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2 

Abstract 18 

19 
Glioblastoma (GB) represents the most common and aggressive form of malignant primary brain 20 

tumour associated with high rates of morbidity and mortality. In this study we considered the potential 21 

use of idebenone, a Coenzyme Q10 analogue, as a novel chemotherapeutic agent for GB. On two GB 22 

cell lines, U373MG and U87MG, idebenone decreased the viable cell number and enhanced the 23 

cytotoxic effects of two known anti-proliferative agents: temozolomide and oxaliplatin. Idebenone 24 

also affected the clonogenic and migratory capacity of both GB cell lines, at 25 M and 50 M, a 25 

concentration equivalent to that transiently reached in plasma after oral intake that is deemed safe for 26 

humans. p21 protein expression was decreased in both cell lines indicating that idebenone likely 27 

exerts its effects through cell cycle dysregulation and this was confirmed in U373MG cells only by 28 

flow cytometric cell cycle analysis which showed S phase arrest. Caspase-3 protein expression was 29 

also significantly decreased in U373MG cells indicating idebenone-induced apoptosis that was 30 

confirmed by flow cytometric Annexin V/PI staining. No major decrease in caspase-3 expression was 31 

observed in U87MG cells nor apoptosis as observed by flow cytometry analysis. Overall, the present 32 

study demonstrates that idebenone has potential as an anti-proliferative agent for GB by interfering 33 

with several features of glioma pathogenesis such as proliferation and migration and hence might be a 34 

drug that could be repurposed for aiding cancer treatments. Furthermore, the synergistic combinations 35 

of idebenone with other agents aimed at different pathways involved in this type of cancer is 36 

promising.  37 

38 
Keywords: Idebenone; glioblastoma cells; anti-proliferation, anti-migration; p21 39 

40 

41 
Introduction 42 

Glioblastoma (GB) represents the most common and aggressive form of malignant primary brain 43 

tumour and is associated with high rates of morbidity and mortality (1). Despite the substantial 44 

advances in neurosurgical techniques in combination with radio/chemotherapy, the median overall 45 

survival time of GB patients remains only approximately 8-15 months and it has not changed 46 

significantly over the past four decades (2).  This is reflected in the limited success of recent phase III 47 

clinical trials making treatment of GB one of the greatest challenges in neuro-oncology (3). In the 48 

attempt to improve treatment outcomes of GB patients and to increase their survival rate and quality 49 

of life, a diverse range of therapeutic strategies are being explored. These include immunotherapy, 50 

nanoparticles encapsulating anti-cancer agents, gene therapy along with the substantial need for 51 

exploring and developing new, effective and safe chemotherapeutic agents (4). An important 52 

prerequisite for the success of any drug for this disease is that of crossing the blood brain barrier 53 

(BBB) even though this barrier is disrupted at the brain-tumour interface (5). One such compound that 54 

has been shown to cross the BBB following oral administration using 14C radiolabel in both rats and 55 
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dogs is idebenone (IDE) (6,7). IDE is exploited currently by the pharmaceutical industry to treat age-56 

related cognitive disorders including Alzheimer’s disease due to its powerful antioxidant properties 57 

(8,9), and it has recently been used with success for treatment of several mitochondrial related-58 

neuromuscular disorders, especially Leber’s hereditary optic neuropathy and Friedrich’s ataxia (10-59 

14). Chemically, IDE is structurally similar to the naturally occurring Coenzyme Q10 (Fig. 1), in that 60 

both possess a benzoquinone moiety involved in electron transport, but their hydrophobic tails differ 61 

in length and composition. The shorter tail of IDE seems to be the ideal length for favouring 62 

partitioning into the mitochondrial membrane and for a better BBB permeation compared to 63 

Coenzyme Q10 (15). It therefore, has a more favourable pharmacokinetic profile and, in some cases, is 64 

considered a better therapeutic agent than its natural analogue (16,17).  65 

Recent research suggests that IDE may also have potential use as an anti-cancer agent. Tai et al. 66 

studied the effect of IDE on human dopaminergic neuroblastoma SHSY-5Y cells demonstrating that 67 

concentrations > 25 μM were cytotoxic and that the mechanism of cell death was apoptotic in nature 68 

(18). Seo et al. showed that in PC-3 prostate cancer cells and in CFPAC-1 pancreatic ductal 69 

adenocarcinoma cells, IDE reduced cell proliferation, inhibited cell migration and induced apoptosis 70 

by inhibiting anoctamin 1 (ANO1), a calcium activated chloride channel which is significantly 71 

increased in various tumours (19). These are the only two studies that have specifically investigated 72 

the effects of IDE on human cancer cells to date. Both demonstrated that it was effective, highlighting 73 

the potential this compound has as an anti-proliferative agent if studied more extensively on other 74 

cancer cell lines. For these reasons, IDE could be an interesting candidate for investigation against 75 

GB. 76 

Therefore the aim of the study was to investigate the influence of IDE on growth, regulation and 77 

migration of two human GB cell lines, U87MG and U373MG, in order to determine whether IDE 78 

might be a potential new anticancer agent. 79 

 80 

Materials and Methods 81 

Cell Culture and Reagents 82 

Idebenone (Tocris, UK) and Temozolomide (Sigma, USA) were both prepared as a 100 mM stock 83 

solution in dimethyl sulphoxide (DMSO), whereas Oxaliplatin (Tocris, UK) was prepared as a 10 mM 84 

stock solution in sterile water. They were all aliquoted and stored at -20 °C until use. The following 85 

antibodies were purchased from different sources: anti-p21/WAF1/Cip74 (#05-655, EMD Millipore, 86 

USA), anti--Actin (#Ab119716, Abcam, USA), anti-Casp3 (#HPA002643, Sigma, USA), anti-rabbit 87 

and anti-mouse IgG-HRP (#sc-2004, #sc-2005 respectively, Santa Cruz Biotechnology, USA). All 88 

other analytical grade chemicals were purchased from Sigma-Aldrich (USA).  89 

Human glioblastoma cell lines, U373MG and U87MG were procured from ECACC and are 90 

commonly used as models of glioblastoma harbouring a range of different genetic lesions (20). They 91 
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were cultured in Eagle’s minimum essential medium (MEM) supplemented with 10% fetal bovine 92 

serum (FBS), 100 units/mL penicillin, 100 g/mL streptomycin, 2 mM L-glutamine, under standard 93 

cell culture conditions (37 °C, 5% CO2, humidified atmosphere), passaged every 4/5 days and used 94 

within 8-20 passages. Prior to each experiment, they were seeded in appropriate plates/dishes at a 95 

seeding density of 2.4 x 104 cells/cm2 and treated according to each assay protocol. Appropriate 96 

controls were included throughout including the use of maximum concentration of vehicle that the 97 

cells were exposed to which did not exceed 0.05% for DMSO. This concentration did not cause any 98 

observable harmful effects on the cells based on cell morphology and cell growth. 99 

 100 

MTT and Trypan Blue exclusion assays and cell growth analysis 101 

Cells were seeded onto 96-well plates and allowed to grow for 48 h after which medium was 102 

replaced with that containing increasing concentrations of the chosen drugs or their combinations (100 103 

L final volume). For combination studies, the drugs were added simultaneously. After different 104 

exposure times (24-72 h), the effects of the compounds on cell viability was determined using the 3-105 

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (21). Ten μL of MTT 106 

solution in PBS (5 mg/mL) were added to each well and cells were incubated for a further 3 h at 37˚C. 107 

Medium was removed and replaced with 100 μL of DMSO to solubilize the crystals. The optical 108 

density of each well was determined at 570 nm on a microplate reader (Tecan SunriseTM) and viable 109 

cell count was assessed as a percentage relative to untreated cells. The IC50 values for each drug were 110 

calculated using GraphPad Prism 7 XML Project (GraphPad Software Inc. San Diego, USA). 111 

For cell growth analysis, cells were seeded in 35 mm cell culture dishes in 2 mL medium in 112 

duplicate and allowed to grow for 48 h, after which medium was replaced with that containing 113 

different concentrations of IDE and incubated for a further 48 h. Cells were then harvested by 114 

trypsinization, resuspended in 1 mL PBS and counted on an automated cell counter (Beckman Z2 115 

Coulter Particle Count and Size Analyzer). For determining the number of dead/dying cells, the 116 

trypan blue exclusion dye assay was used. The same procedure as described above for cell growth 117 

analysis was followed, except that cells were counted under light microscopy on a hematocytometer 118 

after staining with 0.1 % trypan blue solution in PBS at a 10x dilution factor. The number of 119 

dead/dying cells (stained) was assessed as a percentage of the total cell number for each treatment. 120 

 121 

Colony formation assay 122 

The colony forming assay was performed to evaluate the effects of IDE on the clonogenic capacity 123 

of U373MG and U87MG cells. Cells were seeded in 60 mm cell culture dishes in duplicate (200 and 124 

400 cells respectively/2.5 mL medium) and after 4 h (to allow cells to attach), 2.5 mL of appropriate 125 

concentrations of IDE were added in order to reach the desired final concentrations in 5 mL. Cells 126 

were then left in a sealed incubator for 2 weeks, after which they were carefully rinsed with PBS, 127 
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fixed and stained with 2 mL 0.5% crystal violet solution in 50% methanol for 30 min, rinsed again 128 

carefully with tap water and left to dry in normal air at room temperature. Colonies containing more 129 

than 50 cells were counted as representative of clonogenic cells under a Carl Zeiss
TM

 Stemi 2000-C 130 

stereo microscope. The surviving fraction which is the number of colonies that arise after cell 131 

treatment expressed in terms of plating efficiency, was determined according to the formula reported 132 

in Franken et al. (22): ((no. of colonies formed after treatment)/(no. of cells seeded x plating 133 

efficiency of the control)). 134 

 135 

Cell migration assay 136 

The effect of IDE on cell migration was assessed using the scratch/wound assay as previously 137 

developed by Valster et al. (23). The cells were grown to confluence in a 6-well cell culture plate for 138 

72 h, washed twice with medium without FBS and a scratch was performed with the tip of a sterile 139 

200 L pipette tip to create a defined, uniform scratch in the centre of the well. Medium with 140 

suspended cells was removed and replaced with medium containing 0.5% FBS with or without 141 

different concentrations of IDE. Closure of the wounds by migrating cells was observed under a 142 

digital inverted microscope (Evos XL, AMG), right after the scratch and at 24 and 48 h of incubation 143 

and images were taken in the same field by marking the wells underneath. An average of six 144 

images/well/time point were taken and the gap surface area of the wound was analysed using Image J 145 

software and expressed as the percentage of the area at time 0 h. 146 

 147 

Western immunoblotting analysis 148 

Cells were seeded onto 60 mm diam. dishes in duplicate, and after 48 h, the medium was replaced 149 

with different concentrations of IDE and incubated for a further 48 h. Cells were then harvested and 150 

the lysates in RIPA buffer were stored at -80 °C. After thawing, brief vortexing and centrifugation at 151 

16 000 g for 15 min at 4 °C, the protein concentration was determined on the supernatant using the 152 

BCA protein assay according to the manufacturer’s instructions (Pierce BCA Protein assay kit, 153 

Thermo Scientific, USA). Samples containing equal amounts of protein were separated by 12% SDS-154 

PAGE and the proteins were transferred overnight at 4 °C on PVDF membranes and probed for the 155 

proteins of interest as previously reported (24). The primary antibodies were used at the following 156 

dilutions: anti-p21 (1:750), anti-pro-caspase3 (1:500), anti--actin (1:5000), while the secondary ones 157 

were 1:7000 for anti-rabbit and 1:3000 for anti-mouse HRP-labelled antibodies. The protein bands 158 

were detected using an enhanced chemiluminescent substrate (Supersignal West Dura, Thermo 159 

Scientific, USA) and captured on a Genoplex VWR Bio imager (VWR, USA). Protein bands were 160 

quantified using Image J software and the data are reported as the percentage of intensity of the band 161 

of the protein of interest compared to the intensity of the -actin band (control). 162 

 163 
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Flow cytometry analyses  164 

Cells were seeded onto 6-well plates and allowed to grow for 48 h after which medium was 165 

replaced with that containing different concentrations of IDE or camptothecin (1 M) used as positive 166 

control, and incubated for 24 h. Cells were then harvested by trypsinization and combined with 167 

floating cells collected from the medium, pelleted, and washed with PBS. For Annexin V/propidium 168 

iodide (PI) staining, the Annexin V-FITC Kit (Miltenyi Biotec, Germany) was used and the assay was 169 

performed according to the manufacturer’s protocol. Briefly, after washing cells with 1x annexin-170 

binding buffer, cells were resuspended in 100 L 1x annexin-binding buffer to which 10 L of 171 

Annexin V-FITC was added and incubated for 15 min at room temperature. Cells were then washed 172 

with 1 mL 1x binding buffer, and to the cell pellet resuspended in 500 L of this same buffer, 5 L of 173 

PI solution was added directly before measurement on a BD Fortessa flow cytometer (BD Bioscience, 174 

USA). Emission of Annexin V-FITC was detected at 530 nm and PI fluorescence was collected at 175 

670/14 nm with excitation at 488 nm. For the detection of apoptotic events, the percentage of the 176 

population was evaluated on single cells, which are positive for AV-FITC or PI, using the FlowJo-177 

V10 analysis software (FlowJo LLC, USA).  178 

Cell cycle analysis was performed by measuring the changing amount of DNA associated with 179 

each phase of the cell cycle. Cellular DNA was labelled with DNA binding fluorochrome and 180 

subsequent fluorescence was measured to determine the relative DNA content and cell cycle position. 181 

Briefly, after harvesting the cells as described above, the cell pellets were fixed with 1 mL 70% 182 

ethanol overnight at -20°C. Cells were then pelleted at 2,500 g/5 min and washed with 1 mL 183 

phosphate-citrate buffer (0.2 M Na2HPO4, 0.1 M citric acid, pH 7.8). The cell pellet was resuspended 184 

in 100 L RNase A (100 g/mL in PBS) and incubated for 15 min at 37 °C before adding 400 L of 185 

PI solution (50 g/mL in PBS) directly to it. After 1 h incubation in the dark at room temperature, the 186 

DNA content was analysed as PI fluorescence emission at 610 nm using the 561 nm laser on the BD 187 

Fortessa analyser. Cell cycle phases were evaluated using the cell cycle module of the analysing 188 

software FlowJo-V10. 189 

 190 

Statistical Analysis 191 

All experiments were repeated independently at least three times. IC50 values of compounds were 192 

analysed using GraphPad Prism 7 using non-linear sigmoidal curve fitting with the normalized 193 

response. In the case of Oxaliplatin, the Excel add-in ed50v10 was used as this gave better curve 194 

fitting for obtaining the IC50. Statistical differences were analysed using one-way ANOVA followed 195 

by Dunnett’s post-hoc analysis or Student’s t-test using GraphPad Prism 7 XML Project (GraphPad 196 

Sofware Inc. San Diego, USA). Significant differences were defined as p < 0.05. Excess Over Bliss 197 

(EOB) analysis was performed to determine the drug combinations effect at each combination dose 198 
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according to Liu et al. (25), where an EOB score > 0 is considered synergism, = 0 199 

independent/additive, < 0 antagonism. 200 

 201 

Results 202 

Idebenone decreased viable cell number in glioblastoma cells and enhanced the anti-tumour 203 

effects of Temozolomide and Oxaliplatin 204 

The effects of increasing concentrations of IDE on the viable cell number of U373MG and 205 

U87MG cells were determined using the MTT assay (Fig. 2A,B). At concentrations of IDE > 20 M, 206 

a statistically significant decrease in viable cell number was observed for both cell lines at almost all 207 

exposure times compared to untreated controls. The half maximal inhibitory concentrations (IC50) at 208 

48 h were 84.5±5.2 M for U373MG and 74.4±2.7 M for U87MG. At longer exposure times, IDE 209 

became increasingly toxic with less than 30% of viable cells remaining after 96 h exposure at 50 M 210 

(IC50 for U373MG at 72 and 96 h are 31.3±1.9 M and 41.1±3.1 M respectively, while those for 211 

U87MG are 38.7±1.7 M and 26.6±1.8 M respectively). 212 

In order to compare the effects of IDE with known anti-cancer agents, cells were also exposed to 213 

Temozolomide (TMZ) and Oxaliplatin (OX) for 48 h (Fig. 2C,D).  Exposure to oxaliplatin lead to a 214 

statistically significant decrease in U87MG viable cell number compared to untreated cells at 215 

concentrations > 250 M while in U373MG cells this was observed starting from 350 M (Fig. 2C). 216 

The IC50 for U87MG and U373MG are 342.4±2.4 M and 476.8±12.4 M respectively, suggesting 217 

that U373MG cells are more resistant to OX. However, both these values are about five times higher 218 

compared to those obtained for IDE which are > 70 M for both cell lines. TMZ had little effect in 219 

both cell lines (Fig. 2D). The IC50 was > 500 M for both cell lines which is seven times greater than 220 

that of IDE. Thus under our experimental conditions, IDE exhibits greater toxicity than both known 221 

anti-cancer agents alone and U373MG cells are more resistant to these drug treatments than U87MG 222 

cells. Others have also reported that U373MG cells are more resistant to drug treatment which is 223 

consistent with our data (26,27).  224 

Since combining drugs is one of the major strategies used for improving clinical outcomes of GB 225 

(28), we explored whether IDE could modulate the effects of TMZ or OX. In the case of U87MG 226 

cells, the combination of IDE and OX lead to a greater decrease in cell viability than either IDE or 227 

OX alone. However, the results of EOB analysis reported in Fig. 3 suggest that this combination does 228 

not have impressive synergism since all values are less than 0.1. In U373MG cells, the combination of 229 

50 M IDE and OX also lead to a greater decrease than OX alone, but not to IDE alone (Fig. 3A,B). 230 

The co-presence of OX in this case seems to increase the number of viable cells compared to IDE 231 

alone. In fact, this combination appears to have an antagonistic effect according to EOB analysis. 232 

When IDE was combined with TMZ, a greater dose-dependent reduction (20-50% decrease) in cell 233 
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viability was also observed than when either were used alone in both cells lines (Fig. 3C,D), 234 

indicating a synergistic effect, albeit unimpressive, as found by EOB analysis.  235 

 236 

Idebenone inhibited growth of glioblastoma cells and affected their clonogenic and migratory 237 

capacity 238 

To determine the effects of IDE on cell growth, three concentrations corresponding to a low, 239 

medium and relatively high dose (10, 25, 50 M) of IDE were chosen based on the results reported in 240 

Fig. 2A,B (48 h). There was a decrease in total cell number for both cell lines with increasing 241 

concentrations of IDE (Fig. 4). In the case of U373MG cells, IDE appears to have a cytostatic effect, 242 

especially at 50 M since the cell number in its presence after 48 h incubation was almost identical as 243 

before IDE addition at time 0 (no growth). Instead for U87MG cells, IDE resulted more growth 244 

inhibitory since the cell number was reduced after IDE addition but always higher than the starting 245 

cell number. In the presence of IDE there was also a modest increase in trypan-blue positive staining 246 

indicating increased cell death in the presence of 25 and 50 M IDE after 48 h (Table 1). This 247 

increase is consistent with the trend observed with the MTT assay. 248 

The effects of IDE on cell survival were also assessed. Treatment of glioblastoma cells with IDE 249 

reduced the surviving fraction in a dose-dependent manner. After the two-week incubation period 250 

hardly any colonies were observed in cells treated with 50 M IDE (Fig. 5A,B). Since the number of 251 

colonies is a reliable indicator of the survival potential of these cells, the results indicate that IDE at 252 

concentrations > 25 M drastically reduces the ability of glioblastoma cells to survive.  253 

Glioblastomas are known to be highly invasive and infiltrative tumours which are hallmarks of this 254 

type of disease, therefore the possible anti-migratory effect of IDE using the wound healing assay was 255 

also investigated (29,30). In untreated cells, after 24 h and 48 h cells migrated into the wound gap 256 

reducing its surface area (Fig. 6A). In the presence of 10 and 25 M IDE however, cell migration 257 

diminished by 45% and 65% respectively for U373MG cells and by 5% and 34% for U87MG cells 258 

respectively, at 24 h (Fig. 6B,C). At 48 h, IDE at both concentrations and in both cell lines 259 

significantly reduced cell migration compared to the untreated control at the same time point. The 260 

U87MG cells were more migratory than U373MG cells in accordance with the observation of others 261 

on these two cell lines (31,32). 262 

 263 

Idebenone reduced the expression of caspase-3 and p21 inducing apoptosis and cell-cycle arrest 264 

The next question was does IDE induce the effects observed through cell cycle dysregulation 265 

and/or apoptosis induction?  To examine this, the expression of p21 and caspase-3 respectively, were 266 

examined by western immunoblotting (Fig. 7). Under our experimental conditions IDE does not seem 267 

to exert its effects via apoptosis, at least not in U87MG cells. In these cells, caspase-3 is more 268 

expressed than in U373MG cells and there was no significant difference compared to the untreated 269 
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control. This was also confirmed by flow cytometry analysis (Fig. 8A,B) using dual staining with 270 

Annexin V/PI where no appreciable differences were observed between the control and IDE treated 271 

cells. Camptothecin used as positive control, did however induce apoptosis as can be observed by the 272 

significant increase in cells in late apoptosis compared to the control. In U373MG cells a decline in 273 

caspase-3 protein expression was evident and significant at 50 M IDE (Fig. 7B). This finding was 274 

confirmed by flow cytometry (Fig. 8C,D) which showed that IDE at 25 M and 50 M significantly 275 

increased the percentage of early apoptotic cells by almost 2-fold compared to the untreated control as 276 

well as the percentage of cells in late apoptosis at the highest concentration. From the results shown in 277 

Fig. 7A and 7C, it also appears that IDE affects the cell cycle since in both cell lines there was a 278 

decreasing trend in expression of p21 with increasing concentration of IDE. This is especially the case 279 

in U373MG cells which is consistent with the flow cytometry data showing single staining with PI for 280 

DNA cell cycle content and distribution (Fig. 9A,B). In this cell line, a significant dose-dependent 281 

decrease in cell population in the G1 phase (54% and 42% at 25 M and 50 M IDE respectively vs 282 

66% of control) and 1.5 to 2-fold increase in the S phase (31% and 41% at 25 M and 50 M IDE 283 

respectively vs 21% of control) were observed in the presence of IDE (Fig. 9B). In U87MG cells, as 284 

observed for caspase-3, p21 was more expressed compared to U373MG cells. However, despite the 285 

significant decrease in p21 expression in these cells at 50 M, the DNA distribution analysed by flow 286 

cytometry revealed no apparent changes in the presence of IDE in three independent experiments 287 

(results not shown). 288 

 289 

Discussion 290 

The main purpose of this study was to investigate the potential anti-cancer effect of IDE on two 291 

human glioblastoma cells lines. GB is one of the most resistant tumours to conventional cytotoxic 292 

therapies therefore current studies concentrate on the development of novel agents for use either alone 293 

or in combination with standard chemotherapy and radiotherapy. In this study, we demonstrate that 294 

IDE decreased cell viability in a time and concentration dependent manner and that it was cytotoxic at 295 

concentrations similar to those reported by others on both human and non-human cancer cells 296 

(18,19,33,34). Furthermore, in a separate study IDE had no effect on a normal cell line consisting of 297 

colonocytes (CCD841CON) whereas it proved to be cytotoxic in a colorectal cancer cell line 298 

(SW480) (results not shown). Interestingly, when IDE was co-administered with the two well-known 299 

anti-cancer agents, TMZ and OX, a greater decrease in cell viability was observed in both cell lines, 300 

especially with TMZ. This improved effect resulted marginally synergistic. Since IDE appears to 301 

enhance the cytotoxic effects of TMZ, this novel combination for GB therapy merits further 302 

investigation, especially as combinations of other drugs and natural compounds with TMZ are being 303 

explored continuously (27,31,35-40). OX has been occasionally used for treating GB but limited due 304 

to its side effects (41). However, it was chosen in this study for comparison with IDE, since there 305 
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have been indications recently for repurposing platinum-based chemotherapies for multi-modal 306 

treatment of GB. Hence it could be more widely used for GB treatment in the future (42). Besides this 307 

aspect, IDE also proved to be more potent than both cytotoxics, with IC50 value at least five times 308 

lower than those of the known drugs.  The reduced number of colonies in the gold standard colony 309 

forming assay, provided further evidence of the growth inhibitory and hence survival effects of IDE. 310 

To the best of our knowledge, this is the first report showing the ability of IDE to hamper with cell 311 

survival in the long-term.  In the context of preventing recurrence this is important, as the capacity for 312 

unlimited proliferation of all stem cells must be eradicated. In this study we also established that IDE 313 

inhibits cell migration as previously observed in prostate cancer cells (19). This anti-314 

migratory/metastatic effect of IDE on GB cells could help to contain spreading of a GB tumour in 315 

vivo. 316 

In the attempt to address the possible mechanisms underlying the effects displayed by IDE on 317 

glioma cells, we found that apoptosis is probably not a major pathway responsible for the above 318 

outcomes, at least not in U87MG cells where no major decline in pro-caspase-3 was observed nor was 319 

there any indication from the flow cytometric data. Caspase-3 belongs to the executioner family of 320 

cysteine-aspartic acid proteases (caspases), and plays a dominant role in the hallmark caspase cascade 321 

characteristic of the apoptotic pathway (43). Upon activation it is cleaved into its active 17 kDa and 322 

12 kDa fragments which leads to a concomitant decrease in intensity of the uncleaved band at 32 kDa 323 

during immunoblot analysis. This could explain the dose-dependent decrease in protein expression 324 

observed in U373MG cells in the presence of IDE. Indeed, in U373MG cells IDE appears to induce 325 

modest apoptosis as also confirmed by Annexin/PI staining analysis using flow cytometry.  These 326 

results are in accordance with two previous reports on the direct effects of IDE on cancer cells which 327 

both describe an apoptotic effect of IDE (18,19). Seo et al. attribute their observations to the fact that 328 

IDE blocks the ANO1 calcium-chloride channel, but it has no effect on cancer cells which do not 329 

express ANO1 (19). However, in U87MG cells we failed to observe evidence of IDE-induced 330 

apoptosis and this could be due to the p53 status of the two cell lines. p53 is a well-known tumour 331 

suppressor protein which when active, induces a number of genes linked to diverse functions such as 332 

cell cycle regulation, DNA repair mechanisms and those related to apoptosis (44). U87MG cells have 333 

a wild-type p53 gene but do not express the functional protein to any measurable extent because of 334 

Mdm2 overexpression which destabilizes it (45), whereas U373MG cells have a mutant p53 gene 335 

(44). Lack of p53 activity in U87MG cells could thus prevent the induction of p53-dependent 336 

apoptosis whether IDE is present or not, explaining our results. In the case of U373MG, dysfunctional 337 

p53 activity due to the mutated gene would make these cells more sensitive to high concentrations of 338 

IDE which could then respond by apoptosis, as indicated by the decreased expression of pro-caspase-339 

3 at 50 M IDE and by the flow cytometric analysis. This divergent apoptotic response to IDE 340 

possibly due to the p53 status of the two cell lines, is similar to that described by Datta et al. on the 341 

same cells in the presence of cisplatin (46). The higher protein levels of caspase-3 and p21 expressed 342 
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in U87MG cells compared to U373MG cells may also reflect this different status, similarly to the 343 

observations by Ravizza et al. for p21 (27). 344 

It is more likely that under our experimental conditions, IDE exerts its anti-proliferative effects by 345 

interfering with cell cycle regulation, since in both cell lines a decline in protein expression of the 346 

cyclin-dependent kinase (CDK) inhibitor, p21 (known as p21WAF1/Cip1) was evident especially at 347 

high concentrations. This protein is uniquely positioned in the cell cycle to function as both a sensor 348 

and an effector of multiple anti-proliferative signals in response to a variety of cellular and 349 

environmental signals to promote tumour suppressor activities, both dependently and independently 350 

of the classical p53 tumour suppressor pathway. Usually, it is assumed that p21 downregulation or 351 

repression increases cell cycle progression and proliferation due to disinhibition of cyclin/cdk 352 

complexes (47). However, this is not always the case as indicated by several reports in which p21 353 

functions as a positive cell cycle regulator. Indeed, in U373MG cells we observed using flow 354 

cytometry, a dose-related increase in cell population in the S phase and a concomitant decrease in 355 

cells in the G1 phase of the cell cycle, suggesting that IDE is responsible for accumulation of cells in 356 

S phase.  A similar S phase arrest concomitant with p21 downregulation has also been observed by 357 

others in human cells under different treatment regimes (48-50). During S phase, replication can cease 358 

in response to DNA damage or stress to the replication process.  However, while the former response 359 

induces arrest through different mechanisms involving ATM protein kinases and invoking p53 and 360 

p21 response, the response to replicative stress arrests all cells regardless of p53 status and is not 361 

accompanied by p21 induction (51). Since we do not observe IDE-induced p21 in GB cells, we expect 362 

that IDE is affecting them mainly through replicative stress. The correlation between reduced 363 

expression of p21 and impairment of cell proliferation as observed in our study has been shown in 364 

several cell models ranging from HaCaT keratinocytes (52), smooth muscle cells (53), endothelial 365 

cells (54), colon and liver cancer cells (55,56) exposed to different stimuli although the reason for this 366 

has not always been clarified. The mechanism by which IDE downregulates p21 in glioma cells 367 

remains to be elucidated. However, the evidence so far suggests that in U373MG cells, IDE-induced 368 

S-phase arrest is linked to p21 down-regulation and that this plays an important part in IDE-induced 369 

apoptosis. This is supported by the fact that in several systems p21 down-regulation has been shown 370 

to trigger apoptosis (57-59). In U87MG cells, despite observing p21 decrease in the presence of IDE 371 

at 50 M, we could not link this to any changes in DNA cell cycle distribution, suggesting that our 372 

observations are cell-line specific. These differential responses between the two cell lines may depend 373 

on their p53 status as recently reviewed by Georgakilas (60) who depicts p21 as an onco-suppressor 374 

or an onco-promotor depending on cell type, cellular localization, p53 status, and the type and level of 375 

genotoxic stress. The fact that IDE downregulates p21 expression in U373MG and U87MG cells 376 

which are p53-deficient/mutant, implies that IDE could repress the oncogenic potential of these cells 377 

via p21 inhibition. Repression of p21 by IDE could also explain the anti-migratory effect observed in 378 

this study, since p21 appears to be essential for cell migration as reported in bladder cancer cells 379 
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induced by the inflammatory cytokine IL-20 (61). Further investigations are clearly required to 380 

understand mechanistically the effects of IDE observed in this research. 381 

Overall, the present study demonstrates that IDE has potential as an anti-proliferative agent for GB 382 

by interfering with several features of glioma pathogenesis such as proliferation and migration. The 383 

human safety of IDE is well-established and a daily dose of 60 mg/kg/day has been shown to reach a 384 

transient concentration in plasma equivalent to 29.6 M (62). This is a concentration close to those 385 

used in this study which were effective (25-50 M). Recently, the repurposing of existing drugs has 386 

attracted considerable attention (63) because it is advantageous, in time and cost saving. Therefore 387 

IDE, besides its current use in mitochondrial related-neuromuscular and neurodegenerative diseases, 388 

could be repurposed for aiding cancer treatments especially as it can cross the BBB. For example, its 389 

analogue Coenzyme Q10 has already been reported to be a promising candidate either alone or in 390 

combination for prevention and treatment of breast cancer (64). Atovaquone, another CoQ10 391 

analogue and an FDA-approved anti-malarial drug, is another example which is being considered for 392 

repurposing because of its anti-proliferative effect against MCF7 Cancer Stem-like Cells (65).The 393 

future treatment of malignant gliomas will likely involve synergistic combinations of agents aimed at 394 

different pathways in the molecular pathogenesis of this type of cancer. In this context, the results of 395 

the present study on IDE appear promising providing the preliminary experimental basis for exploring 396 

it further.  397 
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Legends to Figures 
573 

Figure 1. Chemical structure of Idebenone and the naturally occurring analogue, Coenzyme Q10. 574 

 575 

Figure 2. Effect of Idebenone, Oxaliplatin and Temozolomide on viable cell number of human 576 

glioblastoma cells. U373MG (A) and U87MG (B) cells were exposed to increasing concentrations of 577 

Idebenone for 48 h, 72 h or 96 h and cell-survival was assessed using the MTT assay. U373MG and 578 

U87MG cells were exposed to increasing concentrations of either Oxaliplatin (C) or Temozolomide 579 

(D) for 48 h and cell-survival was assessed using the MTT assay. The results are expressed as the 580 

percentage of viable cells compared to the control. Data are presented as mean ± SEM, of at least 24 581 

wells from at least four independent experiments (for Idebenone) and of at least 18 wells from at least 582 

three independent experiments for Temozolomide and Oxaliplatin. Statistics was performed using 583 

one-way Anova with Dunnett’s post-hoc analysis (* p<0.05 vs untreated). Dotted line is set at 50 % to 584 

show the IC50.  585 

 586 

Figure 3. Effect of Idebenone in combination with anti-cancer agents on viable cell number of human 587 

glioblastoma cells. Cells were treated with Idebenone (IDE), Oxaliplatin (OX), Temozolomide (TMZ) 588 

singularly and in combination at various concentrations for 48 h and viability was measured using the 589 

MTT assay. (A) U87MG cells in the presence of IDE and OX.  (B) U373MG cells in the presence of 590 

IDE and OX. (C) U87MG cells in the presence of IDE and TMZ. (D) U373MG cells in the presence 591 

of IDE and TMZ. The results are expressed as the percentage of viable cells compared to the control.  592 

Data are presented as mean ± SEM, of at least 18 wells from at least three independent experiments. 593 
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Statistics was performed using one-way Anova with Dunnett’s post-hoc analysis (*p<0.05 vs OX or 594 

TMZ alone).  595 

The values reported above the bars for the combinations are the EOB score values. 596 

 597 

Figure 4. Effect of Idebenone on the growth of human glioblastoma cells. U373MG and U87MG cells 598 

were exposed to increasing concentrations of Idebenone for 48 h before counting using a Coulter 599 

Counter as described in the Methods section. Dotted line represents cell number prior to Idebenone 600 

addition (0 h) in both cell lines. Data are presented as mean ± SEM, n=3 independent experiments. 601 

Statistics was performed using Student’s t-test (*p<0.05 vs untreated).  602 

 603 

Figure 5. Effect of increasing concentrations of Idebenone on the clonogenic survival of human 604 

glioblastoma cells. U373MG and U87MG cells were seeded in 6 cm culture dishes at a density of 200 605 

cells/dish (U373MG) and 400 cells/dish (U87MG) and incubated for two weeks in the presence of 606 

increasing concentrations of Idebenone. (A) Surviving fraction of colonies analysed two weeks later 607 

after staining with crystal violet. (B) Clones produced by U373MG human glioblastoma cells only are 608 

shown since those produced by U87MG cells were only visible by light microscopy. The images are 609 

representative of at least 3 independent experiments each performed in duplicate. Data are presented 610 

as mean ± SEM, n=3 independent experiments. Statistics was performed using the Student’s t-test 611 

(*p<0.05 vs untreated).  612 

 613 

Figure 6. Effect of Idebenone on migration of human glioblastoma cells. For the wound healing assay, 614 

U373MG and U87MG cells were treated with different concentrations of Idebenone and the wound 615 

closure was quantified every 24 h post-wound. (A) Representative photomicrographs (x10) taken at 616 

time 0 h and at 48 h post-wounding of U373MG and U87MG cells grown in 6-well plates, incubated 617 

in the presence of 10 and 25 M Idebenone, are shown. Gap surface area of the scratch/wound were 618 

analysed using ImageJ software and are expressed as the % of the area of time 0 h in both cell lines 619 

(B) U373MG and (C) U87MG. Data are presented as mean ± SD, n=3 independent experiments. 620 

Statistics was performed using Student’s t-test (p<0.05), * vs respective 0 h, § vs untreated at same 621 

time point. 622 

 623 

Figure 7. Effect of Idebenone on expression of caspase-3 and p21 in human glioblastoma cells. 624 

Protein expression was analysed by immunoblotting. (A) p21 and Caspase-3 expression in control and 625 

treated cells, 48 h post-exposure to Idebenone (IDE). -actin was used as loading control. The images 626 

are representative of three independent experiments. Results on quantification of caspase-3 (B) and 627 

p21 (C) protein expression from three independent experiments using ImageJ software. Data are 628 

presented as mean ± SD. Statistics was performed using Student’s t-test (*p<0.05 vs untreated).  629 
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 630 
Figure 8. Annexin V-FITC/PI flow cytometric analysis of apoptosis in human glioblastoma cells. 631 

U373MG and U87MG cells were treated with different concentrations of Idebenone (IDE) or 1 M 632 

Camptothecin (CPT) for 24 h, harvested by trypsinization, stained with annexin V-FITC (AV) and 633 

propidium iodide (PI) and then subjected to flow cytometry and analysed. AV-PI-, live cells; AV+PI-, 634 

early apoptosis; AV+PI+, late apoptosis; AV-PI+, necrosis.  (A) Representative dot plots from one 635 

experiment are shown for U87MG cells. (B) Graph showing data collected for U87MG cells from 636 

‘AV+PI-, AV+PI+ quadrants’ from 3 independent experiments. (C) Representative dot plots from one 637 

experiment are shown for U373MG cells. (B) Graph showing data collected for U373MG cells from 638 

‘AV+PI-, AV+PI+ quadrants’ from 3 independent experiments. Data are presented as mean ± SEM, 639 

n=3. Statistics was performed using Student’s t-test (*p<0.05 vs control). 640 

 641 

Figure 9. Flow cytometric analysis of cell cycle parameters in human glioblastoma cells. U373MG 642 

and U87MG cells were treated with different concentrations of Idebenone (IDE) or 1 M 643 

Camptothecin (CPT) for 24 h, harvested by trypsinization, fixed, stained with propidium iodide (PI) 644 

and then subjected to flow cytometry and analysed for cell cycle DNA distribution. (A) 645 

Representative DNA content histograms from one experiment are shown for U373MG cells. G1 phase 646 

(darkest/purple fraction), S phase (lightest/yellow fraction), G2 (grey/green fraction). (B) Graph 647 

showing data collected for U373MG cells from the three different fractions of the histograms from 3 648 

independent experiments. Data are presented as mean ± SEM, n=3. Statistics was performed using 649 

Student’s t-test (*p<0.05 vs control). Data for U87MG cells are not shown as no differences were 650 

observed between treated cells and the untreated ones from 3 independent experiments. 651 
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Table 1: Number of dead/dying human glioblastoma cells in the presence of Idebenone. U373MG 

and U87MG cells were exposed to increasing concentrations of Idebenone for 48 h before the Trypan-

Blue exclusion assay was performed to determine the no. of dead/dying cells as described in the 

Methods section. The results are reported as the % of dead/dying cells over the total cell no. for each 

treatment. Data are presented as mean ± SD, n=3 independent experiments. Statistics was performed 

using the Student’s t-test (*p<0.05 vs untreated).  

 



Idebenone Coenzyme Q10 

9 



0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

I d e b e n o n e  ( µ M )

V
ia

b
le

 c
e

ll
 n

o
. 

(
%

 c
o

n
tr

o
l)

4 8  h

7 2  h

9 6  h

U373MG 
* 48 h 

* 72 h 

* 96 h 

A 

V
ia

b
le

 c
e

ll 
n
o

. 
(%

 c
o

n
tr

o
l)

 

120 

100 

80 

60 

40 

20 

0 

10 20 30 40 50 60 70 80 

Idebenone (mM) 

48 h 

72 h 

96 h 

0 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

O x a l i p l a t i n  ( µ M )

U 8 7 M G

U 3 7 3 M G

V
ia

b
le

 c
e

ll
 n

o
. 

(%
 c

o
n

t
r

o
l)

* U373MG 

* U87MG C 

V
ia

b
le

 c
e

ll 
n
o

. 
(%

 c
o

n
tr

o
l)

 

120 

100 

80 

60 

40 

20 

0 

Oxaliplatin (mM) 

100 200 300 400 500 600 

U87MG 

U373MG 

0 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

T e m o z o l o m i d e  ( µ M )

U 8 7 M G

U 3 7 3 M G

V
ia

b
le

 c
e

ll
 n

o
. 

(
%

 c
o

n
t

r
o

l)

* U87MG & U373MG 

D 

U87MG 

U373MG 

V
ia

b
le

 c
e

ll 
n
o

. 
(%

 c
o

n
tr

o
l)

 

120 

100 

80 

60 

40 

20 

0 

100 200 300 400 500 

0 

Temozolomide (mM) 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

I d e b e n o n e  ( µ M )

V
ia

b
le

 c
e

ll
 n

o
. 

(
%

 c
o

n
t

r
o

l)

4 8  h

7 2  h

9 6  h

* 48 h 

* 72 h 

* 96 h 

U87MG 

0 

10 20 30 40 50 60 70 80 

Idebenone (mM) 

V
ia

b
le

 c
e

ll 
n
o

. 
(%

 c
o

n
tr

o
l)

 

120 

100 

80 

60 

40 

20 

48 h 

72 h 

96 h 

0 

B 



0

2 5

5 0

7 5

1 0 0

V
ia

b
le

 c
e

ll
 n

o
. 

(%
 c

o
n

t
r

o
l)

U87MG 

* 
* 

OX  (mM)    300        300        300                       -             - 

IDE (mM)       -            25          50                      25          50 

0

2 5

5 0

7 5

1 0 0

V
ia

b
le

 c
e

ll
 n

o
. 

(%
 c

o
n

t
r

o
l)

* 

OX  (mM)    400        400         400                           -             - 
IDE (mM)       -           25            50                          25          50 

U373MG 

0

2 5

5 0

7 5

1 0 0

V
ia

b
le

 c
e

ll
 n

o
. 

(%
 c

o
n

t
r

o
l)

* 
* 

U87MG 

TMZ  (mM)  100     100      100     100                  -           -          - 

IDE    (mM)    -         10        25       50                 10        25       50 

U373MG 

0

2 5

5 0

7 5

1 0 0

V
ia

b
le

 c
e

ll
 n

o
. 

(%
 c

o
n

t
r

o
l)

* 
* 

* 

TMZ  (mM)  100     100      100      100                    -            -          - 
IDE    (mM)    -          10        25        50                   10         25       50 

A B 

V
ia

b
le

 c
e

ll 
n

o
. 
(%

 c
o

n
tr

o
l)

 

100 

75 

50 

25 

0 

V
ia

b
le

 c
e

ll 
n

o
. 
(%

 c
o

n
tr

o
l)

 

100 

75 

50 

25 

0 

OX  (mM)    400        400        400                       -             - 

IDE (mM)       -            25          50                      25          50 

V
ia

b
le

 c
e

ll 
n

o
. 
(%

 c
o

n
tr

o
l)

 

100 

75 

50 

25 

0 

C 

TMZ  (mM)  100     100      100     100                  -          -          - 

IDE    (mM)    -         10        25       50                 10        25       50 

V
ia

b
le

 c
e

ll 
n

o
. 
(%

 c
o

n
tr

o
l)

 

100 

75 

50 

25 

0 

D U373MG 

0.007 

0.067 

-0.2 

-0.37 

0.035 

0.086 

0.077 

0.044 
0.042 

0.096 



0 1 0 2 0 3 0 4 0 5 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

I d e b e n o n e  ( µ M )

U 8 7 M G

U 3 7 3 M G

T
o

t
a

l 
c

e
ll

 n
u

m
b

e
r

 x
 1

0
6

2.0 

1.5 

1.0 

0.5 

0.0 0 

10 20 30 40 50 

Idebenone (mM) 

T
o
ta

l 
c
e

ll 
n
u
m

b
e
r 

x
 1

0
6

 

U87MG 
 

U373MG 



0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 uM 25 uM 50 uM

U373MG

U87MG

0 10 25 50 

S
u
rv

iv
in

g
 F

ra
c
ti
o
n
 

Idebenone (mM) 

0 10 25 50 
Idebenone (mM) 

U
3

7
3
M

G
 C

lo
n

e
s
 

A 

B 

* * 

* 
* 



0 10 25 

0
 h

 
4
8
 h

 

U373MG 

U87MG 

0
 h

 
4
8
 h

 

70

80

90

100

110

0 10 25

W
o

u
n

d
 G

a
p

 S
u

rf
a

c
e

 A
re

a
 

(%
 o

f 
0

 h
) 

Idebenone (mM) 

0 h 24 h 48 hU373MG 

* 
* * 
§ § § 

50

60

70

80

90

100

110

0 10 25

W
o

u
n

d
 G

a
p

 S
u

rf
a

c
e

 A
re

a
 

(%
 o

f 
0

 h
) 

Idebenone (mM) 

0 h 24 h 48 h

* 

* * 
* * § 

§ 

U87MG 

* 

B 

C 

Idebenone (mM) A 

Idebenone (mM) 

Idebenone (mM) 



0 1 0 2 5 5 0 0 1 0 2 5 5 0

0

2 5

5 0

7 5

1 0 0

%
 C

a
s

p
-
3

/A
c

ti
n

p21 

Casp-3 

B 

Idebenone (mM) 

U373MG U87MG 

* 

%
 C

a
s
p
-3

/A
c
ti
n
 

100 

75 

50 

25 

0 
25 10 0 50 25 10 0 50 

C 

0 1 0 2 5 5 0 0 1 0 2 5 5 0

0

2 5

5 0

7 5

1 0 0

%
 p

2
1

/A
c

ti
n

Idebenone (mM) 

U373MG U87MG 

* 
* 

%
 p

2
1
/A

c
ti
n
 

100 

75 

50 

25 

0 

25 10 0 50 25 10 0 50 

b-actin 

0 10 25 50 0 10 25 50 

U373MG U87MG 

mM IDE 

A 



C
o

m
p

-P
I-

A
 

Comp-FITC-A :: annexin V 

Control 1 mM CPT 

10 mM IDE 25 mM IDE 50 mM IDE 

C
o

m
p

-P
I-

A
 

Comp-FITC-A :: annexin V 

Control 1 mM CPT 

10 mM IDE 25 mM IDE 50 mM IDE 

A C 

0

1

2

3

4

5

6

7

8

A
p

o
p

to
ti

c
 c

e
ll

s
 (

%
)

Early apoptosis (AV+PI-) Late apoptosis (AV+PI+) 

U
3
7
3
M

G
 

* 

* 
* 

 Control 

1 mM CPT 

10 mM IDE 

25 mM IDE 

50 mM IDE 

D 

A
p
o
p

to
ti
c
 c

e
lls

 (
%

) 

0

1

2

3

A
p

o
p

to
ti

c
 c

e
ll

s
 (

%
)

Early apoptosis (AV+PI-) Late apoptosis (AV+PI+) 

* 

U
8
7
M

G
 

 Control 

1 mM CPT 

10 mM IDE 

25 mM IDE 

50 mM IDE 

B 

A
p
o
p

to
ti
c
 c

e
lls

 (
%

) 



C
o

u
n
ts

 

DsRed-A  

G1 

S 

G2 

Control 1 mM CPT 

10 mM IDE 25 mM IDE 50 mM IDE 

A 

 Control 

1 mM CPT 

10 mM IDE 

25 mM IDE 

50 mM IDE 

G1 S G2 

* * 

* 

* * 

* 

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

C
e

ll
 c

y
c

le
 D

N
A

 d
is

tr
ib

u
ti

o
n

 (
%

)
B 

C
e
ll 

c
y
c
le

 D
N

A
 d

is
tr

ib
u
ti
o
n
 (

%
) 


	Article File
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

