 

with 63x 1.40 oil immersion objective and analyzed using Zen 2012 software. 

Figure 2:  Extracellular functions of cellular FXIIII-A.  FXIII-A is expressed primarily in cells of bone 

marrow lineage and is now appreciated to function in many extracellular processes from 

phagocytosis to stabilization of bone.  The range of its extracellular functions intimately aligns with 

the expression of the FXIII-A gene (F13A1) in hematopoietic stem cells.      
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