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LOCAL DUALITY FOR REPRESENTATIONS OF

FINITE GROUP SCHEMES

DAVE BENSON, SRIKANTH B. IYENGAR, HENNING KRAUSE
AND JULIA PEVTSOVA

Abstract. A duality theorem for the stable module category of representa-
tions of a finite group scheme is proved. One of its consequences is an analogue
of Serre duality, and the existence of Auslander-Reiten triangles for the p-local
and p-torsion subcategories of the stable category, for each homogeneous prime
ideal p in the cohomology ring of the group scheme.

1. Introduction

This work concerns the modular representation theory of finite groups and group
schemes. A starting point for it is a duality theorem for finite groups due to Tate,
that appears already in Cartan and Eilenberg [19]. For our purposes it is useful
to recast this theorem in terms of stable module categories. Recall that the stable
module category of a finite group scheme G over a field k is the category obtained
from the (abelian) category of finite dimensional G-modules by annihilating mor-
phisms that factor through a projective module; we denote it stmodG, and write
HomG(−,−) for the morphisms in this category. The category stmodG is triangu-
lated with suspension Ω−1, and Tate duality translates to the statement that for
all finite dimensional G-modules M and N there are natural isomorphisms

Homk(HomG(M,N), k) ∼= HomG(N,ΩδG ⊗k M) .

Here δG is the modular character of G, described in Jantzen [28, §I.8.8]; it is
isomorphic to the trivial representation k when G is a finite group. This statement
can be deduced from a formula of Auslander and Reiten [1] that applies to general
associative algebras; see Theorem 4.2.

In the language introduced by Bondal and Kapranov [16] the isomorphism above
says that stmodG has Serre duality with Serre functor M 7→ ΩδG ⊗k M . One of
the main results of our work is that such a duality also holds locally.

The precise statement involves a natural action of the cohomology ring H∗(G, k)
of G on the graded abelian group

Hom∗
G(M,N) =

⊕

n∈Z

HomG(M,Ω−nN) .

The ringH∗(G, k) is graded commutative, and also finitely generated as a k-algebra,
by a result of Friedlander and Suslin [23]. Fix a homogeneous prime ideal p not
containing H>1(G, k) and consider the triangulated category γp(stmodG) that is
obtained from stmodG by localising the graded morphisms at p and then taking
the full subcategory of objects such that the graded endomorphisms are p-torsion;
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see Section 7 for details. Our interest in the subcategories γp(stmodG) stems from
the fact that they are the building blocks of stmodG and play a key role in the
classification of its tensor ideal thick subcategories; see [12]. These subcategories
may thus be viewed as analogues of the K(n)-local spectra in stable homotopy
theory that give the chromatic filtration of a spectrum; see [35].

Our local Serre duality statement reads:

Theorem 1.1. Let C := γp(stmodG) and d the Krull dimension of H∗(G, k)/p.
The assignment M 7→ ΩdδG⊗kM induces a Serre functor for C. Thus for all M,N
in C there are natural isomorphisms

HomH∗(G,k)(Hom
∗
C(M,N), I(p)) ∼= HomC(N,ΩdδG ⊗k M)

where I(p) is the injective hull of the graded H∗(G, k)-module H∗(G, k)/p.

One of the corollaries is that γp(stmodG) has Auslander-Reiten triangles. One
can thus bring to bear the techniques of AR theory to the study of G-modules.
These results are contained in Theorem 7.8.

We deduce Theorem 1.1 from a more general result concerning StModG, the
stable category of all (including infinite dimensional) G-modules. Consider its sub-
category Γp(StModG) consisting of the p-local p-torsion modules; in other words,
the G-modules whose support is contained in {p}. This is a compactly generated
triangulated category and the full subcategory of compact objects is equivalent,
up to direct summands, to γp(stmodG); this is explained in Remark 7.2. There is
an idempotent functor Γp : StModG → StModG with image the p-local p-torsion
modules; see Section 2 for details. The central result of this work is that Γp(δG) is
a dualising object for Γp(StModG), in the following sense.

Theorem 1.2. For any G-module M and i ∈ Z there is a natural isomorphism

ÊxtiG(M,Γp(δG)) ∼= HomH∗(G,k)(H
∗−d−i(G,M), I(p)).

This result, proved in Section 5, may be compared with Serre duality for coherent
sheaves F on a non-singular projective variety X of dimension n:

ExtiX(F , ωX) ∼= Homk(H
n−i(X,F), k),

see, for example, Hartshorne [27].
When G is a finite group Γp(k) is the Rickard idempotent module κV , introduced

by Benson, Carlson, and Rickard [6], that is associated to the irreducible subvariety
V of ProjH∗(G, k) defined by p. In this context, Theorem 1.2 was proved by Benson
and Greenlees [7]; see the paragraph following Theorem 5.1 below for a detailed
comparison with their work, and that of Benson [5].

Concerning Γp(k), the following consequences of Theorem 1.2 have been antici-
pated in [4] when G is a finite group.

Theorem 1.3. Suppose that δG ∼= k. Then the H∗(G, k)-module H∗(G,Γp(k)) is

injective and up to a twist isomorphic to I(p). Also, there is an isomorphism of

k-algebras

Êxt∗G(Γp(k), Γp(k)) ∼= (H∗(G, k)p)
∧

where (−)∧ denotes completion with respect to the p-adic topology, and the G-module

Γp(k) is pure injective.

Theorem 1.2 can be interpreted to mean that the category StModG is Gorenstein,
for it is analogous to Grothendieck’s result that a commutative noetherian ring A is
Gorenstein if, and only if, ΓpA is the injective hull of A/p, up to suspension, for each
p in SpecA. In Section 6 we propose a general notion of a Gorenstein triangulated
category, in an attempt to place these results in a common framework. There is
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a plethora of duality results, and categorical frameworks dealing with them. A
systematic comparison with those is beyond the scope of this work.

To prove Theorem 1.2 we use a technique from algebraic geometry in the tradition
of Zariski andWeil; namely, the construction of generic points for algebraic varieties.
Given a point p ⊆ H∗(G, k), there is a purely transcendental extension K of k and
a closed point m of ProjH∗(GK ,K) lying above the point p in ProjH∗(G, k). Here,
GK denotes the group scheme that is obtained from G by extending the field to K.
The crux is that one can choose m such that the following statement holds.

Theorem 1.4. Restriction of scalars induces a dense exact functor

stmodGK ⊇ γm(stmodGK) −→ γp(stmodG).

This result is proved in Section 3, building on our work in [14]. It gives a
remarkable description of the compact objects in Γp(StModG): they are obtained
from the finite dimensional objects in Γm(StModGK) by restriction of scalars. This
allows one to reduce the proof of Theorem 1.2 to the case of a closed point, where
it is essentially equivalent to classical Tate duality. The theorem above has other
consequences; for example, it implies that the compact objects in Γp(StModG) are
endofinite G-modules in the sense of Crawley-Boevey [21]; see Section 3.

2. Cohomology and localisation

In this section we recall basic notions concerning certain localisation functors on
triangulated categories with ring actions. The material is needed to state and prove
the results in this work. The main triangulated category of interest is the stable
module category of a finite group scheme, but the general framework is needed in
Sections 6 and 7. Primary references for the material presented here are [9, 10]; see
[14] for the special case of the stable module category.

Triangulated categories with central action. Let T be a triangulated category
with suspension Σ. Given objectsX and Y in T, consider the graded abelian groups

Hom∗
T(X,Y ) =

⊕

i∈Z

HomT(X,ΣiY ) and End∗T(X) = Hom∗
T(X,X) .

Composition makes End∗T(X) a graded ring and Hom∗
T(X,Y ) a left-End∗T(Y ) right-

End∗T(X) module.
Let R be a graded commutative noetherian ring. In what follows we will only be

concerned with homogeneous elements and ideals in R. In this spirit, ‘localisation’
will mean homogeneous localisation, and SpecR will denote the set of homogeneous
prime ideals in R.

We say that a triangulated category T is R-linear if for each X in T there is a
homomorphism of graded rings φX : R → End∗T(X) such that the induced left and
right actions of R on Hom∗

T(X,Y ) are compatible in the following sense: For any
r ∈ R and α ∈ Hom∗

T(X,Y ), one has

φY (r)α = (−1)|r||α|αφX(r) .

An exact functor F : T → U between R-linear triangulated categories is R-linear

if the induced map

Hom∗
T(X,Y ) −→ Hom∗

U(FX,FY )

of graded abelian groups is R-linear for all objects X,Y in T.
In what follows, we fix a compactly generated R-linear triangulated category T

and write Tc for its full subcategory of compact objects.
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Localisation. Fix an ideal a in R. An R-module M is a-torsion if Mq = 0 for all
q in SpecR with a 6⊆ q. Analogously, an object X in T is a-torsion if the R-module
Hom∗

T(C,X) is a-torsion for all C ∈ Tc. The full subcategory of a-torsion objects

ΓV(a)T := {X ∈ T | X is a-torsion}
is localising and the inclusion ΓV(a)T ⊆ T admits a right adjoint, denoted ΓV(a).

Fix a p in SpecR. An R-module M is p-local if the localisation map M → Mp is
invertible, and an object X in T is p-local if the R-module Hom∗

T(C,X) is p-local
for all C ∈ Tc. Consider the full subcategory of T of p-local objects

Tp := {X ∈ T | X is p-local}
and the full subcategory of p-local and p-torsion objects

ΓpT := {X ∈ T | X is p-local and p-torsion}.
Note that ΓpT ⊆ Tp ⊆ T are localising subcategories. The inclusion Tp → T admits
a left adjoint X 7→ Xp while the inclusion ΓpT → Tp admits a right adjoint. We
denote by Γp : T → ΓpT the composition of those adjoints; it is the local cohomology

functor with respect to p; see [9, 10] for the construction of this functor.
The following observation is clear.

Lemma 2.1. For any element r in R\ p, say of degree n, and p-local object X, the

natural map X
r−→ ΣnX is an isomorphism. �

The functor ΓV(a) commutes with exact functors preserving coproducts.

Lemma 2.2. Let F : T → U be an exact functor between R-linear compactly gen-

erated triangulated categories such that F is R-linear and preserves coproducts.

Suppose that the action of R on U factors through a homomorphism f : R → S of

graded commutative rings. For any ideal a of R there is a natural isomorphism

F ◦ΓV(a)
∼= ΓV(aS) ◦F

of functors T → U, where aS denotes the ideal of S that is generated by f(a).

Proof. The statement follows from an explicit description of ΓV(a) in terms of ho-
motopy colimits; see [10, Proposition 2.9]. �

Injective cohomology objects. Given an object C in Tc and an injective R-
module I, Brown representability yields an object T (C, I) in T such that

(2.1) HomR(Hom
∗
T(C,−), I) ∼= HomT(−, T (C, I)) .

This yields a functor

T : Tc × InjR −→ T.

For each p in SpecR, we write I(p) for the injective hull of R/p and set

Tp := T (−, I(p)) ,

viewed as a functor Tc → T.

Tensor triangulated categories. Let now T = (T,⊗,1) be a tensor triangulated
category such that R acts on T via a homomorphism of graded rings R → End∗T(1).
It is easy to verify that in this case the functors Γp and Tp are tensor functors:

(2.2) Γp
∼= Γp(1)⊗− and Tp

∼= Tp(1)⊗−
Now we turn to modules over finite group schemes. We follow the notation and

terminology from [14].
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The stable module category. Let G be a finite group scheme over a field k
of positive characteristic. The coordinate ring and the group algebra of G are
denoted k[G] and kG, respectively. These are finite dimensional Hopf algebras over
k that are dual to each other. We write ModG for the category of G-modules and
modG for its full subcategory consisting of finite dimensional G-modules. We often
identity ModG with the category of kG-modules, which is justified by [28, I.8.6].

We writeH∗(G, k) for the cohomology algebra, Ext∗G(k, k), of G. This is a graded
commutative k-algebra, because kG is a Hopf algebra, and acts on Ext∗G(M,N),
for any G-modules M,N . Moreover, the k-algebra H∗(G, k) is finitely generated,
and, when M,N are finite dimensional, Ext∗G(M,N) is finitely generated over it;
this is by a theorem of Friedlander and Suslin [23].

The stable module category StModG is obtained from ModG by identifying two
morphisms between G-modules when they factor through a projective G-module.
An isomorphism in StModG will be called a stable isomorphism, to distinguish it
from an isomorphism in ModG. In the same vein, G-modules M and N are said
to be stably isomorphic if they are isomorphic in StModG; this is equivalent to the
condition that M are N are isomorphic in ModG, up to projective summands.

The tensor product over k of G-modules passes to StModG and yields a tensor
triangulated category with unit k and suspension Ω−1, the inverse of the syzygy
functor. The category StModG is compactly generated and the subcategory of
compact objects identifies with stmodG, the stable module category of finite di-
mensional G-modules. See Carlson [18, §5] and Happel [24, Chapter I] for details.

We use the notation HomG(M,N) for the Hom-sets in StModG. The cohomology
algebra H∗(G, k) acts on StModG via a homomorphism of k-algebras

−⊗k M : H∗(G, k) = Ext∗G(k, k) −→ Hom∗
G(M,M) .

Thus, the preceding discussion on localisation functors on triangulated categories
applies to the H∗(G, k)-linear category StModG.

Koszul objects. An element b in Hd(G, k) corresponds to a morphism k → Ω−dk
in StModG; let k//b denote its mapping cone. This gives a morphism k → Ωd(k//b).
For a sequence of elements b := b1, . . . , bn in H∗(G, k) and a G-module M , we set

k//b := (k//b1)⊗k · · · ⊗k (k//bn) and M//b := M ⊗k k//b.

It is easy to check that for a G-module N and s =
∑

i |bi|, there is an isomorphism

(2.3) HomG(M,N//b) ∼= HomG(Ω
n+sM//b, N).

Let b = (b) denote the ideal ofH∗(G, k) generated by b. By abuse of notation we set

M//b := M//b. If b′ is a finite set of elements in H∗(G, k) such that
√
(b′) =

√
(b),

then, by [12, Proposition 3.10], for any M in StModG there is an equality

(2.4) Thick(M//b) = Thick(M//b′) .

Fix p in SpecH∗(G, k). We will repeatedly use the fact that Γp(StModG)c is
generated as a triangulated category by the family of objects (M//p)p with M
in stmodG; see [10, Proposition 3.9]. In fact, if S denotes the direct sum of a
representative set of simple G-modules, then there is an equality

(2.5) Γp(StModG)c = Thick((S//p)p) .

It turns out that one has Γm(StModG) = {0} where m denotes H>1(G, k), the ideal
of elements of positive degree; see Lemma 2.5 below. For this reason, it is customary
to focus on ProjH∗(G, k), the set of homogeneous prime ideals not containing m,
when dealing with StModG.
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Tate cohomology. By construction, the action of H∗(G, k) on StModG factors
through Hom∗

G(k, k), the graded ring of endomorphisms of the identity. The latter
ring is not noetherian in general, which is one reason to work with H∗(G, k). In
any case, there is little difference, vis a vis their action on StModG, as the next
remarks should make clear.

Remark 2.3. Let M andN be G-modules. The map HomG(M,N) → HomG(M,N)
induces a map Ext∗G(M,N) → Hom∗

G(M,N) of H∗(G, k)-modules. This map is
surjective in degree zero, with kernel PHomG(M,N), the maps from M to N that
factor through a projective G-module. It is bijective in positive degrees and hence
one gets an exact sequence of graded H∗(G, k)-modules

(2.6) 0 −→ PHomG(M,N) −→ Ext∗G(M,N) −→ Hom∗
G(M,N) −→ X −→ 0

with X i = 0 for i ≥ 0. For degree reasons, the H∗(G, k)-modules PHomG(M,N)
and X are m-torsion. Consequently, for p in ProjH∗(G, k) the induced localised
map is an isomorphism:

(2.7) Ext∗G(M,N)p −→ Hom∗
G(M,N)p .

More generally, for each r in m localisation induces an isomorphism

Ext∗G(M,N)r
∼=−−→ Hom∗

G(M,N)r

of H∗(G, k)r-modules. This means that ProjH∗(G, k) has a finite cover by affine
open sets on which ordinary cohomology and stable cohomology agree.

Given the finite generation result due to Friedlander and Suslin mentioned earlier,
the next remark can be deduced from the exact sequence (2.6).

Remark 2.4. When M,N are finite dimensional G-modules, Hom>s
G (M,N) is a

finitely generated H∗(G, k)-module for any s ∈ Z. Moreover the H∗(G, k)p-module

Hom∗
G(Mp, Np) ∼= Hom∗

G(M,N)p

is finitely generated for each p in ProjH∗(G, k).

Lemma 2.5. One has Γm(StModG) = {0}, where m = H>1(G, k).

Proof. Given (2.5) it suffices to check that S//m = 0 in StModG, where S is the
direct sum of representative set of simple G-modules. For any G-module M , the
H∗(G, k)-module Hom∗

G(M,S//m) is m-torsion; see [9, Lemma 5.11(1)]. Thus, when

M is finite dimensional, the H∗(G, k)-module Hom>0
G (M,S//m) is m-torsion and

finitely generated, by Remark 2.4, so it follows that Homi
G(M,S//m) = 0 for i ≫ 0.

This implies that S//m is projective, since kG is self-injective. �

To gain a better understanding of the discussion above, it helps to consider the
homotopy category of InjG, the injective G-modules.

The homotopy category of injectives. Let K(InjG) and D(ModG) denote the
homotopy category of InjG and the derived category of ModG, respectively. These
are also H∗(G, k)-linear compactly generated tensor triangulated category, with the
tensor product over k. The unit of the tensor product on K(InjG) is an injective
resolution of the trivial G-module k, while that of D(ModG) is k. The canonical
quotient functor K(InjG) → D(ModG) induces an equivalence of triangulated cate-

gory K(InjG)
c ∼−→ Db(modG), where the target is the bounded derived category of

modG; see [31, Proposition 2.3].
Taking Tate resolutions identifies StModG with Kac(InjG), the full subcategory

of acyclic complexes in K(InjG). In detail, let pk and ik be a projective and an
injective resolution of the trivialG-module k, respectively, and let tk be the mapping



LOCAL DUALITY 7

cone of the composed morphism pk → k → ik; this is a Tate resolution of k. Since
projective and injective G-modules coincide, one gets the exact triangle

(2.8) pk −→ ik −→ tk −→
in K(InjG). For a G-module M , the complex M ⊗k tk is a Tate resolution of M
and the assignment M 7→ M ⊗k tk induces an equivalence of categories

StModG
∼−→ Kac(InjG),

with quasi-inverse X 7→ Z0(X), the submodule of cycles in degree 0. Assigning X
in K(InjG) to X⊗k tk is a left adjoint of the inclusion Kac(InjG) → K(InjG). These
results are contained in [31, Theorem 8.2]. Consider the composed functor

π : K(InjG)
−⊗ktk−−−−→ Kac(InjG)

∼−−→ StModG .

A straightforward verification yields that these functors are H∗(G, k)-linear. The
result below is the categorical underpinning of Remark 2.3 and Lemma 2.5.

Lemma 2.6. There is a natural isomorphism ΓmX ∼= X ⊗k pk for X ∈ K(InjG).
For each p in ProjH∗(G, k), the functor π induces triangle equivalences

K(InjG)
p

∼−→ (StModG)p and Γp(K(InjG))
∼−→ Γp(StModG).

Proof. We identify StModG with Kac(InjG). This entails Γm(Kac(InjG)) = {0}, by
Lemma 2.5. It is easy to check that kG is m-torsion, and hence so is pk, for it is
in the localising subcategory generated by kG, and the class of m-torsion objects
in K(InjG) is a tensor ideal localising subcategory; see, for instance, [9, Section
8]. Thus, applying Γm(−) to the exact triangle (2.8) yields pk ∼= Γm(ik). It then
follows from (2.2) that X ⊗k pk ∼= ΓmX for any X in K(InjG).

From the construction of π and (2.8), the kernel of π is the subcategory

{X ∈ K(InjG) | X ⊗k pk ∼= X}.
These are precisely the m-torsion objects in K(InjG), by the already established
part of the result. Said otherwise, X ∈ K(InjG) is acyclic if and only if ΓmX = 0.
It follows that Kac(InjG) contains the subcategory K(InjG)

p
of p-local objects, for

each p in ProjH∗(G, k). On the other hand, the inclusion Kac(InjG) ⊆ K(InjG)
preserves coproducts, so its left adjoint π preserves compactness of objects and all
compacts of Kac(InjG) are in the image of π. Given this a simple calculation shows
that K(InjG)

p
contains Kac(InjG)

p
. Thus Kac(InjG)

p
= K(InjG)

p
. �

3. Passage to closed points

Let G be a finite group scheme over a field k of positive characteristic. In
this section we describe a technique that relates the p-local p-torsion objects in
StModG, for a point p in ProjH∗(G, k), to the corresponding modules at a closed
point defined over a field extension of k. Recall that a point m is closed when it is
maximal with respect to inclusion: m ⊆ q implies m = q for all q in ProjH∗(G, k).
In what follows, k(p) denotes the graded residue field of H∗(G, k) at p.

For a field extension K/k extension of scalars and restriction give exact functors

K ⊗k (−) : StModG −→ StModGK and (−)↓G : StModGK −→ StModG .

Moreover, since H∗(GK ,K) ∼= K ⊗k H∗(G, k) as K-algebras, K ⊗k (−) yields a
homomorphism H∗(G, k) → H∗(GK ,K) of rings. It induces a map

ProjH∗(GK ,K) −→ ProjH∗(G, k) ,

with q mapping to p := q ∩ H∗(G, k). We say that q lies over p to indicate this.
The main objective of this section is the proof of the following result.
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Theorem 3.1. Fix p in ProjH∗(G, k) and K/k a purely transcendental extension

of degree dim(H∗(G, k)/p) − 1. There exists a closed point m in ProjH∗(GK ,K)
lying over p with k(m) ∼= k(p) such that the functor (−)↓G restricts to functors

Γm(StModGK) → Γp(StModG) and Γm(StModGK)c → Γp(StModG)c

that are dense.

The proof of the theorem yields more: There is a subcategory of Γm(StModGK)
on which (−)↓G is full and dense; ditto for the category of compact objects. How-
ever, the functor need not be full on all of Γm(StModGK)c; see Example 3.7.

Here is one consequence of Theorem 3.1.

Corollary 3.2. The compact objects in Γp(StModG) are precisely the restrictions

of finite dimensional GK -modules in Γm(StModGK).

Proof. By [9, Theorem 6.4], for any ideal a in H∗(G, k), we have

ΓV(a)(StModG)c = ΓV(a)(StModG) ∩ stmodG .

Applying this observation to the idealm ofH∗(GK ,K) and noting that Γm = ΓV(m),
since m is a closed point, the desired result follows from Theorem 3.1. �

The closed point in Theorem 3.1 depends on the choice of a Noether normalisa-
tion of H∗(G, k)/p as is explained in the construction below, from [14, §7].

Construction 3.3. Fix p in ProjH∗(G, k); the following construction is relevant
only when p is not a closed point. Choose elements a := a0, . . . , ad−1 in H∗(G, k)
of the same degree such that their image in H∗(G, k)/p is algebraically independent
over k and H∗(G, k)/p is finitely generated as a module over the subalgebra k[a].
Thus the Krull dimension of H∗(G, k)/p is d. Set K := k(t1, . . . , td−1), the field of
rational functions in indeterminates t1, . . . , td−1 and

bi := ai − a0ti for i = 1, . . . , d− 1

viewed as elements in H∗(GK ,K). Let p′ denote the extension of p to H∗(GK ,K),
and set

q := p′ + (b) and m :=
√
q .

It is proved as part of [14, Theorem 7.7] that the ideal m is a closed point in
ProjH∗(GK ,K) with the property that m∩H∗(G, k) = p. What is more, it follows
from the construction (see in particular [14, Lemma 7.6, and (7.2)]) that the induced
extension of fields is an isomorphism

k(p)
∼=−−→ k(m) .

The sequence of elements b in H∗(GK ,K) yields a morphism K → Ωs(K//b),
where s =

∑
i |bi|, and composing its restriction to G with the canonical morphism

k → K↓G gives in StModG a morphism

f : k −→ Ωs(K//b)↓G .

Since the ai are not in p, Lemma 2.1 yields a natural stable isomorphism

(3.1) ΩsM ∼= M

for any p-local G-module M . This remark will be used often in the sequel.

By [13, Lemma 2.1], for any GK-module N there is a natural isomorphism

(3.2) M ⊗k N↓G ∼= (MK ⊗K N)↓G.
The result below extends [14, Theorem 8.8]; the latter is the case M = k//p.
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Theorem 3.4. For any G-module M , the morphism M ⊗k f induces a natural

stable isomorphism of G-modules

ΓpM ∼= M ⊗k Γm(K//b)↓G ∼= (MK ⊗K Γm(K//b))↓G .

When M is p-torsion, these induce natural stable isomorphisms

ΓpM ∼= Mp
∼= M ⊗k (K//b)↓G ∼= (MK ⊗K K//b)↓G .

Proof. We begin by verifying the second set of isomorphisms. As M is p-torsion
so is Mp and then it is clear that the natural map ΓpM = ΓV(p)Mp → Mp is an
isomorphism. The third of the desired isomorphisms follows from (3.2). It thus
remains to check that M ⊗k f induces an isomorphism

Mp
∼= M ⊗k (K//b)↓G .

It is easy to verify that the modules M having this property form a tensor ideal
localising subcategory of StModG. Keeping in mind (3.1), from [14, Theorem 8.8]
one obtains that this subcategory contains k//p. The desired assertion follows since
the p-torsion modules form a tensor ideal localising subcategory of StModG that
is generated by k//p; see [10, Proposition 2.7].

Now we turn to the first set of isomorphisms. There the second one is by (3.2),
so we focus on the first. Let M be an arbitrary G-module, and let p′ be as in
Construction 3.3. Since ΓV(p)M is p-torsion, the already established isomorphism
yields the second one below.

ΓpM ∼= (ΓV(p)M)p
∼= ((ΓV(p)M)K ⊗K K//b)↓G
∼= (ΓV(p′)(MK)⊗K K//b)↓G
∼= (MK ⊗K ΓV(p′)(K//b))↓G
∼= (MK ⊗K ΓV(p′+(b))(K//b))↓G
∼= (MK ⊗K Γm(K//b))↓G

The third one is by Lemma 2.2, applied to the functor K ⊗k (−) from StModG
to StModGK . The next one is standard while the penultimate one holds because
K//b is (b)-torsion. This completes the proof. �

In the next remark we recast part of Theorem 3.4.

Remark 3.5. Fix a point p in ProjH∗(G, k), and let K, b and m be as in Construc-
tion 3.3. Consider the following adjoint pair of functors.

λ : StModG −→ StModGK and ρ : StModGK −→ StModG

λ(M) = MK ⊗K K//b ρ(N) = HomK(K//b, N)↓G
It is easy to check that this induces an adjoint pair

Γp(StModG) Γm(StModGK) .
λ

ρ

Theorem 3.4 implies that (λM)↓G ∼= M for any M in Γp(StModG).

Proof of Theorem 3.1. Let m, q, and b be as in Construction 3.3. As noted there,
m is a closed point in ProjH∗(GK ,K) lying over p and k(m) ∼= k(p). The modules
in Γp(StModG) are precisely those with support contained in {p}. It then follows
from [14, Proposition 6.2] that (−)↓G restricts to a functor

Γm(StModGK) −→ Γp(StModG) .

This functor is dense because for any G-module M that is p-local and p-torsion one
has M ∼= (λM)↓G where λ is the functor from Remark 3.5.
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Consider the restriction of (−)↓G to compact objects in Γm(StModGK). First
we verify that its image is contained in the compact objects of Γp(StModG). To
this end, it suffices to check that there exists a generator of Γm(StModGK)c, as a
thick subcategory, whose restriction is in Γp(StModG)c.

Let S be the direct sum of a representative set of simple G-modules. Each simple
GK-module is (isomorphic to) a direct summand of SK , so from (2.5) one gets the
first equality below:

Γm(StModGK)c = Thick(SK//m) = Thick(SK//q) .

The second one is by (2.4). From Theorem 3.4 one gets isomorphisms of G-modules

(SK//q)↓G ∼= ((S//p)K ⊗K K//b)↓G ∼= (S//p)p .

It remains to note that (S//p)p is in Γp(StModG)c, again by (2.5).
The last item to verify is that restriction is dense also on compacts. Since K//b

is compact, the functor ρ from Remark 3.5 preserves coproducts, and hence its left
adjoint λ preserves compactness. Thus Theorem 3.4 gives the desired result. �

Theorem 3.4 yields that f ∼= (fK)↓G for any morphism f in Γp(StModG); in par-
ticular, the restriction functor is full and dense on the subcategory of Γm(StModGK)
consisting of objects of the form λM , where M is a p-local p-torsion G-module. It
need not be full on the entire category, or even on its subcategory of compact
objects; see Example 3.7, modeled on the following one from commutative algebra.

Example 3.6. Let k be a field and k[a] the polynomial ring in an indeterminate
a. Let D(k[a]) denote its derived category; it is k[a]-linear in an obvious way. For
the prime p := (0) of k[a] the p-local p-torsion subcategory Γp(D(k[a])) is naturally
identified with the derived category of k(a), the field of rational functions in a.

With k(t) denoting the field of rational functions in an indeterminate t, the
maximal ideal m := (a−t) of k(t)[a] lies over the prime ideal p of k[a]. The inclusion
k[a] ⊂ k(t)[a] induces an isomorphism k(a) ∼= k(t)[a]/m ∼= k(t). The analogue of
Theorem 3.4 is that restriction of scalars along the inclusion k[a] ⊂ k(t)[a] induces
a dense functor

Γm(D(k(t)[a])) −→ Γp(D(k[a])) ≃ D(k(a)) .

This property can be checked directly: The m-torsion module k(t)[a]/(a−t) restricts
to k(a), and each object in D(k(a)) is a direct sum of shifts of k(a). This functor is
however not full: For n ≥ 1, the k(t)[a]-module L := k(t)[a]/(a − t)n is m-torsion,
and satisfies

rankk(a) EndD(L) = n and rankk(a) EndD(L↓k[a]) = n2

where D stands for the appropriate derived category. In particular, if n ≥ 2, the
canonical map EndD(L) → EndD(L↓k[a]) is not surjective.

Indeed, the module of endomorphisms of L in D(k(t)[a]) is

EndD(L) = Homk(t)[a](L,L) ∼= L .

In particular, it has rank n as an k(a)-vector space. On the other hand, restricted
to k[a], the k(t)[a]-module k(t)/(a− t) is isomorphic to k(a). It then follows from
the exact sequences

0 −→ k(t)[a]

(a− t)

17→(a−t)i−−−−−−→ k(t)[a]

(a− t)i+1
−→ k(t)[a]

(a− t)i
−→ 0

of k(t)[a]-modules that L restricts to a direct sum of n copies of k(a), so that

EndD(L↓k[a]) = Homk(a)(k(a)
n, k(a)n) ∼= k(a)n

2

.

In particular, this has rank n2 as a k(a)-vector space.
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Example 3.7. Let V = Z/2×Z/2 and k a field of characteristic two. As k-algebras,
one has H∗(V, k) ∼= k[a, b], where a and b are indeterminates of degree one. For the
prime ideal p = (0) of k[a, b], Construction 3.3 leads to the field extension K := k(t)
of k, and the closed point m = (b− at) of ProjH∗(VK ,K).

Set F := EndV (kp); this is the component in degree 0 of the graded field k[a, b]p
and can be identified with K; see Construction 3.3.

Fix an integer n ≥ 1 and set N := K//(b− at)n. This is a finite-dimensional
m-torsion VK-module and hence compact in Γm(StModVK). We claim that

rankF EndVK
(N) = 2n and rankF EndV (N↓V ) = n2 ,

and hence that the map EndVK
(N) → EndV (N↓V ) is not surjective when n ≥ 3.

The claim can be checked as follows: Set S := End∗VK
(K)m ∼= K[a, b]m. Since

(b− at)n is not a zerodivisor on S, applying HomVK
(K,−) to the exact triangle

K
(b−at)n−−−−−→ Ω−nK −→ N −→

one gets that Hom∗
VK

(K,N) is isomorphic to S/(b− at)n, as an S-module; in par-
ticular (b − at)n annihilates it. Given this, applying HomVK

(−, N) to the exact
triangle above yields that the rank of EndVK

(N), as an F -vector space, is n.
As to the claim about N↓V : the category Γp(StModV ) is semisimple for its

generator kp has the property that End∗V (kp) is a graded field. It thus suffices to
verify that N↓V ∼= knp ; equivalently, that rankF HomV (kp, N↓V ) = n. This follows
from the isomorphisms

HomV (kp, N↓V ) ∼= HomV (k,N↓V ) ∼= HomVK
(K,N) ∼= Fn .

The first one holds because N↓V is p-local, the second one is by adjunction.
There is a close connection between this example and Example 3.6. Namely, the

Bernstein-Gelfand-Gelfand correspondence sets up an equivalence between StModV
and the derived category of dg modules over R := k[a, b], viewed as a dg algebra
with zero differential, modulo the subcategory of (a, b)-torsion dg modules; see, for
example, [11, §5.2.2]. The BGG correspondence induces the equivalences in the
following commutative diagram of categories.

Γm(StModVK) Γm(D(S))

Γp(StModV ) D(Rp)

(−)↓
V

≃

≃

where D(−) denotes the derived category of dg modules. The functor on the right
is restriction of scalars along the homomorphism of rings Rp → S, which is induced
by the inclusion R = k[a, b] ⊂ K[a, b]. Under the BGG equivalence, the VK -module
N corresponds to S/(b− at)n, viewed as dg S-module with zero differential. Since
Rp is a graded field, isomorphic to K[a±1], each dg Rp-module is isomorphic to a
direct sum of copies of Rp. Arguing as in Example 3.6 one can verify that the dg
S-module S/(b − at)n restricts to a direct sum of n copies of Rp. This is another
way to compute the endomorphism rings in question.

The remainder of this section is devoted to a further discussion of the compact
objects in Γp(StModG). This is not needed in the sequel.

Endofiniteness. Following Crawley-Boevey [20, 21], a module X over an associa-
tive ring A is endofinite if X has finite length as a module over EndA(X).

An object X of a compactly generated triangulated category T is endofinite if
the EndT(X)-module HomT(C,X) has finite length for all C ∈ Tc; see [33].

Let A be a self-injective algebra, finite dimensional over some field. Then an
A-module is endofinite if and only if it is endofinite as an object of StModA. This
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follows from the fact X is an endofinite A-module if and only if the EndA(X)-
module HomA(C,X) has finite length for every finite dimensional A-module C.

Lemma 3.8. Let F : T → U be a functor between compactly generated triangulated

categories that preserves products and coproducts. Let X be an object in T. If X is

endofinite, then so is FX and the converse holds when F is fully faithful.

Proof. By Brown representability, F has a left adjoint, say F ′. It preserves compact-
ness, as F preserves coproducts. For X ∈ T and C ∈ Uc, there is an isomorphism

HomU(C,FX) ∼= HomT(F
′C,X)

of EndT(X)-modules. Thus if X is endofinite, then HomU(C,FX) is a module of
finite length over EndT(X), and therefore also over EndU(FX). For the converse,
observe that each compact object in T is isomorphic to a direct summand of an
object of the form F ′C for some C ∈ Uc. �

Proposition 3.9. Let p be a point in ProjH∗(G, k) and M a G-module that is com-

pact in Γp(StModG). Then M is endofinite both in StModG and in Γp(StModG).

Proof. By Corollary 3.2, the module M is of the form N↓G for a finite dimensional
GK-module N . Clearly, N is endofinite in StModGK and (−)↓G preserves products
and coproducts, so it follows by Lemma 3.8 that M is endofinite in StModG. By
the same token, as the inclusion (StModG)p → StModG preserves products and
coproducts, M is endofinite in (StModG)p as well. Finally, the functor ΓV(p) is a
right adjoint to the inclusion Γp(StModG) → (StModG)p. It preserves products,
being a right adjoint, and also coproducts. Thus M is endofinite in Γp(StModG),
again by Lemma 3.8. �

4. G-modules and Tate duality

Now we turn to various dualities for modules over finite group schemes. We begin
by recalling the construction of the transpose and the dual of a module over a finite
group scheme, and certain functors associated with them. Our basic reference for
this material is Skowroński and Yamagata [37, Chapter III].

ThroughoutG will be a finite group scheme over k. We write (−)∨ = Homk(−, k).

Transpose and dual. Let Gop be the opposite group scheme of G; it can be
realised as the group scheme associated to the cocommutative Hopf algebra (kG)op.
Since kG is a G-bimodule, the assignment M 7→ HomG(M,kG) defines a functor

(−)t : ModG −→ ModGop .

Let now M be a finite dimensional G-module. Give a minimal projective presenta-

tion P1
f−→ P0 → M , the transpose of M is the Gop-module TrM := Coker(f t). By

construction, there is an exact sequence of Gop-modules:

0 −→ M t −→ P t
0

ft

−−→ P t
1 −→ TrM −→ 0 .

The P t
i are projective Gop-modules, so this yields an isomorphism of Gop-modules

M t ∼= Ω2 TrM .

Given a Gop-module N , the k-vector space Homk(N, k) has a natural structure
of a G-module, and the assignment N 7→ Homk(N, k) yields a functor

D := Homk(−, k) : stmodGop −→ stmodG .
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The Auslander-Reiten translate. In what follows we write τ for the Auslander-
Reiten translate of G:

τ := D ◦ Tr: stmodG → stmodG

Given an extension of fields K/k, for any finite dimensional G-module M there
is a stable isomorphism of GK-modules

(τM)K ∼= τ(MK) .

Nakayama functor. The Nakayama functor

ν : ModG
∼−−→ ModG

is given by the assignment

M 7→ D(kG) ⊗kG M ∼= δG ⊗k M .

where δG = ν(k) is the modular character of G; see [28, I.8.8]. Since the group of
characters of G is finite, by [38, §2.1 & §2.2], there exists a positive integer d such

that δ⊗d
G

∼= k and hence as functors on ModG there is an equality

(4.1) νd = id .

When M is a finite dimensional G-module, there are natural stable isomorphisms

νM ∼= D(M t) ∼= Ω−2τM .

When in addition M is projective, one has

HomG(M,−)∨ ∼= (M t ⊗kG −)∨ ∼= HomG(−, νM).

Let K/k be an extension of fields. For any G-module M there is a natural
isomorphism of GK-modules

(4.2) (νM)K ∼= ν(MK) .

This is clear for M = kG since

K ⊗k Homk(kG, k) ∼= Homk(kG,K) ∼= HomK(K ⊗k kG,K) ,

and the general case follows by taking a free presentation of M .

Remark 4.1. We have δG = k if and only if the algebra kG is symmetric. In
particular, δG = k when G is a finite discrete group.

Tate duality. For finite groups, the duality theorem below is classical and due to
Tate [19, Chapter XII, Theorem 6.4]. An argument for the extension to finite group
schemes was sketched in [13, §2], and is reproduced here for readers convenience.

Theorem 4.2. Let G be a finite group scheme over a field k. For any G-modules

M,N with M finite dimensional, there are natural isomorphisms

HomG(M,N)∨ ∼= HomG(N,Ω−1τM) ∼= HomG(N,ΩνM) .

Proof. A formula of Auslander and Reiten [1, Proposition I.3.4], see also [30, Corol-
lary p. 269], yields the first isomorphism below

HomG(M,N)∨ ∼= Ext1G(N, τM) ∼= HomG(N,Ω−1τM)

The second isomorphism is standard. It remains to recall that τM ∼= Ω2νM . �

Restricted to finite dimensional G-modules, Tate duality is the statement that
the k-linear category stmodG has Serre duality, with Serre functor Ων. A refinement
of this Serre duality will be proved in Section 7.
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5. Local cohomology versus injective cohomology

Let k be a field and G a finite group scheme over k. In this section we establish
the main result of this work; it identifies for a prime ideal p in H∗(G, k), up to some
twist and some suspension, the local cohomology object Γp(k) with the injective
cohomology object Tp(k).

Theorem 5.1. Fix a point p in ProjH∗(G, k) and let d be the Krull dimension of

H∗(G, k)/p. There is a stable isomorphism of G-modules

Γp(δG) ∼= Ω−dTp(k) ;

equivalently, for any G-module M there is a natural isomorphism

HomG(M,ΩdΓp(δG)) ∼= HomH∗(G,k)(H
∗(G,M), I(p)) .

When G is the group scheme arising from a finite group the result above was
proved by Benson and Greenlees [7, Theorem 2.4] using Gorenstein duality for
cochains on BG, the classifying space of G. Benson [5, Theorem 2] gave a different
proof by embedding G into a general linear group and exploiting the fact that
its cohomology ring is a polynomial ring, as was proved by Quillen. There is an
extension of these results to compact Lie groups; see [8, Theorem 6.10], and recent
work of Barthel, Heard, and Valenzuela [2, Proposition 4.33].

Theorem 5.1 is established using (by necessity) completely different arguments,
thereby giving yet another proof in the case of finite groups that is, in a sense, more
elementary than the other ones for it is based on classical Tate duality.

A caveat: In [5, 7] it is asserted that Γp(k) ∼= ΩdTp(k). However, this is incorrect
and the correct shift is the one in the preceding theorem. We illustrate this by
computing these modules directly for the quaternions.

Example 5.2. Let G := Q8, the quaternions, viewed as a group scheme over a field
k of characteristic 2. In this case δG = k, the trivial character. The cohomology
algebra of G is given by

H∗(G, k) = k[z]⊗k B where B = k[x, y]/(x2 + xy + y2, x2y + xy2) ,

with |x| = 1 = |y| and |z| = 4; see, for instance, [3, p. 186]. Thus ProjH∗(G, k)
consists of a single point, namely m := (x, y). In particular, Γmk = k, in StModG.

Next we compute I(m) as a module over H∗(G, k)m ∼= k[z±1] ⊗k B, using
Lemma A.3. The extension k[z±1] ⊆ k[z±1] ⊗k B is evidently finite (and hence
also residually finite). Since m ∩ k[z±1] = (0) and k[z±1] is a graded field, from
Lemma A.3 one gets an isomorphism of H∗(G, k)m-modules.

I(m) ∼= Homk[z±1](k[z
±1]⊗k B, k[z±1])

∼= k[z±1]⊗k Homk(B, k)

∼= k[z±1]⊗k Σ
3B

∼= Σ3H∗(G, k)m

This yields the first isomorphism below of G-modules

Tm(k) ∼= Ω−3k ∼= Ω1k ,

and the second one holds because Ω4k ∼= k in StModG.

Proof of Theorem 5.1. It follows from (2.7) that for any p-local H∗(G, k)-module
I, there is an isomorphism

HomH∗(G,k)(H
∗(G,M), I) ∼= HomH∗(G,k)(Hom

∗
G(k,M), I).
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Consequently, one can rephrase the defining isomorphism (2.1) for the object Tp(k)
as a natural isomorphism

HomG(M,Tp(k)) ∼= HomH∗(G,k)(H
∗(G,M), I(p)) .

Therefore, the main task is to prove that there is a stable isomorphism:

Γp(νk) ∼= Ω−dTp(k) .

Recall that νk = δG.
We first verify the isomorphism above for closed points of ProjH∗(G, k) and then

use a reduction to closed points. The proof uses the following simple observation:
For any G-modules X and Y that are p-local and p-torsion, there is an isomorphism
X ∼= Y in StModG if and only if there is a natural isomorphism

HomG(M,X) ∼= HomG(M,Y )

for p-local and p-torsion G-modules M . This follows from Yoneda’s lemma.

Claim. The desired isomorphism holds when m is a closed point.

Set A := H∗(G, k) and R := Am. The injective hull, I(m), of the A-module A/m
is the same as that of the R-module k(m), viewed as an A-module via restriction
of scalars along the localisation map A → R. Thus I(m) is the module I described
in Lemma A.2. Let M be a G-module that is m-local and m-torsion. The claim is
a consequence of the following computation:

HomG(M,ΩΓm(νk)) ∼= HomG(M,Ωνk)

∼= HomG(k,M)∨

∼= HomR(Hom
∗
G(k,M), I(m))

∼= HomA(Hom
∗
G(k,M), I(m))

∼= HomG(M,Tm(k))

The first isomorphism holds becauseM is m-torsion; the second is Tate duality, The-
orem 4.2, and the next one is by Lemma A.2, which applies because Hom∗

G(k,M)
is m-local and m-torsion as an A-module.

Let p be a point in ProjH∗(G, k) that is not closed, and let K, b, and m be as
in Construction 3.3. Recall that m is a closed point in H∗(GK ,K) lying over p.

Claim. There is a stable isomorphism of G-modules

(5.1) (Tm(K)//b)↓G ∼= Ω−d+1Tp(k)

where d is the Krull dimension of H∗(G, k)/p.

Let M be a G-module that is p-local and p-torsion. Then Theorem 3.4 applies
and yields isomorphisms of G-modules.

(MK//b)↓G ∼= (MK ⊗K K//b)↓G ∼= M .

This gives the sixth isomorphism below.

HomG(M,Ωd−1(Tm(K)//b)↓G) ∼= HomGK
(MK ,Ωd−1(Tm(K)//b))

∼= HomGK
(MK//b, Tm(K))

∼= HomH∗(GK ,K)(Hom
∗
GK

(K,MK//b), I(m))

∼= HomH∗(G,k)(Hom
∗
GK

(K,MK//b), I(p))

∼= HomH∗(G,k)(Hom
∗
G(k, (MK//b)↓G), I(p))

∼= HomH∗(G,k)(Hom
∗
G(k,M), I(p))

∼= HomG(M,Tp(k))
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The first and the fifth isomorphisms are by adjunction. The second isomorphism
is a direct computation using (2.3) and (3.1). The next one is by definition and
the fourth isomorphism is by Lemma A.3 applied to the canonical homomorphism
H∗(G, k) → H∗(GK ,K); note that the H∗(GK ,K)-module Hom∗

GK
(K,MK//b) is

m-torsion. This justifies the claim.

We are now ready to wrap up the proof of the theorem. Since m is a closed
point in ProjH∗(GK ,K), the first claim yields that the GK-modules Γm(νK) and
Ω−1Tm(K) are isomorphic. This then gives an isomorphism of GK-modules.

νK ⊗K Γm(K//b) ∼= Γm(νK)//b ∼= Ω−1Tm(K)//b

Restricting to G and applying (5.1) gives the last of the following isomorphisms of
G-modules.

Γp(νk) ∼= ((νk)K ⊗K Γm(K//b)↓G
∼= (νK ⊗K Γm(K//b))↓G
∼= Ω−dTp(k)

The first one is by Theorem 3.4 and the second by (4.2). �

The following consequences of Theorem 5.1 were anticipated in [4, pp. 203]. For
a graded module M =

⊕
n∈Z

Mn and i ∈ Z the twist M(i) is the graded module

with M(i)n = Mn+i.

Corollary 5.3. Fix p in ProjH∗(G, k). With d the Krull dimension of H∗(G, k)/p
there are isomorphisms of H∗(G, k)-modules

H∗(G,Γp(k)) ∼= Hom∗
H∗(G,k)(H

∗(G, δG), I(p))(d)

and

H∗(G,Endk(Γp(k))) ∼= (H∗(G, k)p)
∧

where (−)∧ denotes completion with respect to the p-adic topology.

Proof. Remark 2.3 will be used repeatedly and without comment. SetR = H∗(G, k).
Since Γp(k) is p-local, the R-modules H∗(G,Γp(k)) and Hom∗

G(k, Γp(k)) are iso-
morphic. The first of the stated isomorphisms is a composition of the following
isomorphisms of R-modules.

Hom∗
G(k, Γp(k)) ∼= Hom∗

G(δG, Γp(δG))

∼= Hom∗
G(δG,Ω

−dTp(k))

∼= Hom∗
G(δG, Tp(k))(d)

∼= Hom∗
R(H

∗(G, δG), I(p))(d)

The second isomorphism is by Theorem 5.1, the one after is standard, while the
last one is by the definition of Tp(k).

In the same vein, one has the following chain of isomorphisms.

Hom∗
G(k,Endk(Γp(k))) ∼= Hom∗

G(Γp(k), Γp(k))

∼= Hom∗
G(Tp(k), Tp(k))

∼= Hom∗
R(Hom

∗
G(k, Tp(k)), I(p))

∼= Hom∗
R(I(p), I(p))

∼= (Rp)
∧

The second isomorphism is by Theorem 5.1 and the rest are standard. �

Remark 5.4. Another consequence of Theorem 5.1 is that Γp(δG), and hence also
Γpk, is an indecomposable pure injective object in StModG; see [15, Theorem 5.1].
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6. The Gorenstein property

In this section we introduce a notion of a Gorenstein triangulated category and
reinterpret Theorem 5.1 to mean that StModG has this property. The rationale for
doing so will become clear in the next section.

The Gorenstein property. Let R be a graded commutative noetherian ring and
T a compactly generated R-linear triangulated category. The support of T is by
definition the set

suppR(T) = {p ∈ SpecR | Γp 6= 0} .
We say that T is Gorenstein if there is an R-linear triangle equivalence

F : Tc ∼−→ Tc

and for every p in suppR(T) there is an integer d(p) and a natural isomorphism

Γp ◦F ∼= Σd(p) ◦Tp

of functors Tc → T. In this context we call F a global Serre functor, because in
Proposition 7.3 we show that localising at p induces a Serre functor Σ−d(p)Fp in
the sense of Bondal and Kapranov [16].

Let now T = (T,⊗,1) be a tensor triangulated category such that R acts on T

via a homomorphism of graded rings R → End∗T(1). In that case the Gorenstein
property is captured by the existence of a distinguished object.

Lemma 6.1. The R-linear triangulated category T is Gorenstein if and only if

there exists a compact object W with the following properties:

(1) There is a compact object W−1 such that W ⊗W−1 ∼= 1;

(2) For each p in suppR(T) there exists an integer d(p) and an isomorphism

ΓpW ∼= Σd(p)Tp(1) .

One may think of W as a dualising object in T.

Proof. Since Γp and Tp are tensor functors, by (2.2), the functor F : Tc → Tc and
the object W determine each other: W := F (1) and F := W ⊗−. �

The example below justifies the language of Gorenstein triangulated categories.

Example 6.2. Let A be a commutative noetherian ring and D the derived category
ofA-modules. This is an A-linear compactly generated tensor triangulated category,
with compact objects the perfect complexes of A-modules, that is to say, complexes
quasi-isomorphic to bounded complexes of finitely generated projective A-modules.

Recall that the ring A is Gorenstein if for each p ∈ SpecA the injective dimension
of Ap, as a module over itself, is finite; see [17, 3.1]. By Grothendieck’s local duality
theorem [17, §3.5], this is equivalent to an isomorphism of Ap-modules

ΓpA ∼= Σ− dimApI(p) .

Thus D is Gorenstein with dualising object A and d(p) = − dimAp; see Lemma 6.1.
Conversely, it is not difficult to check that D is Gorenstein only if A is Gorenstein.

There are other examples (notably, differential graded algebras) that fit into this
context but we defer discussing these to another occasion. For a finite group scheme
G over a field k, the Gorenstein property for StModG is basically a reformulation
of Theorem 5.1.

Corollary 6.3. As an H∗(G, k)-linear triangulated category, StModG is Goren-

stein, with F = δG⊗k− the Nakayama functor and d(p) = dimH∗(G, k)/p for each

p in ProjH∗(G, k). �
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Next we discuss the Gorenstein property for K(InjG) for a finite group scheme
G. To this end observe that the assignment X 7→ νX induces triangle equivalences

K(InjG)
∼−→ K(InjG) and Db(modG)

∼−→ Db(modG).

We are ready to establish the Gorenstein property for K(InjG).

Theorem 6.4. Let G be a finite group scheme over a field k. Then K(InjG) is

Gorenstein with F induced by the Nakayama functor and d(p) = dimH∗(G, k)/p
for each p ∈ SpecH∗(G, k).

Proof. Setm := H>1(G, k). By Lemma 2.6, one has Γm = pk⊗k−, where pk denotes
a projective resolution of the trivial representation. The isomorphism Γm ◦F ∼= Tm

follows from [32, Theorem 3.4].
For a prime ideal p 6= m, the assertion follows from Theorem 5.1, for localisation

at p yields a triangle equivalence Γp(K(InjG))
∼−→ Γp(StModG) by Lemma 2.6. �

7. Local Serre duality

In this section we introduce a notion of local Serre duality for an essentially
small R-linear triangulated category and link it to the Gorenstein property from
Section 6. We use the concept of a Serre functor for a triangulated category which
is due to Bondal and Kapranov [16]; this provides a conceptual way to formulate
classical Serre duality and Grothendieck’s local duality in a triangulated setting.

In the second part of this section we discuss the existence of Auslander-Reiten
triangles. These were introduced by Happel for derived categories of finite dimen-
sional algebras [24], and in [25] he established the connection with the Gorenstein
property, while Reiten and Van den Bergh [36] discovered the connection between
Auslander-Reiten triangles and the existence of a Serre functor.

Small triangulated categories with central action. Let C be an essentially
small R-linear triangulated category. Fix p ∈ SpecR and let Cp denote the trian-
gulated category that is obtained from C by keeping the objects of C and setting

Hom∗
Cp
(X,Y ) := Hom∗

C(X,Y )p .

Then Cp is an Rp-linear triangulated category and localising the morphisms induces
an exact functor C → Cp.

Let γpC be the full subcategory of p-torsion objects in Cp, namely

γpC := {X ∈ Cp | End∗Cp
(X) is p-torsion}.

This is a thick subcategory of Cp. In [12] this category is denoted ΓpC. The notation
has been changed to avoid confusion.

Remark 7.1. Let F : C → C be an R-linear equivalence. It is straightforward to
check that this induces triangle equivalences Fp : Cp

∼−→ Cp and γpC
∼−→ γpC making

the following diagram commutative.

C Cp γpC

C Cp γpC

F Fp Fp

Remark 7.2. Let T be a compactly generated R-linear triangulated category. Set
C := Tc and fix p ∈ SpecR. The triangulated categories Tp and ΓpT are compactly
generated. The left adjoint of the inclusion Tp → T induces (up to direct sum-

mands) a triangle equivalence Cp

∼−→ (Tp)
c and restricts to a triangle equivalence

γpC
∼−→ (ΓpT)

c .
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This follows from the fact that the localisation functor T → Tp taking X to Xp

preserves compactness and that for compact objects X,Y in T

Hom∗
T(X,Y )p

∼−→ Hom∗
Tp

(Xp, Yp) .

For details we refer to [12].

Local Serre duality. Let R be a graded commutative ring that is local ; thus
there is a unique homogeneous maximal ideal, say m. Extrapolating from Bondal
and Kapranov [16, §3], we call an R-linear triangle equivalence F : C

∼−→ C a Serre

functor if for all objects X,Y in C there is a natural isomorphism

(7.1) HomR(Hom
∗
C(X,Y ), I(m))

∼−→ HomC(Y, FX) .

The situation when R is a field was the one considered in [16]. For a general ring R,
the appearance of Hom∗

R(−, I(m)), which is the Matlis duality functor, is natural
for it is an extension of vector-space duality; see also Lemma A.2.

For an arbitrary graded commutative ringR, we say that anR-linear triangulated
category C satisfies local Serre duality if there exists an R-linear triangle equivalence
F : C

∼−→ C such that for every p ∈ SpecR and some integer d(p) the induced functor

Σ−d(p)Fp : γpC
∼−→ γpC is a Serre functor for the Rp-linear category γpC. Thus for

all objects X,Y in γpC there is a natural isomorphism

HomR(Hom
∗
Cp
(X,Y ), I(p))

∼−→ HomCp
(Y,Σ−d(p)FpX) .

For a compactly generated triangulated category, the Gorenstein condition from
Section 6 is linked to local Serre duality for the subcategory of compact objects.

Proposition 7.3. Let R be a graded commutative noetherian ring and T a com-

pactly generated R-linear triangulated category. Suppose that T is Gorenstein, with

global Serre functor F and shifts {d(p)}. Then for each p ∈ suppR(T), object

X ∈ (ΓpT)
c and Y ∈ Tp there is a natural isomorphism

HomR(Hom
∗
T(X,Y ), I(p)) ∼= HomT(Y,Σ

−d(p)Fp(X)) .

Proof. Given Remark 7.2 we can assume X = Cp for a p-torsion compact object C
in T. The desired isomorphism is a concatenation of the following natural ones:

HomR(Hom
∗
T(Cp, Y ), I(p)) ∼= HomR(Hom

∗
T(C, Y ), I(p))

∼= HomT(Y, Tp(C))

∼= HomT(Y,Σ
−d(p)ΓpF (C))

∼= HomT(Y,Σ
−d(p)ΓV(p)F (C)p)

∼= HomT(Y,Σ
−d(p)ΓV(p)Fp(Cp))

∼= HomT(Y,Σ
−d(p)Fp(Cp))

In this chain, the first map is induced by the localisation C 7→ Cp and is an
isomorphism because Y is p-local. The second one is by the definition of Tp(C);
the third is by the Gorenstein property of T; the fourth is by the definition of Γp;
the last two are explained by Remark 7.2, where for the last one uses also the fact
that Cp, and hence also Fp(Cp), is p-torsion. �

Corollary 7.4. Let R be a graded commutative noetherian ring and T a compactly

generated R-linear triangulated category. If T is Gorenstein, then Tc satisfies local

Serre duality.

Proof. Combine Proposition 7.3 with Remark 7.2. �
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Example 7.5. In the notation of Example 6.2, when A is a (commutative noether-
ian) Gorenstein ring, local Serre duality reads: For each p ∈ SpecA and integer n
there are natural isomorphisms

HomAp
(ExtnAp

(X,Y ), I(p)) ∼= Ext
n+dimAp

Ap
(Y,X)

where X is a perfect complexes of Ap-modules with finite length cohomology, and
Y is a complex of Ap-modules.

Auslander-Reiten triangles. Let C be an essentially small triangulated category.

Following Happel [24], an exact triangle X
α−→ Y

β−→ Z
γ−→ ΣX in C is an Auslander-

Reiten triangle if

(1) any morphism X → X ′ that is not a split monomorphism factors through α;
(2) any morphism Z ′ → Z that is not a split epimorphism factors through β;
(3) γ 6= 0.

In this case, the endomorphism rings of X and Z are local, and in particular the
objects are indecomposable. Moreover, each ofX and Z determines the AR-triangle
up to isomorphism. Assuming conditions (2) and (3), the condition (1) is equivalent
to the following:

(1′) The endomorphism ring of X is local.

See [29, §2] for details.
Let C be a Krull-Schmidt category, that is, each object decomposes into a finite

direct sum of objects with local endomorphism rings. We say that C has AR-

triangles if for every indecomposable object X there are AR-triangles

V → W → X → ΣV and X → Y → Z → ΣX .

The next proposition establishes the existence of AR-triangles; it is the analogue
of a result of Reiten and Van den Bergh [36, I.2] for triangulated categories that
are Hom-finite over a field.

Proposition 7.6. Let R be a graded commutative ring that is local, and let C be

an essentially small R-linear triangulated category that is Krull-Schmidt. If C has

a Serre functor, then it has AR-triangles.

Proof. Let F be a Serre functor for C and X an indecomposable object in C. The
ring EndC(X) is thus local; let J be its maximal ideal and I the right ideal of
End∗C(X) that it generates. Choose a nonzero morphism Hom∗

C(X,X)/I → I(m)
and let γ : X → FX be the corresponding morphism in C provided by Serre dual-
ity (7.1). We claim that the induced exact triangle

Σ−1FX → W → X
γ−→ FX

is an AR-triangle. Indeed, by construction, if X ′ → X is not a split epimorphism,

the composition X ′ → X
γ−→ FX is zero. Moreover X is indecomposable so is FX .

Applying this construction to F−1ΣX yields an AR-triangle starting at X . �

Let R be a graded commutative ring. An R-linear triangulated category C is
noetherian if the R-module Hom∗

C(X,Y ) is noetherian for all X,Y in C. This
property implies that for an object X in γpC the Rp-module E∗ := End∗γpC

(X) is

of finite length. Therefore the graded ring E∗ is artinian, and so E0 is an Artin
algebra over R0

p; see [17, Theorem 1.5.5]. In particular, the idempotent completion
of γpC is a Krull-Schmidt category.

Corollary 7.7. Let T be a compactly generated R-linear triangulated category with

Tc noetherian. If T is Gorenstein, then (ΓpT)
c has AR-triangles for p in SpecR.
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Proof. As explained above, the assumption that Tc is noetherian implies that
(ΓpT)

c is a Krull-Schmidt category. Thus the assertion follows by combining Propo-
sitions 7.3 and 7.6. �

Next we consider local Serre duality for Db(modG) and stmodG. Recall from
Lemma 2.6 that localisation at p ∈ ProjH∗(G, k) induces a triangle equivalence

Γp(K(InjG))
∼−→ Γp(StModG). Using Remark 7.2, this yields (up to direct sum-

mands) triangle equivalences

γp(D
b(modG))

∼−→ Γp(K(InjG))c
∼−→ Γp(StModG)c

∼−→ γp(stmodG).

The result below contains Theorem 1.1 in the introduction.

Theorem 7.8. Let G be a finite group scheme over a field k. Then the H∗(G, k)-
linear triangulated category D := Db(modG) satisfies local Serre duality. Said oth-

erwise, given p in SpecR and with d the Krull dimension of H∗(G, k)/p, for each

M in γpD and N in Dp, there are natural isomorphisms

HomH∗(G,k)(Hom
∗
Dp

(M,N), I(p)) ∼= HomDp
(N,ΩdδG ⊗k M) .

In particular, γpD has AR-triangles.

Proof. The first assertion follows from Theorem 6.4 and Proposition 7.3. The exis-
tence of AR-triangles then follows from Corollary 7.7, as D is noetherian. �

AR-components and periodicity. The existence of AR-triangles for a triangu-
lated category C gives rise to an AR-quiver ; see for example [26, 34]. The vertices
are given by the isomorphism classes of indecomposable objects in C and an arrow
[X ] → [Y ] exists if there is an irreducible morphism X → Y .

In the context of stmodG, one can describe part of the structure of the AR-quiver
of the p-local p-torsion objects as the Serre functor is periodic.

Proposition 7.9. Let G be a finite group scheme over a field k. Fix a point p in

ProjH∗(G, k) and set d = dimH∗(G, k)/p. Then the Serre functor

Ωdν : γp(stmodG)
∼−→ γp(stmodG)

is periodic, that is, (Ωdν)r = id for some positive integer r.

Proof. Lemma 2.1 and (4.1) provide an integer r ≥ 0 such that νrM ∼= M and
ΩrM ∼= M for M in γp(stmodG). Thus (Ωdν)r = id, since ν and Ω commute. �

This has the following consequence.

Corollary 7.10. Every connected component of the AR-quiver of γp(stmodG) is

a stable tube in case it is infinite; and otherwise, it is of the form Z∆/U , where ∆
is a quiver of Dynkin type and U is a group of automorphisms of Z∆.

Proof. Since the Serre functor on γp(stmodG) is periodic, the desired result follows
from [34, Theorem 5.5]; see also [26]. �

The preceding result may be seen as a first step in the direction of extending
the results of Farnsteiner’s [22, §3] concerning stmodG to γp(stmodG) for a general
(meaning, not necessarily closed) point p of ProjH∗(G, k).
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Appendix A. Injective modules at closed points

In this section we collect some remarks concerning injective hulls over graded
rings, for use in Section 5. Throughout k will be a field and A :=

⊕
i>0 A

i will be

a finitely generated graded commutative k-algebra with A0 = k; we have in mind
H∗(G, k), for a finite group scheme G over k.

As usual ProjA denotes the homogeneous prime ideals in A that do not contain
the ideal A>1. Given a point p in ProjA, we write k(p) for the graded residue
field at p; this is the homogeneous field of fractions of the graded domain A/p.
Observe that k(p)0 is a field extension of k and k(p) is of the form k(p)0[t±1] for
some indeterminate t over k(p)0; see, for example, [17, Lemma 1.5.7].

Lemma A.1. The degree of k(m)0/k is finite for any closed point m in ProjA.

Proof. One way to verify this is as follows: The Krull dimension of A/m is one so,
by Noetherian normalisation, there exists a subalgebra k[t] of A/m where t is an
indeterminate over k and the A/m is finitely generated k[t]-module. Thus, inverting
t, one gets that (A/m)t is a finitely generated module over the graded field k[t±1],
and hence isomorphic to k(m). The finiteness of the extension k(m)/k[t±1] implies
that the extension k(m)0/k of fields is finite. �

The result below is familiar; confer [17, Proposition 3.6.16].

Lemma A.2. Let A be as above, let m be a closed point in ProjA and set R := Am.

The R-submodule I :=
⋃

i>0 Hom
∗
k(R/mi, k) of Hom∗

k(R, k) is the injective hull of

k(m), and for any m-torsion R-module N , there is a natural isomorphism

HomR(N, I) ∼= Homk(N, k) .

Proof. Set K = k(m)0 and recall that k(m) = K[t±1], for some indeterminate t
over K. Thus, one has isomorphisms of graded k(m)-modules

Hom∗
k(k(m), k) ∼= Hom∗

K(k(m),Homk(K, k))(A.1)

∼= Hom∗
K(k(m),K)

∼= k(m) .

The first isomorphism is adjunction, the second holds because rankk K is finite, by
Lemma A.1, and the last one is a direct verification.

The R-module Hom∗
k(R, k) is injective and hence so is its m-torsion submodule

⋃

i>0

Hom∗
R(R/mi,Hom∗

k(R, k)) .

This is precisely the R-module I, by standard adjunction. Thus I must be a direct
sum of shifts of injective hulls of k(m). It remains to verify that I is in fact just
the injective hull of k(m). To this end, note that for any m-torsion R-module N ,
one has isomorphisms of graded k(m)-modules

Hom∗
R(N, I) ∼= Hom∗

R(N,Hom∗
k(R, k))

∼= Hom∗
k(N, k) .

This settles the last assertion in the desired result and also yields the first isomor-
phism below of graded k(m)-modules.

Hom∗
R(k(m), I) ∼= Hom∗

k(k(m), k) ∼= k(m)

The second one is by (A.1). It follows that I is the injective hull of k(m). �

The next result, whose proof is rather similar to the one above, gives yet another
way to get to the injective hull at a closed point of Proj.

Recall that I(p) denotes the injective hull of A/p for any p in SpecA.
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Lemma A.3. Let A → B be a homomorphism of graded commutative algebras, let

m be a closed point in ProjB, and set p := m∩A. If the extension of residue fields

k(p) ⊆ k(m) is finite, then the B-module ΓV(m)Hom
∗
A(B, I(p)) is the injective hull

of B/m, and for any m-torsion B-module N , adjunction induces an isomorphism

HomB(N, I(m)) ∼= HomA(N, I(p)) .

Proof. The B-module I := ΓV(m) Hom
∗
A(B, I(p)) is injective, for it is the m-torsion

submodule of the injective B-module Hom∗
A(B, I(p)). As m is a closed point, I is a

direct sum of shifts of copies of I(m). It remains to make the computation below:

Hom∗
B(k(m), I) ∼= Hom∗

B(k(m),Hom∗
A(B, I(p)))

∼= Hom∗
A(k(m), I(p))

∼= Hom∗
k(p)(k(m),Hom∗

A(k(p), I(p))

∼= Hom∗
k(p)(k(m), k(p))

∼= k(m)

These are all isomorphisms of k(m)-modules. The last one is where the hypothesis
that k(m)/k(p) is finite is required. This implies that I ∼= I(m). Given this, the
last isomorphism follows by standard adjunction. �
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