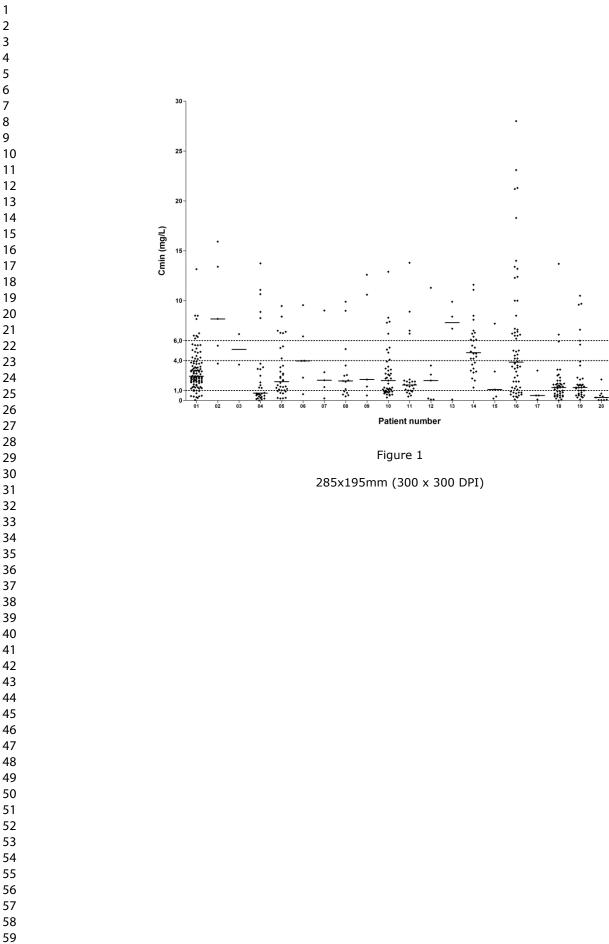
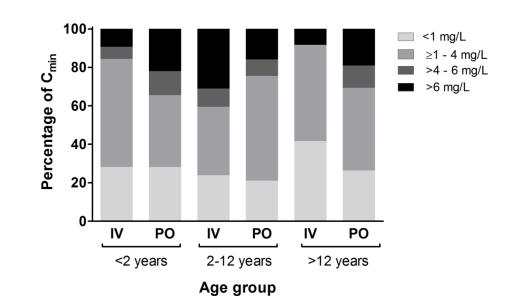
Medical Mycology




Impact of Dose Adaptations Following Voriconazole Therapeutic Drug Monitoring in Pediatric Patients

Journal:	Medical Mycology
Manuscript ID	MM-2018-0348.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Lempers, Vincent; Radboudumc Meuwese, Edme; Erasmus MC Mavinkurve-Groothuis, Annelies; Princess Máxima Center for Pediatric Oncology Henriet, Stefanie; Radboudumc van der Sluis, Inge; Princess Máxima Center for Pediatric Oncology Hanff, Lidwien; Princess Máxima Center for Pediatric Oncology Warris, Adilia; MRC Centre for Medical Mycology University of Aberdeen, Institute of Medical Sciences Koch, Birgit; Erasmus MC Brüggemann, Roger; Radboud University Medical Center, Pharmacy;
Keyword:	voriconazole, therapeutic drug monitoring, pediatrics, azoles, pharmacokinetics
Abstract:	Voriconazole is a broad-spectrum triazole antifungal agent which has emerged as the preferred treatment of invasive aspergillosis in both children (\geq 2 years of age) and adults (1, 2). Increased voriconazole exposure has been associated with improved treatment outcome in adults, with suggested provisional cut-off points for voriconazole trough plasma concentrations (Cmin) of 1-6 mg/L (3-6). An exposure-response relationship was also established for pediatric patients, in which a voriconazole Cmin > 1 mg/L was associated with improved outcomes (7-11). Based on the relationship between voriconazole exposure and efficacy and the high inter- and intra-patient variability in pediatric patients (12-15), the importance of voriconazole therapeutic drug monitoring (TDM) in pediatric patients has been acknowledged (1, 2, 16, 17). Although TDM-based dose adjustments are performed to optimize plasma concentrations, it remains unclear if these dose adaptations in pediatric patients correspond with target attainment. We conducted a retrospective analysis in a cohort of pediatric oncology patients (both leukemia as well as lymphoma) with difficult to manage

http://mc.manuscriptcentral.com/tmmy

1	
2 3 4	voriconazole concentrations and assessed the result of TDM-based dose adaptations on target attainment.
5 6	
7 8	
9 10	SCHOLARONE [™]
11	Manuscripts
12 13	
14	
15 16	
17 18	
19	
20 21	
22 23	
24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53	
54 55	
56 57	
58	
59 60	http://mc.manuscriptcentral.com/tmmy

			C _{min} (%	of total)	
Age group	Formulation	< 1 mg/L (n)	1 - 4 mg/L (n)	>4 - 6 mg/L (n)	> 6 mg/L (n)
< 2 years	IV	28.1 (9)	56.3 (18)	6.3 (2)	9.4 (3)
	PO	28.1 (9)	37.5 (12)	12.5 (4)	21.9 (7)
2-12 years	IV	23.8 (10)	35.7 (15)	9.5 (4)	31.0 (13)
	PO	21.1 (52)	54.5 (134)	8.5 (21)	15.9 (39)
>12 years	IV	41.7 (5)	50.0 (6)	0.0 (0)	8.3 (1)
	РО	26.3 (32)	43.0 (52)	11.6 (14)	19.0 (23)

		M	ledian dose admin	istered (mg/kg/d	ay)
Age group	Formulation	< 1 mg/L	1 - 4 mg/L	>4 - 6 mg/L	> 6 mg/L
< 2 years	IV	12.2	11.9	N/A	12.9
	PO	12.2	12.3	22.0	12.6
2-12 years	IV	17.1	24.5	15.7	57.9
	PO	24.0	25.9	22.9	28.2
>12 years	IV	10.0	11.1	N/A	N/A
	PO	18.4	15.7	11.0	10.4

Figure 2

173x209mm (300 x 300 DPI)

2
3
4
2
6 7 8
7
8
9
10
11
12
13
14
15
16
10
17
16 17 18
19
20
21
23
24
25
26 27 28
27
28
29
30
31
32
34
35
36
27
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
22
56
57
58

Impact of Dose Adaptations Following Voriconazole Therapeutic Drug Monitoring in Pediatric Patients

Vincent J. Lempers¹, Edmé Meuwese², Annelies M. Mavinkurve-Groothuis³, Stefanie Henriet⁴, Inge M van der Sluis³,⁵, Lidwien M. Hanff³, Adilia Warris⁶, Birgit C.P. Koch², Roger J. Brüggemann^{1,7*}

9 Affiliations

3

4

5

6

7 8

- ¹ Radboud university medical center, Department of Pharmacy and Radboud Institute for Health Sciences,
 Nijmegen, The Netherlands
- 12 ² Erasmus Medical Center, Department of Pharmacy, Rotterdam, The Netherlands
- 13 ³ Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- ⁴ Radboud university medical center, Department of Pediatric Infectious Diseases & Immunology, Nijmegen,
- 8 15 The Netherlands
 - ⁵ Erasmus Medical Center-Sophia Children's Hospital, Department of Pediatric Haematology-Oncology,
 Rotterdam, The Netherlands
- ² 18 ⁶ MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of
- 4 19 Aberdeen, United Kingdom
- 20 ⁷ Center of Expertise in Mycology Radboudumc / CWZ, Nijmegen, The Netherlands
- 8 22 *Corresponding author
- .0 23 Dr. Roger JM Brüggemann
- 1 24 Department of Pharmacy 864
- 3 25 Radboud university medical center
- $\frac{4}{26}$ Geert Grooteplein 10
- 6 27 6525 GA Nijmegen
- 28 The Netherlands
- 49 29

59 60 31

- 30 Keywords: voriconazole, therapeutic drug monitoring, pediatrics, azoles, pharmacokinetics
- 32 Word count: 2500

34 Abstract (243/250 words)

36 Voriconazole is the mainstay of treatment for invasive aspergillosis in immunocompromised pediatric
 37 patients. Although Therapeutic Drug Monitoring (TDM) of voriconazole is recommended, it remains
 38 unknown if TDM-based dose adaptations result in target attainment.

Patients < 19 years from two pediatric hematologic-oncology wards were retrospectively identified based on unexplained high voriconazole trough concentrations ($C_{min} > 6mg/L$). Patient demographics, clinical characteristics, treatment, voriconazole dosing information, voriconazole C_{min} before and after adjustment based on TDM were obtained.

Twenty-one patients, median (range) age 7.0 (1.2-18.5) years, were identified in two centres. First C_{min} (3.1mg/L [0.1-13.5]) was obtained after 3 days (1-27) of treatment. The median of all C_{min} (n=485, median 11 per patient) was 2.16mg/L (0.0 (undetectable)–28.0), with 24.1% of C_{min} <1mg/L, 48.9% 1-4mg/L, 9.3% 4-6mg/L and 17.7% >6mg/L. Intrapatient variability was large (94.1% for IV, 88.5% for PO). Dose increases at C_{min} <1 mg/L resulted in an increased C_{min} in 76.4%, with 60% between 1-4 mg/L. Dose decreases at C_{min} >6 mg/L resulted in a decreased C_{min} in 80%, with 51% between 1-4 mg/L. Overall in 45% of the cases (33 out of 55 and 12 out of 45) therapeutic targets were attained after dose adjustment.

Fifty-five percent of initial C_{min} was outside the therapeutic target of 1-4mg/L, with multiple dose adaptations required to achieve therapeutic concentrations. Only 60% and 51% of dose adaptations following sub- and supra-therapeutic C_{min} , respectively, did result in target attainment. Intensive and continuous TDM of voriconazole is a prerequisite for ensuring adequate exposure in pediatric patients.

58 Introduction

 60 Voriconazole is a broad-spectrum triazole antifungal agent which has emerged as the preferred 61 treatment of invasive aspergillosis in both children (≥ 2 years of age) and adults ^(1, 2).

Increased voriconazole exposure has been associated with improved treatment outcome in adults, with suggested provisional cut-off points for voriconazole trough plasma concentrations (Cmin) of 1-6 mg/L (3-6). An exposure-response relationship was also established for pediatric patients, in which a voriconazole $C_{min} > 1 \text{ mg/L}$ was associated with improved outcomes ⁽⁷⁻¹¹⁾. Based on the relationship between voriconazole exposure and efficacy and the high inter- and intra-patient variability in pediatric patients (12-15), the importance of voriconazole therapeutic drug monitoring (TDM) in pediatric patients has been acknowledged (1, 2, 16, 17). Although TDM-based dose adjustments are performed to optimize plasma concentrations, it remains unclear if these dose adaptations in pediatric patients correspond with target attainment.

We conducted a retrospective analysis in a cohort of pediatric oncology patients (both leukemia as
 well as lymphoma) with difficult to manage voriconazole concentrations and assessed the result of
 TDM-based dose adaptations on target attainment.

Medical Mycology

75 Materials and Methods

Study design and patients

This retrospective analysis was carried out in the pediatric hematology-oncology wards of two university hospitals in the Netherlands (Radboud university medical centre, Nijmegen and Sophia Children's Hospital, Erasmus Medical Center, Rotterdam). From August 2007–May 2014, the results from routinely performed TDM of voriconazole in both hospitalized and ambulant pediatric patients were evaluated. Patients < 19 years who received voriconazole orally (PO) or intravenously (IV) were included if more than one voriconazole C_{min} was determined, of which at least one concentration was >6 mg/L during treatment. Due to the retrospective nature of the study, written informed consent was deemed not necessary.

87 Data collection

Data was collected from the patients' medical records and included patient demographics (e.g. age, gender, body weight), voriconazole treatment data (e.g. route of administration, treatment duration, total daily dose, dose adjustments) and TDM data (e.g. plasma trough concentrations [C_{min}], number of samples per patient, number of sub- and supra-therapeutic C_{min}). Concomitant medications with or without a known or suspected interaction with voriconazole exposure were reported.

94 Voriconazole dosing and dose adjustments

95 Initial dosing and administration of voriconazole was according to the Summary of Product 96 Characteristics (SmPC) of voriconazole, but could be increased or decreased based on clinical 97 indications and TDM results. End of treatment was defined by successful clinical response, or by 98 discontinuation due to a lack of clinical response, or adverse events. Consistent with institution 99 guidelines during the study period, adequate voriconazole exposure was defined as C_{min} between 1-4 100 mg/L. If the patient showed no signs of hepatotoxicity (*i.e.* liver function tests no more than three

times the upper limit of normal), C_{min} up to 6 mg/L were accepted. The 4 mg/L target concentration to prevent hepatotoxicity has been established in Asian patients particularly(18, 19). In Caucasion people this relation has not been established with a clear cut-off value. Rather an increase in drugs concentration, results in an increased chance of encountering hepatotoxicity(20). In case of sanctuary infection sites or disseminated disease, the lower threshold was set to 2 mg/L (i.e. 2-4 mg/L or 2-6 mg/L). Target concentrations remain subject to debate but our target concentrations are in line with the recently published ESCMID guideline(2) and the ECIL guideline [available online via www.ecil-leukaemia.com] In case of a sub- or supra-therapeutic voriconazole C_{min} (< 1 or > 6 mg/L), dose adjustments, assuming near-linear pharmacokinetics in children $^{(14)}$, to reach adequate C_{min} were subsequently made. A follow-up sample within 1 week was recommended. Dosing frequency was initially two times daily, but could be increased to three times daily in an attempt to reach adequate voriconazole exposure. Therapeutic Drug Monitoring TDM was performed as standard of care, but frequency of sampling was dependent on individual decisions made for each patient. First TDM sample was recommended at steady state concentrations of the drug, which is at least two days after initiation of voriconazole therapy or following dose adaptations. Only blood samples withdrawn within a 1 hour period prior to the next dose were included in the analysis to ascertain a trough concentration. Decisions on dose adaptations were made by experts in the field with knowledge on PK of voriconazole taking in mind the clinical condition of the patient. Analytical assay

1		
2 3 4	125	Voriconazole plasma concentrations were measured twice weekly using an in-house, validated ultra-
5 6	126	performance liquid chromatography (HPLC) method with either a fluorescence or MSMS detection
7 8	127	method (Waters).
9 10 11	128	
12 13	129	Data analysis
14 15	130	A Spearman rank-order correlation was run to determine the relationship between voriconazole dose
16 17	131	and C _{min} using SPSS 20.0 (SPSS inc., IL, USA). A p-value of <0.05 was considered statistically significant.
18 19 20	132	Intra-patient variability of voriconazole C_{min} was analyzed in patients who had at least three
21 22	133	voriconazole C _{min} at similar doses and formulations.
23 24		
25 26		
27 28		
29 30		
31 32		
33		
34 35		
36 37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		
60		

3 4	135
5 6	136
7 8	137
9 10	138
11 12	139
13 14 15	140
16 17	141
18 19	142
20 21	143
22 23	144
24 25 26	145
27 28	146
29 30	147
31 32	148
33 34	149
35 36 37	150
38 39	151
40 41	152
42 43	153
44 45	154
46 47 48	155
48 49 50	155
50 51 52	150
53 54	
55 56	158
57 58	159
59 60	160

> Patients Twenty-one patients (8 male, 13 female) were eligible for analysis. Median (range) age at first dose was 7.0 years (1.2–18.5 years), of which 3 patients (14.3%) were <2 years, 11 (52.4%) between 2 and 12 years, and 7 (33.3%) between 12 and 19 years. Median (range) weight and BMI were 21.9 kg (9.5– 65) and 17.7 kg/m² (14–25.4), respectively (Table 1).

143 Voriconazole therapy

RESULTS

144 Patients received voriconazole therapy for a median (range) of 118 days (17-866; Table 1). The 145 median total daily dose per kg (range) was 23.1 mg/kg (6.1–109.6). Initial voriconazole administration 146 was IV in 15 (71.4%) and PO in 6 (28.6%) of patients. Five patients received voriconazole orally only, 2 147 only IV, and 14 received a combination of both. In four patients voriconazole was given TID at some 148 time as part of their management strategy for a median (range) of 60 days (6-397) with a median 149 total daily dose of 34.4 mg/kg (13.6–109.6). Median intra-individual variability of voriconazole dose 150 was 94.1% during IV therapy (dose range: 12.2–16.0 mg/kg/day) and 88.5% during PO therapy (dose 151 range: 10.5–44.1 mg/kg/day).

153 Therapeutic drug monitoring – initial C_{min}

The first measurement of voriconazole C_{min} was performed at a median (range) of 3 days (1–27) after start of treatment, with a median (IQR) C_{min} of 3.1 mg/L (1.34-7.0; Table 1). Upon first measurement, 155 start of treatment, with a median (IQR) C_{min} of 3.1 mg/L (1.34-7.0; Table 1). Upon first measurement, 156 11 out of 21 (52.4%) patients reached a C_{min} between 1-6 mg/L (7 of these patients received 157 voriconazole IV, 4 PO). Of the remaining 10 patients who had a voriconazole concentration <1 mg/L 158 or >6 mg/L at first measurement, 5 out of 9 patients (55.5%) required only 1 dose adaptation to 159 achieve a C_{min} between 1-6 mg/L. Target concentrations in these 9 patients were attained after a 160 median (range) of 15 days (8-123). One patient was unable to achieve target values during the entire Page 11 of 42

165

1 2

Medical Mycology

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15	
15	
16	
17	
18	
10	
20	
20	
 19 20 21 22 23 24 25 26 27 28 29 30 	
22	
23	
24	
25	
26	
27	
2, 28	
20	
29	
30	
31	
32	
33	
34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

161 length of voriconazole therapy despite TDM-based dose adaptations. After the first suboptimal C_{min} , 162 TDM-based dose adaptations were performed within a median of 2 days. A very weak positive 163 correlation between voriconazole dose and initial C_{min} was calculated, which was not statistically 164 significant (r²=0.05, p=0.82).

166 Therapeutic drug monitoring – all C_{min}

167 In total, 485 samples were obtained with a median (range) concentration of 2.16 mg/L (undetectable 168 -28; Table 1). Four concentrations (0.8%) were reported as below the lower limit of quantification. A 169 median (range) of 11 samples (2-109) were drawn per patient, of which 117 (24.1%) were <1 mg/L, 170 237 (48.9%) between 1-4 mg/L, 45 (9.3%) between 4-6 mg/L and 86 (17.7%) >6 mg/L. An overview of 171 all C_{min} per patient is shown in Figure 1. There was no significant correlation between voriconazole 172 dose and all C_{min}, (r_s (485)=0.02, p=0.59). A C_{min} <1 mg/L was most frequently encountered in patients 173 >12 years receiving voriconazole IV, whereas patients 2-12 years suffered most frequently from C_{min} 174 >6 mg/L (Figure 2). NC

- 175
 - 176 Voriconazole dose adaptations

177 A total of 108 dose increases and 135 dose decreases were made, of which 50.9% when Cmin < 1, 178 and 33.3% Cmin > 6 (see table 1). Out of a 117 cases with a $C_{min} < 1mg/L$ prompted a dose increase in 179 47.0% (n=55) of occurrences, which resulted in an increased C_{min} at follow-up sampling in 76.4% 180 (n=42) of cases. In 60% (n=33) of dose increases following a concentration of <1 mg/L, this led to a 181 therapeutic C_{min} between 1–4 mg/L (median 1.7 mg/L). In these 33 cases, the total daily dose was 182 increased from a median of 18.3 mg/kg/day to 22.7 mg/kg/day (24.0%).

183 Out of 86 cases with a C_{min} of >6 mg/L (median 8.29 mg/L) this prompted a dose decrease in 52.3% 184 (n=45) of cases, of which 80.0% (n=36) resulted in a subsequent lower C_{min} at follow-up sampling. 185 These dose decreases resulted in a C_{min} of <6mg/L in 51.1% (n=23) of cases and even led to concentrations between 1-4 mg/L (median 2.3 mg/L) in 26.7% (n=12). In these 12 cases, the total

to peet Review only

daily dose was decreased from a median of 23.5 mg/kg/day to 16.8 mg/kg/day (39.9%).

4 5	187
6	107
7 8	188
9	
10	
11	
12 13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51	
52 53	
55 54	
55	
56	

1 2 3

- 57 58
- 59
- 60

Discussion

1

2	
3	190
4	
5 6	191
7	102
8	192
9 10	193
11 12	104
13	194
14 15	195
16 17	196
18 19	197
20 21 22	198
22 23 24	199
25 26	200
27 28	201
29 30	202
31 32 33	203
33 34 35	204
36 37	205
38 39	206
40 41	207
42 43	208
44 45 46	209
46 47	
48 49	210
50 51	211
52 53	212
54 55	213
56 57	214
58	
59 60	215

Here, we present our experience with voriconazole TDM in a cohort of 21 pediatric patients with difficult to control voriconazole C_{min} , characterized by at least one $C_{min} > 6 \text{ mg/L}$, enabling us to assess the result of TDM-based dose adaptations on voriconazole target attainment.

Overall, 18.5 % of all doses adjustments made, based on TDM, resulted in target concentrations (1-4 mg/L). The vast majority (95.2%) of the patients in our study were able to achieve at least one therapeutic concentration (1-4 mg/L) after TDM-based dose adjustments. This is in a similar range of the reported value of 80% in a study from Bartelink *et al.*, although voriconazole target values of 1-5 mg/L were used in this study ⁽²¹⁾.

Of the total number of 485 voriconazole C_{min} , 24.1% was <1 mg/L, which is correlated with increased likelihood of treatment failure in children ⁽⁷⁻⁹⁾. In case of such a subtherapeutic C_{min} , voriconazole dose was increased in 47.0% of cases. Accordingly, 60% of dose increases resulted in the desired therapeutic C_{min} of 1-4 mg/L, with a median dose increase from 18.3 mg/kg/day to 22.7 mg/kg/day. Previous studies have reported that dose adjustments to median doses of 20–40 mg/kg/day were required to obtain therapeutic plasma concentrations of >1 mg/L ^(9, 10, 22). In addition, 17.7% of the total number of voriconazole C_{min} were >6 mg/L, which is regarded as a cut-off concentration for hepatotoxicity in adults (23), although no clear correlation is seen in pediatric patients ^(7, 24, 25). At these supratherapeutic concentrations, voriconazole dose was lowered in 52.3% of cases, resulting in a C_{min} between the target range of 1-4 mg/L in 26.7% of cases (decreasing the median dose from 23.5 mg/kg/day to 16.8 mg/kg/day).

Age is one of the most important factors influencing voriconazole plasma exposure, as voriconazole clearance has been shown to be much higher in children under the age of 12, and oral bioavailability of voriconazole is lower in children (65%), compared to adults (96%) ^(14, 26). As a result, several studies reported similar voriconazole exposure in children (<12 years) compared to adults with IV doses of 7-9 mg/kg BID ^(13, 14, 26). This prompted higher dosing regimens in children compared to adults. Although

Medical Mycology

voriconazole has been reported to display near-linear pharmacokinetics in children receiving multiple doses of 3 mg/kg and 4 mg/kg BID IV⁽¹⁵⁾ (i.e. doses that have been found effective in clinical trials with adults), increasing evidence suggests saturated (non-linear) pharmacokinetic behavior is observed in children receiving doses higher than 7 mg/kg BID. We found no predictable relationship between dose and C_{min} (Figure 1,2) and it remains unclear from current literature if such a relationship exists. Given the high maintenance doses in our study (median 23.1 mg/kg/day), this could explain the absence of a dose/concentration relationship. Another explanation could be found in the high intra-subject variability in voriconazole C_{min} both after IV and PO dosing (figure 1), which is consistent with other pediatric studies (12-14, 26).

Due to the retrospective nature of this study, laboratory data on the majority of our patients was limited and often obtained only on the day of voriconazole TDM. In addition, markers for hepatic function were not always investigated in parallel. It was therefore not possible to draw any conclusions on the yet unclear relationship between voriconazole C_{min} and hepatotoxicity in pediatric patients. Because the focus of our study on the relationship between dose adjustments and target attainment, we did not monitor for voriconazole-related adverse events (e.g. neurological adverse events, phototoxic skin reactions and potentially proarrhythmic conditions) in relation to dose or exposure.

3 234

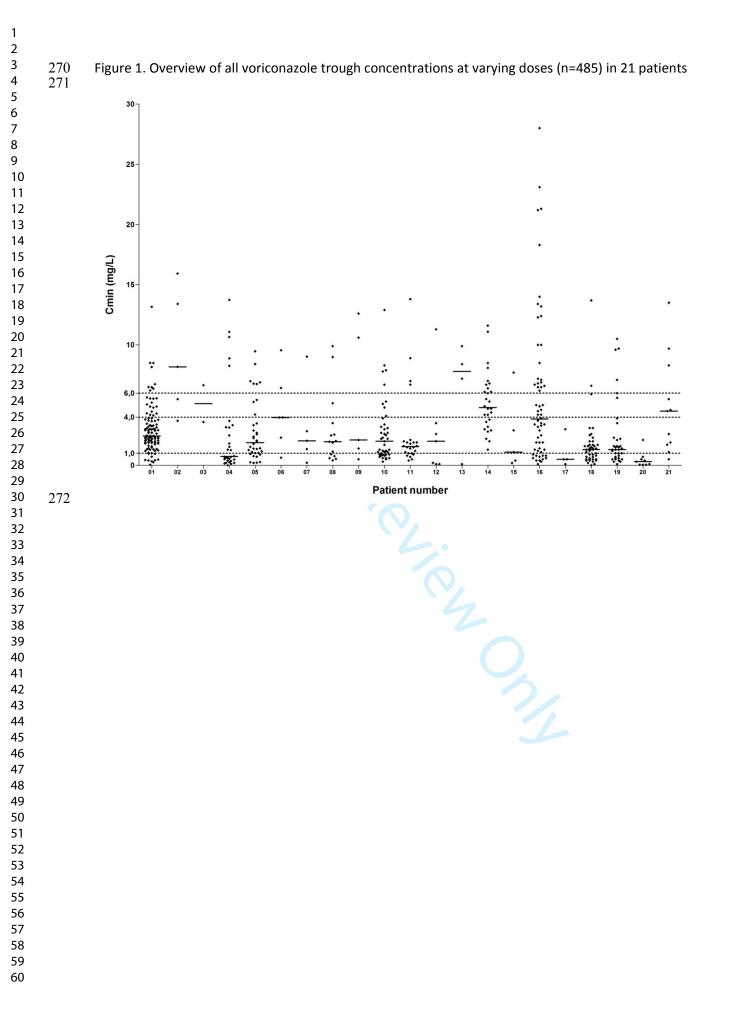
Despite rapid dose adaptations after the first subtherapeutic C_{min} in our study (median of 2 days), a median of 15 days were required to obtain an adequate C_{min} , increasing the risk of inadequately treated fungal infections and unfavourable outcome. Of all dose adaptations following both sub –and supratherapeutic C_{min} , only 45% resulted in a therapeutic C_{min} between 1-4 mg/L at the following concentration measurement. If we would stretch the therapeutic targets to 1-6 mg/L (assuming all C_{min} between 4-6 mg/L were acceptable based on adequate liver function tests), 56% of dose adaptations would result in target attainment.

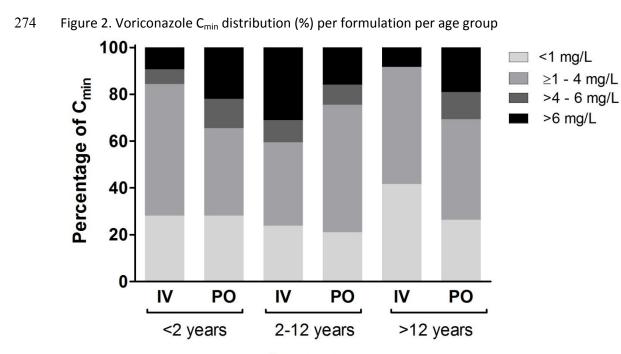
Medical Mycology

Dose adaptations were done by experts with expertise in the field of antifungal pharmacology but without a nomogram. For purposes of personalized dosing, there is an urgent need to implement advanced pharmacometric models with "clinician-proof" software, that can take into account all important determinants for treatment response. Nowadays model-informed precision dosing (MIPD) can be deployed as a technique to forecast dosing in the individual. Programs such as InsightRx, DoseMe and Best Dose fulfil this need and are being tested in the clinic. To take advantage of this approach, solid pharmacokinetic models must be available to be used in MIPD. Here we can still gain knowledge for this specific drug and the current population as the unexplained inter-individual variability in published models remains very large. Before implementation in routine patient management these models must be prospectively validated to demonstrate its value. In addition the software must comply to relevant legislation (for instance CE label in Europe) when deployed outside of a research scope. Nevertheless this is the way forward taking advantage of a platform for individualized treatment with visual feedback.

Given the difficulty of target attainment despite dose adaptations, together with the prior observed relationship between voriconazole exposure and efficacy and adverse events and the large inter -and intrapatient variability in children, this study underscores the indispensable need for voriconazole TDM in severely immunocompromised pediatric patients early in the course of treatment with multiple follow-up samples during therapy when aiming to optimize treatment outcomes.

263 Table 1. Baseline characteristics (n=21).	
---	--


1	
2	
3	263
4	
3 4 5 6 7	264
0 7	
8	
9	
10	
11	
12 13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24 25	
25 26	
21 22 23 24 25 26 27 28	
28	
29	
30 21	
31 32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49 50	
50	


204		
	Demographics	
	Gender	0 (20.4)
	Male (n [%])	8 (38.1)
	Female (n [%])	13 (61.9)
	Median age at first VCZ ^a dose (yrs [range])	7.0 (1.2 – 18.5)
	Age class (yrs)	
	0 - <2 (n [%])	3 (14.3)
	2 – <12 (n [%])	11 (52.4)
	12 – 18 (n [%])	7 (33.3)
	Race	
	Caucasian (n [%])	18 (85.7)
	Negroid (n [%])	2 (9.5)
	Asian (n [%])	1 (4.8)
	Median weight (kg [range])	21.9 (9.5 – 65)
	Median BMI (kg/m ² [range])	17.7 (14 – 25.4)
	Voriconazole therapy	
	Median days of VCZ ^a therapy (n [range])	118 (17-866)
	Intravenous administrations (%)	12.5
	Oral administrations (%)	87.5
	Median total daily dose (mg [range])	400 (120-2400)
	Median total daily dose per kg (mg/kg [range])	23.1 (6.1 – 109.6)
	Patients on temporarily TID ^b dosing (n [%])	4 (19)
	Median days of TID ^b dosing (n range)	4 (19) 60 (6 – 397)
	Median total daily dose during TID dosing (mg/kg [range])	
	TID dosing administrations (% of total)	34.4 (13.6 – 109.6) 11.1
	Therapeutic drug monitoring	
	Median days until first measurement of VCZ ^a C_{min}^{c} (n [range])	3 (0 – 27)
	Median plasma concentration of first C_{min}^{c} (mg/L [IQR ^d])	3.1 (1.34 – 7.0)
	Initial C _{min} adequate (% of all patients) ^e	11 (52.4)
	Intravenous administration (%)	7 (63.6)
	Oral administration (%)	4 (36.4)
	Initial C _{min} below therapeutic range (% of all patients)	4 (19)
	Intravenous administration (%)	3 (75)
	Oral administration (%)	1 (25)
	Initial C _{min} above therapeutic range (% of all patients)	6 (28.6)
	Intravenous administration (%)	4 (66.7)
	Oral administration (%)	2 (33.3)
		· ·
	Total C _{min}	485
	<1 mg/L (n [%])	117 (24.1)
	1 – 4 mg/L (n [%])	237 (48.9)
	4 – 6 mg/L (n [%])	45 (9.3)
	>6 mg/L (n [%])	86 (17.7)

3			
4		Median concentration of all C _{min} (mg/L; range)	2.16 (0 – 28.0)
5			
6		Dose adaptations	
7			
8		Dose adaptations (n [%])	243 (50.1)
9			
10		Dose increases (total)	108
		Dose increase at C _{min} <1 mg/L (n [%])	55 (47)
11		Resulted in increase in Cmin	42 (76.4)
12		Resulted in C _{min} 1 – 4 mg/L	33 (60)
13			
14		Dose decrease (total)	135
15		Dose decrease at C _{min} >6 mg/L	45 (33.3)
16		Resulted in decrease in C _{min}	36 (80.0)
17		Resulted in C _{min} <6 mg/L	23 (51.1)
18		Resulted in C _{min} 1 – 4 mg/L	12 (26.7)
19	265		
	200		

^aVCZ = voriconazole, ^bTID = three times per day, ^c C_{min} = trough concentration, ^dIQR = Interquartile range, ^eAdequate therapeutic range of voriconazole C_{min} is considered to be between 1 and 4 mg/L (1-6 if adequate liver function tests). Subtherapeutic C_{min} at <1 mg/L, supratherapeutic C_{min} at >6 mg/L. REAR ONL

http://mc.manuscriptcentral.com/tmmy

Age group

		C _{min} (% of total)			
Age group	Formulation	< 1 mg/L (n)	1 - 4 mg/L (n)	>4 - 6 mg/L (n)	> 6 mg/L (n)
< 2 years	IV	28.1 (9)	56.3 (18)	6.3 (2)	9.4 (3)
	PO	28.1 (9)	37.5 (12)	12.5 (4)	21.9 (7)
2-12 years	IV	23.8 (10)	35.7 (15)	9.5 (4)	31.0 (13)
	PO	21.1 (52)	54.5 (134)	8.5 (21)	15.9 (39)
>12 years	IV	41.7 (5)	50.0 (6)	0.0 (0)	8.3 (1)
	PO	26.3 (32)	43.0 (52)	11.6 (14)	19.0 (23)

		Median dose administered (mg/kg/day)			'day)
Age group	Formulation	< 1 mg/L	1 - 4 mg/L	>4 - 6 mg/L	> 6 mg/L
< 2 years	IV	12.2	11.9	N/A	12.9
	PO	12.2	12.3	22.0	12.6
2-12 years	IV	17.1	24.5	15.7	57.9
	PO	24.0	25.9	22.9	28.2
>12 years	IV	10.0	11.1	N/A	N/A
	PO	18.4	15.7	11.0	10.4

C_{min}: trough concentration. IV: intravenous. PO: Oral.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 43 44 45 46 47 48	1 2 3 278 4 5 6 7 8 9 10 11 12 13 14 15 16 17		
37 38 39 40 41 42 43 44 45 46 47 48 49	19 20 21 22 23 24 25 26 27 28 29 30 31 32		
50 51 52 53 54 55 56 57 58 59 60	 37 38 39 40 41 42 43 44 45 46 47 48 49 		

Page	e 21 of 42	2	
1 2 3 4	279		
5	280	Refe	rences
6	281		
7	282		
8 9	283		
9 10	284	1.	Pat
11	285		Ko
12	286		DA
13	287		Dia
14	288		of
15	289	2.	Ull
16	290		C , 1
17	291		Bei
18	292		Cas
19	293		Gai
20	294		С,
21	295		Rib
22	296		Ski
23	297		of t
24	298	3.	Bri
25	299		PE,
26 27	300		30:
27 28	301	4.	Pas
28	302		The

- Patterson TF, Thompson GR, 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JA, Bennett JE. 2016. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1-e60. Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Florl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Bruggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Loffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinko J, Skiada A, et al. 2018. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24 Suppl 1:e1-e38. Brüggemann RJ, Donnelly JP, Aarnoutse RE, Warris A, Blijlevens NM, Mouton JW, Verweij PE, Burger DM. 2008. Therapeutic Drug Monitoring of Voriconazole. TherDrug Monit 30:403-411. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. 2008. Voriconazole Therapeutic Drug Monitoring in Patients with Invasive Mycoses improves Efficacy and Safety 29 303 Outcomes. Clin Infect Dis 46:201-211. 30 304 Hamada Y, Seto Y, Yago K, Kuroyama M. 2012. Investigation and threshold of optimum 5. 31 305 blood concentration of voriconazole: a descriptive statistical meta-analysis. J Infect 32 306 Chemother 18:501-7. 33 307 Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. 2012. Multicenter study of 6. 34 voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents 308 35 309 Chemother 56:4793-9. 36 310 7. Neely M, Rushing T, Kovacs A, Jelliffe R, Hoffman J. 2010. Voriconazole pharmacokinetics 37 311 and pharmacodynamics in children. Clin Infect Dis 50:27-36. 38 Choi SH, Lee SY, Hwang JY, Lee SH, Yoo KH, Sung KW, Koo HH, Kim YJ. 2013. 312 8. 39 Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with 40 313 41 314 invasive aspergillosis. Pediatr Blood Cancer 60:82-7. 42 Soler-Palacin P, Frick MA, Martin-Nalda A, Lanaspa M, Pou L, Rosello E, de Heredia CD, 315 9. 43 Figueras C. 2012. Voriconazole drug monitoring in the management of invasive fungal 316 44 317 infection in immunocompromised children: a prospective study. J Antimicrob Chemother 45 318 67:700-6. 46 319 Hu L, Dai TT, Zou L, Li TM, Ding XS, Yin T. 2018. Therapeutic drug monitoring of 10. 47 voriconazole in children: experience from a tertiary care center in China. Antimicrob Agents 320 48 321 Chemother doi:10.1128/AAC.00955-18. 49 322 11. Kang HM, Lee HJ, Cho EY, Yu KS, Lee H, Lee JW, Kang HJ, Park KD, Shin HY, Choi EH. 50 2015. The Clinical Significance of Voriconazole Therapeutic Drug Monitoring in Children 323 51 With Invasive Fungal Infections. Pediatr Hematol Oncol 32:557-67. 324 52 325 12. Bruggemann RJ, van der Linden JW, Verweij PE, Burger DM, Warris A. 2011. Impact of 53 therapeutic drug monitoring of voriconazole in a pediatric population. Pediatr Infect Dis J 326 54 327 30:533-4. 55 328 13. Walsh TJ, Driscoll T, Milligan PA, Wood ND, Schlamm H, Groll AH, Jafri H, Arrieta AC, 56 Klein NJ, Lutsar I. 2010. Pharmacokinetics, safety, and tolerability of voriconazole in 329 57 330 immunocompromised children. Antimicrob Agents Chemother 54:4116-23. 58 59
- 60

- 14. Friberg LE, Ravva P, Karlsson MO, Liu P. 2012. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother 56:3032-42. Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, Vora AJ, 15. Arrieta AC, Blumer J, Lutsar I, Milligan P, Wood N. 2004. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. AntimicrobAgents Chemother 48:2166-2172. Groll AH, Castagnola E, Cesaro S, Dalle JH, Engelhard D, Hope W, Roilides E, Styczynski J, 16. Warris A, Lehrnbecher T, Fourth European Conference on Infections in L, Infectious Diseases Working Party of the European Group for Blood Marrow T, Infectious Diseases Group of the European Organisation for R, Treatment of C, International Immunocompromised Host S, European Leukaemia N. 2014. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol 15:e327-40. 17. Luong ML, Al-Dabbagh M, Groll AH, Racil Z, Nannya Y, Mitsani D, Husain S. 2016. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother 71:1786-99. 18. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T, Shimodozono Y, Morikawa N, Takeda Y, Yamada K. 2009. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents 34:91-4. 19. Suzuki Y, Tokimatsu I, Sato Y, Kawasaki K, Sato Y, Goto T, Hashinaga K, Itoh H, Hiramatsu K, Kadota J. 2013. Association of sustained high plasma trough concentration of voriconazole with the incidence of hepatotoxicity. Clin Chim Acta 424:119-22. 20. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N. 2006. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. JClinPharmacol 46:235-243. 21. Bartelink IH, Wolfs T, Jonker M, de Waal M, Egberts TC, Ververs TT, Boelens JJ, Bierings M. 2013. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother 57:235-40. Gerin M, Mahlaoui N, Elie C, Lanternier F, Bougnoux ME, Blanche S, Lortholary O, Jullien 22. V. 2011. Therapeutic drug monitoring of voriconazole after intravenous administration in infants and children with primary immunodeficiency. Ther Drug Monit 33:464-6. Ullmann AJA, J.M.; Sevtap, A.; Denning, D.; Groll, A.; Lagrou, K. Lass-Florl, C. 2017. 23. Executive Summary of the 2017 ESCMID-ECMM Guideline for the diagnosis and management of Aspergillus disease. Michael C, Bierbach U, Frenzel K, Lange T, Basara N, Niederwieser D, Mauz-Korholz C, 24. Preiss R. 2010. Determination of saliva trough levels for monitoring voriconazole therapy in immunocompromised children and adults. Ther Drug Monit 32:194-9. Pieper S, Kolve H, Gumbinger HG, Goletz G, Wurthwein G, Groll AH. 2012. Monitoring of 25. voriconazole plasma concentrations in immunocompromised paediatric patients. J Antimicrob Chemother 67:2717-24. Karlsson MO, Lutsar I, Milligan PA. 2009. Population pharmacokinetic analysis of 26. voriconazole plasma concentration data from pediatric studies. AntimicrobAgents Chemother 53:935-944.

http://mc.manuscriptcentral.com/tmmy

2 3 4 5	380	Acknowledgement:
6 7	381	This manuscript was derived from chapter 9 of the PhD thesis by Vincent Lempers done at
8 9	382	Radboudumc, which can be found at:
10 11 12	383	https://repository.ubn.ru.nl/bitstream/handle/2066/157075/157075.pdf?sequence=1
13 14 15	384	AW is supported by the Wellcome Trust Strategic Award (grant 097377), and the MRC Centre for
15 16 17	385	Medical Mycology (grant MR/N006364/1) at the University of Aberdeen.
18 19 20	386	
21 22 23	387	Funding: this study was funded by the Department of Pharmacy Radboudumc
24 25 26 27	388	
28 29	389	Disclosures of Potential Conflicts of Interest.
30 31 32 33	390	VJC is now an employee of Gilead. At the time of research he was employed by Radboudumc
34 35 36	391	Other have no conflicts of interest with regards to this work.
37 38	392	Outside this work relevant: R.J.B. has served as a consultant to Astellas Pharma, Inc., F2G, Gilead
39 40 41	393	Sciences, Merck Sharp & Dohme Corp., and Pfizer, Inc., and has received unrestricted and research
42 43	394	grants from Astellas Pharma, Inc., Gilead Sciences, Merck Sharp & Dohme Corp., and
44 45	395	Pfizer, Inc. All contracts were through Radboudumc, and all payments were invoiced by
46 47 48	396	Radboudumc.
48 49 50 51 52 53 54 55 56 57 58 59 60	397	

Impact of Dose Adaptations Following Voriconazole Therapeutic Drug

Vincent J. Lempers¹, Edmé Meuwese², Annelies M. Mavinkurve-Groothuis³, Stefanie Henriet⁴,

Inge M van der Sluis^{3,5}, Lidwien M. Hanff³, Adilia Warris⁶, Birgit C.P. Koch², Roger J.

¹ Radboud university medical center, Department of Pharmacy and Radboud Institute for Health Sciences,

Brüggemann^{1,7*}

Nijmegen, The Netherlands

Affiliations

Monitoring in Pediatric Patients

- ² Erasmus Medical Center, Department of Pharmacy, Rotterdam, The Netherlands ³ Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ⁴ Radboud university medical center, Department of Pediatric Infectious Diseases & Immunology, Nijmegen, The Netherlands ⁵ Erasmus Medical Center-Sophia Children's Hospital, Department of Pediatric Haematology-Oncology, Rotterdam, The Netherlands ⁶ MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, United Kingdom ⁷ Center of Expertise in Mycology Radboudumc / CWZ, Nijmegen, The Netherlands *Corresponding author Dr. Roger JM Brüggemann
 - 1 24 Department of Pharmacy 864
 - 3 25 Radboud university medical center
 - 4 26 Geert Grooteplein 10
 - 6 27 6525 GA Nijmegen
 - 28 The Netherlands
 - 49 29

- 30 Keywords: voriconazole, therapeutic drug monitoring, pediatrics, azoles, pharmacokinetics
- 3 32 Word count: 2500

http://mc.manuscriptcentral.com/tmmy

34 Abstract (243/250 words)

36 Voriconazole is the mainstay of treatment for invasive aspergillosis in immunocompromised pediatric
 37 patients. Although Therapeutic Drug Monitoring (TDM) of voriconazole is recommended, it remains
 38 unknown if TDM-based dose adaptations result in target attainment.

Patients < 19 years from two pediatric hematologic-oncology wards were retrospectively identified based on unexplained high voriconazole trough concentrations ($C_{min} > 6mg/L$). Patient demographics, clinical characteristics, treatment, voriconazole dosing information, voriconazole C_{min} before and after adjustment based on TDM were obtained.

Twenty-one patients, median (range) age 7.0 (1.2-18.5) years, were identified in two centres. First C_{min} (3.1mg/L [0.1-13.5]) was obtained after 3 days (1-27) of treatment. The median of all C_{min} (n=485, median 11 per patient) was 2.16mg/L (0.0 (undetectable)–28.0), with 24.1% of C_{min} <1mg/L, 48.9% 1-4mg/L, 9.3% 4-6mg/L and 17.7% >6mg/L. Intrapatient variability was large (94.1% for IV, 88.5% for PO). Dose increases at C_{min} <1 mg/L resulted in an increased C_{min} in 76.4%, with 60% between 1-4 mg/L. Dose decreases at C_{min} >6 mg/L resulted in a decreased C_{min} in 80%, with 51% between 1-4 mg/L. Overall in 45% of the cases (33 out of 55 and 12 out of 45) therapeutic targets were attained after dose adjustment.

Fifty-five percent of initial C_{min} was outside the therapeutic target of 1-4mg/L, with multiple dose adaptations required to achieve therapeutic concentrations. Only 60% and 51% of dose adaptations following sub- and supra-therapeutic C_{min} , respectively, did result in target attainment. Intensive and continuous TDM of voriconazole is a prerequisite for ensuring adequate exposure in pediatric patients. 58 Introduction

> 60 Voriconazole is a broad-spectrum triazole antifungal agent which has emerged as the preferred 61 treatment of invasive aspergillosis in both children (\geq 2 years of age) and adults ^(1, 2).

Increased voriconazole exposure has been associated with improved treatment outcome in adults, with suggested provisional cut-off points for voriconazole trough plasma concentrations (Cmin) of 1-6 mg/L (3-6). An exposure-response relationship was also established for pediatric patients, in which a voriconazole $C_{min} > 1 \text{ mg/L}$ was associated with improved outcomes ⁽⁷⁻¹¹⁾. Based on the relationship between voriconazole exposure and efficacy and the high inter- and intra-patient variability in pediatric patients (12-15), the importance of voriconazole therapeutic drug monitoring (TDM) in pediatric patients has been acknowledged (1, 2, 16, 17). Although TDM-based dose adjustments are performed to optimize plasma concentrations, it remains unclear if these dose adaptations in pediatric patients correspond with target attainment.

We conducted a retrospective analysis in a cohort of pediatric oncology patients (both leukemia as
 well as lymphoma) with difficult to manage voriconazole concentrations and assessed the result of
 TDM-based dose adaptations on target attainment.

Medical Mycology

75 Materials and Methods

Study design and patients

This retrospective analysis was carried out in the pediatric hematology-oncology wards of two university hospitals in the Netherlands (Radboud university medical centre, Nijmegen and Sophia Children's Hospital, Erasmus Medical Center, Rotterdam). From August 2007–May 2014, the results from routinely performed TDM of voriconazole in both hospitalized and ambulant pediatric patients were evaluated. Patients < 19 years who received voriconazole orally (PO) or intravenously (IV) were included if more than one voriconazole C_{min} was determined, of which at least one concentration was >6 mg/L during treatment. Due to the retrospective nature of the study, written informed consent was deemed not necessary.

87 Data collection

Data was collected from the patients' medical records and included patient demographics (e.g. age, gender, body weight), voriconazole treatment data (e.g. route of administration, treatment duration, total daily dose, dose adjustments) and TDM data (e.g. plasma trough concentrations [C_{min}], number of samples per patient, number of sub- and supra-therapeutic C_{min}). Concomitant medications with or without a known or suspected interaction with voriconazole exposure were reported.

94 Voriconazole dosing and dose adjustments

95 Initial dosing and administration of voriconazole was according to the Summary of Product 96 Characteristics (SmPC) of voriconazole, but could be increased or decreased based on clinical 97 indications and TDM results. End of treatment was defined by successful clinical response, or by 98 discontinuation due to a lack of clinical response, or adverse events. Consistent with institution 99 guidelines during the study period, adequate voriconazole exposure was defined as C_{min} between 1-4 100 mg/L. If the patient showed no signs of hepatotoxicity (*i.e.* liver function tests no more than three

Medical Mycology

times the upper limit of normal), C_{min} up to 6 mg/L were accepted. The 4 mg/L target concentration to prevent hepatotoxicity has been established in Asian patients particularly(18, 19). In Caucasion people this relation has not been established with a clear cut-off value. Rather an increase in drugs concentration, results in an increased chance of encountering hepatotoxicity(20). In case of sanctuary infection sites or disseminated disease, the lower threshold was set to 2 mg/L (i.e. 2-4 mg/L or 2-6 mg/L). Target concentrations remain subject to debate but our target concentrations are in line with the recently published ESCMID guideline(2) and the ECIL guideline [available online via www.ecil-leukaemia.com]

109In case of a sub- or supra-therapeutic voriconazole C_{min} (< 1 or > 6 mg/L), dose adjustments, assuming110near-linear pharmacokinetics in children (14), to reach adequate C_{min} were subsequently made. A111follow-up sample within 1 week was recommended. Dosing frequency was initially two times daily,112but could be increased to three times daily in an attempt to reach adequate voriconazole exposure.

115 Therapeutic Drug Monitoring

TDM was performed as standard of care, but frequency of sampling was dependent on individual decisions made for each patient. First TDM sample was recommended at steady state concentrations of the drug, which is at least two days after initiation of voriconazole therapy or following dose adaptations. Only blood samples withdrawn within a 1 hour period prior to the next dose were included in the analysis to ascertain a trough concentration. Decisions on dose adaptations were made by experts in the field with knowledge on PK of voriconazole taking in mind the clinical condition of the patient.

- - 124 Analytical assay

1 ว		
2 3 4	125	Voriconazole plasma concentrations were measured twice weekly using an in-house, validated ultra-
5 6	126	performance liquid chromatography (HPLC) method with either a fluorescence or MSMS detection
7 8	127	method (Waters).
9 10 11	128	
12 13	129	Data analysis
14 15	130	A Spearman rank-order correlation was run to determine the relationship between voriconazole dose
16 17	131	and C _{min} using SPSS 20.0 (SPSS inc., IL, USA). A p-value of <0.05 was considered statistically significant.
18 19 20	132	Intra-patient variability of voriconazole C_{min} was analyzed in patients who had at least three
21 22	133	voriconazole C _{min} at similar doses and formulations.
23 24		
25 26		
27		
28 29		
30 31		
32		
33 34		
35 36		
37		
38 39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

3 4	135
5 6	136
7 8	137
9 10	138
11 12	139
13 14 15	140
16 17	141
18 19	142
20 21	143
22 23	144
24 25 26	145
27 28	146
29 30	147
31 32	148
33 34	149
35 36 37	150
38 39	151
40 41	152
42 43	153
44 45	154
46 47 48	155
48 49 50	155
50 51 52	150
53 54	
55 56	158
57 58	159
59 60	160

> Patients Twenty-one patients (8 male, 13 female) were eligible for analysis. Median (range) age at first dose was 7.0 years (1.2–18.5 years), of which 3 patients (14.3%) were <2 years, 11 (52.4%) between 2 and 12 years, and 7 (33.3%) between 12 and 19 years. Median (range) weight and BMI were 21.9 kg (9.5– 65) and 17.7 kg/m² (14–25.4), respectively (Table 1).

143 Voriconazole therapy

RESULTS

144 Patients received voriconazole therapy for a median (range) of 118 days (17-866; Table 1). The 145 median total daily dose per kg (range) was 23.1 mg/kg (6.1–109.6). Initial voriconazole administration 146 was IV in 15 (71.4%) and PO in 6 (28.6%) of patients. Five patients received voriconazole orally only, 2 147 only IV, and 14 received a combination of both. In four patients voriconazole was given TID at some 148 time as part of their management strategy for a median (range) of 60 days (6-397) with a median 149 total daily dose of 34.4 mg/kg (13.6–109.6). Median intra-individual variability of voriconazole dose 150 was 94.1% during IV therapy (dose range: 12.2–16.0 mg/kg/day) and 88.5% during PO therapy (dose 151 range: 10.5–44.1 mg/kg/day).

153 Therapeutic drug monitoring – initial C_{min}

The first measurement of voriconazole C_{min} was performed at a median (range) of 3 days (1–27) after start of treatment, with a median (IQR) C_{min} of 3.1 mg/L (1.34-7.0; Table 1). Upon first measurement, 156 11 out of 21 (52.4%) patients reached a C_{min} between 1-6 mg/L (7 of these patients received 157 voriconazole IV, 4 PO). Of the remaining 10 patients who had a voriconazole concentration <1 mg/L 158 or >6 mg/L at first measurement, 5 out of 9 patients (55.5%) required only 1 dose adaptation to 159 achieve a C_{min} between 1-6 mg/L. Target concentrations in these 9 patients were attained after a 160 median (range) of 15 days (8-123). One patient was unable to achieve target values during the entire Page 31 of 42

165

1 2

Medical Mycology

3	
4	
5	
6 7	
7	
8	
9	
10	
11	
11	
12	
13	
14	
11 12 13 14 15 16	
16	
16 17	
17 18 19	
19	
20	
21	
22	
24 25	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34 35	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

161 length of voriconazole therapy despite TDM-based dose adaptations. After the first suboptimal C_{min} , 162 TDM-based dose adaptations were performed within a median of 2 days. A very weak positive 163 correlation between voriconazole dose and initial C_{min} was calculated, which was not statistically 164 significant (r²=0.05, p=0.82).

166 Therapeutic drug monitoring – all C_{min}

167 In total, 485 samples were obtained with a median (range) concentration of 2.16 mg/L (undetectable 168 -28; Table 1). Four concentrations (0.8%) were reported as below the lower limit of quantification. A 169 median (range) of 11 samples (2-109) were drawn per patient, of which 117 (24.1%) were <1 mg/L, 170 237 (48.9%) between 1-4 mg/L, 45 (9.3%) between 4-6 mg/L and 86 (17.7%) >6 mg/L. An overview of 171 all C_{min} per patient is shown in Figure 1. There was no significant correlation between voriconazole 172 dose and all C_{min}, (r_s (485)=0.02, p=0.59). A C_{min} <1 mg/L was most frequently encountered in patients 173 >12 years receiving voriconazole IV, whereas patients 2-12 years suffered most frequently from C_{min} 174 >6 mg/L (Figure 2). NC

175

176 Voriconazole dose adaptations

177 A total of 108 dose increases and 135 dose decreases were made, of which 50.9% when Cmin < 1, 178 and 33.3% Cmin > 6 (see table 1). Out of a 117 cases with a $C_{min} < 1mg/L$ prompted a dose increase in 179 47.0% (n=55) of occurrences, which resulted in an increased C_{min} at follow-up sampling in 76.4% 180 (n=42) of cases. In 60% (n=33) of dose increases following a concentration of <1 mg/L, this led to a 181 therapeutic C_{min} between 1–4 mg/L (median 1.7 mg/L). In these 33 cases, the total daily dose was 182 increased from a median of 18.3 mg/kg/day to 22.7 mg/kg/day (24.0%).

183 Out of 86 cases with a C_{min} of >6 mg/L (median 8.29 mg/L) this prompted a dose decrease in 52.3% 184 (n=45) of cases, of which 80.0% (n=36) resulted in a subsequent lower C_{min} at follow-up sampling. 185 These dose decreases resulted in a C_{min} of <6mg/L in 51.1% (n=23) of cases and even led to concentrations between 1-4 mg/L (median 2.3 mg/L) in 26.7% (n=12). In these 12 cases, the total

to peet Review only

daily dose was decreased from a median of 23.5 mg/kg/day to 16.8 mg/kg/day (39.9%).

4	
5	187
6 7	
8	188
9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21 22	
22 23	
24	
24 25	
26	
27	
28	
29	
30	
31 22	
32 33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	

1 2 3

186

Discussion

1

2	
3 4	190
5 6	191
7 8	192
9 10	193
11 12	
13	194
14 15	195
16 17	196
18 19 20	197
20 21 22	198
23 24	199
25 26	200
27 28	201
29 30 31	202
31 32 33	203
34 35	204
36 37	205
38 39	206
40 41 42	207
43 44	208
45 46	209
47 48	210
49 50	211
51 52	212
53 54	213
55 56	
57 58	214
59 60	215

Here, we present our experience with voriconazole TDM in a cohort of 21 pediatric patients with difficult to control voriconazole C_{min} , characterized by at least one $C_{min} > 6 \text{ mg/L}$, enabling us to assess the result of TDM-based dose adaptations on voriconazole target attainment.

Overall, 18.5 % of all doses adjustments made, based on TDM, resulted in target concentrations (1-4 mg/L). The vast majority (95.2%) of the patients in our study were able to achieve at least one therapeutic concentration (1-4 mg/L) after TDM-based dose adjustments. This is in a similar range of the reported value of 80% in a study from Bartelink *et al.*, although voriconazole target values of 1-5 mg/L were used in this study ⁽²¹⁾.

Of the total number of 485 voriconazole C_{min} , 24.1% was <1 mg/L, which is correlated with increased likelihood of treatment failure in children ⁽⁷⁻⁹⁾. In case of such a subtherapeutic C_{min} , voriconazole dose was increased in 47.0% of cases. Accordingly, 60% of dose increases resulted in the desired therapeutic C_{min} of 1-4 mg/L, with a median dose increase from 18.3 mg/kg/day to 22.7 mg/kg/day. Previous studies have reported that dose adjustments to median doses of 20–40 mg/kg/day were required to obtain therapeutic plasma concentrations of >1 mg/L ^(9, 10, 22). In addition, 17.7% of the total number of voriconazole C_{min} were >6 mg/L, which is regarded as a cut-off concentration for hepatotoxicity in adults (23), although no clear correlation is seen in pediatric patients ^(7, 24, 25). At these supratherapeutic concentrations, voriconazole dose was lowered in 52.3% of cases, resulting in a C_{min} between the target range of 1-4 mg/L in 26.7% of cases (decreasing the median dose from 23.5 mg/kg/day to 16.8 mg/kg/day).

Age is one of the most important factors influencing voriconazole plasma exposure, as voriconazole clearance has been shown to be much higher in children under the age of 12, and oral bioavailability of voriconazole is lower in children (65%), compared to adults (96%) ^(14, 26). As a result, several studies reported similar voriconazole exposure in children (<12 years) compared to adults with IV doses of 7-9 mg/kg BID ^(13, 14, 26). This prompted higher dosing regimens in children compared to adults. Although

Medical Mycology

voriconazole has been reported to display near-linear pharmacokinetics in children receiving multiple doses of 3 mg/kg and 4 mg/kg BID IV⁽¹⁵⁾ (i.e. doses that have been found effective in clinical trials with adults), increasing evidence suggests saturated (non-linear) pharmacokinetic behavior is observed in children receiving doses higher than 7 mg/kg BID. We found no predictable relationship between dose and C_{min} (Figure 1,2) and it remains unclear from current literature if such a relationship exists. Given the high maintenance doses in our study (median 23.1 mg/kg/day), this could explain the absence of a dose/concentration relationship. Another explanation could be found in the high intra-subject variability in voriconazole C_{min} both after IV and PO dosing (figure 1), which is consistent with other pediatric studies (12-14, 26).

Due to the retrospective nature of this study, laboratory data on the majority of our patients was limited and often obtained only on the day of voriconazole TDM. In addition, markers for hepatic function were not always investigated in parallel. It was therefore not possible to draw any conclusions on the yet unclear relationship between voriconazole C_{min} and hepatotoxicity in pediatric patients. Because the focus of our study on the relationship between dose adjustments and target attainment, we did not monitor for voriconazole-related adverse events (e.g. neurological adverse events, phototoxic skin reactions and potentially proarrhythmic conditions) in relation to dose or exposure.

3 234

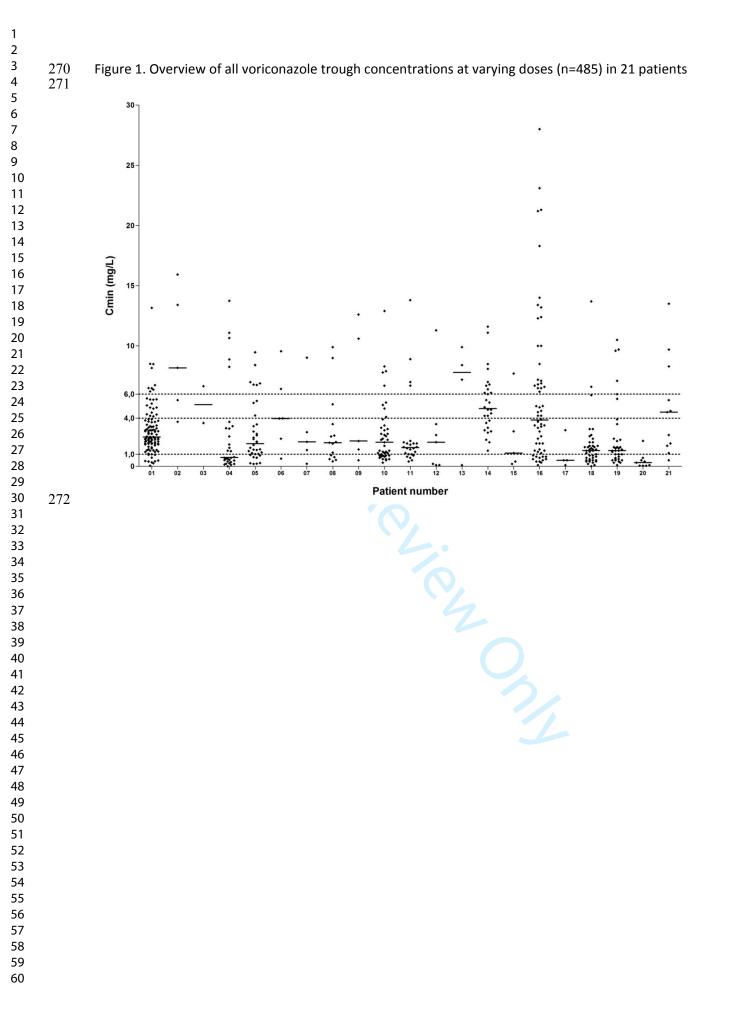
Despite rapid dose adaptations after the first subtherapeutic C_{min} in our study (median of 2 days), a median of 15 days were required to obtain an adequate C_{min} , increasing the risk of inadequately treated fungal infections and unfavourable outcome. Of all dose adaptations following both sub –and supratherapeutic C_{min} , only 45% resulted in a therapeutic C_{min} between 1-4 mg/L at the following concentration measurement. If we would stretch the therapeutic targets to 1-6 mg/L (assuming all C_{min} between 4-6 mg/L were acceptable based on adequate liver function tests), 56% of dose adaptations would result in target attainment.

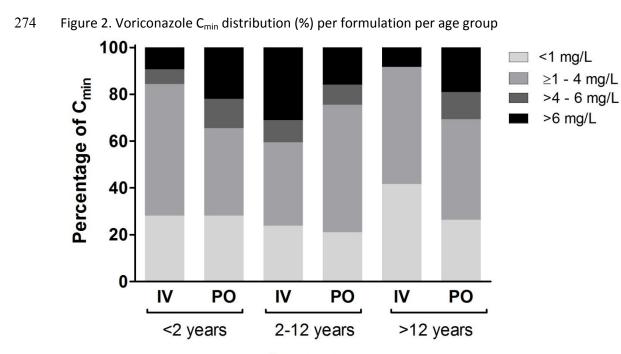
Medical Mycology

Dose adaptations were done by experts with expertise in the field of antifungal pharmacology but without a nomogram. For purposes of personalized dosing, there is an urgent need to implement advanced pharmacometric models with "clinician-proof" software, that can take into account all important determinants for treatment response. Nowadays model-informed precision dosing (MIPD) can be deployed as a technique to forecast dosing in the individual. Programs such as InsightRx, DoseMe and Best Dose fulfil this need and are being tested in the clinic. To take advantage of this approach, solid pharmacokinetic models must be available to be used in MIPD. Here we can still gain knowledge for this specific drug and the current population as the unexplained inter-individual variability in published models remains very large. Before implementation in routine patient management these models must be prospectively validated to demonstrate its value. In addition the software must comply to relevant legislation (for instance CE label in Europe) when deployed outside of a research scope. Nevertheless this is the way forward taking advantage of a platform for individualized treatment with visual feedback.

Given the difficulty of target attainment despite dose adaptations, together with the prior observed relationship between voriconazole exposure and efficacy and adverse events and the large inter -and intrapatient variability in children, this study underscores the indispensable need for voriconazole TDM in severely immunocompromised pediatric patients early in the course of treatment with multiple follow-up samples during therapy when aiming to optimize treatment outcomes.

263	Table 1. Baseline characteristics (r	າ=21).
-----	--------------------------------------	--------


5	
6	


264		
	Demographics	
	Gender	
	Male (n [%])	8 (38.1)
	Female (n [%])	13 (61.9)
	Median age at first VCZ ^a dose (yrs [range])	7.0 (1.2 – 18.5)
	Age class (yrs)	
	0 – <2 (n [%])	3 (14.3)
	2 – <12 (n [%])	11 (52.4)
	12 – 18 (n [%])	7 (33.3)
		, (33.3)
	Race	
	Caucasian (n [%])	18 (85.7)
	Negroid (n [%])	2 (9.5)
	Asian (n [%])	1 (4.8)
	Median weight (kg [range])	21.9 (9.5 – 65)
	Median BMI (kg/m² [range])	17.7 (14 – 25.4)
	Voriconazole therapy	
	Modian days of V(78 thorany (n [range])	110 (17 966)
	Median days of VCZ ^a therapy (n [range])	118 (17-866)
	Intravenous administrations (%)	12.5
	Oral administrations (%)	87.5
	Median total daily dose (mg [range])	400 (120-2400)
	Median total daily dose per kg (mg/kg [range])	23.1 (6.1 – 109.6)
	Patients on temporarily TID ^b dosing (n [%])	4 (19)
	Median days of TID ^b dosing (n range)	60 (6 – 397)
	Median total daily dose during TID dosing (mg/kg [range])	34.4 (13.6 – 109.6)
	TID dosing administrations (% of total)	11.1
	Therapeutic drug monitoring	
	Median days until first measurement of VCZ ^a C_{min} ^c (n [range])	3 (0 – 27)
	Median plasma concentration of first C_{min}^{c} (mg/L [IQR ^d])	3.1 (1.34 – 7.0)
	Initial C _{min} adequate (% of all patients) ^e	11 (52.4)
	Intravenous administration (%)	7 (63.6)
	Oral administration (%)	4 (36.4)
	a	4 (10)
	Initial C _{min} below therapeutic range (% of all patients)	4 (19)
	Intravenous administration (%)	3 (75)
	Oral administration (%)	1 (25)
		6 (28.6)
	Initial C _{min} above therapeutic range (% of all patients)	
	Initial C _{min} above therapeutic range (% of all patients) Intravenous administration (%)	4 (66.7)
		4 (66.7) 2 (33.3)
	Intravenous administration (%) Oral administration (%)	2 (33.3)
	Intravenous administration (%) Oral administration (%) Total C _{min}	2 (33.3) 485
	Intravenous administration (%) Oral administration (%) Total C _{min} <1 mg/L (n [%])	2 (33.3) 485 117 (24.1)
	Intravenous administration (%) Oral administration (%) Total C _{min}	2 (33.3) 485

3			
4		Median concentration of all C _{min} (mg/L; range)	2.16 (0 – 28.0)
5			
6		Dose adaptations	
7			
8		Dose adaptations (n [%])	243 (50.1)
9			
10		Dose increases (total)	108
		Dose increase at C _{min} <1 mg/L (n [%])	55 (47)
11		Resulted in increase in Cmin	42 (76.4)
12		Resulted in C _{min} 1 – 4 mg/L	33 (60)
13			
14		Dose decrease (total)	135
15		Dose decrease at C _{min} >6 mg/L	45 (33.3)
16		Resulted in decrease in C _{min}	36 (80.0)
17		Resulted in C _{min} <6 mg/L	23 (51.1)
18		Resulted in C _{min} 1 – 4 mg/L	12 (26.7)
19	265		

^aVCZ = voriconazole, ^bTID = three times per day, ^c C_{min} = trough concentration, ^dIQR = Interquartile range, ^eAdequate therapeutic range of voriconazole C_{min} is considered to be between 1 and 4 mg/L (1-6 if adequate liver function tests). Subtherapeutic C_{min} at <1 mg/L, supratherapeutic C_{min} at >6 mg/L.

REAR ONL

Age group

		C _{min} (% of total)			
Age group	Formulation	< 1 mg/L (n)	1 - 4 mg/L (n)	>4 - 6 mg/L (n)	> 6 mg/L (n)
< 2 years	IV	28.1 (9)	56.3 (18)	6.3 (2)	9.4 (3)
	PO	28.1 (9)	37.5 (12)	12.5 (4)	21.9 (7)
2-12 years	IV	23.8 (10)	35.7 (15)	9.5 (4)	31.0 (13)
	PO	21.1 (52)	54.5 (134)	8.5 (21)	15.9 (39)
>12 years	IV	41.7 (5)	50.0 (6)	0.0 (0)	8.3 (1)
	PO	26.3 (32)	43.0 (52)	11.6 (14)	19.0 (23)

		Median dose administered (mg/kg/day)			
Age group	Formulation	< 1 mg/L	1 - 4 mg/L	>4 - 6 mg/L	> 6 mg/L
< 2 years	IV	12.2	11.9	N/A	12.9
	PO	12.2	12.3	22.0	12.6
2-12 years	IV	17.1	24.5	15.7	57.9
	PO	24.0	25.9	22.9	28.2
>12 years	IV	10.0	11.1	N/A	N/A
	PO	18.4	15.7	11.0	10.4

C_{min}: trough concentration. IV: intravenous. PO: Oral.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	278	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47		
47 48 49 50 51 52 53 54 55 56 57 58 59 60		

13

1			
2			
3	279		
4	_ , ,		
5	280	Refe	rences
6	281		
7	282		
8	283		
9	284	1.	Pat
10	285		Ko
11	205		

 Patterson TF, Thompson GR, 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JA, Bennett JE. 2016. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1-e60.

- 14 Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Florl 289 2. 15 290 C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, 16 Beigelman-Aubry C, Blot S, Bouza E, Bruggemann RJM, Buchheidt D, Cadranel J, 291 17 292 Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, 18 19 293 Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange 294 C, Lehrnbecher T, Loffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, 20 Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinko J, 21 295 22 Skiada A, et al. 2018. Diagnosis and management of Aspergillus diseases: executive summary 296 23 297 of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24 Suppl 1:e1-e38.
- 24 298 3. Brüggemann RJ, Donnelly JP, Aarnoutse RE, Warris A, Blijlevens NM, Mouton JW, Verweij
 25 299 PE, Burger DM. 2008. Therapeutic Drug Monitoring of Voriconazole. TherDrug Monit
 26 300 30:403-411.
- 301
 301
 4. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. 2008. Voriconazole 302
 303
 303
 4. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. 2008. Voriconazole Therapeutic Drug Monitoring in Patients with Invasive Mycoses improves Efficacy and Safety Outcomes. Clin Infect Dis 46:201-211.
- 303045.Hamada Y, Seto Y, Yago K, Kuroyama M. 2012. Investigation and threshold of optimum31305305blood concentration of voriconazole: a descriptive statistical meta-analysis. J Infect33306Chemother 18:501-7.
- 307 6. Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. 2012. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother 56:4793-9.
- 37 310
 38 311
 38 311
 39 Neely M, Rushing T, Kovacs A, Jelliffe R, Hoffman J. 2010. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis 50:27-36.
- 39 312 8. Choi SH, Lee SY, Hwang JY, Lee SH, Yoo KH, Sung KW, Koo HH, Kim YJ. 2013.
 40 313 Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with invasive aspergillosis. Pediatr Blood Cancer 60:82-7.
- 42 315 9. Soler-Palacin P, Frick MA, Martin-Nalda A, Lanaspa M, Pou L, Rosello E, de Heredia CD,
 43 316
 44 317
 45 318
 46 Figueras C. 2012. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: a prospective study. J Antimicrob Chemother 67:700-6.
- 46 319 10. Hu L, Dai TT, Zou L, Li TM, Ding XS, Yin T. 2018. Therapeutic drug monitoring of voriconazole in children: experience from a tertiary care center in China. Antimicrob Agents Chemother doi:10.1128/AAC.00955-18.
- 322 11. Kang HM, Lee HJ, Cho EY, Yu KS, Lee H, Lee JW, Kang HJ, Park KD, Shin HY, Choi EH.
 323 324 2015. The Clinical Significance of Voriconazole Therapeutic Drug Monitoring in Children With Invasive Fungal Infections. Pediatr Hematol Oncol 32:557-67.
- 325
 325
 326
 326
 327
 327
 328
 329
 329
 329
 329
 320
 321
 321
 322
 322
 323
 323
 324
 325
 327
 325
 327
 326
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 327
 328
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
- 328 13. Walsh TJ, Driscoll T, Milligan PA, Wood ND, Schlamm H, Groll AH, Jafri H, Arrieta AC,
 329 Xlein NJ, Lutsar I. 2010. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother 54:4116-23.
- 59 60

- 2 3 331 14. Friberg LE, Ravva P, Karlsson MO, Liu P. 2012. Integrated population pharmacokinetic 4 332 analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother 5 333 56:3032-42. 6 Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, Vora AJ, 334 15. 7 335 Arrieta AC, Blumer J, Lutsar I, Milligan P, Wood N. 2004. Pharmacokinetics and safety of 8 336 intravenous voriconazole in children after single- or multiple-dose administration. 9 337 AntimicrobAgents Chemother 48:2166-2172. 10 338 Groll AH, Castagnola E, Cesaro S, Dalle JH, Engelhard D, Hope W, Roilides E, Styczynski J, 16. 11 Warris A, Lehrnbecher T, Fourth European Conference on Infections in L, Infectious Diseases 339 12 340 Working Party of the European Group for Blood Marrow T, Infectious Diseases Group of the 13 European Organisation for R, Treatment of C, International Immunocompromised Host S, 341 14 European Leukaemia N. 2014. Fourth European Conference on Infections in Leukaemia 342 15 (ECIL-4): guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in 343 16 344 paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet 17 345 Oncol 15:e327-40. 18 19 346 17. Luong ML, Al-Dabbagh M, Groll AH, Racil Z, Nannya Y, Mitsani D, Husain S. 2016. Utility
- 19 346 17. Luong ML, Al-Dabbagh M, Groll AH, Racli Z, Nannya Y, Mitsani D, Husain S. 2016. Utility
 20 347 of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother
 21 348 71:1786-99.
- 349
 350
 350
 351
 352
 352
 354
 18. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T, Shimodozono Y, Morikawa N, Takeda Y, Yamada K. 2009. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents 34:91-4.
- 353
 353
 354
 355
 355
 356
 357
 358
 355
 359
 350
 350
 350
 351
 351
 351
 352
 353
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 356
 357
 357
 358
 359
 359
 359
 350
 350
 350
 350
 351
 351
 352
 352
 353
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
 355
- 356
 357
 358
 20. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N. 2006. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. JClinPharmacol 46:235-243.
- 359
 359
 360
 360
 361
 Bartelink IH, Wolfs T, Jonker M, de Waal M, Egberts TC, Ververs TT, Boelens JJ, Bierings M. 2013. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother 57:235-40.
- 36 362 22. Gerin M, Mahlaoui N, Elie C, Lanternier F, Bougnoux ME, Blanche S, Lortholary O, Jullien
 363 V. 2011. Therapeutic drug monitoring of voriconazole after intravenous administration in
 364 infants and children with primary immunodeficiency. Ther Drug Monit 33:464-6.
- 39 365 23. Ullmann AJA, J.M.; Sevtap, A.; Denning, D.; Groll, A.; Lagrou, K. Lass-Florl, C. 2017.
 40 366 Executive Summary of the 2017 ESCMID-ECMM Guideline for the diagnosis and management of Aspergillus disease.
- 42 368 24. Michael C, Bierbach U, Frenzel K, Lange T, Basara N, Niederwieser D, Mauz-Korholz C,
 43 369 Preiss R. 2010. Determination of saliva trough levels for monitoring voriconazole therapy in immunocompromised children and adults. Ther Drug Monit 32:194-9.
- 45 371 25. Pieper S, Kolve H, Gumbinger HG, Goletz G, Wurthwein G, Groll AH. 2012. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. J Antimicrob Chemother 67:2717-24.
- 52

378

379

- 53 54
- 55 56
- 57 58
- 59
- 60

2 3	290	
5 4 5	380	Acknowledgement:
6 7	381	This manuscript was derived from chapter 9 of the PhD thesis by Vincent Lempers done at
8 9	382	Radboudumc, which can be found at:
10 11 12 13	383	https://repository.ubn.ru.nl/bitstream/handle/2066/157075/157075.pdf?sequence=1
14 15	384	AW is supported by the Wellcome Trust Strategic Award (grant 097377), and the MRC Centre for
16 17 18	385	Medical Mycology (grant MR/N006364/1) at the University of Aberdeen.
19 20 21	386	
22 23 24	387	Funding: this study was funded by the Department of Pharmacy Radboudumc
25 26 27	388	
28 29 30	389	Disclosures of Potential Conflicts of Interest.
31 32 33	390	VJC is now an employee of Gilead. At the time of research he was employed by Radboudumc
34 35 36	391	Other have no conflicts of interest with regards to this work.
37 38 39	392	Outside this work relevant: R.J.B. has served as a consultant to Astellas Pharma, Inc., F2G, Gilead
40 41	393	Sciences, Merck Sharp & Dohme Corp., and Pfizer, Inc., and has received unrestricted and research
42 43	394	grants from Astellas Pharma, Inc., Gilead Sciences, Merck Sharp & Dohme Corp., and
44 45	395	Pfizer, Inc. All contracts were through Radboudumc, and all payments were invoiced by
46 47 48	396	Radboudumc.
49 50 51 52 53 54 55 56 57 58 59 60	397	