
MINIMAL PRIMAL IDEALS IN THE INNER CORONA ALGEBRA OF A
C0(X)-ALGEBRA

ROBERT J. ARCHBOLD AND DOUGLAS W.B. SOMERSET

Abstract. Let A = C(X) ⊗K(H), where X is an infinite compact Hausdorff space and
K(H) is the algebra of compact operators on a separable, infinite-dimensional Hilbert space.
Let As be the norm-closed ideal of the multiplier algebra M(A) consisting of all the strong∗-
continuous functions from X to K(H). Then As/A is the inner corona algebra of A. We
identify the space MinPrimal(As) of minimal closed primal ideals in As. If A is separable
then MinPrimal(As) is compact and extremally disconnected. Using ultrapowers, we exhibit
a faithful family of irreducible representations of As/A and hence show that if every point
of X lies in the boundary of a zero set (i.e. if X has no P-points) then the minimal closed
primal ideals of As/A are precisely the images under the quotient map of the minimal closed
primal ideals of As. The map between MinPrimal(As) and MinPrimal(As/A) need not be
continuous, however, and MinPrimal(As/A) is not weakly Lindelof. As an application, it is
shown that if X = βN\N then the relation of inseparability on Prim(As/A) is an equivalence
relation but not an open equivalence relation.
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1. Introduction

Let A = C0(X) ⊗ K(H) ∼= C0(X,K(H)), where C0(X) is the C∗-algebra of complex-
valued functions vanishing at infinity on an infinite locally compact Hausdorff space X and
K(H) is the algebra of compact operators on a separable infinite-dimensional Hilbert space
H. Then it is well known that M(A), the multiplier algebra of A, is isomorphic to the
algebra of bounded strong∗-continuous functions from X to B(H), the algebra of bounded
operators on H [1]. In investigating the ideal structure of M(A), and of the corona algebra
C(A) = M(A)/A, a natural ideal of M(A) to consider is As, the algebra of bounded strong∗-
continuous functions from X to K(H). Since X is infinite, As 6= A (see [12, Theorems 3.3
and 3.7] for more general results).

A general study of the ideal structure of As/A in [12] exposed something of the complexity;
and the purpose of this present paper is to continue this study by identifying the set of
minimal closed primal ideals in As/A in the case when A is σ-unital (equivalently, when X
is σ-compact). We also say a little about the τw-topology (see below) on this set of ideals,
but this seems to be a difficult subject. The reason for trying to identify the minimal closed
primal ideals is that they tend to form an accessible family in the ideal lattice of a C∗-algebra,
and they are closely related to the primitive ideals (in particular, the minimal closed primal
ideals are the minimal elements in the τw-closure of the set Prim(B) of primitive ideals of a
C∗-algebra B [3, Proposition 3.1]).

Recall that if A is a ring and I an ideal in A then I is primal if whenever J1, J2, . . . , Jn is a
finite family of ideals of A with J1J2 . . . Jn = {0} then Ji ⊆ I for at least one i. If I is a closed
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ideal of a C∗-algebra A then Prim(A/I) can be canonically identified with the closed subset
{P ∈ Prim(A) : P ⊇ I} of Prim(A) (with the hull-kernel topology) and it is well-known that
I is primal if and only if Prim(A/I) is contained in a limit set in Prim(A) (cf. [4, Proposition
3.2]). Every prime ideal (and hence every primitive ideal) of a C∗-algebra A is primal, and
every ideal which contains a primal ideal is primal. A Zorn’s Lemma argument shows that
every closed primal ideal contains a minimal closed primal ideal. Let MinPrimal(A) denote
the set of minimal closed primal ideals of A. The topology τw is defined on the set Id(A) of
all closed ideals of A by taking sets of the form {I ∈ Id(A) : a /∈ I} (a ∈ A) as sub-basic
(see [3, p.525] where an equivalent definition is given). On Prim(A), τw coincides with the
hull-kernel topology, and on MinPrimal(A), τw is a Hausdorff topology [3, Corollary 4.3].

Where possible we work in the context of a general C0(X)-algebra A (see the definition in
Section 2), but for most of the results we have to impose some restrictions. The motivating
example is A = C0(X)⊗K(H), and we now describe the main results in this case.

In Section 3 we identify MinPrimal(As) in the case where A is σ-unital (Theorem 3.3), and
we show furthermore that if A is separable then MinPrimal(As) is τw-compact and extremally
disconnected (Corollary 3.6). Our identification builds on that already established in [11]
for MinPrimal(M(A)).

In Section 4 we use ultrapowers to exhibit a faithful family of irreducible representations
of As/A in the case where A is σ-unital (Theorem 4.7). This enables us to determine, in
Section 5, the set of minimal closed primal ideals of As/A. We show that if X has no P-points
(recall that a P-point is one which does not lie in the boundary of any zero set) then the
minimal closed primal ideals of As/A are precisely the images of the minimal closed primal
ideals of As under the quotient map (Theorem 5.6).

In Section 6 we investigate the topology on MinPrimal(As/A), showing that while this can
be described in some fairly simple cases it looks intractable in general. For example, if A is
separable and X has no isolated points then MinPrimal(As/A) is not weakly Lindelof, and
hence is certainly not homeomorphic to MinPrimal(As) (Theorem 6.5). Finally we study the
case where X is an F-space without isolated points, such as βN\N (recall that a completely
regular topological space Y is an F-space if disjoint cozero sets in Y are contained in disjoint
zero sets, see [17, 3.1, 14N4, 1.15 and 14.27]). We show, using MinPrimal(As/A) and its
topology, that the relation ∼ of inseparability by disjoint open sets on Prim(As/A) is an
equivalence relation on Prim(As/A) (Theorem 6.8) but is not an open equivalence relation
(Theorem 6.9).

We are grateful to the referee for several helpful comments.

2. Preliminaries

We begin by collecting some of the information that we need on C0(X)-algebras. Recall
that a C∗-algebra A is a C0(X)-algebra if there is a continuous map φ, called the base map,
from Prim(A) to the locally compact Hausdorff space X [32, Proposition C.5]. We will use
Xφ to denote the image of φ in X. Then Xφ is completely regular; and if A is σ-unital, Xφ

is σ-compact and hence normal [8, Section 1].
For x ∈ Xφ, set Jx =

⋂
{P ∈ Prim(A) : φ(P ) = x}, and for x ∈ X \ Xφ, set Jx = A.

For a ∈ A, the function x → ‖a + Jx‖ (x ∈ X) is upper semi-continuous [32, Proposition
C.10]. The C0(X)-algebra A is said to be continuous if, for all a ∈ A, the norm function
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x→ ‖a+ Jx‖ (x ∈ X) is continuous. By Lee’s theorem [32, Proposition C.10 and Theorem
C.26], this happens if and only if the base map φ is open.

One case of special importance (through which all other cases factor) is when the base
map φ is the complete regularization map

φA : Prim(A)→ Glimm(A) ⊆ β(Glimm(A)

(see [6, Section 2] for the identification of the complete regularization of Prim(A) with the
space Glimm(A) of Glimm ideals of A). If Glimm(A) is locally compact (for the complete
regularization topology τcr) then one may take X = Xφ = Glimm(A); otherwise, one may
take X = β(Glimm(A)). In this setting, if x ∈ Xφ = Glimm(A) then the ideal Jx coincides
with the Glimm ideal x.

Let J be a proper, closed, two-sided ideal of a C∗-algebra A. The quotient map qJ : A→
A/J has a canonical extension q̃J : M(A) → M(A/J) such that q̃J(b)qJ(a) = qJ(ba) and
qJ(a)q̃J(b) = qJ(ab) (a ∈ A, b ∈ M(A)). We define a proper, closed, two-sided ideal J̃ of
M(A) by

J̃ = ker q̃J = {b ∈M(A) : ba, ab ∈ J for all a ∈ A}.
The following proposition was proved in [7, Proposition 1.1].

Proposition 2.1. Let J be a proper, closed, two-sided ideal of a C∗-algebra A. Then
(i) J̃ is the strict closure of J in M(A);
(ii) J̃ ∩ A = J ;
(iii) if P ∈ Prim(A) then P̃ is primitive (and hence is the unique ideal in Prim(M(A))

whose intersection with A is P );
(iv) J̃ =

⋂
{P̃ : P ∈ Prim(A) and P ⊇ J} and for all b ∈M(A)

‖b+ J̃‖ = sup{‖b+ P̃‖ : P ∈ Prim(A) and P ⊇ J};
(v) (A+ J̃)/J̃ is an essential ideal in M(A)/J̃ .

Furthermore, the map P 7→ P̃ (P ∈ Prim(A)) maps Prim(A) homeomorphically onto a
dense, open subset of Prim(M(A)) [26, 4.1.10].

The next proposition was proved in [7, Proposition 1.2].

Proposition 2.2. Let A be a C0(X)-algebra with base map φ. Then φ has a unique extension
to a continuous map φ : Prim(M(A)) → βX such that φ(P̃ ) = φ(P ) for all P ∈ Prim(A).
Hence M(A) is a C(βX)-algebra with base map φ and Im(φ) = clβX(Xφ).

Now let A be a C0(X)-algebra with base map φ and let φ : Prim(M(A)) → βX be as in
Proposition 2.2. For x ∈ βX, we define Hx =

⋂
{Q ∈ Prim(M(A)) : φ(Q) = x}, a closed

two-sided ideal of M(A). Thus Hx is defined in relation to (M(A), βX, φ) in the same way
that Jx (for x ∈ X) is defined in relation to (A,X, φ). It follows that for each b ∈ M(A),
the function x→ ‖b+Hx‖ (x ∈ βX) is upper semi-continuous.

The next proposition was proved in [8, Proposition 1.3].

Proposition 2.3. Let A be a C0(X)-algebra with base map φ, and set Xφ = Im(φ).

(i) For all x ∈ X, Jx ⊆ Hx ⊆ J̃x and Jx = Hx ∩ A.
(ii) For all x ∈ X, Hx is strictly closed if and only if Hx = J̃x.
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(iii) For all b ∈M(A), ‖b‖ = sup{‖b+ J̃x‖ : x ∈ Xφ} = sup{‖b+Hx‖ : x ∈ Xφ}.

In the case where A = C0(X) ⊗ K(H) for a locally compact Hausdorff space X, we shall
assume that φ : Prim(A)→ X is the canonical homeomorphism such that

φ−1(x) = {f ∈ C0(X) : f(x) = 0} ⊗K(H) (x ∈ X).

Then it follows from the definition of J̃ above that

J̃x = {f ∈M(A) : f(x) = 0},
On the other hand, by [7, Lemma 1.5(ii)],

Hx = {f ∈M(A) : ‖f(xα)‖ → 0 as xα → x}.

We now give the definition of the ideal As of M(A). Let A be a C0(X)-algebra with base
map φ, and for x ∈ Xφ set Nx = A + J̃x. Define As =

⋂
x∈Xφ Nx. Then As is a closed

two-sided ideal in M(A) and As ⊇ A. Clearly As depends on the particular way in which
A is represented as a C0(X)-algebra (there may be many continuous maps from Prim(A) to
X in general). If A = C0(X) ⊗K(H) for a locally compact Hausdorff space X, then since
J̃x = {f ∈ M(A) : f(x) = 0}, we have that Nx = {f ∈ M(A) : f(x) ∈ K(H)}. Hence As

is precisely the algebra of bounded strong∗-continuous functions from X to K(H) referred
to in the introduction. In this case, As contains the algebra of bounded norm-continuous
functions from X to K(H). A generalization of the latter algebra has been studied in [12,
Section 3] and in [24].

The next lemma was proved in [12, Lemma 3.2].

Lemma 2.4. Let A be a C0(X)-algebra with base map φ and let b ∈ M(A). Then b ∈ A if
and only if

(i) for all ε > 0 the set {x ∈ Xφ : ‖b+Hx‖ ≥ ε} is compact;
(ii) for all x ∈ Xφ there exists a ∈ A such that b− a ∈ Hx.

We now recall from [8, Lemma 5.6] a means of constructing elements which will be of
considerable importance in this paper.

Lemma 2.5. Let A be a σ-unital, continuous C0(X)-algebra with base map φ and suppose
that A/Jx is non-unital for all x ∈ Xφ. Then for each zero set Z in Xφ there exists a positive
element cZ ∈ As such that

(i) ‖cZ + J̃x‖ = 0 for x ∈ Z;
(ii) ‖cZ + J̃x‖ = 1 for x ∈ Xφ \ Z;
(iii) for all x ∈ Xφ \ Z there is a neighbourhood V of x in Xφ and an element a ∈ A such

that cZ − a ∈ Hy for all y ∈ V .

It was not stated in [8, Lemma 5.6] that cZ could be chosen positive, but the proof shows
that this is the case.

Now let A be a C0(X)-algebra with base map φ. If X = Xφ (that is, φ is surjective) then

we already have the canonical extension φ : Prim(M(A)) → βXφ. If X 6= Xφ then we may
replace X by the compact Hausdorff space βXφ (see the discussion in [12, p. 302] and so we

have again φ : Prim(M(A)) → βXφ. In either case, with the usual identifications, we may

consider φ|Prim(As) and φ|Prim(As/A). Denoting the latter of these maps by ψ, we have that
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As/A is a C(βXφ)-algebra with base map ψ. The next result explains why the notion of a
P-point crops up frequently in this paper. The assumption that Xφ is infinite ensures that
As strictly contains A [12, p. 306]. Note that if the non-empty Hausdorff space Xφ contains
no isolated points (as will be assumed in several results in Section 6) then it is automatically
infinite.

Theorem 2.6. [12, Theorem 5.2] Let A be a σ-unital, continuous C0(X)-algebra with base
map φ and suppose that Xφ is infinite and that A/Jx is non-unital for all x ∈ Xφ. Then
As/A is a non-trivial C(βXφ)-algebra with base map ψ, and Xψ = βXφ \W where W is the
set of P-points in Xφ.

3. Minimal primal ideals in As

In this section we determine the space of minimal closed primal ideals of As where A is
a σ-unital, quasi-standard C∗-algebra. We exploit the identification of MinPrimal(M(A))
already established in [11].

Recall that a C∗-algebra A is quasi-standard if the relation ∼ of inseparability by disjoint
open sets is an open equivalence relation on Prim(A) [6]. This condition is a wide generaliza-
tion of the special case when Prim(A) is Hausdorff. If A is quasi-standard then the complete
regularization map φA is open [6, Theorem 3.3], so Glimm(A) is locally compact and A is a
continuous C0(X)-algebra with X = XφA = Glimm(A). Furthermore each Glimm ideal of A
is primal and the topological spaces Glimm(A) and MinPrimal(A) coincide [6, Theorem 3.3].
Examples of quasi-standard C∗-algebras include von Neumann algebras, AW∗-algebras, local
multiplier algebras of C∗-algebras [29], the group C∗-algebras of amenable discrete groups
(and many other groups) [19], [5], and algebras of the form C0(X) ⊗ K(H) where X is a
locally compact Hausdorff space.

Let X be a completely regular topological space [17, 3.1] and let CR(X) denote the ring
of continuous real-valued functions on X. For f ∈ CR(X), let

Z(f) = {x ∈ X : f(x) = 0},

the zero set of f . Note that every zero set clearly arises as the zero set of a bounded
continuous function. The set of all zero sets of X is denoted Z[X]. A non-empty family F
of zero sets of X is called a z-filter if: (i) F is closed under finite intersections; (ii) ∅ /∈ F ;
(iii) each zero set which contains a member of F belongs to F . Each ideal I ⊆ CR(X) yields
a z-filter Z[I] = {Z(f) : f ∈ I}. An ideal I is called a z-ideal if Z(f) ∈ Z[I] implies f ∈ I;
and if F is a z-filter on X then the ideal I(F) defined by

I(F) = {f ∈ CR(X) : Z(f) ∈ F}

is a z-ideal. There is a bijective correspondence between the set of z-ideals of CR(X) and
the set of z-filters on X, given by I = I(Z[I])↔ Z[I] (see [17, Chapter 2]).

A z-filter F on a completely regular space X is said to be prime if Z1 ∪ Z2 ∈ F implies
that either Z1 ∈ F or Z2 ∈ F , for zero sets Z1 and Z2. Let PF (X) denote the set of
prime z-filters, and let PZ(X) be the set of prime z-ideals (recall that an ideal P ⊆ CR(X)
is prime if fg ∈ P implies f ∈ P or g ∈ P ). The bijective correspondence between z-
ideals and z-filters restricts to a bijective correspondence j : PZ(X) → PF (X) given by
j(P ) = {Z(f) : f ∈ P} (see [17, Chapter 2]). Every z-ideal of CR(X) is an intersection of
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prime z-ideals and the minimal prime ideals of CR(X) are z-ideals [17, 2.8, 14.7]. The prime
ideals containing a given prime ideal form a chain [17, 14.8].

Now let A be a σ-unital C0(X)-algebra with base map φ, and let u ∈ A be a strictly positive
element. For a ∈ A, set Z(a) = {x ∈ Xφ : a ∈ Jx}. Unless norm functions of elements of A
are continuous on Xφ, Z(a) will not necessarily be a zero set of Xφ. However, since Z(u) = ∅
and A is closed under multiplication by Cb(Xφ), every zero set Z(f) of Xφ arises as Z(a) for

the element a = f · u ∈ A (f ∈ Cb
R(Xφ)). For b ∈M(A), set Z(b) = {x ∈ Xφ : b ∈ J̃x}. Note

that if b ∈ A then this definition is consistent with the previous one because J̃x ∩ A = Jx
(x ∈ Xφ). It is also useful to note that for b ∈ M(A) and x ∈ Xφ, b ∈ J̃x if and only if

bu ∈ J̃x if and only if bu ∈ Jx. Hence Z(b) = Z(bu), and this is a zero set in Xφ if A is
continuous.

For a z-filter F on Xφ define Lalg
F = {b ∈ M(A) : ∃Z ∈ F , Z(b) ⊇ Z}, and let LF be

the norm-closure of Lalg
F in M(A). Let b ∈ Lalg

F . Then for a ∈ M(A), Z(ab) ⊇ Z(b) and

Z(ba) ⊇ Z(b), while for a ∈ Lalg
F , Z(a + b) ⊇ Z(a) ∩ Z(b). Hence Lalg

F is an ideal of M(A),
so LF is a closed ideal of M(A).

Theorem 3.1. [8, Theorem 3.2] Let A be a σ-unital C0(X)-algebra with base map φ. Suppose
that A/Jx is non-unital for all x ∈ Xφ. Let I and J be z-ideals of CR(Xφ) and suppose that
there exists a zero set Z of Xφ such that Z ∈ Z[I] but Z /∈ Z[J ]. Then LZ[I] 6⊆ LZ[J ]. Hence
the assignment I → LZ[I] defines an order-preserving injective map L from the lattice of
z-ideals of CR(Xφ) into the lattice of closed ideals of M(A).

For x ∈ Xφ, let Mx be the maximal ideal of CR(Xφ) given by Mx = {f ∈ CR(Xφ) : f(x) =
0}, and let Ox = {f ∈ CR(Xφ) : x ∈ int(Z(f))} where int(Z(f)) denotes the interior of
Z(f) in Xφ. Then Mx and Ox are z-ideals, and Ox is the smallest ideal of CR(Xφ) which
is not contained in any maximal ideal other than Mx. It is useful to extend the definitions
just given as follows. Let clβXXφ denote the closure of Xφ in βX. For p ∈ clβXXφ, let
Mp = {f ∈ CR(Xφ) : p ∈ clβXZ(f)} and define Op to be the set of all f ∈ CR(Xφ) for which
clβXZ(f) is a neighbourhood of p in clβXXφ. Then for x ∈ Xφ, Mx = Mx and Ox = Ox.

In the next result and in several subsequent results in this paper, we shall take X to be
the locally compact Hausdorff space Glimm(A) associated with a σ-unital quasi-standard
C∗-algebra A. In this case, it should be understood that φ : Prim(A) → X is the complete
regularization map φA. Thus X = Xφ, clβXXφ = βX and the sets Mp and Op defined
above coincide with those occurring in [17, 7.3 and 7.12]. Now suppose that P ∈ PZ(Xφ) =
PZ(X). Then there exists p ∈ βX such that Op ⊆ P ⊆ Mp [17, 7.15]. Hence, if A/Jx is
non-unital for all x ∈ X, it follows from Theorem 3.1 and [8, Theorem 4.3] that Hp ⊆ LZ[P ]

and, if p ∈ X, LZ[P ] ⊆ J̃p.
For a ring R let Min(R) be the space of minimal (algebraic) primal ideals of R with the

lower topology generated by sub-basic sets of the form

{P ∈ Min(R) : a /∈ P}

as a varies through elements of R. If R is a commutative ring then an argument of Krull’s
shows that every minimal primal ideal of R is prime, and Min(R) is the usual space of
minimal prime ideals of R with the hull-kernel topology, see [28] and the references given
there.
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Theorem 3.2. [11, Theorem 3.4] Let A be a σ-unital, quasi-standard C∗-algebra with A/G
non-unital for all G ∈ Glimm(A) and set X = Glimm(A). Then the assignment P 7→ LZ[P ]

defines a homeomorphism from Min(CR(X)) onto MinPrimal(M(A)).

For the next theorem, we need the following family of functions which is useful for relating
LF and Lalg

F . For 0 < ε < 1/2, define the continuous piecewise linear function fε : [0,∞)→
[0,∞) by: (i) fε(x) = 0 (0 ≤ x ≤ ε); (ii) fε(x) = 2(x − ε) (ε ≤ x ≤ 2ε); (iii) fε(x) = x
(2ε ≤ x). Note that for b ∈ M(A)+, if b ∈ LF then fε(b) belongs to the Pedersen ideal of

LF for all ε [26, 5.6.1], and hence fε(b) ∈ Lalg
F . On the other hand, ‖b− fε(b)‖ ≤ ε. Thus we

have that b ∈ LF if and only if fε(b) ∈ Lalg
F for all ε ∈ (0, 1/2), which is Lemma 3.3 of [11].

We can now give the description of MinPrimal(As). For a C∗-algebra A, let Primal(A)
denote the set of closed primal ideals of A and Primal′(A) the set of proper closed primal
ideals of A.

Theorem 3.3. Let A be a σ-unital, quasi-standard C∗-algebra and set X = Glimm(A). Sup-
pose that A/Jx is non-unital for all x ∈ X. Then the map P 7→ P ∩As is a homeomorphism
from MinPrimal(M(A)) onto MinPrimal(As).

Proof. Let P ∈ Primal(M(A)) and let I1, . . . , In ∈ Id(As) with I1 . . . In = {0}. Then Ii ⊆ P
for some 1 ≤ i ≤ n, by the primality of P , so Ii ⊆ P ∩As. Hence P ∩As ∈ Primal(As). Now
let P,Q ∈ MinPrimal(M(A)) with P 6= Q. Then by [11, Theorem 2.4] there exist distinct
minimal prime z-filters F and G on X such that P = LF and Q = LG. Let Z ∈ Z[X] with
Z ∈ F \ G and let cZ ∈ As with the properties of Lemma 2.5. Note that Z is the zero set of

cZ and also the zero set of fε(c
Z) (0 < ε < 1/2). Hence cZ ∈ Lalg

F ⊆ LF but fε(c
Z) /∈ Lalg

G for
0 < ε < 1/2, and thus cZ /∈ LG by [11, Lemma 3.3]. Hence P ∩ As 6⊆ Q ∩ As, and similarly
Q ∩ As 6⊆ P ∩ As.

Now let R ∈ Primal′(As) and define R̃ ∈ Primal′(M(A)) as follows. Let W be the hull
of R in Prim(As) and let i(W ) be the image of W in Prim(M(A)) under the canonical
injection i from Prim(As) to Prim(M(A)). Let V be the closure of i(W ) in Prim(M(A))
and set R̃ = kerV . Clearly R̃ ∩ As = R. Since W is a limit set in Prim(As) it follows that
V is a limit set in Prim(M(A)) so R̃ is primal. Hence there exists P ∈ MinPrimal(M(A))
such that R̃ ⊇ P , so R = R̃ ∩ As ⊇ P ∩ As. Thus it follows from this paragraph and the
previous one that

MinPrimal(As) = {P ∩ As : P ∈ MinPrimal(M(A))}.
Next we show that the map P 7→ P ∩ As is a homeomorphism. Sets of the form {P ∈

MinPrimal(As) : a /∈ P} (a ∈ As) are sub-basic for the τw-topology on MinPrimal(As) and
their inverse images are open in MinPrimal(M(A)) since

{P ∈ MinPrimal(M(A)) : a /∈ P ∩ As} = {P ∈ MinPrimal(M(A)) : a /∈ P}.
Thus the map is continuous.

Now let b ∈ M(A)+ and set V = {P ∈ MinPrimal(M(A)) : b /∈ P}. We aim to show
that U := {P ∩ As : P ∈ V } is τw-open in MinPrimal(As). Since ‖f1/n(b) − b‖ ≤ 1/n, we

may write V =
⋃
n≥2{P = LF ∈ MinPrimal(M(A)) : f1/n(b) /∈ Lalg

F }. Let n ≥ 2 and set

Zn = Z(f1/n(b)). Let cZn ∈ As with the properties of Lemma 2.5. Then for a (minimal

prime) z-filter F , cZn ∈ Lalg
F if and only if Zn ∈ F if and only if f1/n(b) ∈ Lalg

F . But
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also cZn ∈ Lalg
F if and only if cZn ∈ LF by [11, Lemma 3.3] (since Z(fε(c

Zn)) = Zn for all
0 < ε < 1/2). Thus we have that U =

⋃
n≥2{Q = P ∩As ∈ MinPrimal(M(A)) : cZn /∈ Q}, a

union of τw-open sets. Thus U is open and the map is a homeomorphism. �

Theorem 3.3 has various immediate consequences. The next four corollaries follow at once
from Theorem 3.3 and [11, Corollaries 4.1, 4.2, 4.3, and 4.4] respectively. Recall that a
topological space Y is countably compact if every countable open cover of Y has a finite
subcover. If Y is a T1-space then Y is countably compact if and only if every infinite subset
of Y has a limit point in Y [25, p. 181]. If Y is countably compact then Y is pseudocompact,
that is, Y does not admit any unbounded continuous real-valued functions [17, 1.4].

Corollary 3.4. Let A be a σ-unital, quasi-standard C∗-algebra with A/G non-unital for all
G ∈ Glimm(A). Then

(i) the Hausdorff space MinPrimal(As) is totally disconnected and countably compact;
(ii) if MinPrimal(As) is locally compact then it is basically disconnected.

Corollary 3.5. Let A be a σ-unital, quasi-standard C∗-algebra and suppose that A/G is
non-unital for all G ∈ Glimm(A). Then the following are equivalent:

(i) MinPrimal(As) is compact;
(ii) Glimm(A) is cozero-complemented; that is, for every cozero set U in Glimm(A) there

exists a cozero set V in Glimm(A) such that U ∩ V = ∅ and U ∪ V is dense in Glimm(A).

Let D be an infinite discrete space with one-point compactification αD = D ∪ {p}. For
f ∈ C(αD), if p ∈ Z(f) then Z(f) is co-countable, and if p /∈ Z(f) then Z(f) is finite. It
follows from the ‘cozero-complemented’ criterion used in Corollary 3.5 that Min(CR(αD))
is compact if and only if D is countable. Applying this to MinPrimal(As) where A is as in
Corollary 3.5 with Glimm(A) homeomorphic to αD, we have that MinPrimal(As) is compact
if and only if D is countable.

If A in Corollary 3.5 is separable then (ii) holds so MinPrimal(As) is compact, but much
more can be said. Recall that a regular closed set is one that is the closure of its interior. If
A is separable then Glimm(A) is perfectly normal [9, Lemma 3.9] (i.e. every closed subset
of Glimm(A) is a zero set) so A certainly satisfies condition (ii) of the next corollary.

Corollary 3.6. Let A be a σ-unital, quasi-standard C∗-algebra. Suppose that A/G is non-
unital for G ∈ Glimm(A). Then the following are equivalent:

(i) MinPrimal(As) is compact and extremally disconnected;
(ii) every regular closed set in Glimm(A) is the closure of a cozero set.

In particular, if A is separable then A satisfies these equivalent conditions.

Corollary 3.7. Set A = C(βN \ N) ⊗ K(H). Then MinPrimal(As) is nowhere locally
compact. If Martin’s Axiom holds then MinPrimal(As) is not an F-space.

We conclude this section by describing the space of Glimm ideals of As in the case where
A is a σ-unital, quasi-standard C∗-algebra with A/G non-unital for all G ∈ Glimm(A). Set
X = Glimm(A) and let φ = φA : Prim(A) → X be the complete regularization map. Let
φ : Prim(M(A))→ βX be the canonical extension of φ. Then the Glimm ideals of M(A) are
the ideals Hx (x ∈ βX) and the assignment x→ Hx defines a homeomorphism of βX onto
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Glimm(M(A)) (see the comment after [10, Proposition 4.4]). Since A ⊆ As ⊆M(A), it fol-
lows that M(A) is the multiplier algebra of As, and hence that the ring of bounded continuous
functions on Prim(As) is isomorphic to the ring of bounded continuous functions on Prim(A)
by the restriction map (regarding Prim(A) as an open subset of Prim(As) in the usual way).
Thus Glimm(As) is homeomorphic to φ(Prim(As)). Furthermore, φ(Prim(As)) = βX. To
see this, note first of all that if X is finite then As = A and βX = X. On the other hand, if
X is infinite then we may apply Theorem 2.6 to the continuous C0(X)-algebra A to obtain
that φ(Prim(As/A)) = βX \W , where W is the set of P-points of X. But

W ⊆ X = φ(Prim(A)) ⊆ φ(Prim(As))

and hence φ(Prim(As)) = βX, as required. Finally, the Glimm ideals of As have the form
Hx ∩ As (x ∈ βX), where Hx is as above.

One consequence of this is worth recording.

Corollary 3.8. Let A be a σ-unital, quasi-standard C∗-algebra and suppose that A/G is
non-unital for all G ∈ Glimm(A). Then the following are equivalent:

(i) As is quasi-standard;
(ii) M(A) is quasi-standard;
(iii) Glimm(A) is basically disconnected.

Proof. The equivalence of (ii) and (iii) was established in [7, Corollary 4.9].
(ii)⇒(i). This follows from the general fact that closed ideals of quasi-standard C∗-algebras

are quasi-standard [6, p. 356].
(i)⇒(iii). If As is quasi-standard then Glimm(As) and MinPrimal(As) coincide as sets

and topological spaces [6, Theorem 3.3]. We have seen above that Glimm(As) is compact
and thus MinPrimal(As) is also compact, and hence locally compact. Thus it follows from
Corollary 3.4 that MinPrimal(As) is basically disconnected, and hence that Glimm(As) is
basically disconnected. But we saw above that Glimm(As) is homeomorphic to the Stone-
Cech compactification of Glimm(A), and thus Glimm(A) is basically disconnected by [17,
6M]. �

4. A faithful family of irreducible representations of As/A

In this section we exhibit a family of irreducible representations of the corona algebra
M(A)/A where A is either a stable, separable, quasi-standard C∗-algebra or an algebra of
the form C0(X) ⊗ K(H) with X σ-compact. The representations are constructed as irre-
ducible representations of M(A) with kernels containing A. We show that these irreducible
representations form a faithful family for As/A. The method is based on the ultraproduct
construction [16]. We begin with irreducible representations ‘at infinity’.

Theorem 4.1. Let A be a σ-unital C0(X)-algebra with base map φ. Let W be a countably
infinite, closed, relatively discrete subset of Xφ and suppose that Jx is a primitive ideal of A
for each x ∈ W . Let F ] be a free ultrafilter on W and let F = {Z ∈ Z[Xφ] : Z ∩W ∈ F ]},
a z-filter on Xφ. Then LF ∈ Prim(M(A)) and LF ⊇ A.

Proof. Set Y = φ−1(W ). Then Y is a closed subset of Prim(A). Set I = kerY and B = A/I.
Then B is isomorphic to the c0-direct sum

∑
x∈W A/Jx, so M(B) is isomorphic to the l∞-

direct sum
∏

x∈W M(A)/J̃x [2, Lemma 1.2.21] (recall that, since A is σ-unital, M(A/Jx) ∼=
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M(A)/J̃x for x ∈ Xφ, by definition of J̃x). Let π : A → B be the quotient map. Since A is
σ-unital, π extends to a surjective homomorphism π̃ : M(A)→M(B).

Let C =
∏F]M(A)/J̃x be the ultraproduct, and let ρ : M(B) → C denote the quotient

map. Then ker ρ = {c ∈ M(B) : limF] ‖cx‖ = 0}. Since each M(A)/J̃x is primitive, C is a
primitive C∗-algebra by [16, Theorem 5.4]. Hence C is a primitive quotient of M(A), and
we now show that J := ker ρ ◦ π̃ is equal to LF .

Suppose that b ∈ Lalg
F . Then Z(b) ⊇ Z for some Z ∈ F and hence Z(b)∩W ⊇ Z∩W ∈ F ].

Thus π̃(b) ∈ ker ρ, so b ∈ J . Hence LF ⊆ J . Conversely, let b ∈ J with 0 ≤ b ≤ 1. Then
π̃(b) ∈ ker ρ, and hence for 1/2 > ε > 0 there exists Z ′ ∈ F ] such that fε(b) + J̃x = 0 for
all x ∈ Z ′ (where fε is as defined before Theorem 3.3). Thus Z ′ ⊆ Z(fε(b)) ∩ W . Since
Z ′ is closed in Xφ it follows from [8, Lemma 4.1] that there is a zero set Z in Xφ with
Z ′ ⊆ Z ⊆ Z(fε(b)). Hence Z ∩W ∈ F ], so Z ∈ F . Since Z ⊆ Z(fε(b)), it follows that

fε(b) ∈ Lalg
F , and hence b ∈ LF by [11, Lemma 3.3]. Thus J ⊆ LF , so J = LF .

Finally, for a ∈ A with 0 ≤ a ≤ 1 and 0 < ε < 1/2, the set {x ∈ Xφ : ‖a + Jx‖ ≥ ε} is
compact (it is the image under φ of the compact subset {P ∈ Prim(A) : ‖a + P‖ ≥ ε} of
Prim(A)) and hence has finite intersection with W . Arguing as in the previous paragraph, we
see that there exists Z ∈ F such that ‖fε(a) + Jx‖ = 0 for all x ∈ Z, and hence a ∈ LF . �

If A is a C0(X)-algebra with base map φ and Z is a non-empty closed subset of Xφ then
we define JZ =

⋂
x∈Z Jx (cf. [9, p. 5]). It is straightforward to check that JZ = {b ∈ A :

Z(b) ⊇ Z} and that J̃Z = {b ∈M(A) : Z(b) ⊇ Z}.

Lemma 4.2. Let A be a σ-unital C0(X)-algebra with base map φ and let Z be a non-empty
closed subset of Xφ. Then JZ is σ-unital if and only if Z is a Gδ.

Proof. Suppose that Z is a Gδ subset of Xφ. Then since Xφ is normal there is a continuous
function f : Xφ → [0, 1] such that Z(f) = Z. Set z = θA(f ◦ φ) where θA : Cb(Prim(A))→
ZM(A) is the Dauns-Hofmann isomorphism. Let v = zu where u is a strictly positive
element for A. Then v is a strictly positive element for the C∗-algebra JZ , so JZ is σ-unital.

Conversely, suppose that JZ is σ-unital. Then the set W = {P ∈ Prim(A) : P 6⊇ JZ} is
σ-compact, so φ(W ) = Xφ \ Z is also σ-compact. Hence Z is a Gδ. �

In particular, if A in Lemma 4.2 is separable, then every ideal JZ is σ-unital so every non-
empty closed subset Z of Xφ is a Gδ (cf. [9, Lemma 3.9]).

Lemma 4.3. Let A be a C0(X)-algebra with base map φ and let Z be a non-empty closed
subset of Xφ. Then J̃Z is an hereditary C∗-subalgebra of M(JZ).

Proof. We work in A∗∗, identifying A with its canonical image in A∗∗. Hence we may identify
M(A) with the idealizer of A in A∗∗ and M(JZ) with the idealizer of JZ in J∗∗Z where the

latter is canonically embedded in A∗∗ [26, Proposition 3.12.3]. First note that if b ∈ J̃Z and
c ∈M(JZ) then bcb ∈ J̃Z . To see this observe that J̃Z = {b ∈M(A) : bA+Ab ⊆ JZ}. Hence
for a ∈ A, bcba ∈ bcJZ ⊆ JZ . Similarly abcb ∈ JZcb ⊆ JZ . Thus bcb belongs firstly to M(A)
and secondly to J̃Z .

Now suppose that b ∈ J̃Z and c ∈ M(JZ) with 0 ≤ c ≤ b. Then c ∈ bM(JZ)b, the

hereditary C∗-subalgebra of M(JZ) generated by b [23, 1.5.9]. But bM(JZ)b ⊆ J̃Z by the
previous paragraph. Hence c ∈ J̃Z as required. �
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We want now to apply Theorem 4.1 in the context of ideals of the form JZ . Suppose that
A is a σ-unital, continuous C0(X)-algebra with base map φ and that A/Jx is non-unital for
all x ∈ Xφ. Let Z be a zero set of Xφ, so that the C∗-algebra JZ is σ-unital by Lemma 4.2.
Let ψ = φ|Prim(JZ). Then JZ is a C0(X)-algebra with base map ψ and Xψ = Xφ \ Z, where

Xψ = Im(ψ). Hence M(JZ) is a C(βX)-algebra with base map ψ. Let W be a countably
infinite, relatively closed, relatively discrete subset of Xψ and suppose that Jx ∈ Prim(A)
for each x ∈ W so that Jx∩JZ is a primitive ideal of JZ . Let F ] be a free z-ultrafilter on W
and let F ′ = {Z ∈ Z[Xψ] : Z ∩W ∈ F ]}. Using the superscript M(JZ) to indicate that we

are applying Theorem 4.1 with JZ in place of A, we obtain an ideal L
M(JZ)
F ′ in Prim(M(JZ))

such that L
M(JZ)
F ′ ⊇ JZ .

The next lemma compares L
M(JZ)
F ′ (an ideal of M(JZ)) with L

M(A)
F := LF (an ideal of

M(A)), where F = {Z ∈ Z[Xφ] : Z ∩W ∈ F ]}. From now on, it will be convenient for
various reasons to assume that A is a σ-unital, continuous C0(X)-algebra. In particular, this
will imply that Z(b) is a zero set in Xφ for every b ∈M(A) (see Section 3).

Lemma 4.4. Let A be a σ-unital, continuous C0(X)-algebra with base map φ and suppose
that A/Jx is non-unital for all x ∈ Xφ. Let Z be a zero set of Xφ and let Y be a countably
infinite, relatively closed, relatively discrete subset of Xφ \ Z such that Jx ∈ Prim(A) for

x ∈ Y . Then with the notation above, L
M(JZ)
F ′ ∩M(A) ⊆ L

M(A)
F . If JZ is an essential ideal

of A then L
M(JZ)
F ′ ∩M(A) = L

M(A)
F .

Proof. Let b ∈ LM(JZ)
F ′ ∩M(A) with b ≥ 0, and let 0 < ε < 1/2. Then fε(b) ∈ (Lalg

F ′ )M(JZ).
Since b ∈ M(A), Z(fε(b)) ∩Xψ is a zero set of Xψ and hence belongs to F ′. It follows that

Z(fε(b)) ∩ Y ∈ F ] and hence that b ∈ LM(A)
F .

Now suppose that JZ is an essential ideal of A, that 0 ≤ b ∈ LM(A)
F , and that 0 < ε < 1/2.

Then fε(b) ∈ (Lalg
F )M(A) so Z(fε(b)) ∈ F . Hence Z(fε(b)) ∩ Y ∈ F ]. Since JZ is essential,

b ∈M(JZ), and (Z(fε(b)) ∩Xψ) ∩ Y ∈ F ]. Thus b ∈ LM(JZ)
F ′ . �

Note that, under the hypotheses of Lemma 4.4, the base map φ is open, so the ideal JZ is
essential in A if and only if the zero set Z has empty interior in Xφ.

Theorem 4.5. Let A be a σ-unital, continuous C0(X)-algebra with base map φ and suppose
that A/Jx is non-unital for all x ∈ Xφ. Let Z be a zero set of Xφ and let Y be a countably
infinite, relatively closed, relatively discrete subset of Xφ \ Z such that Jx ∈ Prim(A) for
x ∈ Y . Let F ] be a free z-ultrafilter on Y and set F = {Z ′ ∈ Z[Xφ] : Z ′ ∩ Y ∈ F ]}. Then
there exists an irreducible representation πF of M(A) such that

(i) kerπF ⊇ A;
(ii) kerπF 6⊇ As;

(iii) kerπF = {b ∈M(A) : bJ̃Z + J̃Zb ⊆ L
M(JZ)
F ′ ∩M(A)};

(iv) kerπF ∩ J̃Z ⊆ L
M(A)
F .

Proof. Since Z is a zero set of Xφ, the C∗-algebra JZ is σ-unital by Lemma 4.2. Hence
it follows from Theorem 4.1 applied to JZ , as detailed above, that there is an irreducible

representation ρ of M(JZ) on a Hilbert space K with ker ρ = L
M(JZ)
F ′ In particular, L

M(JZ)
F ′ ⊇

JZ .
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Let cZ ∈ As be as in Lemma 2.5 ([8, Lemma 5.6]) with cZ ∈ J̃x for x ∈ Z and ‖cZ+J̃x‖ = 1
for x ∈ Xφ \ Z. Then cZ ∈ J̃Z , but by the construction of ρ, cZ /∈ ker ρ, and hence

J̃Z 6⊆ ker ρ. Since J̃Z is an hereditary subalgebra of M(JZ) by Lemma 4.3, it follows that
the representation π = ρ|J̃Z is an irreducible representation of J̃Z on the Hilbert space

H = ρ(J̃Z)K [26, 4.1.5] with kernel J̃Z ∩ LM(JZ)
F ′ . Let πF be the canonical extension of π to

an irreducible representation of M(A) on H. Then cZ /∈ kerπF so πF does not annihilate
As, establishing (ii).

By the construction of πF we have that

kerπF = {b ∈M(A) : bJ̃Z + J̃Zb ⊆ kerπ = L
M(JZ)
F ′ ∩ J̃Z}

= {b ∈M(A) : bJ̃Z + J̃Zb ⊆ L
M(JZ)
F ′ }

= {b ∈M(A) : bJ̃Z + J̃Zb ⊆ L
M(JZ)
F ′ ∩M(A)},

establishing (iii). Furthermore, for a ∈ A,

aJ̃Z + J̃Za ⊆ JZ ⊆ L
M(JZ)
F ′ ∩M(A),

so A ⊆ kerπF , establishing (i).

Finally, suppose that b ≥ 0 and that b ∈ kerπF ∩ J̃Z . Then 2b2 ∈ LM(JZ)
F ′ ∩M(A) by (iii),

and hence 2b2 ∈ LM(A)
F by Lemma 4.4. Thus b ∈ LM(A)

F , establishing (iv). �

Corollary 4.6. In the context of Theorem 4.5, if JZ is an essential ideal of A then (iii) and
(iv) may be replaced by

(iii)′ kerπF = {b ∈M(A) : bJ̃Z + J̃Zb ⊆ L
M(A)
F };

(iv)′ kerπF ∩ J̃Z = L
M(A)
F ∩ J̃Z.

If Z = {x} is a singleton with x non-isolated in Xφ then kerπF |As = (L
M(A)
F ∩ As) + A, so

(L
M(A)
F ∩ As) + A ∈ Prim(As).

Proof. If JZ is an essential ideal of A then (iii)′ follows from Theorem 4.5(iii) and Lemma 4.4.

This then implies that L
M(A)
F ⊆ kerπF , and thus (iv)′ follows from Theorem 4.5(iv).

Now suppose that Z = {x} is a singleton. Then Jx = JZ is an essential ideal in A since
x is non-isolated in Xφ, so we know from the previous paragraph and Theorem 4.5(i) that

kerπF |As ⊇ (L
M(A)
F ∩ As) + A. Suppose that b ∈ kerπF |As . Let a ∈ A such that b− a ∈ J̃x.

Then b − a ∈ kerπF |As , so b − a ∈ LM(A)
F by (iv)′ above. Hence b ∈ (L

M(A)
F ∩ As) + A as

required. �

We now define S to be the family of irreducible representations of M(A) obtainable by
the methods of Theorem 4.1 and Theorem 4.5. Obviously the size of S depends on the size
of the set {x ∈ Xφ : Jx ∈ Prim(A)}.

Theorem 4.7. Let A be a σ-unital, continuous C0(X)-algebra with base map φ such that
Xφ is infinite. Suppose that A/Jx is non-unital for all x ∈ Xφ and that the set {x ∈ Xφ :
Jx ∈ Prim(A)} is dense in Xφ. Then the family S of irreducible representations is faithful
on As/A.
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Proof. Since Xφ is infinite, there exists b ∈ As \ A [12, p. 306]. Then either (i) or (ii) of
Lemma 2.4 fails.

Suppose first that (i) fails. Then there exists ε > 0 such that the set

Y = {x ∈ Xφ : ‖b+Hx‖ ≥ ε}

is non-compact. Since Y is closed in Xφ by the upper semi-continuity of norm functions,
it follows that Xφ is non-compact. Hence, since A is continuous and σ-unital and Xφ is
locally compact and σ-compact, we may write Xφ =

⋃∞
i=1Xn where each Xn is compact

and is strictly contained in the interior of Xn+1. The non-compactness of Y implies that
for each n ≥ 1, Y ∩ (Xφ \ Xn) is non-empty so we may choose a sequence (yn)n≥1 with
yn ∈ Y ∩ (Xφ \ Xn). Temporarily fix n ≥ 1. Then ‖b + Hyn‖ ≥ ε, so by [7, Lemma 1.5]

there exists xn in the open neighbourhood Xφ \ Xn of yn such that ‖b + J̃xn‖ > ε/2. By
the lower semi-continuity of norm functions [12, Lemma 6.2(i)], and the density of the set
{x ∈ Xφ : Jx ∈ Prim(A)} in Xφ, it follows that there exists wn ∈ Xφ\Xn with Jwn ∈ Prim(A)

and ‖b + J̃wn‖ > ε/2. Set W = {wn : n ≥ 1}. Then W is countably infinite, and at most
finitely many elements of W belong to each Xn, so W is a closed, relatively discrete set in
Xφ. Let F ] be a free z-ultrafilter on W and let F = {Z ∈ Z[Xφ] : Z ∩W ∈ F ]}. Then it
follows from Theorem 4.1 that there is an irreducible representation πF ∈ S with kernel LF .
But fδ(b) /∈ Lalg

F for all δ ∈ (0, ε/2), so πF(b) 6= 0.

Now suppose instead that (ii) fails. Then there exists x ∈ Xφ such that b − a /∈ Hx for all

a ∈ A. Let a ∈ A such that c := b − a ∈ J̃x, and set Z = Z(c). Then Z is a zero set in
Xφ and x ∈ Z. Since c /∈ Hx we see that x is in the boundary of Z by [7, Lemma 1.5].
We seek an irreducible representation πF ∈ S such that πF(c) 6= 0; and replacing c by c∗c,

we may assume that c ≥ 0. Since c /∈ Hx, there exists ε > 0 such that fε(c) /∈ Lalg
Z[Ox]

[8,

Theorem 4.3(ii)]. Thus for every open set U containing x we may find y ∈ U \ Z such that
‖c+Hy‖ > ε.

Since Xφ is locally compact and σ-compact, the cozero set Xφ \ Z is also locally compact
and σ-compact; and as x is a boundary point in Z, Xφ \ Z is non-compact. Thus we may
write Xφ \Z as a countable, strictly increasing union of compact sets Yn (n ≥ 1) where each
Yn is contained in the interior of Yn+1.

For each n ≥ 1, set Un = Xφ \Yn. Then x ∈ Un. Temporarily fix n and choose yn ∈ Un \Z
such that ‖c + Hyn‖ > ε. Then by [7, Lemma 1.5] there exists xn ∈ Un \ Z such that

‖c + J̃xn‖ > ε. By the lower semi-continuity of norm functions [12, Lemma 6.2(i)], and the
density of the set {x ∈ Xφ : Jx ∈ Prim(A)} in Xφ, it follows that there exists wn ∈ Un \ Z
with Jwn ∈ Prim(A) and ‖c+ J̃wn‖ > ε.

Set W = {wn : n ≥ 1}. The sets Un \ Z are decreasing and
⋂∞
n=1(Un \ Z) = ∅, so

W is countably infinite. Let y ∈ Xφ be an accumulation point of W . Since W has finite
intersection with each Yn+1, y cannot be in the interior of Yn+1, so in particular y /∈ Yn. Thus
y ∈ Z. It follows that W is relatively closed and relatively discrete in Xφ \ Z. Let F ] be a
free z-ultrafilter on W and set F = {Z ∈ Z[Xφ] : Z ∩W ∈ F ]}. Then by Theorem 4.5(iv)
there exists an irreducible representation πF ∈ S such that

kerπF ∩ J̃Z ⊆ L
M(A)
F .

Since c ∈ J̃Z \ LM(A)
F we have that c /∈ kerπF . �
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The question of whether this family S of irreducible representations is faithful on the whole
of C(A) = M(A)/A is equivalent to the question whether As/A is an essential ideal in C(A),
i.e. whether for each b ∈M(A) \ A there exists a ∈ As such that either ba /∈ A or ab /∈ A.

It was shown in [12, Theorem 4.1] that if A = C0(X) ⊗ K(H) where X is a locally
compact Hausdorff space then As/A is an essential ideal in C(A) if and only if X has no
isolated points.

5. Primal ideals in As/A

In this section we use the irreducible representations just constructed to identify the set
MinPrimal(As/A) of minimal closed primal ideals of As/A where A is a σ-unital, quasi-
standard C∗-algebra with non-unital Glimm quotients such that Glimm(A) is infinite and
Prim(A)∩Glimm(A) is dense in Glimm(A) (this latter condition is automatic if A is separable
and quasi-standard [6, Corollary 3.5]).

We have already mentioned that if A is a C∗-algebra and I a closed ideal in A then I is
primal if Prim(A/I) is contained in a limit set in Prim(A). Let J be a closed ideal in A and
π : A → A/J the quotient map. If K is a primal ideal in A/J then π−1(K) is evidently
primal in A. On the other hand there is no general reason why the image π(I) of a primal
ideal I in A should be primal in A/J . For example, let A be the Kaplansky example of the
C∗-algebra of sequences x = (xn)n≥1 of 2 × 2 complex matrices converging at infinity to a
diagonal matrix diag(λ(x), µ(x)). Then the closed ideal J = kerλ∩ kerµ is primal in A, but
A/J ∼= C ⊕ C so the image of J in the quotient (namely {0}) is not primal in A/J . It is
therefore somewhat surprising to find that the primal ideals in As/A in the context above
are precisely the images of the primal ideals in As (see Theorem 5.5).

The first point to clarify is when the image of a certain kind of ideal in As consists of the
whole of As/A. We shall need the following lemma.

Lemma 5.1. Let F be a z-filter on a completely regular space X and suppose that there is
a non-empty compact subset Z ′ of X such that Z ′ ∈ F . Then

(i) Y :=
⋂
{Z : Z ∈ F} is compact and non-empty;

(ii) if W is a zero-set neighbourhood of Y in X then W ∈ F .

Proof. (i) This follows from the finite intersection property.
(ii) Let U be the interior of W . Then Y ⊆ U so there exists Z ∈ F such that Z ′ ∩ Z

does not meet X \ U (for otherwise Y would meet the compact set Z ′ ∩ (X \ U)). Hence
W ⊇ U ⊇ Z ′ ∩ Z ∈ F and so W ∈ F . �

Now let A be a σ-unital, continuous C0(X)-algebra with base map φ. Suppose that Xφ is
infinite and that A/Jx is non-unital for all x ∈ Xφ. For a z-filter F on Xφ, we define

DF = ((LF ∩ As) + A)/A.

Proposition 5.2. Let A be a σ-unital, continuous C0(X)-algebra with base map φ. Suppose
that Xφ is infinite and that A/Jx is non-unital for all x ∈ Xφ. Let F be a z-filter on Xφ.
Then the following are equivalent:

(i) DF is a proper closed ideal of As/A;
(ii) there is no non-empty finite subset W of Xφ such that F = {Z ∈ Z[Xφ] : Z ⊇ W}.
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Proof. First suppose that F does not satisfy (ii). Then there exists a non-empty finite subset
W of Xφ such that F = {Z ∈ Z[Xφ] : Z ⊇ W}. Let b ∈ As. Then since W is finite it is easy

to find a ∈ A such that b− a ∈ J̃x for all x ∈ W . Hence Z(b− a) ⊇ W , so b− a ∈ LF ∩As.
Thus b ∈ (LF ∩ As) + A so (LF ∩ As) + A = As, and hence DF = As/A. Thus (i) fails.

Now suppose that F satisfies (ii). We deal first with the case when every zero set in F is
non-compact. Let cZ ∈ As be an element with the properties of Lemma 2.5 in the case when
Z is the empty set. Let V ∈ F . Then ‖cZ + J̃x‖ = 1 for all x ∈ V . For a ∈ A and ε > 0,
the set {x ∈ Xφ : ‖a+ Jx‖ ≥ ε} is compact (being the image under φ of the compact subset
{P ∈ Prim(A) : ‖a + P‖ ≥ ε} of Prim(A)). Therefore, since V is closed and non-compact,
infx∈V ‖a + Jx‖ = 0 and so supx∈V ‖(cZ − a) + J̃x‖ ≥ 1. Hence there does not exist a ∈ A
such that ‖(cZ − a) + LF‖ < 1. Thus cZ /∈ LF + A, so cZ + A /∈ DF .

Next suppose that F satisfies (ii) and contains a compact zero set. Then Y :=
⋂
{Z :

Z ∈ F} is compact and is non-empty by Lemma 5.1(i). First we deal with the case when
Y is infinite. If Y is infinite then Y contains a non-P-point by [17, 4K.1], so there is a zero
set Z ′ in Y with non-empty boundary in Y . The normality of Xφ implies that there is a
zero set Z of Xφ such that Z ∩ Y = Z ′ (in other words, Y is ‘z-embedded’ in Xφ). Let

cZ ∈ As be an element with the properties of Lemma 2.5. Then cZ ∈ J̃x for x ∈ Z but
‖cZ + J̃x‖ = 1 for x ∈ Xφ \ Z. Let b ∈ Lalg

F and let a ∈ A. Then Z(b) ∈ F so Z(b) ⊇ Y .
Since Z ′ has non-empty boundary in Y , there is a net (xα) in Y \ Z ′ converging to some
x ∈ Z ′. Then ‖(b + a) + J̃xα‖ → ‖(b + a) + J̃x‖, while ‖cZ + J̃xα‖ = 1 and ‖cZ + J̃x‖ = 0.
Hence ‖(b+ a)− cZ‖ ≥ 1/2, so cZ /∈ LF + A. Thus cZ + A /∈ DF .

Now suppose that Y is finite. Then since F satisfies (ii), there is a zero set Z containing
Y such that Z /∈ F . Let V ∈ F . We claim that Z ∩ V is not clopen in V . Suppose to
the contrary. Since V ∩ Z and V \ (V ∩ Z) are disjoint closed sets in the normal space
Xφ, they can be separated by disjoint closed neighbourhoods and hence there is a zero set
neighbourhood U of Y containing Z ∩ V with U disjoint from V \ (Z ∩ V ). But U ∈ F by
Lemma 5.1(ii) and U ∩ V = Z ∩ V , so Z ∩ V ∈ F . Hence Z ∈ F , a contradiction.

Let cZ ∈ As be an element with the properties of Lemma 2.5. Then cZ ∈ J̃x for x ∈ Z
but ‖cZ + J̃x‖ = 1 for x ∈ Xφ \Z. Let b ∈ Lalg

F and let a ∈ A. Then Z(b) ∈ F so Z ∩Z(b) is
not clopen in Z(b). Hence there is a net (xα) in Z(b) \ Z converging to some x ∈ Z ∩ Z(b).
Then ‖(b + a) + J̃xα‖ → ‖(b + a) + J̃x‖, while ‖cZ + J̃xα‖ = 1 and ‖cZ + J̃x‖ = 0. Hence
‖(b+ a)− cZ‖ ≥ 1/2, so cZ /∈ LF + A. Thus cZ + A /∈ DF . �

Suppose that A is a C0(X)-algebra with base map φ, that F is a z-filter on Xφ and that
p ∈ clβXXφ. Then F is said to converge to p if every neighbourhood (in clβXXφ) of p
contains a member of F [17, 6.2]. In this case, F ⊇ Z[Op]. Indeed, if f ∈ Op then clβXZ(f)
contains some member Z of F and hence the closed subset Z(f) of Xφ contains Z. Hence,
in the context of Lemma 5.3 below, it follows from Theorem 3.1 and [8, Theorem 4.3] that
Hp ⊆ LF and, if p ∈ Xφ, LF ⊆ J̃p.

Lemma 5.3. Let A be a σ-unital C0(X)-algebra with base map φ and suppose that A/Jx is
non-unital for all x ∈ Xφ. Let F be a z-filter on Xφ that converges to some y ∈ Xφ and let
b ∈M(A). Then b ∈ LF + A if and only if

(a) b ∈ A+ J̃y = Ny and

(b) for all a ∈ A such that b− a ∈ J̃y, b− a ∈ LF .
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Proof. If b ∈ LF +A then there exist c ∈ LF and a ∈ A such that b = c+ a. Since LF ⊆ J̃y,

we have that b+ J̃y = a+ J̃y ∈ A+ J̃y. Hence (a) holds. For (b), notice that if a1 ∈ A with

b− a1 ∈ J̃y then a− a1 ∈ Jy ⊆ Hy ⊆ LF . Hence b− a1 = c+ (a− a1) ∈ LF .

Conversely, if (a) holds then there exists a ∈ A such that b− a ∈ J̃y, and then (b) implies
that b− a ∈ LF . �

Proposition 5.4. Let A be a σ-unital, continuous C0(X)-algebra with base map φ. Suppose
that Xφ is infinite and that A/Jx is non-unital for all x ∈ Xφ. Let F1 and F2 be z-filters
on Xφ which converge to points in clβXXφ and suppose that neither F1 nor F2 has the form
Z[My] (y ∈ Xφ). If F1 6⊆ F2 then DF1 6⊆ DF2. In particular, if F1 6= F2 then DF1 6= DF2.

Proof. Suppose that F1 6⊆ F2. By assumption, there is a zero zet Z with Z ∈ F1 \ F2. Let
cZ ∈ As with the properties of Lemma 2.5. Then it follows from the proof of [8, Theorem

5.7] that cZ ∈ (As ∩ Lalg
F1

) \ LF2 .

Suppose first that F1 and F2 have the same limit x ∈ Xφ. Since x ∈ Z, cZ ∈ J̃x. Thus
Lemma 5.3 implies that cZ /∈ LF2 + A. Hence cZ + A ∈ DF1 \DF2 .

Suppose next that F1 and F2 have the same limit p ∈ clβXXφ \ Xφ. Towards a contra-
diction, suppose that cZ + a ∈ LF2 for some a ∈ A. Then there exists b ∈ M(A) such that
Z(b) ∈ F2 and ‖cZ + a − b‖ < 1/4. Let C := {t ∈ Xφ : ‖a + Jt‖ ≥ 1/4}, a compact subset

of Xφ. For t ∈ Xφ \ (C ∪Z), ‖(cZ + a) + J̃t‖ ≥ 3/4 and hence ‖b+ J̃t‖ ≥ 1/2. In particular,
Z(b) ⊆ C ∪ Z. Since F2 converges to p and clβXXφ \ C is a neighbourhood of p in clβXXφ,
there exists Z ′ ∈ F2 such that Z ′ ∩ C = ∅. It follows that Z contains Z(b) ∩ Z ′ and so
Z ∈ F2, a contradiction. Hence cZ /∈ LF2 + A and so cZ + A ∈ DF1 \DF2 .

Finally, suppose that F1 and F2 have different limits p1 and p2 (respectively) in clβXXφ.
Then there exists f1 ∈ C(βX) with 0 ≤ f1 ≤ 1 such that f1(p1) = 0 and f1(p2) = 1. Set
f2 = 1 − f1, and let µ : C(βX) → ZM(A) be the extension of the structure map µ of the
C0(X)-algebra A [7, Proposition 1.2]. Then for b ∈ As, b = µ(f1)b+ µ(f2)b. Now

µ(fi)b ∈ Hpi ∩ As ⊆ LFi ∩ As (i = 1, 2)

(see [7, p. 77] for the first inclusion and the remarks preceding Lemma 5.3 for the second).
Thus As = (LF1 ∩ As) + (LF2 ∩ As) and so DF1 +DF2 = As/A. Suppose that DF1 = As/A.
By Proposition 5.2, there is a non-empty finite subset W of Xφ such that F1 = {Z ∈ Z[Xφ] :
Z ⊇ W}. Since F1 converges to p1, no point of Xφ \{p1} belongs to W . Thus W = {p1} and
F1 = Z[Mp1 ], a contradiction. Thus DF1 is a proper ideal of As/A and a similar argument
applies to DF2 . Since their sum is As/A, neither can contain the other. �

Theorem 5.5. Let A be a σ-unital, quasi-standard C∗-algebra. Suppose that X := Glimm(A)
is infinite, that X ∩ Prim(A) is dense in X and that A/Jx is non-unital for all x ∈ X. Let
P ∈ MinPrimal(As). Then (P + A)/A is a primal ideal of As/A.

Proof. Set P ′ = P +A. By [11, Theorem 3.4] and Theorem 3.3, there is a minimal prime z-
filter F on X such that P = LF∩As. Suppose first that there exists x ∈ X such that Z[Ox] ⊆
F ⊆ Z[Mx] (see [17, Theorem 7.15]) and hence such that Hx ⊆ LF ⊆ J̃x, [8, Theorem 4.3].
If x is a P-point of X then Hx = J̃x, so P = J̃x∩As. Hence P ′ = (J̃x∩As)+A = As, so P ′/A
is trivially primal in As/A. Thus we may assume that x is a non-P-point of X. This implies
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that LF is strictly contained in J̃x [17, 14.12] and hence that P is strictly contained in J̃x∩As
[8, Theorem 5.7]. Thus P ′ is strictly contained in As by Lemma 5.3 (let b ∈ (J̃x ∩ As) \ P :
if b ∈ P + A then we get a contradiction in Lemma 5.3(b) by taking a = 0).

Let bi ∈ As (1 ≤ i ≤ n) with ‖bi‖ = ‖bi + P ′‖ = 1. For the primality of P ′/A it is enough
to show that b1A

sb2 . . . A
sbn 6⊆ A. For 1 ≤ i ≤ n, let ai ∈ A such that bi − ai ∈ J̃x ∩ As

and set ci = bi − ai. Then it will be enough to show that c1A
sc2 . . . A

scn 6⊆ A. We have
that ci ∈ J̃x ∩ As, but ‖ci + P‖ ≥ 1 (for if there exists p ∈ P such that ‖ci − p‖ < 1 then
‖bi− (p+ai)‖ = ‖ci−p‖ < 1, and p+ai ∈ P +A = P ′). Set Z =

⋂n
i=1 Z(ci), so that ci ∈ J̃Z

for 1 ≤ i ≤ n. Then Z is a zero set in X and x ∈ Z(ci) for each i so x ∈ Z.
Since ci /∈ P , for each 1 ≤ i ≤ n, cic

∗
i /∈ P , so there exists 0 < εi < 1/2 such that

fεi(cic
∗
i ) /∈ P (for otherwise cic

∗
i = limε→0 fε(cic

∗
i ) ∈ P ). Hence Z(fεi(cic

∗
i )) /∈ F , for otherwise

fεi(cic
∗
i ) ∈ L

alg
F ∩ As ⊆ LF ∩ As = P . Set W =

⋃n
i=1 Z(fεi(cic

∗
i )) and note that W is a zero

set in X and that Z(ci) = Z(cic
∗
i ) ⊆ Z(fεi(cic

∗
i )) for each i, so Z ⊆ W . Hence, in particular,

x ∈ W . Since F is a prime z-filter, W /∈ F . This implies that W 6= X, and also that x does
not lie in the interior of W , for otherwise W ∈ Z[Ox] ⊆ F . Set U = X \W . Then U is a
non-empty cozero set in X and x lies in the closure of U .

Let f ∈ CR(X) with 0 ≤ f ≤ 1 such that Z(f) = Z. Then f(x) = 0, and x lies in the
boundary of U so we may inductively construct a sequence (xn)n≥1 in U ∩Prim(A) such that
f(x1) < 1 and f(xn) < min{f(xn−1), 1/n} for all n ≥ 2. Thus f(xn)→ 0 as n→∞. Hence
the set Y = {xn : n ≥ 1} is contained in U and is relatively closed and relatively discrete in
X \ Z.

Let G] be a free ultrafilter on Y and set G = {Z ′ ∈ Z[X] : Z ′ ∩ Y ∈ G]}. With Z
and Y as above, let πG be an irreducible representation of M(A) constructed as in the
proof of Theorem 4.5. Note that for y ∈ Y , fεi(cic

∗
i ) + J̃y 6= 0 and hence ‖ci + J̃y‖2 > εi.

Thus ci /∈ L
M(JZ)
G′ (where G ′ = {Z ′ ∈ Z[X \ Z] : Z ′ ∩ Y ∈ G]}). On the other hand,

ci ∈ J̃Z ; so ci /∈ kerπG using Theorem 4.5(iii). It follows that πG(c1A
sc2 . . . A

scn) 6= {0}
since πG is an irreducible representation. Thus c1A

sc2 . . . A
scn 6⊆ A, by Theorem 4.5(i), so

b1A
sb2 . . . A

sbn 6⊆ A, as required.
Now suppose that there exists x ∈ βX \ X such that Z[Ox] ⊆ F ⊆ Z[Mx] (see [17,

Theorem 7.15] again). Let a belong to the Pedersen ideal of A [26, 5.6.1]. Then the set
{P ∈ Prim(A) : a /∈ P} is contained in a compact subset C of Prim(A), so the complement
of Z(a) = {y ∈ X : a ∈ Jy} is contained in the compact set φA(C). Thus clβXZ(a) ⊇
βX \ φA(C) which is an open subset of βX containing x. Hence Z(a) ∈ Z[Ox] ⊆ F , and

thus Lalg
F contains the Pedersen ideal of A. Hence P ⊇ A, so P ′ = P and P ′ is a proper

subset of As. Again let bi ∈ As (1 ≤ i ≤ n) with ‖bi‖ = ‖bi + P‖ = 1. We argue as in the
previous case, but the argument is now slightly simpler. Since bi /∈ P , for each 1 ≤ i ≤ n
there exists 0 < εi < 1/2 such that fεi(bib

∗
i ) /∈ P (for otherwise bib

∗
i = limε→0 fε(bib

∗
i ) ∈ P ).

Hence Z(fεi(bib
∗
i )) /∈ F , for otherwise fεi(bib

∗
i ) ∈ Lalg

F ∩ As ⊆ LF ∩ As = P . Set W =⋃n
i=1 Z(fεi(bib

∗
i )) and note that W is a zero set in X. Since F is a prime z-filter, W /∈ F .

This implies that W 6= X, and also that x does not lie in the interior in βX of clβXW , for
otherwise W ∈ Z[Ox] ⊆ F . Set U = X \W . Then U is a non-empty cozero set in X and x
lies in clβXU . Let y ∈ U . Then fεi(bib

∗
i ) + J̃y 6= 0 and hence ‖bi + J̃y‖2 > εi.

Since A is σ-unital and quasi-standard, X is a σ-compact open subset of βX, and hence
is a cozero set in βX. Let f ∈ CR(βX) with 0 ≤ f ≤ 1 and Z(f) = βX \X. Then f(x) = 0,



18 ARCHBOLD AND SOMERSET

and x lies in the closure of U in βX so we may inductively construct a sequence (xn)n≥1
in U ∩ Prim(A) such that f(x1) < 1 and f(xn) < min{f(xn−1), 1/n} for all n ≥ 2. Thus
f(xn) → 0 as n → ∞. Hence the set Y = {xn : n ≥ 1} is a closed, relatively discrete
subset of X. Let π be an irreducible representation of M(A) obtained from Y as in the
proof of Theorem 4.1. Then A ⊆ kerπ but ‖π(bi)‖2 ≥ εi > 0 for 1 ≤ i ≤ n. Hence
b1A

sb2 . . . A
sbn 6⊆ A, as required. �

Theorem 5.6. Let A be a σ-unital, quasi-standard C∗-algebra. Suppose that X := Glimm(A)
is infinite, that X ∩ Prim(A) is dense in X and that A/Jx is non-unital for all x ∈ X. Let
Y be the set of P-points of X and set S = {J̃y ∩ As : y ∈ Y }. Let σ : As → As/A be the
quotient map. Then

MinPrimal(As/A) = {σ(P ) : P ∈ MinPrimal(As) \ S}.
Furthermore, the map induced by σ from MinPrimal(As) \ S onto MinPrimal(As/A) is bi-
jective.

Proof. Let P ∈ MinPrimal(As). Then by Theorem 3.3, P = Q ∩ As for some Q ∈
MinPrimal(M(A)); and by [11, Theorem 2.4], Q = LF for some minimal prime z-filter
F on X. Hence σ(P ) = DF . Suppose that σ(P ) = As/A. Then, by Proposition 5.2, there is
a non-empty finite subset W of X such that F = {Z ∈ Z[X] : Z ⊇ W}. Since F is prime,
W = {y} for some y ∈ X and so F = Z[My]. Then My is a minimal prime z-ideal and hence

My = Oy [17, 14.12] and so y is a P-point of X [17, 4L]. We have LF = LZ[Oy ] = Hy = J̃y
[8, Theorem 4.5] and so P = J̃y ∩ As.

Conversely, if y ∈ Y then, again, J̃y = Hy. Since Hy is a Glimm ideal and J̃y is primal

[7, Lemma 4.5], it follows that J̃y is a minimal closed primal ideal of M(A), so J̃y ∩ As is a

minimal closed primal ideal of As by Theorem 3.3. But (J̃y ∩ As) + A = As, so we see that

σ(J̃y ∩ As) is not a proper ideal in As/A and hence is not a minimal closed primal ideal in
As/A.

Let R be any proper closed primal ideal of As/A. Then T := σ−1(R) is a proper closed
primal ideal of As, so there exists P ′ ∈ MinPrimal(As) such that T ⊇ P ′. Hence σ(T ) =
R ⊇ σ(P ′), which is primal by Theorem 5.5. This shows that P ′ /∈ S, and also that every
minimal closed primal ideal of As/A has the form σ(P ′) for some P ′ ∈ MinPrimal(As) \ S.

Let P ∈ MinPrimal(As) \ S. By Theorem 5.5, σ(P ) is a closed primal ideal of As/A and
hence contains a minimal closed primal ideal of As/A. As seen above, the latter has the
form σ(P ′) for some P ′ ∈ MinPrimal(As) \ S. Since σ(P ) ⊇ σ(P ′), P + A ⊇ P ′ + A. We
have P = LF ∩ As and P ′ = LF ′ ∩ As where F and F ′ are minimal prime z-filters on X.
Note that F and F ′ are convergent to points of βX by [17, 7.15 and 10I1]. Suppose that
F = Z[My] for some y ∈ X. Then My is a minimal prime z-ideal and hence My = Oy [17,
14.12] and so y ∈ Y [17, 4L], contradicting the fact that P /∈ S. Similarly, F ′ does not have
the form Z[My] (y ∈ X). We have that DF ⊇ DF ′ and hence F ⊇ F ′ by Proposition 5.4.
By minimality, F = F ′ and so σ(P ) = σ(P ′) and hence σ(P ) is a minimal closed primal
ideal of As/A as required.

Finally, the injectivity of the map induced by σ follows from Proposition 5.4. �

Note that Theorem 5.6 shows that the minimal closed primal ideals of As/A are those proper
ideals of As/A which are obtained by intersecting with As/A those ideals of the corona algebra
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C(A) which lie in the image of Min(CR(X)) under the second embedding map of [8, Theorem
3.3].

6. Some examples and applications

In this section we investigate some examples, and study the topology on MinPrimal(As/A).
We show that if X is locally compact, σ-compact and without isolated points and A =
C0(X) ⊗ K(H) then MinPrimal(As/A) is not weakly Lindelof (recall that a topological
space Y is weakly Lindelof if for any open cover U of Y , there is a countable V ⊆ U such
that

⋃
V is dense in Y ). It follows that if X is also second countable then the induced

bijective map in Theorem 5.6 is not continuous (Corollary 6.6). On the other hand, if X is
an infinite F-space without isolated points, such as βN \ N, then we are able to show that
MinPrimal(As/A) and Glimm(As/A) coincide as sets (Theorem 6.8) but not as topological
spaces (Theorem 6.9).

As well as the topology τw, we shall use another topology τs, defined on the set Id(A)
of closed ideals of a C∗-algebra A as the weakest topology with regard to which all the
norm functions I 7→ ‖a+ I‖ (I ∈ Id(A), a ∈ A) are continuous [15], [3]. It is known that τs
coincides with τw when restricted to MinPrimal(A) [3, Corollary 4.3]. We shall also make use
of the following lemma in Example 6.3, Theorem 6.8 and Theorem 6.9. Recall the definition
of DF that was given before Proposition 5.2.

Lemma 6.1. Let A be a σ-unital C0(X)-algebra. Suppose that Xφ is infinite and that A/Jx
is non-unital for all x ∈ Xφ. Let σ : As → As/A be the quotient map. Let F be a z-filter on

Xφ that converges to some y ∈ Xφ and let b ∈ As ∩ J̃y. Then

‖σ(b) +DF‖ = ‖b+ LF‖.

Proof. Let ν : As ∩ J̃y → (As/A)/DF be the ∗-homomorphism given by ν(c) = σ(c) + DF .

By Lemma 5.3, ker ν = (As ∩ J̃y) ∩ LF = As ∩ LF (recall that LF ⊆ J̃y). Thus

‖σ(b) +DF‖ = ‖b+ ker ν‖ = ‖b+ LF‖
(by two standard isomorphisms). �

Example 6.2. Let X := N and set A = C0(X) ⊗ K(H). Then the (minimal) prime z-
filters on X are precisely the fixed and the free ultrafilters. The minimal prime z-filters
corresponding to the points p ∈ N have the form Z[Op] = {Z ∈ Z[X] : p ∈ Z} while those
corresponding to the points of βN \ N have the form Z[Op] = {Z ∈ Z[X] : Z ∈ Fp} where
Fp is the free ultrafilter on N associated with p ∈ βN \ N. It follows from Theorem 3.3
and [11, Theorem 3.4] that MinPrimal(As) is homeomorphic to βN. Furthermore, the ideals
LFp ∩ As are primitive by Theorem 4.1, and contain A. Thus Theorem 5.6 implies that
MinPrimal(As/A) = {DFp : p ∈ βN \ N}. Since each LFp ∩ As contains A, the bijective
map of Theorem 5.6 from MinPrimal(As) \ S onto MinPrimal(As/A) is bi-continuous for
the τw topologies and so MinPrimal(As/A) is canonically homeomorphic to βN \ N. Hence
MinPrimal(As/A) is a compact F-space and every minimal closed primal ideal of As/A is
primitive.

Since the minimal closed primal ideals of As coincide with the Glimm ideals of As (see the
discussion preceding Corollary 3.8 and [8, Theorem 4.3(ii)]) and since continuous functions on
Prim(As) restrict to continuous functions on Prim(As/A), the minimal closed primal ideals
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of As/A are not only primitive ideals but also Glimm ideals. Using [6, Lemma 3.1(iii)], we
see that the identity map from the compact space (MinPrimal(As/A), τw) to the Hausdorff
space (Glimm(As/A), τcr) is continuous and hence is a homeomorphism. Thus As/A is quasi-
standard (as are As and M(A) by Corollary 3.8).

Example 6.3. Let X := N ∪ {∞} be the one-point compactification of N, and set A =
C(X)⊗K(H). Then it was shown by Kohls that Min(CR(X)) is homeomorphic to βN [21],
[18, p. 110], [17, 14G]. Again the minimal prime z-filters corresponding to the points p ∈ N
have the form Z[Op] = {Z ∈ Z[X] : p ∈ Z} while those corresponding to p ∈ βN \ N have
the form Fp = {Z ∈ Z[X] : Z \ {∞} ∈ F ]p} where F ]p is the free ultrafilter on N associated
with p. Once again it follows from Theorem 3.3 and [11, Theorem 3.4] that MinPrimal(As)
is homeomorphic to βN, and the ideals (LFp ∩ As) + A (p ∈ βN \ N) are primitive ideals
of As by Corollary 4.6 (with Z = {∞} and Y = N). Thus again Theorem 5.6 implies that
MinPrimal(As/A) = {DFp : p ∈ βN \ N}.

For the topology on MinPrimal(As/A), let b ∈ As and let σ : As → As/A denote the
quotient map. Let a ∈ A such that c := b− a ∈ J̃∞. For p ∈ βN \ N, Fp is convergent in X
to the point ∞ and so by Lemma 6.1

‖σ(b) +DFp‖ = ‖σ(c) +DFp‖ = ‖c+ LFp‖ = ‖c+ (LFp ∩ As)‖.
It follows that the bijective map of Theorem 5.6 from the compact space MinPrimal(As) \S
onto the Hausdorff space MinPrimal(As/A) is continuous for the τs topologies and therefore is
a homeomorphism. Hence again MinPrimal(As/A) is a compact F-space and every minimal
closed primal ideal of As/A is primitive.

Example 6.2 and Example 6.3 are unusual in the prevalence of isolated points in X, and
we shall now see that if A is separable and X has no isolated points then the topologies on
Min(CR(X)) and MinPrimal(As/A) are very different from each other.

Proposition 6.4. Let B be a C∗-algebra such that MinPrimal(B) is weakly Lindelof. Then
Prim(B) is weakly Lindelof.

Proof. Let {Uα} be an open cover of Prim(B). Then for each α there is a closed ideal Iα of
B such Uα = {P ∈ Prim(B) : P 6⊇ Iα}. Set Vα = {R ∈ Primal′(B) : R 6⊇ Iα}. Since each
proper primal ideal of B is contained in a primitive ideal it follows that {Vα} is an open
cover of Primal′(B). By assumption there is a countable family {Vi}i≥1 of the sets Vα such
that W := MinPrimal(B) ∩

⋃
i≥1 Vi is dense in MinPrimal(B). We claim that Y :=

⋃
i≥1 Ui

is dense in Prim(B). Let U = {P ∈ Prim(B) : P 6⊇ I} be any non-empty open subset of
Prim(B) and set V = {R ∈ Primal′(B) : R 6⊇ I}. Then W ∩ V is a non-empty open subset
of MinPrimal(B) so there exists S ∈ W ∩V . Then S ∈ Vi for some i ≥ 1, so V ∩Vi is an open
neighbourhood of S in Primal′(B). Hence by [3, Proposition 3.1] there exists P ∈ Prim(B)
such that P ∈ Vi∩V . But Vi∩V ∩Prim(B) = Ui∩U , so Y ∩U is non-empty as required. �

Theorem 6.5. Let A be a continuous C0(X)-algebra with base map φ. Suppose either
that A is separable or that A = C0(X) ⊗ K(H) where X is a σ-compact, locally compact
Hausdorff space. If A/Jx is non-unital for all x ∈ Xφ and if Xφ has no isolated points then
MinPrimal(As/A) is not weakly Lindelof.
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Proof. This follows from [12, Theorem 6.7] and Proposition 6.4. �

Corollary 6.6. Let A be a separable quasi-standard C∗-algebra and set X = Glimm(A).
Suppose that A/Jx is non-unital for all x ∈ X and that X has no isolated points. Then
the bijective map from MinPrimal(As) to MinPrimal(As/A) described in Theorem 5.6 is not
continuous.

Proof. Since A is separable and quasi-standard, the set X ∩ Prim(A) is dense in X and so
Theorem 5.6 applies. Since every singleton subset of X is a zero set [9, Lemma 3.9], every
P-point in X is an isolated point, and thus the sets Y and S of Theorem 5.6 are empty.
The map P 7→ σ(P ) (P ∈ MinPrimal(As)) is therefore a bijection between MinPrimal(As)
and MinPrimal(As/A). But MinPrimal(As) is compact and extremally disconnected by
Corollary 3.6, whereas MinPrimal(As/A) is not weakly Lindelof by Theorem 6.5. Thus the
map P 7→ σ(P ) is not continuous. �

We are far from having a complete description of the topology on MinPrimal(As/A) but the
next theorem sheds further light on the failure of the weak Lindelof property.

Theorem 6.7. Let A be a σ-unital quasi-standard C∗-algebra and set X = Glimm(A).
Suppose that A/Jx is non-unital for all x ∈ X and that X is first countable. Let p be a
non-isolated point in X. Then the set of minimal closed primal ideals of As/A which contain
DZ[Op] is a non-empty clopen subset of MinPrimal(As/A).

Proof. Set Z = {p}. Then Z is a zero set in X by the first countability of X. Let cZ ∈ As
with the properties of Lemma 2.5. In particular, cZ ∈ J̃p. Since X is locally compact, there
exists a continuous function f : X → [0, 1] such that f(V ) = {1} for some neighbourhood V
of p in X and C := supp(f) is compact. Furthermore, V contains a zero set neighbourhood
N of p. Set z := µ(f) ∈ ZM(A), where µ : C0(X) → ZM(A) is the structure map. Let F
be a minimal prime z-filter on X.

Suppose first of all that there exists F ∈ F such that C ∩ F = ∅. Then

F ⊆ X \ C ⊆ Z(z) ⊆ Z(zcZ)

and so Z(zcZ) ∈ F , zcZ ∈ LF ∩ As and σ(zcZ) ∈ DF .
On the other hand, suppose that C ∩ F is non-empty for all F ∈ F . Since C is compact,

there exists q ∈ C such that, for all F ∈ F , q ∈ C∩F . Thus I(F) ⊆Mq and so, since I(F) is
a prime z-ideal, Oq ⊆ I(F) [17, 4I]. Hence Z[Oq] ⊆ F , that is, F is convergent to q. Suppose
that q 6= p. Then by Lemma 2.5(iii) there exists a ∈ A such that cZ−a ∈ Hq = LZ[Oq ] ⊆ LF .
Thus cZ − a ∈ LF ∩ As and again σ(zcZ) ∈ DF .

Finally, suppose that q = p and note that this case will occur since Z[Op] is the intersection

of the minimal prime z-filters on X that contain it [17, 14.12]. Let b ∈ Lalg
F . Then Z(b) ∈ F

and so Z(b) ∩ N ∈ F . Since p is not an isolated point in X, Z(b) ∩ N 6= {p} and so the
non-empty set Z(b) ∩N contains some point x ∈ V \ {p}. Then

‖zcZ − b‖ ≥ ‖(zcZ − b) + J̃x‖ = ‖zcZ + J̃x‖ = f(x)‖cZ + J̃x‖ = 1.

Since zcZ ∈ J̃p, it follows from Lemma 6.1 that

1 ≥ ‖σ(zcZ) +DF‖ = ‖zcZ + LF‖ ≥ 1

and hence ‖σ(zcZ) +DF‖ = 1.
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It now follows that the set of minimal closed primal ideals of As/A which contain DZ[Op]

is a non-empty τs-clopen subset of MinPrimal(As/A). �

Theorem 6.7 can be used to give an alternative proof of Theorem 6.5 in the case A =
C0(X)⊗K(H) where the locally compact Hausdorff space X is σ-compact, first countable,
and without isolated points. Theorem 6.7 shows that in this case MinPrimal(As/A) can
be covered by an uncountable family of disjoint clopen subsets, and hence is not weakly
Lindelof.

We conclude with an application to a very different class of C∗-algebras.

Theorem 6.8. Let A be a σ-unital, quasi-standard C∗-algebra. Set X = Glimm(A) and
suppose that

(i) X ∩ Prim(A) is dense in X and A/Jx is non-unital for all x ∈ X,
(ii) X is an infinite F-space.

Then every Glimm ideal of As/A is primal. Hence the relation ∼ of inseparability by disjoint
open sets is an equivalence relation on Prim(As/A).

Proof. Since X is an F-space, the minimal prime z-filters on X are of the form Z[Ox] for
x ∈ βX [17, 7.15, 14.25]. Hence the minimal closed primal ideals of M(A) are of the form
Hx = LZ[Ox] (x ∈ βX) by [11, Proposition 2.5 and Theorem 3.4]. Thus by Theorem 5.6,
the minimal closed primal ideals of As/A have the form DZ[Ox] = ((Hx ∩ As) + A)/A for
x ∈ βX \ Y (where Y is the set of P-points in X).

For distinct x, y ∈ βX \ Y , let h ∈ C(βX) with 0 = h(x) 6= h(y). Set f := h ◦ φA ∈
C(Prim(M(A))) and let g = f |Prim(As/A). Then g ∈ Cb(Prim(As/A)) and g(R) = 0 for
R ∈ hull(σ(Hx ∩ As)) but g(R) 6= 0 for R ∈ hull(σ(Hy ∩ As)). Thus distinct minimal
closed primal ideals of As/A contain distinct Glimm ideals. Every closed primal ideal in
a C∗-algebra B contains a unique Glimm ideal [6, Lemma 2.2], from which it follows that
every Glimm ideal of B is the intersection of the minimal closed primal ideals containing it.
Thus we have shown that every Glimm ideal of As/A is a minimal closed primal ideal; and
from this it follows that the relation ∼ is an equivalence relation on Prim(As/A) [6, Lemma
3.1(i)]. �

Although the sets MinPrimal(As/A) and Glimm(As/A) coincide in the context of Theo-
rem 6.8, the topologies on the two spaces are problematic. Various set-theoretic considera-
tions come into play, such as the presence or absence of P-points in X. Although we may
not be able to identify the topologies τs and τcr, we do have enough information about them
to show that if X has no isolated points then they are not equal.

In preparation for this, we assume that A satisfies the hypotheses of Theorem 6.8. Firstly,
it follows from [6, Lemma 3.1(iii)] that the τs-topology on MinPrimal(As/A) is finer than the
complete regularization topology τcr on Glimm(As/A). Secondly, set Y c := βX \ Y where
Y is the set of P-points in X. It follows from [12, Theorem 5.2] that Y c = ψ(Prim(As/A)),
where ψ is the restriction to Prim(As/A) of the continuous map φA : Prim(M(A)) → βX.
On the other hand, it follows from the proof of Theorem 6.8 that there is a bijection ρ :
Y c → Glimm(As/A), given by

ρ(x) = DZ[Ox] =
(Hx ∩ As) + A

A
(x ∈ Y c),



THE INNER CORONA ALGEBRA 23

such that ρ ◦ ψ = φ(As/A), the complete regularisation map for the C∗-algebra As/A. As a
subspace of the compact Hausdorff space βX, Y c is completely regular. It follows from the
universal property for the complete regularisation that ρ−1 is τcr-continuous. Thirdly, the
bijection ρ induces from the topologies τs and τcr on Glimm(As/A) two topologies on Y c

which we denote again by τs and τcr respectively. Thus, on Y c, τs is finer than τcr which in
turn is finer than the relative topology on Y c from βX.

Theorem 6.9. Let A be a σ-unital, quasi-standard C∗-algebra. Set X = Glimm(A) and
suppose that

(i) X ∩ Prim(A) is dense in X and A/Jx is non-unital for all x ∈ X,
(ii) X is an F-space without isolated points.

Then As/A is not quasi-standard.

Proof. Let V := X \ Y be the set of non-P-points of the locally compact space X. Thus V
is the union of the boundaries of the zero sets in X and V is contained in the subset Y c of
βX discussed above. Since a compact P-space is finite and X has no isolated points, V is
dense in X. Let U be an arbitrary non-empty, proper cozero set in X, let Z := X \ U and
let cZ ∈ As with the properties of Lemma 2.5. Then ‖cZ‖ = 1 and, for x ∈ Z, cZ ∈ J̃x and
so by Lemma 6.1

‖σ(cZ) +DZ[Ox]‖ = ‖cZ +Hx‖.
On the other hand, if y ∈ U then

1 ≥ ‖cZ +Hy‖ ≥ ‖cZ + J̃y‖ = 1,

so that ‖cZ + Hy‖ = 1 and hence, by upper semi-continuity, ‖cZ + Hx‖ = 1 for all x in the
boundary (in X) of Z. Thus, for x in the boundary of Z, ‖σ(cZ) +DZ[Ox]‖ = 1.

Suppose next that x ∈ int(Z) ∩ V . Then ‖cZ + J̃y‖ = 0 for all y in a neighbourhood of x
and hence ‖cZ +Hx‖ = 0 by [7, Lemma 1.5]. Thus cZ ∈ Hx ∩As and hence σ(cZ) ∈ DZ[Ox].
Now suppose that x ∈ U∩V . By Lemma 2.5(iii) there exists a ∈ A such that cZ−a ∈ Hx∩As
and hence σ(cZ) ∈ DZ[Ox]. Bearing in mind that the τs-topology on MinPrimal(As/A) is
finer than the relative topology on V from X, we see that the three sets consisting of Z ∩V ,
the boundary of Z, and U ∩ V are all τs-clopen in V .

Now suppose that we can find subsets U and W of X with the following properties: U is a
non-empty cozero set of X such that U is non-closed in X but has compact closure, and W
is a zero set of U such that the boundary (in U) of W is non-compact. Set T = (X \U)∪W .
Then T is easily seen to be a zero set of X. Let cT ∈ As with the properties of Lemma 2.5.
Since X is locally compact, X is open in βX. We have U ∩ V = U ∩ Y c, which is relatively
open in Y c (for the topology from βX) and hence τcr-open in Y c. On the other hand, since
the closure of U in X is compact and hence closed in βX, it follows that the τcr-closure of
U ∩V in Y c is contained in V . We now suppose, for a contradiction, that U ∩V is τcr-closed
in V . Then U ∩ V is clopen in the τcr topology on Y c. The characteristic function χ of the
τcr-clopen subset ρ(U ∩ V ) of Glimm(As/A) induces a central projection z ∈M(As/A) such
that

zd+DZ[Ox] = χ(ρ(x))(d+DZ[Ox]) (d ∈ As/A, x ∈ Y c).

Set b := zσ(cT ) ∈ As/A. Then the function x 7→ ‖b + DZ[Ox]‖ (x ∈ V ) is upper semi-
continuous for τcr on V . If x is in the boundary of W in U , then x is in the boundary
of T in X and hence ‖cT + DZ[Ox]‖ = 1 (as for cZ in the first part of the proof). Since
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x ∈ U ∩ V , ‖b + DZ[Ox]‖ = 1. On the other hand, ‖b + DZ[Ox]‖ = 0 for x ∈ V \ U . As the
boundary of W in U is non-compact, its closure in X meets V \ U , contradicting the τcr
upper semi-continuity of the norm function. Thus if such U and W exist, we can conclude
that U ∩V is not closed in the τcr topology on V , whereas U ∩V is closed in the τs topology
on V by the first part of the proof.

To complete the proof it remains to show that such sets U and W can be found. Let x
be any point in V . There exists a continuous function f1 : X → [0, 1] such that x lies in
the boundary of Z(f1). Let f2 : X → [0, 1] be a continuous function with compact support
which is identically 1 on some neighbourhood of x. Set f = f1f2 and U = X \ Z(f). Then
U is compact but x ∈ U \ U . Since U is open and V is dense in X, there is a net (vα) in
U ∩V with limit x. Then f(vα)→ f(x) = 0 and so there exists a sequence (xi)i≥1 of distinct
points of U ∩ V such that f(xi)→ 0. Let C = {xi : i ≥ 1}, a relatively discrete subset of U .

For each i ≥ 1, let Ui be a neighbourhood of xi in U disjoint from C \ {xi} and let
gi : U → [0, 1] be a continuous function supported in Ui such that xi lies in the boundary
(in U) of the zero set of gi. [Since xi ∈ V there is a continuous function fi : X → [0, 1]
such that xi lies in the boundary of Z(fi). Let hi = fi|U . Since U is open, xi lies in the
boundary in U of Z(hi). Then we may obtain gi by multiplying hi by a continuous function
from U to [0, 1] which is identically 1 on a neighbourhood of xi and supported in Ui.] Set
g =

∑∞
i=1 gi/2

i. Then g ∈ CR(U) and C lies in the boundary in U of the zero set of g.
Suppose, for a contradiction, that the boundary in U of Z(g) is compact. Then there is a
subnet of the sequence (xi) convergent to some point u ∈ U . Since f is continuous, f(u) = 0,
contradicting the fact that u ∈ U . Hence taking W = Z(g) gives the required set. It follows
that U ∩ V is not closed in the τcr topology on V , so the τs and the τcr topologies do not
coincide on V , and As/A is not quasi-standard [6, Theorem 3.3]. �

Corollary 6.10. Under the hypothesis of Theorem 6.9, the corona algebra M(A)/A is not
quasi-standard and also M(As/A) is not quasi-standard.

Proof. If B is a quasi-standard C∗-algebra then every closed ideal of B is quasi-standard
[6, p. 356]. Hence it follows from Theorem 6.9 that neither M(A)/A nor M(As/A) is
quasi-standard. �

It was shown in [12, Theorem 5.5] that if A = C(βN\N)⊗K(H) then, under the Continuum
Hypothesis, M(A)/A is canonically isomorphic to a proper C∗-subalgebra of M(As/A).
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