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10 We investigate the structure of the upper mantle using teleseismic shear wave splitting measurements obtained at 32 

11 broadband seismic stations located in Bass Strait and the surrounding region of southeast Australia. Our dataset includes 

12 ~366 individual splitting measurements from SKS and SKKS phases.  The pattern of seismic anisotropy from shear 

13 wave splitting analysis beneath the study area is complex and does not always correlate with magnetic lineaments or 

14 current N-S absolute plate motion. In the eastern Lachlan Fold Belt, fast shear waves are polarized parallel to the 

15 structural trend (~N25E). Further south, fast shear wave polarization directions trend on average N25-75E from the 

16 Western Tasmania Terrane through Bass Strait to southern Victoria, which is consistent with the presence of an exotic 

17 Precambrian microcontinent in this region as previously postulated. Stations located on and around the Neogene-

18 Quaternary Newer Volcanics Province in southern Victoria display sizeable delay times (~2.7 s). These values are 

19 among the largest in the world and hence require either an unusually large intrinsic anisotropy frozen within the 

20 lithosphere, or a contribution from both the lithospheric and asthenospheric mantle. In the Eastern Tasmania Terrane, 

21 nearly all observed fast directions are approximately NW-SE.  Although part of our data set strongly favours anisotropy 

22 originating from “fabric” frozen in the lithospheric mantle, a contribution from the asthenospheric flow related to the 

23 present day plate motion is also required to explain the observed splitting parameters. We suggest that deviation of 

24 asthenospheric mantle flow around lithospheric roots could be occurring, and so variations in anisotropy related to 

25 mantle flow may be expected. Alternatively, the pattern of fast polarisation orientations observed around Bass Strait may 

26 be consistent with radial mantle flow associated with a plume linked to the recently discovered Cosgrove volcanic track. 

27 However, it is difficult to characterise the relative contributions to the observed splitting from the lithospheric vs. 

28 asthenospheric upper mantle due to poor backazimuthal coverage of the data. 
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32 1. Introduction
33

34 The tectonic evolution of southeast Australia's Palaeozoic orogens (part of the eastern 

35 Australian Tasmanides) is yet to be fully understood, with most of the proposed models not 

36 in agreement with regard to the presence of entrained Precambrian continental fragments 

37 (Glen, 2005; Cayley et al., 2002; Cayley, 2011, Moresi et al., 2014; Pilia et al., 2015a; Pilia 

38 et al., 2015b; Pilia et al., 2016), geometry and number of subduction zones involved in the 
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39 accretionary process (Gray and Foster, 2004; Fergusson et al., 2009; Fergusson, 2014; Glen, 

40 2014) and age and extent of metamorphism of the various tectonic blocks that form the 

41 orogens (Glen, 2005; Moore et al., 2013, Moore et al., 2015). Despite the lack of consensus, 

42 there appears little doubt that a complex sequence of events was required to build the 

43 Tasmanides, and the deformation processes involved would likely leave a clear signature of 

44 elastic wave anisotropy frozen into the lithosphere. Shear wave splitting measurements can 

45 be used to probe patterns of deformation at depth because it is an unambiguous indicator of 

46 seismic anisotropy and hence an essential tool in understanding the structure and dynamics 

47 of the Earth’s deep interior (e.g. Vinnik et al., 1984; Silver and Chan, 1988; Long and Silver, 

48 2009; Long and Becker, 2010). 

49

50 In the upper mantle, seismic anisotropy results mainly from crystallographic or lattice 

51 preferred orientation (LPO) of intrinsically anisotropic mineral, primarily olivine.  This is 

52 caused by deformation-induced alignment of the anisotropic minerals in the asthenosphere 

53 or past deformation of the lithosphere (e.g. Nicolas and Christensen, 1987; Silver and Chan, 

54 1988; Zhang and Karato, 1995; Long and Becker, 2010; Mainprice et al., 2000). In addition 

55 to this, a contribution to anisotropy from shape-preferred orientation (SPO) might be present 

56 if materials with elastically distinct properties, such as melt lenses or fluid-filled 

57 microcracks, align preferentially (e.g. Silver, 1996; Silver and Chan, 1988). Some studies 

58 suggest that the alignment of fluid-filled microcracks in response to an applied stress field is 

59 a dominant cause of anisotropy in the crust (e.g. Crampin, 1987; Babuska and Cara, 1991; 

60 Crampin 1994). However, the tectonic fabric of continental regions that are subjected to 

61 strong deformation leads to lineations, foliations and other structures that develop in 

62 response to tectonic forces, and may be preserved in the crust as strain-induced mineral 

63 alignment (LPO or SPO).

64

65 When a seismic shear wave passes through an anisotropic medium, it splits into two 

66 orthogonal quasi-shear waves, one travelling faster than the other with a time lag (δt) which 

67 is observed between the “fast” and “slow” polarised shear waves when they arrive at the 

68 receiver (e.g. Silver, 1996). One of the two waves is also orientated parallel to the direction 

69 (φ) of the anisotropy, and the other is orientated perpendicular. The size of the time lag 

70 depends on the thickness of the anisotropic layer and/or the intensity of anisotropy. The time 
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71 lag between the fast and slow components results in non-zero energy on the tangential-

72 component seismogram and an elliptical particle motion. The fast-polarization orientation 

73 (φ) and time delay (δt) parameters provide simple measurements that characterize the 

74 seismic anisotropy of the medium (e.g. Silver and Chan, 1991).

75

76 The splitting parameters can be related to preserved/fossil anisotropy frozen in the 

77 lithosphere (e.g. Vauchez and Nicolas, 1991; Bastow et al., 2007), present-day sub-

78 lithospheric flow which is principally controlled by plate motion  (e.g. Vinnik et al., 1992; 

79 Fouch et al., 2000; Sleep et al., 2002), the preferential orientation of fluid or melt bodies 

80 (e.g. Blackman and Kendall, 1997), or combinations of these factors. Seismic arrivals such 

81 as SKS, PKS, and SKKS are the most suitable phases for shear wave splitting studies of the 

82 lithosphere beneath a seismic station because they involve P-to-S conversions at the core-

83 mantle boundary. Hence, no source side anisotropy is preserved, and these phases are 

84 horizontally polarized on exiting the core-mantle boundary (e.g. Savage, 1999). The near-

85 vertical incidence of the arrivals also results in good lateral resolution of <50 km if a dense 

86 array of seismometers is deployed (Savage, 1999).

87

88 The aim of this study is to use seismic anisotropy derived from shear wave splitting to 

89 provide insights into the lithospheric structure and possible mechanical coupling between the 

90 crust and the upper mantle beneath Bass Strait and adjoining landmasses. Data in this case is 

91 supplied by temporary and permanent arrays of broadband seismometers that span 

92 southeastern New South Wales, southern Victoria, Bass Strait and Tasmania. The study also 

93 aims to provide insight into the tectonic relationship between different tectonic blocks in the 

94 southern part of the Tasmanides. 

95

96 2. Tectonic setting

97

98 At the onset of the Phanerozoic, the Australian continent witnessed a new phase of tectonic 

99 evolution dominated by subduction related accretion, which added nearly one third of the 

100 present day continental lithosphere to the eastern margin (Betts et al., 2002). The so-called 

101 Tasman Orogen or “Tasmanides” are a series of orogenic belts that have developed along the 

102 margin of eastern Australia from the Cambrian to the Triassic (Foster and Gray, 2000; Glen, 
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103 2005). These orogenic belts have an approximate NE-SW dominant structural trend and 

104 comprise the Delamerian, Lachlan, Thomson and New England Orogens (Fig. 1).

105

106 On mainland Australia, the oldest orogeny in the Tasmanides is the Delamerian Orogeny 

107 (Fig. 1). It began during the Middle Cambrian with convergence along the proto-Pacific 

108 margin of East Gondwana and culminated in a foreland style fold and thrust belt which 

109 featured high-temperature, low-pressure metamorphism associated with intrusive 

110 magmatism (Betts et al., 2002). A number of studies (e.g. Reed et al., 2002; Crawford et al., 

111 2003) suggest that the Delamerian Orogen extends southwards from mainland Australia into 

112 western Tasmania, where it is referred to as the Tyennan Orogen. This connection is 

113 reinforced by several studies which examined the age and geochemistry of various igneous 

114 rocks in both regions, and found strong similarities (e.g. Direen and Crawford, 2003).  

115

116 Adjoining the Delamerian Orogen to the east is the Lachlan Orogen whose evolution is 

117 thought to have begun in the Late Cambrian and was largely complete by the Middle to Late 

118 Devonian. The Lachlan Orogen is well known for its complex tectonic history that includes 

119 several orogenic episodes that are recorded in the rock record as a series of distinct 

120 deformational events (Gray and Foster, 2004; Glen, 2005). Previous studies (e.g. Gray and 

121 Foster, 2004) have argued for a tectonic model that involved interaction of oceanic 

122 microplates, a volcanic arc, multiple turbidite-dominated thrust systems and three major 

123 subduction zones within the Lachlan Orogen. Each of the subduction zones is associated 

124 with accretion of discrete terrains, namely the Stawell-Bendigo zones of western Victoria, 

125 the Tabbarebera zone of eastern Victoria and the Narooma accretionary complex along the 

126 east coast (Fig. 1). The evolution of the Lachlan Orogen is yet to be fully understood 

127 because of the complexity of the surface geology, the limited exposure due to the presence 

128 of Mesozoic and Cenozoic sedimentary basins and Quaternary volcanics which obscure a 

129 large proportion of the Palaeozoic terrane, and a limited knowledge of the deep structure and 

130 composition of the lithosphere.

131

132 The relationship between the Lachlan Orogen and Thomson Orogen, which lies to its North, 

133 has traditionally been difficult to determine largely because of extensive sedimentary cover 

134 from the Mesozoic Murray and Eromanga basins (Fig. 1)(Glen et al., 2013; Burton and 
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135 Trigg, 2014; Glen et al., 2014). However, recent geophysical and geochemical studies 

136 (Siegel et al., 2018; Spampinato et al., 2015) have suggested that the Thompson Orogen is 

137 floored with Precambrian continental crust, which is in contrast to the Palaeozoic oceanic 

138 substrate of the Lachlan Orogen. To the northeast of the Lachlan Orogen is the New England 

139 Orogen, which formed between the Late Devonian and Triassic and is the youngest fold belt 

140 in the Tasmanides. The New England Orogen formed as an east facing convergent margin 

141 Orogen (Glen, 2005; Rosenbaum et al., 2012) and although there is some evidence of a 

142 shared Cambrian history between the New England and Lachlan Orogens (Glen, 2013), this 

143 relationship is obscured by the presence of post emplacement sedimentary cover of the 

144 Permian to Triassic Sydney Basin. 

145

146 Significant tectonic events that have shaped southeast Australia subsequent to the formation 

147 of the Tasmanides include the break up of Australia and Antarctica, and the opening of the 

148 Tasman Sea and Bass Strait around 80-90 Ma (Gaina et al., 1998). These events resulted in 

149 lithospheric thinning towards the passive margin and failed rifting in Bass Strait led to the 

150 formation of three intracratonic rift basins (Bass, Gippsland and Otway). These basins 

151 largely accommodate Cretaceous to Quaternary sediments (Lister et al., 1991; van der Beek 

152 et al., 1999). 

153

154 In a recent study, it was shown that the Cosgrove volcanic track traversed almost the entire 

155 eastern seaboard of Australia (Davies et al., 2015), with its last known eruptions likely 

156 associated with the Quaternary Newer Volcanics province in western Victoria between ~4.5 

157 Ma and 5 kyr ago (Rawlinson et al., 2017). The current location of the underlying plume – if 

158 it still exists – is roughly beneath the centre of Bass Strait (Davies et al., 2015), where a 

159 regional surface wave tomography study indicates the presence of a low velocity zone to 

160 depths of ~150 km (Fishwick and Rawlinson, 2012). 

161

162 South of Bass Strait, Tasmania largely comprised what is now referred to as the West 

163 Tasmania Terrane in the Early to Middle Phanerozoic (Fig. 1)(Black et al., 2004). The 

164 evolution of this region began as long ago as 800–750 Ma (Turner et al., 1998), with 

165 pervasive granite emplacement on King Island and deposition of thick turbidite sediments in 

166 NW Tasmania. The major event that shaped western Tasmania was the Middle to Late 
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167 Cambrian Tyennan Orogeny, which was a period of significant deformation (Elliot et al., 

168 1993).  Several models have been proposed to explain the origin of the Tyennan Orogeny, 

169 which range from westerly subduction to easterly subduction to even a purely extensional 

170 regime in which the felsic Mount Read Volcanic arc formed as a result of rifting (Corbett et 

171 al., 1972). More recent models suggest that an east–facing Tasmanian passive margin 

172 collided with an oceanic arc in the Early to Middle Cambrian, resulting in obduction of 

173 mafic-ultramafic complexes across much of Tasmania (Berry and Crawford, 1988; Crawford 

174 and Berry, 1992; Turner et al., 1998). In a possible second stage of the obduction process, 

175 fault bounded Proterozoic units displaying anomalous high-grade metamorphism are also 

176 thought to have been emplaced (Berry, 1995; Maffre et al., 2000; Holm and Berry, 2002; 

177 Berry et al., 2007).

178

179 On the other hand, the East Tasmania Terrane (Fig. 1) contains no evidence of the Tyennan 

180 Orogeny or Proterozoic outcrop, and it is widely thought that the two terranes were sutured 

181 together during the Middle Devonian Tabberabberan Orogeny (Elliot et al., 1993). 

182 Differences in stratigraphy across the so-called Tamar Fracture System in northern Tasmania 

183 (Fig. 1) motivated several workers to suggest that the fracture zone represents the crustal-

184 scale suture between the East and West Tasmania terranes (Williams, 1989). The 

185 stratigraphy exhibits Proterozoic sedimentary and Palaeozoic volcanic and sedimentary 

186 successions in the west, while a thick sequence of Lower to Middle Palaeozoic turbidites lie 

187 to the east (Reed, 2001). However, south of the Tamar Valley, widespread late 

188 Carboniferous sedimentary deposits and Jurassic dolerite sheets conceal any evidence of a 

189 crustal scale suture zone. In addition, potential field data (Leaman, 1994) do not support the 

190 existence of a major terrane boundary beneath the inferred Tamar Fracture System.

191

192 In an effort to link Tasmania and mainland Australia many models have been proposed.    

193 Although these models are often in conflict, one model that has recently gained widespread 

194 support is the Selwyn Block model of Cayley et al. (2002). Using evidence from potential 

195 field and outcrop data, Cayley et al. (2002) suggested that a Precambrian fragment of 

196 continental crust is embedded within the Tasmanides, which they termed the “Selwyn 

197 Block”. The western part of Bass Strait features strong magnetic lineaments that can be 

198 traced without major disruption from northwestern Tasmania to Victoria, which is seen as 
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199 one of the primary pieces of supporting evidence for its presence. In a subsequent study, 

200 Cayley (2011) proposed a new tectonic model of southeast Australia, which involves a 

201 Proterozoic exotic microcontinent termed “VanDieland”. The microcontinent VanDieland 

202 comprises the Selwyn Block, West Tasmania Terrane and the surrounding western region of 

203 Bass Strait. This fragment, postulated to be of Rodinia origin, was embedded in a convergent 

204 accretionary margin during proto-Pacific subduction along eastern Australia. In a more 

205 recent paper, Moresi et al. (2014) suggested that the entrained microcontinent caused the 

206 formation of a large orocline that underlies the Lachlan Orogen. This occurs as a result of a 

207 complex sequence of processes including differential roll back and southward transfer of 

208 material through an extensive continental transform fault. This scenario is consistent with 

209 the model of Cayley et al. (2011).

210

211 3. Previous geophysical studies

212

213 In addition to studies which focus on geological similarities, potential field data and 

214 geodynamic modelling, other geophysical observations have been used to help discriminate 

215 between the different tectonic models that have been proposed. For example, several seismic 

216 tomography models for southeast Australia that have recently been published provide an 

217 unprecedented level of detail on crust and upper mantle structure beneath the region (e.g., 

218 Graeber et al., 2002; Rawlinson et al., 2006; Rawlinson and Urvoy 2006; Rawlinson and 

219 Kennett, 2008; Rawlinson and Fishwick, 2011; Rawlinson et al., 2015; Pilia et al., 2015a; 

220 Pilia et al., 2015b; Pilia et al., 2016; Rawlinson et al., 2016). In particular, Pilia et al., 

221 (2015a) used ambient noise tomography to image several striking structural features in the 

222 mid-lower crust beneath southeast Australia, including a NW-SE high velocity anomaly that 

223 is interpreted to be the Proterozoic connection between north-western Tasmania and south-

224 central Victoria. This model also reveals three pronounced north-south high velocity belts 

225 that appear to span Bass Strait with little evidence of interruption from more recent tectonic 

226 events. 

227

228 Studies carried out by Debayle and Kennett (1998), Debayle (1999) and others using surface 

229 wave tomography, which incorporates azimuthal anisotropy, suggested a two-layer system 

230 of anisotropy beneath Australia: in the upper layer, directions of anisotropy are 
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231 approximately oriented east–west in Debayle (1999), but more or less randomly in Simons 

232 and van der Hilst (2003). In the bottom layer, directions of anisotropy appear to be north–

233 south, approximately parallel to absolute plate motion (APM) (Gripps and Gordon, 2002) in 

234 both models. In a more recent study, Pilia et al. (2016) related crustal azimuthal anisotropy 

235 to regional tectonics using ambient noise tomography. Their study indicated that the 

236 directions of crustal anisotropy are approximately north–south beneath mainland southeast 

237 Australia, and approximately east-west in Bass Strait and Tasmania. This result is used to 

238 carry out a comparative analysis with our results in the discussion section.

239

240 Seismic anisotropy beneath the study area has also been examined (albeit at much lower 

241 spatial resolution) through measurements of SKS/SKKS splitting for over 20 years (e.g., 

242 Vinnik et al., 1992; Girardin and Farra, 1998; Clitheroe and van der Hilst, 1998; Ozalaybey 

243 and Chen, 1999; Barruol and Hoffman, 1999; Eaton et al., 2004; Heintz and Kennett, 2005; 

244 Frederiksen et al., 2007). Of particular importance here is the study of Heintz and Kennett 

245 (2005), who used a continent wide network of 190 temporary stations with an average 

246 recording span of 6 months, which is rather limited for SWS analysis. However, the results 

247 show a complex pattern of anisotropy, which does not correlate with the contemporary plate 

248 motion direction of Argus et al. (2002). Despite the limited data availability and limited 

249 geological outcrop, especially in Phanerozoic southeast Australia which is almost entirely 

250 covered by sedimentary basins, a number of relationships were highlighted between fast 

251 polarization directions and structural trends. These relationships were interpreted to arise 

252 from anisotropy frozen into the lithosphere as a result of regional deformation events. 

253 Barruol and Hoffman (1999) studied upper mantle anisotropy using GEOSCOPE stations 

254 and attempted to explain the apparent isotropy at station “CAN”. Their study was the first to                      

255 suggest an E-W anisotropic layer overlying a N-S anisotropic layer at this station. Clitheroe 

256 and van der Hilst (1998) investigated the variation in shear wave splitting across the 

257 Australian continent and showed that differing SKS splitting phenomena manifest at 

258 different frequencies, with shear wave splitting only observed at frequencies higher than 0.3 

259 Hz. From the splitting measurements of only two stations in the neighbourhood of Tasmania, 

260 Bass Strait and adjoining southern Victoria, in which one station recorded scant S core 

261 phases and the other yielded abundant nulls, they concluded that splitting measurements in 

262 this region are either ambiguous or not well constrained.
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263  

264 In this paper, we present new shear wave splitting measurements across southeast Australia 

265 from both permanent seismograph stations and a recent network of temporary stations, 

266 covering a region that spans Proterozoic and Palaeozoic lithosphere. This significantly larger 

267 number of stations allows us to examine shear wave splitting variations in much more detail 

268 than has previously been possible, thus allowing us to make new inferences about the 

269 anisotropic nature of the crust and upper mantle in this region of the Tasmanides. 

270

271 4. Data and methods

272

273 This study utilises seismological data from a network of 24 temporary stations that recorded 

274 for approximately 23 months (22/05/2011 to 28/04/2013) and eight permanent stations of 

275 which six are maintained by the Australian National Seismic Network (ANSN) and the 

276 remaining two are each maintained by IRIS and GEOSCOPE. The temporary stations 

277 consist of 23 Güralp 40T three-component broadband seismic stations and one Güralp 

278 CMG-3ESP broadband sensor that together span southern Victoria, several islands in Bass 

279 Strait (i.e. Flinders, King and Deal Islands) and northern Tasmania (Fig. 2). The average 

280 spacing of the temporary stations is ~80–120 km. The GSN permanent station maintained by 

281 IRIS named TAU is located in Hobart, Tasmania and has been running for ~23 years (1994-

282 2017), while the GEOSCOPE station named CAN is located in Canberra, in mainland 

283 Australia and has been in operation since 1987 (~30 years). The six ANSN permanent 

284 stations that have been running for ~13 years are spread between Young in New South 

285 Wales and the highlands of Tasmania (Fig. 2).

286

287 We extracted data corresponding to earthquakes within epicentral distances of  to  85 ∘ 140 ∘

288 from the centre of the network; this distance criterion is necessary to separate core S phases 

289 (SKS and SKKS) from non-radially polarized phases such as S and ScS. Visual inspection 

290 revealed that events with Mw≥6.0 provided the best signal to noise ratio and waveform 

291 clarity. Based on this, earthquakes with magnitude Mw≥6.0 were selected from the global 

292 ISC catalogue for permanent stations (Fig. 3). However, due to the shorter recording 

293 duration of the temporary stations, data from carefully selected earthquakes with magnitude 

294 Mw≥5.5 within the same epicentral distance range were also extracted for analysis. 
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295 As part of basic data pre-processing, we filtered the seismograms between 0.03 and 0.5 Hz, 

296 using a two-pole, two-pass Butterworth band-pass filter. The quality of the data was further 

297 inspected and only traces showing sharp arrivals of core phases, which are very distinct 

298 from the surrounding noise, were retained for analysis (Fig. 4). 

299

300 Shear wave splitting measurements were performed on core refracted shear waves using the 

301 method of Teanby et al., (2004), which is based on the approach of Silver and Chan, (1991). 

302 Horizontal-component seismograms were rotated, with one component time shifted to 

303 minimize the second eigenvalue of the particle motion in the analysis window, thus 

304 linearising particle motion. A grid search over plausible values of φ and δt (with respective 

305 increments of  and 0.05 s) was performed to find the optimum solution that best removes 1 ∘

306 the influence of anisotropy. A measurement window was manually picked (~10 s before 

307 SKS/SKKS arrival and ~10 s after) and individual measurements were made between the 

308 start and end time of the window. Using measurements over a set of 100 windows around 

309 the SKS or SKKS arrival, cluster analysis was then used to identify the most stable splitting 

310 parameters φ and δt corresponding to the measurement with the smallest errors.

311

312 SKS splitting results generally fall into two categories. A split wave that passes through an 

313 anisotropic medium initially shows significant energy on the tangential component and an 

314 elliptical particle motion. When the seismograms are corrected for the optimum δt and φ, the 

315 waveforms will match, the tangential component energy is minimised, and the particle 

316 motion is linearised (Fig. 5). If the seismic wave passes through azimuthally isotropic 

317 material, or if its azimuth (source polarisation) is orientated parallel or perpendicular to the 

318 fast axis of anisotropy, or if multiple layers (complex anisotropy) of anisotropy cancel out, a 

319 characteristic “null” result will be observed (Fig. 6) (e.g. Barruol and Hoffmann, 1999). In 

320 this case, there will be no energy on the tangential component prior to correction, and the 

321 uncorrected particle motion will be linear.

322

323 A single pair of splitting parameters (δt and φ) can characterise a single, horizontal and 

324 homogeneous layer of anisotropy. The presence of more complex structure, such as two or 

325 more anisotropic layers, may be indicated by systematic variations with earthquake 

326 backazimuth (Levin et al., 1999). We examined the backazimuthal coverage for SKS/SKKS 
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327 phases in the study area and noted that it is not ideal, because it is heavily weighted towards 

328 events to the north and southeast of Bass Strait, which precludes a complete analysis of 

329 backazimuthal dependence of splitting parameters; this is shown in an event map (Fig. 3). 

330 Since the dataset contains this restriction, the presence of multiple anisotropic layers cannot 

331 be reliably inferred. 

332

333 5. Results

334

335 We categorise individual shear wave splitting results based on: (1) the quality of the initial 

336 signal; (2) a clear separation between the fast and slow shear wave before transverse energy 

337 minimisation; (3) the ellipticity of the particle motion in the horizontal plane before 

338 transverse energy minimisation; (4) the linearisation of particle motion after transverse 

339 energy minimisation; and (5) the waveform coherence between the fast and slow split shear 

340 waves. We identified “good” measurements as those that satisfy the following criteria: (i) 

341 high waveform clarity; (ii) elliptical initial particle motion and linear or nearly linear particle 

342 motion after correction; (iii) splitting parameter estimates that were consistent within error 

343 along with fairly small error ellipses; and (iv) with errors less than ±10° in the fast direction 

344 and ± 0.20s in delay time. Measurements meeting only three criteria with larger error bars 

345 (up to ± 20° in φ and ± 0.30s in δt) and lower waveform clarity were marked as “fair”. A 

346 poor measurement only fulfils two criteria and null measurements were identified by an 

347 initial linear particle motion and a lack of energy on the transverse component associated 

348 with the arrival of the core phase of interest on the radial component. An example of high-

349 quality splitting and null measurements are shown in Figure 5 and 6, respectively.

350

351 After applying the splitting measurement procedure described in the previous section, a total 

352 of ~366 well-constrained measurements of φ and δt at 24 temporary and 8 permanent 

353 stations were obtained. Out of these, ~51 were classified as “good” and ~109 as “fair” In 

354 addition to these, ~206 high-quality (“good”+“fair”) null measurements were identified. 

355 Some individual stations had 4–8 “good” quality measurements, while others had ≤3. At 

356 several stations the measurement procedure only yielded “fair” quality measurements and in 

357 some cases only “null” measurements were produced. This modest return of good results is 

358 consistent with previous shear wave splitting studies in the region.
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359 The shear wave splitting parameter measurements (Fig. 7) were generally found to cluster 

360 relatively tightly around certain dominant directions. For this reason, despite long recording 

361 times at some of the stations, the measurements are largely confined to two or three 

362 relatively restricted back azimuthal ranges (Fig. 7). As noted earlier, the large gaps in 

363 azimuthal coverage do not allow for a direct interpretation of multi-layered anisotropic 

364 characteristics; therefore, we restrict our quantitative analyses to comparisons with the 

365 dominant anisotropic directions inferred from the full sets of measurements. A notable 

366 exception is station CAN in the northeastern part of the study area. The back azimuthal 

367 coverage here is slightly better than average, but almost two-thirds of the measurements 

368 indicate null results. 

369

370 In order to present a clear first-order picture of SKS splitting patterns beneath the study 

371 area, we took a weighted mean of splitting parameters (φ, δt) for each station (Fig. 

372 8)(splitting parameters can be found in the supplementary data). This represents an average 

373 value that weighs each individual non-null measurement by its value of φ and δt error bars.  

374 Good splits that generally have smaller error bounds are given more weight so that they 

375 contribute to the weighted mean more than fair splits. For the fast polarisation, this is done 

376 by averaging angles of the whole set of measurements (good and fair) as points on a unit 

377 circle in a Cartesian plane and then converting it back. The weighted means of splitting 

378 parameter values can be found in Table 1, with a plot of the resulting splitting orientations 

379 and delay times, and a histogram station performance indicated by the number of 

380 measurements at individual stations, shown in Figures 8 and 9 respectively.

381 There are some regional trends that are evident from Figure 8. First, the dominant splitting 

382 orientations range from NE-SW to NW-SE within a broadly N-S average. We note 

383 significant changes in splitting orientation between individual stations spaced ~300 to 500 

384 km apart. Delay times are also highly variable, ranging from the smallest δt in Bass Strait of 

385 ~0.66±0.10s (BA01) to the largest δt in southern Victoria of ~2.70±0.25s (BA18). Despite 

386 the spatial variability in fast direction and delay time, some correlation can still be seen 

387 when looking at the results more closely, especially in: (1) the Lachlan Fold Belt (Eastern 

388 Lachlan Orogen); (2) the postulated micro-continent VanDieland; (3) East Tasmania Terrane 

389 (ETT) and Furneaux Islands; and (4) the Newer Volcanics Province. 

390
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391 In the Lachlan Fold Belt (Fig. 8), moderate to large delay times occur over the range 

392 0.73±0.13 s (CNB) to 2.47±0.25 s (BA12) with a dominant approximate fast direction of 

393 NNE-SSW. These fast directions are sub-parallel to the structural trend of the Lachlan Fold 

394 Belt. One station of note here (CAN), which will be discussed in more detail later, has 

395 unusual splitting parameters. At this station, only fair measurements have been observed and 

396 the overall splitting measurement comprises abundant nulls from all backazimuths. In 

397 VanDieland there is a broad NE-SW variation in the fast direction from southern Victoria to 

398 western Tasmania. It is observed that stations in southern Victoria exhibit significant shear 

399 wave splitting, with average delay times at individual stations between ~1.15±0.24 s (BA21) 

400 and ~2.70±0.25 s (BA18) and an approximate fast direction of N-S to NE-SW.  At the Bass 

401 Strait islands that form part of VanDieland, delay times are comparatively small (~0.66±0.10 

402 s (BA01) to ~1.43±0.08 s (BA10)), with fast directions oriented in a roughly NE-SW 

403 direction. At the southern end of the micro-continent (western Tasmania), all observed fast 

404 directions are approximately NE-SW while the delay time is in the range ~0.74±0.13 s 

405 (BA02) to ~1.68±0.21 s (BA04). Looking at stations in the centre of southern Tasmania 

406 (MOO and TAU), the splitting measurements are in the range ~1.67±0.22 s (MOO) to 

407 ~2.07±0.43 s (TAU) and fast direction orientation is also approximately NE-SW. 

408

409 The observed fast shear wave splitting directions for the East Tasmania Terrane (ETT) and 

410 Furneaux Islands show that the fast directions rotate from NW-SE in the East Tasmania 

411 Terrane (BA05, BA06) to E-W in the Furneaux Islands (BA07, BA08, BA09) and a delay 

412 time range of ~0.68±0.05 s to ~2.14±0.32 s is observed. Interestingly, the concentration of 

413 large delay times delineates a region in the heart of the Newer Volcanics Province (NVP) 

414 (Fig. 8). Some stations surrounding the NVP exhibit somewhat larger delay times than more 

415 distant stations.  

416

417 The splitting pattern shown in Figure 8 is largely consistent with results from previous 

418 studies of shear wave splitting in south east Australia (e.g., Heintz and Kennett, 2005), 

419 although the data set described here has a much longer recording duration and spatial 

420 resolution. The pattern of fast directions found in our study region is also generally 

421 consistent with the larger-scale splitting pattern observed across the Australian continent 

422 (e.g., Clitheroe and van der Hilst, 1998; Heintz and Kennett, 2005; Barruol and Hoffman, 
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423 1999). 

424

425 6. Discussion

426

427 The main challenge in studying core-refracted shear waves is the lack of vertical resolution 

428 due to near vertical paths of the SKS/SKKS phase through the upper mantle. The anisotropy 

429 measured at the surface has been acquired between the core-mantle boundary (CMB) and 

430 the surface; the splitting parameters therefore represent a path-integrated measurement and a 

431 key question is whether the splitting observed in the study area reflects anisotropy in the 

432 crust, in the mantle lithosphere (reflecting past deformational episodes), in the 

433 asthenosphere (related to present-day mantle flow), or a combination of these factors. If we 

434 consider an asthenospheric source of anisotropy, the mantle flow can be of two types: 

435 passive (Couette flow) and active (Poiseulle flow) (Stotz et al., 2017, 2018). Couette flow is 

436 generated in the asthenosphere by overlying plate motion; the associated horizontal shear 

437 stresses cause asthenospheric deformation beneath the plate. On the other hand, Poiseulle 

438 flow is driven by internal forces (pressure gradient) within the asthenosphere, such that flow 

439 velocities peak in the middle of the asthenospheric channel. Studies show that these two 

440 forces can occur together and any asthenospheric flow pattern is a linear combination of 

441 Couette and Poiseulle flow pattern (Stotz et al., 2018). If the source of the observed 

442 anisotropy is considered to be the asthenospheric flow, then this can lead to coherent 

443 splitting parameters over scale lengths >600 km (Becker et al., 2007). In this situation, the 

444 orientation of the polarisation plane of the fast shear wave would be parallel to the Absolute 

445 Plate Motion (APM) direction (Tommasi, 1998). However, our results neither indicate very 

446 coherent splitting parameters over large regions nor alignment of fast shear wave with APM 

447 direction. This will be investigated in more detail below.

448

449 6.1 Implications for plate tectonic evolution in SE Australia

450

451 At stations located in the Lachlan Fold Belt (CNB, CAN, BA12, BA13, BA14, BA15, 

452 BA16, BA19, DLN, YNG), the relative contributions to the observed splitting from the 

453 crust, mantle lithosphere, and asthenosphere are difficult to characterise due to poor 
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454 backazimuthal coverage of the data. However, the direction of anisotropy is parallel to the 

455 structural trend of the Lachlan Fold Belt i.e. NE-SW (Stations BA12, BA14, BA15, BA16 

456 CNB, DLN, YNG). These measurements may be caused by fossil anisotropy in the 

457 lithosphere sourced from deformation-induced alignment of minerals related to the 

458 formation of the Palaeozoic Lachlan Fold Belt. However, we note that at E and S, 145 ∘ 38 ∘

459 the plate motion is approximately 59 mm/yr in the direction E (estimated from NNR-N20 ∘

460 MORVEL56 – see Argus et al., 2011), which means that a significant contribution from the 

461 sublithospheric mantle cannot be ruled out. Measurements performed at CNB are similar to 

462 those obtained by Clitheroe and Van der Hilst (1998), accounting for a weighted mean 

463 average of δt=1.40±0.06s and φ=38±  that coincides with the NE-SW trend of the Lachlan 6 ∘

464 Fold Belt. 

465

466 At GEOSCOPE station CAN, clear evidence was found for either NE-SW or NW-SE 

467 oriented φ. These findings are consistent with a two-layer model, as suggested by Barruol 

468 and Hoffmann (1999), in which the two layers have roughly similar δt and anisotropy in 

469 each layer has a perpendicular orientation with respect to the adjacent layer. The anisotropic 

470 φ of the lower layer is roughly parallel (approximately northward) to the current plate 

471 motion direction. This model is supported by results from surface wave tomographic studies 

472 (e.g. Debayle and Kennett, 2000), which reported a change in anisotropic pattern at 

473 approximately 150 km depth. Moreover, in another study focussing on this particular 

474 station, Girardin and Farra (1998) suggested a two-layer model, where the 140 km upper 

475 layer has a roughly EW oriented φ and a 40 km thick lower layer with a N-S φ parallel to 

476 the current plate motion direction. CAN also has abundant and good back-azimuthal 

477 coverage of nulls, indicating either the absence of anisotropy along the ray path or that the 

478 fast polarisation is orthogonal to the direction of anisotropy (Fig. 10). Silver and Savage 

479 (1994) pointed out that apparent isotropy may be consistent with a simple two-layer model, 

480 where the two layers exhibit the same intrinsic and mutually perpendicular fast directions. 

481 Here, the medium may either be isotropic or the initial polarisation is parallel to the fast or 

482 slow direction of anisotropy for that propagation direction. Although the structure at station 

483 CAN is illuminated by a relatively better backazimuthal coverage, shear wave splitting 

484 observations suggest dominance of usable events arriving at a backazimuth around N0-

485 N30°E and N120-N180°E. This station also exhibits a significant variation in both delay 
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486 time and fast polarisation direction with backazimuth and well constrained nulls were 

487 identified over a large swath of backazimuths; such a pattern is consistent with complex 

488 anisotropic structure beneath a station (e.g. Silver and Savage, 1994). In an ideal case of a 

489 simple, horizontal two-layered structure the apparent anisotropy parameters should vary 

490 with a π/2 periodicity. This is not the case with the station CAN and all other stations within 

491 the Lachlan Orogen; hence other factors like dipping structures or lateral heterogeneity may 

492 be present. Overall, splitting patterns at individual stations in this region are often 

493 complicated, which implies that the anisotropic structure beneath this region is also 

494 complex. This reinforces a likely contribution from several different regions of the crust 

495 and/or upper mantle that augment or cancel each other out. 

496 Elsewhere on mainland Australia in our study region, there are three stations (BA23, BA24 

497 and MILA) where no reliable measurements have been found except for several coherent 

498 null measurements. Whether this is a true reflection of anisotropic structure in this region is 

499 difficult to tell because these stations are generally characterised by poor quality data. 

500

501 The splitting pattern in the microcontinent (VanDieland) can be divided into two groups: (1) 

502 Western Tasmania Terrane (WTT); and (2) the Selwyn Block (the northward extension of 

503 west Tasmania that spans Bass Strait and penetrates beneath central Victoria) and submerged 

504 continental crust adjacent to Tasmania. In the WTT, stations BA01, BA02, BA03 have a 

505 NE-SW direction of fast polarisation that ranges from 38±  to 65± . The stations 3 ∘ 3 ∘

506 highlight some correlation between fast shear wave polarisation directions and the trend of 

507 the dominant surface structures; however, it shows a poor correlation with APM (  ~N20 ∘E)

508 and thus asthenospheric flow, while it could be one of the main causes, cannot be considered 

509 as the principal cause of the observed anisotropy. These stations (WTT) and the stations in 

510 the northeast of Tasmania (ETT) (BA04, BA05, BA06) have similar attributes in terms of 

511 correlation between fast shear wave polarisation direction and the trend of dominant surface 

512 structures as well as poor correlation with APM except that the dominant fast polarisation 

513 direction north east of Tasmania (ETT) is NW-SE (-48±  to -86± ). Our mean splitting 3 ∘ 4 ∘

514 measurement from the permanent GSN station TAU located in Hobart, southern Tasmania, 

515 agrees well with past SWS studies of Vinnik et al. (1989) and Clitheroe and van der Hilst 

516 (1998). The results show that the fast shear wave polarization direction is approximately 
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517 ENE-WSW and parallel to the trend of the dominant surface structures in the area. These 

518 structures are likely related to a later phase of the Cambrian Tyennan Orogeny (Corbett et 

519 al., 1972), which represents the first phase of orogeny along the East Gondwana margin as a 

520 result of westward subduction of the Palaeo-Pacific plate. Another station “MOO” adjacent 

521 to TAU exhibits similar splitting parameters and together this may indicate that the 

522 lithosphere is the principal cause of the observed anisotropy in this region.

523  

524 Moving northward into Bass Strait and south central Victoria (Selwyn Block), the systematic 

525 variation of strength and orientation of anisotropy across the stations (BA10, BA11, BA17, 

526 BA19, BA20, BA21, TOO) provides insight into how complex the tectonics of this region 

527 may have been. Few reliable splitting measurements were observed on King and Deal 

528 Islands owing to the low quality of the signal. Other possible contributing factors include the 

529 presence of complex upper mantle structures beneath the stations, including compositionally 

530 heterogeneous Selwyn Block (Cayley et al., 2002), and magma-induced heating of the upper 

531 mantle associated with the recent Quaternary Newer Volcanics Province. However, despite 

532 the fact that recent deformational events associated with breakup between Australia and 

533 Antarctica have possibly reworked previous anisotropy imprints, it is generally observed that 

534 splitting measurements in northwestern Tasmania through King Island to the southern tip of 

535 Victoria have a roughly similar fast polarisation direction of NE-SW. This trend is strongly 

536 correlated with magnetic signatures that can be traced from northwestern Tasmania to 

537 southern Victoria and are thought to be inherited from the Selwyn Block (Cayley et al., 

538 2002). This suggests a tectonic affinity of the Selwyn block and northwest Tasmania and 

539 appears to support the presence of the so-called exotic Precambrian microcontinent 

540 VanDieland (Cayley, 2011; Moresi et al., 2014; Pilia et al., 2015b). We speculate that the 

541 microcontinent behaved as a rigid block, where the separation between Australia and 

542 Antarctica was forced to propagate along the Sorrel Fault System, preventing pervasive 

543 deformation of the microcontinent and retaining a substantially intact pattern of anisotropy 

544 since the Mesoproterozoic (Cayley, 2011). However, we note that our ability to retrieve a 

545 reliable anisotropy signature may be reduced by the lower signal to noise ratio of the Bass 

546 Strait islands dataset.

547

548 Stations BA05, BA06, BA07, BA08, BA09 and BA17 collectively indicate a rotation in fast 
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549 shear wave polarisation directions from NW-SE in the ETT (BA05, BA06) to NE in the 

550 Furneaux Islands (BA07, BA08). This discrepancy between the ETT and the Furneaux 

551 Islands may be due to the relatively recent breakup of Australia and Antarctica, which 

552 resulted in lithospheric thinning, and subsequent formation of the three intracratonic rift 

553 basins in Bass Strait that host the Furneaux Islands (Gunn et al., 1997; Gaina et al., 1998; 

554 Fishwick and Rawlinson, 2012). Smaller delay times at the Furneaux Island stations 

555 (~0.82±0.07 s (BA08) and ~0.68±0.06 s (BA09)) appear to suggest a positive correlation 

556 with lithospheric thickness in this region (Kennett and Blewett, 2012; Fishwick et al., 2008). 

557 In spite of this apparent correlation, there appears to be no correlation between the fast 

558 polarisation direction and the absolute plate motion. Hence, anisotropy beneath ETT and the 

559 Furneaux Islands appears to be primarily caused by fossil deformation recorded in the 

560 lithosphere.  

561

562 Our results demonstrate that the average delay times observed in southern Victoria are 

563 considerably higher than in other parts of the study area. Measurements in the vicinity of the 

564 Newer Volcanics Province (NVP) in southern Victoria show unusually large delay times for 

565 which a primary contribution from the asthenospheric mantle is likely (e.g. Long et al., 

566 2009). Two possible scenarios that would result in unusually high delay times are: (1) 

567 having an unusually thick anisotropic layer beneath the NVP. Because shear wave splitting 

568 is inferred to be due to Lattice Preferred Orientation (LPO) of olivine in the asthenospheric 

569 mantle, it is plausible that the thin lithosphere beneath the NVP is associated with a 

570 correspondingly thick asthenosphere; (2) differences in upper mantle temperatures make 

571 olivine LPO particularly strong in the anisotropic layer beneath the NVP (Karato et al., 

572 2007). Because of the large observed delay times, a model in which all of the anisotropy is 

573 in the crust and mantle lithosphere would imply an unreasonably large magnitude of 

574 anisotropy (roughly 20% anisotropy for a ~60 km thick lithosphere) and we can confidently 

575 infer that the large delay times reflect contemporary flow in the asthenospheric mantle 

576 (Rawlinson et al., 2017). While a small contribution to the observed splitting from crustal 

577 anisotropy is likely, average values predicted from rock physics for crustal splitting are on 

578 the order of perhaps ~0.1–0.3 s (Herquel et al., 1994; Savage, 1999).  Maximum delay times 

579 of 0.1 to 0.2 s per 10 km of homogeneously deformed crust might be expected (Barruol and 

580 Mainprice, 1993). This could generate crustal delay times of up to ~0.8 s in southeast 



19

581 Australia. Thus the large delay times observed here cannot be attributed primarily to crustal 

582 anisotropy. Even if we attribute 1 s of delay time to anisotropy in the crust and mantle 

583 lithosphere, the asthenosphere would have to contribute 1.5–2s of splitting beneath the NVP, 

584 which corresponds to ~6–8% anisotropy for a 150-km thick asthenosphere. Although these 

585 values are quite large compared to 3%, a value considered reasonable for a normal upper 

586 mantle, they are not out of the question. For example, Ben Ismaïl and Mainprice (1998) 

587 reported shear wave anisotropies larger that 11% and up to 15% in the upper mantle. 

588 However, these values were calculated for pure olivine crystals and they should reduce 

589 somewhat when the effect of 25–30 % of pyroxenes in lherzolites is taken into account (e.g., 

590 Mainprice and Silver, 1993). 

591 Although we have largely interpreted the shear wave splitting results in terms of anisotropy 

592 frozen in the lithosphere and asthenospheric flow due to plate motion, we also consider an 

593 intriguing alternative in which we investigate φ as a function of angle by looking at results 

594 from stations surrounding Bass Strait. The overall fast polarisation direction appears to 

595 radiate outwards from the centre of Bass Strait. This observation could potentially be 

596 consistent with divergent mantle flow for a plate overriding a mantle plume. According to 

597 the plume theory (Wilson, 1963; Morgan, 1971), since the fast directions of anisotropy are 

598 determined by the spreading direction of the mantle, the fast polarisation directions (φ) of 

599 anisotropy around a mantle plume would be oriented vertically within the central upwelling 

600 and radiate outwards from the plume head (Rümpker and Silver, 2000; Ito et al., 2014). For 

601 example, Walker et al. (2001) studied shear wave splitting around the Hawaii hotspot and 

602 observed a spatial pattern in fast polarisation directions that they explained in terms of a 

603 parabolic asthenospheric flow model, in which a plume impinges on a moving lithospheric 

604 plate. Walker et al. (2005) invoked similar models to explain a semicircular pattern of fast 

605 polarisation directions in the vicinity of the Eifel hotspot and to explain the spatial 

606 distribution of fast polarisation directions in the eastern Snake River Plain adjacent to the 

607 Yellowstone hotspot (Walker et al., 2004). With the superimposed influence of absolute 

608 plate motion, horizontal flow away from the central plume head upwelling is predicted to be 

609 parabolic (Walker et al., 2005). This is a model that combines the effect of mantle upwelling 

610 with APM, resulting in parabolic flow in the asthenosphere, and has been successful at 

611 explaining patterns of fast polarisation directions in some regions associated with mantle 

612 upwelling, but has proved less successful in regions such as Afar (Gashawbeza et al., 2004; 



20

613 Walker et al., 2005) or Iceland (Walker et al., 2005).

614 Previous studies by Davies et al. (2015) identify the world’s longest continental hotspot 

615 track (over 2000 km long) which begins in north Queensland, and extends southward, 

616 possibly as far as NW Tasmania. The plume source of the hotspot track may be responsible 

617 for the observed pattern of fast polarisation directions surrounding Bass Strait. However, 

618 further evidence would be required if such a theory was to gain traction; apart from plate 

619 motion model predictions of the current plume source, there is very little evidence to suggest 

620 that it still exists, apart from reduced uppermost mantle velocities imaged by regional 

621 surface wave tomography (Fishwick and Rawlinson, 2012). Recent studies indicate that the 

622 plume waned during its traverse of the Australian continent, and it may now have dissipated 

623 completely (Rawlinson et al., 2017). 

624

625 Overall, the complicated SKS waveforms and splitting patterns observed in the study area 

626 are plausibly due to multiple layers of anisotropy, asthenospheric contribution to the 

627 anisotropy, considerable lateral heterogeneity, complex lithospheric keels (i.e., Vinnik et al., 

628 1989, 1992; Barruol and Hoffmann, 1999; Heintz and Kennett, 2005), or a combination of 

629 these factors. Without detailed modelling, which the backazimuthal coverage will not 

630 permit, it is difficult to untangle the relative contributions to the observed splitting from the 

631 lithospheric vs. asthenospheric upper mantle, but we can say with confidence that the 

632 lithosphere and/or crust likely makes a significant contribution to the splitting signal in this 

633 region. 

634

635 6.2 Comparison with magnetic anomalies

636

637 Despite the limited number of reliable measurements obtained at some stations largely due 

638 to high noise levels, particularly in the island stations in Bass Strait and northern Tasmania, 

639 direct correlations can still be observed between the measured orientation of the polarization 

640 plane of the fast shear-waves and the mapped near-surface structures from the magnetic data 

641 (Fig. 11). The NE-SW linear structures of alternating positive and negative magnetic 

642 anomalies in northwest Tasmania are presumed to represent magmatic dikes of the Mount 

643 Reid Volcanics (Crawford et al., 2003; Berry, 1995; Seymour et al., 2007). There is a good 

644 correlation between fast shear wave splitting directions (φ) and magnetic lineaments in NW 
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645 Tasmania. However, ETT and Furneaux Islands are devoid of any correlation between fast 

646 shear wave splitting directions (φ) and magnetic lineaments, which are considerably weaker 

647 compared to those observed in eastern Bass Strait. In the Lachlan Orogen, the magnetic 

648 anomalies and fast shear wave splitting directions (φ) are parallel to the structural trend of 

649 the Lachlan Fold Belt. However, the correlation in southern Victoria and the Bass Strait 

650 islands is poor. 

651

652 Magnetic anomalies reflect a contrast in upper crustal composition and/structural fabric 

653 (Kletetschka and Stout, 1998). An alignment between fast splitting directions (associated 

654 with the upper mantle) and crustal magnetic lineaments thus implies the presence of 

655 vertically coherent deformation (VCD). This helps support the idea that anisotropy frozen in 

656 the lithosphere is the main source of anisotropy in this region.  

657

658 6.3 Comparison with crustal anisotropy measurements from surface wave 

659 tomography
660

661 One of the well-known limitations of shear-wave splitting analysis is its inability to resolve 

662 the depth distribution of anisotropy. By contrast radial variations in anisotropy can be 

663 assessed by surface wave data, which samples different depth ranges as a function of period. 

664 However, surface wave anisotropy measurements have significantly poorer lateral resolution 

665 than shear wave splitting measurements. Despite the fact that these two measurements do not 

666 identically sample the lithosphere, we believe that a comparison of our splitting 

667 measurements with the crustal anisotropy measurements of Pilia et al. (2016) will shed more 

668 light on the characteristics of the anisotropy in our study area (Fig. 12). Upon comparing the 

669 weighted mean of SKS/SKKS splits with the 5 second period Rayleigh wave phase 

670 anisotropy variations in the crust, it can be seen that the fast polarisation direction (φ) along 

671 the Lachlan Fold Belt and southern Victoria are quite consistent; this supports our earlier 

672 contention that lithospheric anisotropy is envisaged to be the dominant contributor in this 

673 region. In Bass Strait the φ measurements seem to be quite consistent in both models. It is 

674 interesting to note that measurements in Tasmania have  inconsistencies in φ. Even  90°

675 though this anomaly did not manifest when comparing our results with magnetic structures, 

676 crust-mantle decoupling cannot be completely ruled out. Another, perhaps more likely, 
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677 interpretation is that the surface wave anisotropy is restricted to the upper crust, and 

678 therefore does not dominate the shear wave splitting signal. 

679

680 7. Conclusions
681

682 New results from the shear wave splitting data set presented in this study provide a first-

683 order picture of anisotropy and deformation in the upper mantle beneath Bass Strait and the 

684 adjoining land masses and yields constraints on the different tectonic terranes in southeast 

685 Australia. Despite uneven station distribution, noisy data recorded on the islands in the study 

686 area, and a complex tectonic history, we were able to highlight coherent patterns of 

687 anisotropy from shear wave splitting in different parts of the study area. 

688

689 Evidence of fast shear wave splits being polarised in directions oriented parallel to the local 

690 structural trends (e.g. northwest Tasmania and Selwyn Block and along the Lachlan Fold 

691 Belt) may account for deformation induced LPO anisotropy frozen in the lithosphere. The 

692 strong anisotropy observed beneath NVP possibly reflects an anisotropy contribution from 

693 thick asthenosphere underlying a thin lithosphere. The overall fast polarisation that appears 

694 to radiate outwards from the centre of Bass Strait could alternatively be the result of plume-

695 induced anisotropy, although we acknowledge that evidence for a plume in this region is 

696 limited. However, based on evidence from various sources including crustal surface wave 

697 tomography, it is difficult to interpret the occurrence of complex patterns of anisotropy and 

698 abnormally large delay times from shear wave splitting beneath southeast Australia in terms 

699 of either mantle-flow related anisotropy or anisotropy frozen in the lithosphere: a 

700 contribution from both the lithospheric and sublithospheric mantle is likely. The poor 

701 backazimuthal coverage is not sufficient to be able to pin down the contribution from each 

702 source of anisotropy by, for instance, performing two-layer modelling of the anisotropy.  

703

704 In an attempt to understand the depth-distribution of anisotropy we compared the observed 

705 fast polarisation directions with other datasets: (1) the fast polarisation directions vary for 

706 each tectonic unit, indicating a dominant lithospheric “fossil” anisotropy. This interpretation 

707 is supported by (2) poor correlation of fast polarisation direction with plate motion direction, 

708 which may be parallel only by chance at a few stations and thus does not reflect large scale 
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709 asthenospheric process; (3) the trend of magnetic structures aligns well with the observed 

710 fast polarisation directions at many of the analysed stations. This suggests vertically 

711 coherent deformation throughout the crust and upper-most mantle and supports the idea that 

712 splitting measurements reflect the most recent tectonic event; (4) there is also a consistency 

713 between (crustal) azimuthal anisotropy directions and our teleseismic shear wave splitting 

714 fast polarisation directions in mainland Australia and Bass Strait, but the anisotropy 

715 directions of the two different measurements appear to be roughly orthogonal in Tasmania. 

716 Even though this anomaly did not manifest in the comparison of our results with magnetic 

717 structures, crust-mantle decoupling cannot be completely ruled out. Alternatively, the pattern 

718 of surface wave anisotropy observed may simply be an upper crustal feature, and hence only 

719 makes a small contribution to the shear wave splitting signal which is otherwise dominated 

720 by the lower crust and upper mantle.

721  
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Fig. 3: Distribution of teleseismic events used for this study. Concentric circles are plotted at 30�

intervals from the centre of Bass Strait.



Station:BA06; Event time=2012-108-04:13; lat=-32.64o; lon=-71.56o; Dep=30km; 
BAZ=146.98o; Dist= 98.15o

Fig. 4: Example of a filtered seismogram at station BA06, with the expected arrival times for SKS
and SKKS from the ak135 earth model shown. Red vertical lines represent the time window chosen
for analysis (marked START and END).
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amplitudes preserved, (iii) particle motion before and after correction, showing the change from
elliptical to linearized motion, and (iv) grid search and cluster analysis outputs. The main graphic
shows the final grid search results for � and �t; the two smaller plots show individual measurements
of � and �t for the 100 windows used in the analysis.
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and the particle motion is linear both before and after analysis.
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Fig. 7: Examples of the back azimuthal coverage of splitting results for the three tectonic blocks
discussed in the text: Lachlan Fold Belt, VanDieland and East Tasmania Terrane + Furneaux Island.
For each tectonic block, the left graph shows fast orientations and the right graph shows delay time;
red represents good measurements, and blue represents fair measurements.
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Fig. 9: A bar chart illustrating the number of measurements at individual stations.
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Table. 1: Weighted mean SKS/SKKS splitting parameters for each station. Quality assignments are given as: g = good; f =
fair; and N = Null

Upper	(°) Lower(°) Upper(s) Lower(s)
YNG -34.298 148.396 ANSN 40 11g	+	7f	+	21N
CNB -35.315 149.363 ANSN 19 3g	+	6f	+	10N
CAN -35.319 148.996 GEOSCOPE 65 0g	+	24f	+	41N 58	±	3 -23	±	2 1.58	±	0.15 1.78	±	0.18
TAU -42.909 147.320 GSN 36 3g	+	12f	+	21N
MOO -42.442 147.190 ANSN 23 5g	+	2f	+	16N
TOO -37.571 145.491 ANSN 18 1g	+7f	+	10N
DLN -34.723 149.179 ANSN 9 1g	+3f	+	5N
BA01 -40.523 144.741 BASS 8 0g	+	2f	+	6N
BA02 -40.950 145.200 BASS 7 1g	+	2f	+	4N
BA03 -41.199 145.841 BASS 17 1g	+	3f	+	13N
BA04 -41.196 146.704 BASS 4 0g	+2f	+	2N
BA05 -41.050 147.506 BASS 5 0g	+2f	+	3N
BA06 -40.900 148.176 BASS 3 1g	+	3f	+	0N
BA07 -40.426 148.314 BASS 5 1g	+	2f	+	2N
BA08 -39.774 147.966 BASS 7 3g	+	1f	+	3N
BA09 -39.470 147.323 BASS 5 1g	+4	f	+	0N
BA10 -40.056 144.030 BASS 7 1g	+	1f	+	5N
BA11 -39.644 143.977 BASS 3 1g	+	2f	+	0N
BA12 -37.662 149.412 BASS 14 4g	+	4f	+	6N
BA13 -37.628 148.828 BASS 9 2g	+	3f	+	4N
BA14 -37.630 148.004 BASS 4 1g	+	1f	+	3N
BA15 -37.967 147.186 BASS 4 1g	+	1f	+	2N
BA16 -38.531 146.643 BASS 7 1g	+	1f	+	6N
BA17 -39.035 146.327 BASS 6 2g	+	2f	+	2N
BA18 -38.025 146.143 BASS 4 2g	+	2f	+	0N
BA19 -38.566 145.691 BASS 3 0g	+	1f	+	4N
BA20 -38.420 144.920 BASS 6 3g	+	3f	+	0N
BA21 -38.391 143.990 BASS 4 0g	+1f	+	3N
BA22 -37.986 143.605 BASS 6 2g	+	2f	+	2N

1.59	±	0.18
1.40	±	0.09
1.15	±	0.21
1.24	±	0.16

Station

1.87	±	0.05
1.59	±	0.14
1.79	±	0.17
1.04	±	0.12
0.98±	0.13
1.68	±	0.04

1.17	±	0.07
0.68	±	0.12
1.10	±	0.03
1.03	±	0.06
0.71	±	0.13
1.41	±	0.18

0.66	±	0.10
0.75	±	0.07
0.95	±	0.04
1.39	±	0.19
1.35	±	0.15
0.73	±	0.11

51	±	3

1.36	±	0.07
1.30	±	0.14

1.34	±	0.11
1.33	±	0.06
1.19	±	0.16	
1.22	±	0.13

28	±	2
81	±	6
-5	±	4
47	±	9
6	±	2
25	±	9

43	±	1
89	±	5
1	±	2
-54	±	2
18	±	4
22	±	3

21	±	4
-48	±	3
-86	±	3
-67	±	4
-87	±	2
75	±	3

08	±	3
16	±	2
65	±	4
46	±	2
38	±	3

NetworkLong.(°)Lat.	(°) Measurement	categorisation

7	±	3

φ	(weighted	mean) δt	(weighted	mean)
Total

13	±	3

81	±	9
63	±	3

1
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1. Introduction

2. Table S1 to S8 

Introduction. The supplementary material consists of tables which 
provide all of the individual shear-wave splitting measurements used 
in the analysis. The earthquakes mentioned in the tables are labelled 
according to the origin time of the event, in the format yyjjjhhmmss 
i.e. year, Julian day, hour, minute, second. The phase used in the 
analysis is the SKS core phase unless otherwise stated (e.g. SKKS 
phase). The event back-azimuth is given in the second column and the 
splitting parameters in subsequent columns. Since nulls have a 90◦ 

ambiguity in addition to the inherent 180◦ ambiguity of orientation, the 
null results are given here in the same quadrant as the event back-
azimuth. Delay times are undefined for nulls.
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Table S1. Splitting measurements for stations CNB, DLN, CAN (Permanent stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type

CNB 07227202213 20 21±8 1.52±0.08 split
CNB 09072272340 130 16±10 1.53±0.16 split
CNB 08009082648 310 26±16 2.23±0.03 split
CNB 08119155751 183 282 n/a null
CNB 08303113241 300 24 n/a null
CNB 09317030558 139 23 n/a null
CNB 10064114707 147 8±6 1.36±0.10 split
CNB 08054155719 184 23 n/a null
CNB 08279155250 310 -12±8 0.73±0.13 split
CNB 09106145706 182 351 n/a null
CNB 10075022158 146 32 n/a null
CNB 10059112535 25 37±9 1.35±0.23 split
CNB 11261124049 309 -9±5 1.07±0.46 split
CNB 11018202325 (SKKS) 296 22 n/a null
CNB 12176031501 8 18±11 1.47±0.16 split
CNB 11245134710 150 26 n/a null
CNB 14032035845 182 -10±3 1.22±0.36 split
CNB 15264174000 145 302 n/a null
CNB 15351194953 92 280 n/a null
DLN 08187021206 2 23±8 1.50±0.20 split
DLN 15033104948 149 21±6 1.09±0.31 split
DLN 15299090942 306 19 n/a null
DLN 15132070519 308 74 n/a null
DLN 15341075005 304 310 n/a null
DLN 16041003305 144 22±6 1.11±0.18 split
DLN 16080225020 8 16±8 1.21±0.09 split
DLN 16101102858 306 71 n/a null
DLN 17095060912 301 285 n/a null
CAN 05080122853 144 77±13 1.42±0.12 split
CAN 05080212273 148 88±11 1.55±0.24 split
CAN 08238132201 309 39±8 2.53±0.16 split
CAN 08304151540 105 291 n/a null
CAN 09317030558 139 286 n/a null
CAN 10064114707 147 88 n/a null
CAN 10070143945 146 60±10 2.31±0.14 split
CAN 10113100306 148 59±9 1.30±0.17 split
CAN 11001095658 149 -28±3 2.20±0.46 split
CAN 10199055645 24 277 n/a null
CAN 10216125825 20 21 n/a null
CAN 11002202018 148 305 n/a null
CAN 11018202325 296 298 n/a null
CAN 11200193543 310 18±11 2.05±0.21 split
CAN 11236174611 127 -38±12 0.95±0.06 split
CAN 11341222307 143 40±10 1.97±0.25 split
CAN 12135100039 139 -78±12 0.80±0.21 split
CAN 11045034009 146 296 n/a null
CAN 11207174421 75 355 n/a null
CAN 11245105555 23 22 n/a null
CAN 11245134710 150 340 n/a null
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Table S2. Splitting measurements for stations CAN (cont’d) (Permanent stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
CAN 12176031502 8 74±17 2.01±0.23 split
CAN 12298004533 103 31±12 1.32±0.08 split
CAN 12302185420 40 -82±16 2.12±0.18 split
CAN 14043091948 35 -34±10 1.12±0.21 split
CAN 11301185430 131 60 n/a null
CAN 11326184816 141 319 n/a null
CAN 12023160453 147 338 n/a null
CAN 12057061719 330 333 n/a null
CAN 14057211340 22 78±12 0.85±0.23 split
CAN 15264174000 145 -23±11 2.41±0.20 split
CAN 12085223706 147 31 n/a null
CAN 12249144207 103 63±9 1.80±0.17 split
CAN 11222416313 118 293 n/a null
CAN 15351194953 92 38±12 0.97±0.02 split
CAN 16139075702 116 45±13 2.30±0.30 split
CAN 17052140904 145 18±12 0.92±0.31 split
CAN 17165072905 94 34±8 1.17±0.23 split
CAN 13268164243 133 52 n/a null
CAN 15315015438 144 76±13 2.04±0.10 split
CAN 16353133011 132 325 n/a null
CAN 93192133622 143 -25±10 1.45±0.44 split
CAN 93221113831 306 -14±6 2.22±0.15 split
CAN 90290143018 149 314 n/a null
CAN 91023011228 143 319 n/a null
CAN 89291000414 181 281 n/a null
CAN 97091183322 134 14 n/a null
CAN 91292212314 123 68 n/a null
CAN 13267112948 42 9 n/a null
CAN 93221124247 145 60 n/a null
CAN 93253191255 94 89 n/a null
CAN 93225084232 122 23 n/a null
CAN 93323014324 26 46 n/a null
CAN 94010155350 136 314 n/a null
CAN 94095093545 20 299 n/a null
CAN 94119071129 150 27 n/a null
CAN 94130063628 150 286 n/a null
CAN 94160003160 138 33 n/a null
CAN 94181092322 306 333 n/a null
CAN 97023021519 145 322 n/a null
CAN 97091183332 139 326 n/a null
CAN 99340231228 28 11 n/a null
CAN 07318154549 144 57 n/a null
CAN 04320090655 121 331 n/a null
CAN 97301062019 128 45 n/a null
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Table S3. Splitting measurements for stations TAU, MOO (Permanent stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
TAU 00114093223 153 335 n/a null
TAU 00133184815 148 76 n/a null
TAU 00217211803 357 -74±11 2.07±0.43 split
TAU 01026032140 296 -57±5 1.32±0.16 split
TAU 00285201409 135 81 n/a null
TAU 03022021135 88 339 n/a null
TAU 03174121730 18 10 n/a null
TAU 05080122853 151 316 n/a null
TAU 05269020037 129 342 n/a null
TAU 05281035535 306 -41±10 2.05±0.28 split
TAU 05321193154 146 88±18 1.15±0.35 split
TAU 06120192215 145 -44±13 1.22±0.21 split
TAU 06237004946 148 270 n/a null
TAU 06317013136 152 72 n/a null
TAU 07017232350 278 87±12 1.01±0.28 split
TAU 07320031800 126 -62±8 1.22±0.36 split
TAU 07353093528 20 340 n/a null
TAU 07058211302 299 301 n/a null
TAU 08030122109 145 -61±17 1.54±0.20 split
TAU 02091195932 147 83±13 1.65±0.28 split
TAU 08279155250 310 87±12 1.42±0.38 split
TAU 08302230958 299 -60±18 1.37±0.41 split
TAU 08303113241 297 332 n/a null
TAU 08304151540 107 292 n/a null
TAU 00928620215 27 280 n/a null
TAU 11018202325 296 282 n/a null
TAU 11341222307 146 -56±15 1.17±0.39 split
TAU 12135200039 142 -77±10 0.65±0.08 split
TAU 12176031502 9 88±7 1.62±0.15 split
TAU 13247023232 23 78 n/a null
TAU 14057211340 23 9 n/a null
TAU 14093024314 143 342 n/a null
TAU 16249225403 12 64±8 1.02±0.18 split
TAU 17052140904 148 340 n/a null
TAU 17114212830 148 342 n/a null
TAU 99340231228 30 292 n/a null
MOO 01145004050 1 85 n/a null
MOO 02091195932 147 82±12 1.67±0.22 split
MOO 04320090655 121 345 n/a null
MOO 06319111414 4 79 n/a null
MOO 10113100306 149 77±11 1.45±0.13 split
MOO 10246111608 22 79 n/a null
MOO 11001095658 152 358 n/a null
MOO 11018202325 (SKKS) 296 65 n/a null
MOO 11245134710 153 78 n/a null
MOO 11341222307 146 -77±9 1.53±0.36 split
MOO 12080180247 94 5 n/a null
MOO 12108035015 148 348 n/a null
MOO 12135100039 142 271 n/a null
MOO 12176031502 9 68±11 1.37±0.30 split
MOO 12223183742 52 50±8 1.20±0.07 split
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Table S4. Splitting measurements for stationsMOO (cont’d), TOO, YNG (Permanent stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
MOO 12149050723 26 343 n/a null
MOO 12274163134 124 281 n/a null
MOO 13144054449 4 13 n/a null
MOO 13144145831 3 272 n/a null
MOO 13274033821 3 77 n/a null
MOO 13304230358 147 76 n/a null
MOO 16249225403 144 58±10 1.05±0.31 split
MOO 17114213830 148 53±11 1.10±0.01 split
TOO 08187021206 4 19 n/a null
TOO 08280083045 314 282 n/a null
TOO 08329090300 5 13±9 1.32±0.05 split
TOO 09097042334 4 282 n/a null
TOO 09358002333 352 3±5 2.20±0.23 split
TOO 10049011318 349 -2±9 1.75±0.37 split
TOO 10211035614 9 273 n/a null
TOO 11246044858 184 25 n/a null
TOO 11345095456 184 22 n/a null
TOO 14282021431 123 -3±8 2.50±0.30 split
TOO 15269025118 148 -20±7 2.22±0.26 split
TOO 15299090942 307 38±6 1.73±0.11 split
TOO 16030032510 8 20 n/a null
TOO 16041003305 148 26±5 2.40±0.32 split
TOO 16101102858 308 281 n/a null
TOO 16178111711 311 23 n/a null
TOO 16234034523 182 284 n/a null
TOO 17086105019 147 64±13 1.58±0.12 split
YNG 04353064619 5 17 n/a null
YNG 00545233808 315 15±6 1.57±0.05 split
YNG 05072033120 294 283 n/a Null
YNG 05164224433 141 78 n/a Null
YNG 05165171016 19 3±8 1.65±0.35 Split
YNG 05269015537 124 297 n/a Null
YNG 05281035040 306 299 n/a Null
YNG 05288100617 4 15 n/a Null
YNG 05321192656 143 75 n/a Null
YNG 06002061048 181 2 n/a Null
YNG 06053221909 24 -9±8 1.42±0.28 Split
YNG 06054040405 178 76 n/a Null
YNG 06237004446 145 77 n/a Null
YNG 07055023623 122 355 n/a Null
YNG 07119124158 19 -12±5 1.32±0.14 Split
YNG 07175002518 196 79 n/a Null
YNG 07196130801 25 -16±7 1.67±0.17 Split
YNG 07202153452 145 -28±10 1.13±0.46 Split
YNG 07304134421 20 -2±8 1.45±0.12 Split
YNG 07350080920 142 26±11 1.82±0.02 Split
YNG 08041122203 183 4 n/a Null
YNG 08082212412 20 21 n/a Null
YNG 08280083045 312 270 n/a Null
YNG 09059143306 183 25±10 2.24±0.16 Split
YNG 09106145706 182 -18±14 2.05±0.48 Split
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Table S5. Splitting measurements for stations YNG (cont’d), MILA (Permanent stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
YNG 10017120001 162 6 n/a Null
YNG 10246111608 21 11±9 2.17±0.23 Split
YNG 11326184816 142 12±5 1.31±0.12 Split
YNG 12057061719 330 33±9 1.67±0.18 Split
YNG 12108035015 146 16±15 1.40±0.37 Split
YNG 12227025938 358 -6±4 2.01±0.31 Split
YNG 13045131352 358 352 n/a Null
YNG 14043091949 312 21±12 2.12±0.27 Split
YNG 14032035844 312 22±9 1.50±0.08 Split
YNG 14093052613 140 19±14 2.20±0.16 Split
YNG 14267112948 295 76 n/a Null
YNG 14268164243 137 88 n/a Null
YNG 14271073407 296 286 n/a Null
YNG 14283091948 301 75 n/a null
MILA 13053120158 150 13±9 1.46±0.56 split
MILA 13109030552 1 289 n/a split
MILA 13207213300 184 13±8 1.45±0.47 split
MILA 14032035845 182 -26±15 1.72±0.66 split
MILA 13106104419 289 25 n/a null
MILA 13144145031 1 292 n/a null
MILA 14093015829 140 -83±19 1.95±0.48 split
MILA 13242162502 21 18 n/a null
MILA 13258162138 22 20 n/a null
MILA 13274033820 134 21 n/a null
MILA 14043091948 312 23 n/a null
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Table S6. Splitting measurements for stations BA01, BA02, BA03, BA04, BA05, BA06, 
BA07 (Temporary stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
BA01 11248092130 (SKKS) 43 39 n/a null
BA01 11249114702 155 65±9 0.66±0.10 split
BA01 11346073315 359 312 n/a null
BA01 11350105405 152 50±11 1.02±0.48 split
BA01 11351147020 146 42 n/a null
BA01 12085203657 345 313 n/a null
BA01 12108015003 55 57 0.68±0.05 null
BA01 12149030703 308 302 n/a null
BA02 11261104039 312 47 n/a null
BA02 12065054601 154 24±5 0.82±0.12 split
BA02 12227005928 360 46±5 0.74±0.13 split
BA02 11245114702 154 321 n/a null
BA02 12085203650 150 43±8 1.01±0.27 split
BA02 12149030703 154 336 n/a null
BA02 12155224501 115 55 n/a null
BA03 12102204139 53 293 n/a null
BA03 12111231909 195 50±8 1.11±0.17 split
BA03 12114204019 6 17±6 1.02+0.35 split
BA03 12072103235 1 28±6 0.83±0.01 split
BA03 12133212833 308 20 n/a null
BA03 12155224501 116 25 n/a null
BA03 12121053938 147 28 n/a null
BA03 12163032858 306 22 n/a null
BA03 12171135626 (SKKS) 15 22±9 1.20±0.31 split
BA03 12171185626 15 291 n/a null
BA03 12176011447 (SKKS) 9 24 n/a null
BA03 12179043054 (SKKS) 103 28 n/a null
BA03 12194120020 307 281 n/a null
BA03 12198010824 9 24 n/a null
BA03 12225084702 313 291 n/a null
BA03 12227005928 359 33 n/a null
BA03 12240023717 105 30 n/a null
BA04 12085203657 149 -26±9 1.03±0.34 split
BA04 12149030703 153 68±8 1.68±0.21 split
BA04 12155224501 118 334 n/a null
BA04 12121053938 146 69 n/a null
BA05 11261104039 146 -53±11 1.45±0.09 split
BA05 12057041708 330 43±7 2.02±0.26 split
BA05 11245085546 24 38 n/a null
BA05 12085203657 148 307 n/a null
BA05 12108015003 147 37 n/a null
BA06 11193181045 107 -88±12 0.75±0.12 split
BA06 12108015003 147 -70±10 1.01±0.06 split
BA06 12149030703 152 -57±4 0.82±0.05 split
BA07 11175010924 24 339 n/a null
BA07 11245085546 152 -48±5 1.47±0.26 split
BA07 11261104039 310 -21±5 1.32±0.19 split
BA07 12085120365 148 61±6 2.14±0.32 split
BA07 12227005928 358 61 n/a null
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Table S7. Splitting measurements for stations BA08, BA09, BA10, BA11, BA12, BA13, 
BA14 (Temporary stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
BA08 11245114702 152 -66±11 0.72±0.07 split
BA08 11261104039 310 -26±9 1.25±0.40 split
BA08 12085203657 148 70±8 1.40±0.06 split
BA08 12149030703 152 -89±13 0.85±0.08 split
BA08 11175010924 24 72 n/a null
BA08 11245085546 24 69 n/a null
BA08 12227005928 358 346 n/a null
BA09 11245114702 152 67±3 1.75±0.19 split
BA09 12102205506 310 -4±6 0.68±0.06 split
BA09 12057041708 330 -47±17 0.87±0.13 split
BA09 12108015003 148 70±18 1.37±0.05 split
BA09 12149030703 152 83±9 0.87±0.29 split
BA10 11245085546 26 60 n/a null
BA10 12057041700 332 50±5 1.25±0.18 split
BA10 12102205506 90 38±6 1.43±0.08 split
BA10 11245114701 155 42±8 0.82±0.12 null
BA10 12085203657 151 332 n/a null
BA10 12108050030 150 333 n/a null
BA10 12108015003 156 61 n/a null
BA11 12085203657 151 -80±11 0.64±0.19 split
BA11 12102205506 90 89±4 1.05±0.08 split
BA11 12108015003 155 89±15 0.87±0.05 split
BA12 11175010924 23 25±5 0.77±0.12 split
BA12 11245114702 150 0±5 2.40±0.13 split
BA12 11246024840 182 71±6 1.40±0.20 split
BA12 11261104039 308 20±8 0.82±0.07 split
BA12 11245085546 23 335 n/a null
BA12 12249124205 105 89 n/a null
BA12 13020084828 359 3 n/a null
BA12 13072011247 7 271 n/a null
BA12 13083021831 7 270 n/a null
BA12 12085203657 147 -5±3 1.87±0.12 split
BA12 12108015003 146 -10±6 2.40±0.08 split
BA12 12149030703 150 -16±5 1.15±0.06 split
BA12 12222003436 80 -19±5 2.47±0.25 split
BA12 13084210201 97 10 n/a null
BA13 12085203657 147 -47±8 1.75±0.18 split
BA13 12108015003 146 -42±5 2.45±0.14 split
BA13 12321161227 (SKKS) 4 -73±12 1.75±0.04 split
BA13 13060112032 5 -65±7 1.25±0.08 split
BA13 11236154601 129 50±11 1.75±0.08 split
BA13 11245085546 23 308 n/a null
BA13 12022035325 183 46 n/a null
BA13 12024143054 182 35 n/a null
BA13 12057044178 330 30 n/a Null
BA14 11246024843 183 22±9 2.17±0.37 split
BA14 12108015003 147 21±6 1.59±0.08 split
BA14 11245114702 151 23 n/a null
BA14 12085203650 148 286 n/a null



9

Table S8. Splitting measurements for stations BA15, BA16, BA17, BA18, BA19, BA20, 
BA21, BA22, BA23, BA24 (Temporary stations)

Station Event Back-azimuth (o) Fast-direction (o) Splitting time (s) Result type
BA15 11246024843 (SKKS) 183 30±7 2.45±0.21 split
BA15 11261104039 183 -10±5 1.27±0.05 split
BA15 11175010924 24 38 n/a null
BA15 11261104039 311 308 n/a null
BA16 11245114702 153 53±8 1.05±0.24 split
BA16 11246024843 184 24±6 1.02±0.19 split
BA16 11261104039 311 326 n/a null
BA16 12085203657 (SKKS) 149 324 n/a null
BA16 12258051831 194 58 n/a null
BA16 12270213943 21 54 n/a null
BA16 12321161227 6 55 n/a null
BA17 11341202250 146 59±9 1.75±0.21 split
BA17 11345075446 183 -65±10 0.92±0.12 split
BA17 12085203657 149 56±7 1.54±0.09 split
BA17 12227005935 359 49±10 0.70±0.22 split
BA17 11245114702 153 322 n/a null
BA17 11261104039 144 57 n/a null
BA18 11246024843 184 -30±7 2.70±0.25 split
BA18 11321045224 96 46±11 1.21±0.06 split
BA18 11341202250 149 -20±6 1.37±0.09 split
BA18 12227005935 359 24±4 1.79±0.07 split
BA19 11245114702 153 47±9 2.14±0.06 split
BA19 11246024843 184 38 n/a null
BA19 11303182500 145 310 n/a null
BA20 11245114702 154 -31±8 2.40±0.04 split
BA20 11246024843 185 -5±3 2.12±0.08 split
BA20 11341202250 147 -30±7 2.05±0.13 split
BA20 12227005935 0 22±6 1.40±0.03 split
BA20 12249124205 108 29±5 1.92±0.31 split
BA20 12319170201 148 41±6 1.95±0.17 split
BA21 12057041708 332 25±9 1.15±0.24 split
BA21 11207163200 79 12 n/a null
BA21 11350105405 153 277 n/a null
BA21 12085521828 151 14 n/a null
BA22 11236154601 134 -66±5 1.02±0.10 split
BA22 11245114702 155 55±3 1.80±0.12 split
BA22 11326164802 147 47±5 1.57±0.31 split
BA22 11345075446 185 -10±10 1.67±0.22 split
BA22 12227005935 0 38 n/a null
BA22 12249124205 108 307 n/a null
BA23 11175010924 26 37 n/a null
BA23 11178212712 153 302 n/a null
BA23 11180033637 151 36 n/a null
BA23 12198010825 146 307 n/a null
BA24 11193181045 134 38 n/a null
BA24 11204042833 155 304 n/a null
BA24 12023140442 147 37 n/a null
BA24 12227005935 185 305 n/a null


