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Prostate cancer represents a major public health threat as it is one of the most common male cancers worldwide. The 

prostate specific membrane antigen (PSMA) is highly over-expressed in prostatic cancer cells in a manner that correlates 

with both tumour stage and clinical outcome. As such, PSMA has been identified as an attractive target for both imaging 

and treatment of prostate cancer.  In recent years the focus on urea-based peptidomimetic inhibitors of the PSMA 

(representing low molecular weight/high affinity binders) has intensified as they have found use in the clinical imaging 

of prostate tumours. Reported herein are the design, synthesis and evaluation of a new fluorinated PSMA targeting small-

molecule, FDA-PEG-GUL, which possesses the Glu-NH-CO-NH-Lys pharmacophore conjugated to a 5’-fluorodeoxy-

adenosine unit. Inhibition assays were performed with FDA-PEG-GUL which revealed that it inhibits the PSMA in the 

nanomolar range. Additionally, it has been purposely designed so that it can be produced using the fluorinase enzyme 

from its chlorinated precursor, allowing for the enzymatic synthesis of radiolabelled [18F]FDA-PEG-GUL via a 

nucleophilic reaction that takes place in experimentally  advantageous conditions  (in  water  at  neutral  pH  and  at  

ambient  temperature).  Specific binding of [18F]FDA-PEG-GUL to PSMA expressing cancer cells was demonstrated, 

validating it as a promising PSMA diagnostic tool. This work establishes a successful substrate scope expansion for the 

fluorinase and demonstrates its first application towards targeting the PSMA. 

Introduction 

Prostate cancer represents one of the most common malignancies in men and is diagnosed annually in over 1 

million patients worldwide.1 With a substantial morbidity and mortality rate it is a major public health issue.2 

The selection of appropriate treatments using diagnosis derived from high resolution imaging is therefore of the 

foremost importance.2,3 

The prostate specific membrane antigen (PSMA), also known as glutamate carboxypetidase II, N-acetyl-α-linked 

acidic dipeptidase I  (Naaladase  I)  or  folate  hydrolase,  is  a type  II zinc dependant integral membrane protein 

that is overexpressed in almost all prostate cancers.4–6 PSMA catalyses the hydrolysis of N-acetylaspartylglutamate 

(NAAG) to generate glutamate and N-acetylaspartate (NAA),7,8 the excessive production of which has  been  linked  

to  a  number  of  health  issues  including   a variety of neurological diseases.9,10 Primarily restricted to the prostate, 

PSMA expression levels in cancerous cells are approximately  1000 times  higher than that of  healthy  tissue in 

other organs (such as those of the kidney and small intestine).11 Significantly, its expression correlates with both 

the stage and grade of the tumour progression;12,13 due to each of these factors, PSMA has become an increasingly 

important diagnostic and therapeutic target.10,14–16 Numerous low molecular weight PSMA inhibitors derived from 

NAAG have been developed,17 with 2-(phosphono-methyl)-pentandioic acid (2-PMPA)18 being the first potent 

inhibitor synthesised. Subsequently a number of thiol,19 indole20 and hydroxamate21 derivatives were designed, see 

Fig. 1. Of particular interest in recent years has been a class of urea-based inhibitors which possess the Glu-NH-

CO-NH-Lys/ Glu (GUL/GUG) pharmacophore.10,17,22 A number of com- pounds of this class have shown improved 

potency as PSMA inhibitors. Their relative synthetic accessibility and inherent modularity have permitted many of 

these inhibitors to be modified for use in clinical imaging modalities via incorporation of various radioisotopes.23-
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Fig. 1 The PSMA substrate N-acetylaspartylglutamate (NAAG) and examples of low-molecule-based PSMA inhibitors. 

Due to its high sensitivity, positron emission tomography (PET)28 has emerged as a valuable tool for imaging 

prostate cancer using radiolabelled urea-based inhibitors of PSMA. With   its   moderate   half-life   (t1/2 =109.8   

min, affording sufficient time for radioisotope incorporation), short positron  range (2.3 mm in water, allowing for 

high resolution images) and ease of production (with availability at any PET facility in possession of a cyclotron) 

[18F]fluoride is a preferred isotope for PET imaging.28 Thus, incorporation of [18F]fluoride into urea-based 

inhibitors represents a potentially valuable tool for imaging prostate tumours.29 To date, methods to integrate 

[18F]fluoride into these compounds have been developed using indirect, multistep strategies involving the initial 

synthesis of a 18F-labelled  prosthetic  group  such as 18F-fluorobenzaldehyde ([18F]FBA) or 2,3,5,6-

tetrafluorophenylester-6-[18F]-fluoronicotinate ([18F]FPyl-TFP), which are then conjugated to the urea based 

inhibitor.30,31 Such a strategy has been applied to the synthesis of [18F]DCFPyl and [18F]PSMA-1007, both of which 

have shown promise during preclinical investigation.31 Alternatively, direct radiolabelling of urea-based inhibitors 

via [18F]AlF-complexation is also being investigated and has been used for the synthesis of Al[18F]PSMA-

HBED;32–34 once optimised, such a strategy may provide a potentially more efficient route to radio-fluorinated 

PSMA tracers for clinical application. As such, new [18F]fluoride-radiotracers    possessing  the Glu-NH-CO-NH-

Lys/Glu pharmacophore, along with  the deve lopment of novel methodology to incorporate the [18F]fluoride ion 

into these motifs, is of great interest.  

 

 

 

 

Scheme 1 Fluorinase-catalysed transhalogenation reactions with C-2 modified 5’-chloro-5’-deoxyadenosine substrates. 

The fluorinase enzyme, originally isolated from Streptomyces cattleya,35 mediates the conversion of fluoride ion and 

S-adenosyl-L-methionine (AdoMet) to 5′-fluoro-5′-deoxy-adenosine (5′-FDA) and L-methionine (L-Met), Scheme 1.36 

Furthermore,  it  can  also  utilise  L-Met  (or  L-SeMet)  in  the reverse  direction  and  catalyse  the  displacement  

of chloride from 5′-chloro-5′-deoxyadenosine (5′-ClDA) to generate AdoMet (or AdoSeMet), which allows for an 

overall transhalogenation reaction to occur if fluoride is present (Scheme 1).37 

The fluorinase enzyme has been shown to possess a d istinct localised tolerance in its substrate promiscuity, 

allowing for decoration of the C-2 position of the adenine ring of 5′-ClDA with extensively functionalised 

acetylene substituents.38 This promiscuity offers the opportunity to exploit its function to accommodate the direct 
18F-radiolabelling of biologically relevant molecules to generate chemically stable C–18F  bonds  under  

aqueous ambient conditions  at near  neutral pH. In this manner, the fluorinase offers advantage when compared 

to many other radiolabelling methodologies, as its activity in aqueous environments circumvents the requirement 

to secure anhydrous [18F]fluoride via ion-exchange chromatography and as a Kryptofix® [2,2,2] formulation. The 

enzyme has the additional benefits of not requiring the use of protecting groups, increased temperatures or high/low 

pH levels. Furthermore, conventional HPLC methodology can be used to separate non- radiolabelled   starting   

material   from radiolabelled p r o d u c t , regardless of the targeting scaffold tethered to the fluorinase binding motif. 

To date, this late-stage enzymatic 18F-radiolabelling has been accomplished with cancer targeting pegylated RGD 

peptides,38–40 A2A adenosine receptor agonists,41 as well as tetrazine and biotin motifs,42 for use as radiotracers in PET. 



 

Scheme 2. Design of the last step [18F] radiolabelling strategy of ClDA-PEG-GUL 

For this study we have designed and synthesised a ClDA-PEG-GUL 15 construct to be used as a novel substrate for 

the fluorinase enzyme. It is designed as such to encompass both   a   5′-chloro-5′-deoxyadenosine   unit 

( responsible   for binding to the fluorinase active site and undergoing an overall fluorination), a PEGylated spacer 

unit (to project tethered cargo away from the enzyme) and a PSMA binding GUL tethered to the terminus of the 

PEG unit through amide coupling, see Scheme 2. ClDA-PEG-GUL 15 has been utilised in a fluorinase mediated 

transhalogenation reaction to generate its fluorinated analogue  FDA-PEG-GUL  16, wh ich  was  subsequently 

assessed in vitro for its ability to inhibit the PSMA protein. 

Results and discussion 

Synthesis of ClDA-PEG-GUL 15 

 



Scheme 3 A) Synthesis of (t-butyl protected)GUL 14. (B) Synthesis of ClDA-PEG-GUL 15 and FDA-PEG-GUL 16. Reagents and 

conditions: (a) Triphosgene, DCM/NaHCO3 sat., 99%; (b) H-Lys(Cbz)-OtBu·HCl pyridine, DCM, 77%; (c) H2, Pd(OH)2, MeOH, 

99%; (d) THF, NaH, propargyl bromide, 58%; (e) THF, NaH, tert-butyl bromoacetate, 60%; (f) Pd2(dba)3, Et3N, CuI, DMF, 59%; 

(g) TFA, DCM, 98%; (h) PyBOP, DIPEA, DMF, 42%; (i)TFA, DCM, 57%; ( j); fluorinase, L-SeMet, KF, phosphate buffer ( pH 

7.8), 70%. 

The synthesis of ClDA-PEG-GUL 15 was accomplished using a three-step approach (Scheme 3) to allow for the 

individual synthesis and then successive coupling of each   component required to assemble the substrate. These 

components are the ClDA binding moiety, the functionalised PEG spacer and the GUL PSMA binding motif.  Firstly, 

the synthesis of the Glu-NH-CO-NH-Lys was achieved in a three-step manner from H-Glu(OtBU)-OtBu 4. Briefly, 

4 was treated with triphosgene under basic conditions to afford isocyanate intermediate 5, which was used directly in 

subsequent coupling reactions, without t h e  n e e d  f o r  f u r th e r  p u r i f i c a t io n .  Isocyanate 5  w a s  then reacted with 

H-Lys(Cbz)-OtBu in the presence of pyridine to afford the fully protected peptidomimetic 6 in good yield after flash 

chromatography. Finally, the Cbz protecting group was removed via hydrogenation to yield (t-butyl protected) GUL 

7 which was used in subsequent coupling reactions without further purification. The synthesis of the 5′-

chlorodeoxy-2- iodo-adenosine 11 was achieved via a five-step protocol using previously established methods39 

and the alkyne/protected car- boxylate functionalised linker 10 was obtained via a two-step process.42 

With 7, 10 and 11 in hand, their assembly was addressed. Firstly 10 and 11 were combined via a Sonogashira 

cross-coup- ling reaction, which, after successive flash chromatography and C18 cartridge purification, afforded 

12 in good yield.  tert-Butyl ester 12 was then deprotected with TFA to afford the corresponding carboxylic acid 

13. Carboxylic acid 13 was then utilised in a peptide coupling reaction using an excess of 7, PYBOP and DIPEA to 

generate ClDA-PEG-(t-butyl protected) GUL  14 in good yield after purification  by  semi-prep HPLC (Scheme 3). 

Finally, the tert-butyl groups of ClDA-PEG-(protected)GUL 14 were removed by TFA. Particular care was taken 

during this procedure and the reaction was monitored by analytical HPLC to ensure unnecessarily long reaction 

times were avoided (see ESI†). Semi-preparative HPLC was then used to provide the candidate fluorinase substrate 

ClDA-PEG-GUL 15 in good yield (70%) and high purity (>95%.). 

Fluorinase mediated transhalogenation of ClDA-PEG-GUL 15 

In order to establish whether ClDA-PEG-GUL 15 can undergo biotransformation   to   its   fluorinated   analogue, 

small scale analytical transhalogenation reactions were performed. Accordingly, ClDA-PEG-GUL 15 was incubated in 

aqueous buffered m e d i a  ( pH 7.8) with the fluorinase (1 mg mL−1), L-SeMet and KF (see ESI† for full experimental 

detail) and reaction progress was monitored by analytical HPLC over a period of 48 h. The time course profile 

generated from this assay revealed that 15 was an efficient substrate for the fluorinase with a 40% conversion between 

0–1 h, at which point FDA-PEG-GUL 16 production levels off (reaching 60% in 4 h and ∼90% in 10 h), see Fig. 2. 

This data reveals that the GUL motif does not interfere with the ability of the fluorinase to perform an overall trans- 

halogenation from ClDA-PEG-GUL. Importantly, no degradation of ClDA-PEG-GUL 15 or the fluorinated FDA-

PEG-GUL 16 product was observed during these assays. 



 

Fig. 2   HPLC   time   course   (UV,   254   nm)   of   the   incubation   of    ClDA-PEG-GUL 15, green (tR = 9.5 min), with the fluorinase, 

L-Se-Met, KF, phosphate buffer ( pH 7.8) at 37 °C. Traces show the formation of FDA-PEG-GUL 16, yellow (tR = 8.8 min), and the 
consumption of ClDA-PEG-GUL 15. For full conditions see the Experimental section and ESI.† 

A larger scale transhalogenation reaction was then performed to allow for the acquisition of FDA-PEG-GUL in order to 

evaluate its ability to bind and inhibit PSMA.  The reaction was carried out on a ∼3 mg scale and monitored by HPLC. 

After a 90% conversion, the protein was precipitated by heating   and   the   reaction   centrifuged   in   an   

eppendorf. Purification of the lysate was accomplished using semi-prep HPLC to afford 16 (∼2 mg) in high purity. 

Evaluation of 16 as an inhibitor of PSMA 

The ability of FDA-PEG-GUL 16 to inhibit PSMA activity was determined using a fluorescence-based assay, 

essentially as previously reported.43 Briefly, purified recombinant human PSMA protein was incubated with each 

test compound in the presence   of   N-acetylaspartylglutamate   as the substrate, at 37 °C for 60 min. The reaction 

was then stopped by heating at 95 °C for 5 min and the resulting solution incubated with a solution of ortho-

phthaldialdehyde (OPA, 15 mM) in OPA buffer (0.2 M NaOH and 0.1% (v/v) β-mercaptoethanol) for 10 min at 

room temperature. Aliquots were then assessed for fluorescence in a microplate reader using an excitation 

wavelength of 330 nm and an absorption wavelength of 450 nm, to determine the amount of free glutamate present. 

The binding affinity of each test compound to purified recombinant human PSMA was expressed as its 50% 

inhibitory concentration (IC50 value) in the assay (IC50 values were calculated using GraphPad Prism 5, see ESI† 

for full experimental detail). 

Compound IC50 ± s.e /nM   

FDA-PEG-GUL 16 98.6 ± 22.5  

2-PMPA 18 ± 5.0  

   

Table 1 IC50 values of selected PSMA analogues were measured as the ability to compete with a standard glutamate containing peptide (Ac-

Asp-Glu) as substrate for purified recombinant human PSMA enzyme. Results are the average ± standard error (s.e.) from three independent 
experiments, each performed in triplicate. 

 



FDA-PEG-GUL 16 and 2-PMPA were both tested in the assay. As expected,44 2-PMPA was a potent PSMA inhibitor, 

exhibiting an IC50 value of 18 nM in this assay (Table 1). The fluorine containing 16 was also a similarly good 

PSMA inhibitor, with an IC50 value in the nanomolar range. These data establish that 16 binds PMSA with high 

efficiency.  

Radiosynthesis of [18F]FDA-PEG-GUL ([18F]16) 

A protocol was developed to enzymatically radiolabel the prospective radiotracer [18F]FDA-PEG-GUL ([18F]16). 

Briefly, for hot labelling experiments using the fluorinase enzyme, [18F] fluoride was generated in an [18OH2] 

aqueous solution at GBq levels. An aliquot of this (MBq of [18F]fluoride, picomolar levels) was then added to a buffered 

solution ( pH 7.8) of 15, L-SeMet   and   a   considerable   excess   of   fluorinase   enzyme (micromolar, see Experimental 

section), and the reaction mixture was incubated at 37 °C. For this protocol, the stoichiometry of the radiolabelling 

biotransformation reaction is dramatically reversed with respect to the non-radioactive trans- halogenation reaction 

described above. Preliminary radiolabelling experiments showed that 30–45 min was the optimal reaction time for 

this biotransformation, at which point the enzyme was cleanly heat-precipitated, diluted and removed by 

centrifugation. The lysate was then subjected to semi-prep HPLC and the peak corresponding to [18F]16 was 

collected (free of 15, see   Fig.   S26–27†).   The   collected fraction was diluted with water and loaded onto a C18 

reverse phase cartridge and after a wash with water, [18F]16 was eluted from the cartridge with EtOH. The purity 

of [18F]16 was determined by analytical radio-HPLC (see Fig. 3), and its identity further confirmed by examination 

of a sample spiked with FDA-PEG-GUL16 (see Fig. S27a†). A typical procedure from [18F]fluoride (572 MBq) to 

[18F]16 (19.2 MBq) elution in EtOH took 1.5 h, and afforded  a  radiochemical  yield  of  ∼3.4%  (decay  uncorrected) 

and a radiochemical purity of >99%. This yield is in line with that reported for other fluorinase catalysed 

radiolabelling.  The success of this protocol, along with the robust nature of the fluorinase, allows for its further 

development and the potential incorporation of immobilised enzyme.  In such an instance, the methodology could 

be then integrated into an automated system which utilises greater amounts  of  [18F]fluoride  to increase the scale 

and yields of [18F]16 production. 

 

Fig. 3. Reaction scheme of the fluorinase catalysed transhalogenation of 16 to [18F]FDA-PEG-GUL ([18F]16). Analytical HPLC radio trace of 

[18F]FDA-PEG-GUL ([18F]16) after purification.  

 

 

Specific cell binding of [18F]FDA-PEG-GUL 16 to PSMA expressing cancer cells 



The binding of [18F]16 to PSMA on the surface of cancer cells was evaluated in LNCaP (which are well known to 

express high levels of PSMA) and PC3 (which do not express PSMA) cell lines.45 Western blotting analysis of 

cell lysates confirmed that the LNCaP cells used in this study expressed PSMA, whereas the PC3 cells did not (data 

not shown). A high level of [18F]16 binding was observed in LNCaP cells (Fig. 4), but not in PC3 cells. 2-PMPA 

(10 µM) was included in binding assays to permit identification of specific radiotracer binding to PSMA from 

non-specific binding. Inclusion of 2-PMPA decreased [18F]16 binding to LNCaP cells by approximately 95% but 

had no effect on radiotracer binding to PC3 cells (Fig. 4). These data are consistent with the non-radiolabelled 

inhibition assay and provide strong support that [18F]16 binds selectively to PMSA in prostate cancer cells. 

 

Fig.4  Bound [18F]16 [cpm mg-1] protein per MBq radiotracer. 

 

Conclusions  

This study established FDA-PEG-GUL 16 as a new low molecular weight PSMA-targeting ligand, which was 

generated using the fluorinase enzyme by biotransformation from its chlorinated precursor ClDA-PEG-GUL 15, 

further extending the repertoire of substrates accepted by this enzyme. FDA-PEG-GUL 16 was utilised for in vitro 

studies and found to be a potent inhibitor of the PSMA protein. As part of this study, a protocol was developed to 

allow for the enzymatic production of [18F]FDA-PEG-GUL ([18F]16), making it a potential new PET radiotracer tracer 

for imaging prostate cancer. Candidate tracer [18F]16 was evaluated in a cell-based assays and demonstrated to 

selectively bind to cells expressing PSMA. 

Experimental 

Non-radioactive transhalogenation assay 

In a total reaction volume of 1000 μL (in 50 mM phosphate buffer, at pH 7.8), recombinant  fluorinase  (0.8  mg  

mL−1) was incubated with ClDA-PEG-GUL 15  (0.08 mM), L-Se-Met (0.075 mM) and KF (50 mM) at 37 °C. Samples 

(50 μL) were periodically  removed,  the  protein  precipitated  by  heating  at 95  °C  for  5  min, before  being  

clarified by  centrifugation (13 000 rpm, 10 min). Samples of the supernatant (40 μL) were removed for analysis 

by HPLC, which was performed on a Shimadzu Prominence system using a Kinetix 5 μm XB-C18 100A (150 

mm × 4.6 mm) column and a guard cartridge. Mobile phase: 0.05% TFA in water (solvent A) and 0.05% TFA in 

MeCN (solvent B); linear gradient:  15% solvent B to 95% solvent B over 25 min, 95% for 5 min, and back to 

15% B for 10 min to re-equilibrate the column. Flow rate:  1 mL min−1; detection:  254 nm; injection volume: 

40 μL. 

18F-labelling of 15 to [18F]16 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

LNCap PC3

R
ad

io
tr

ac
e

r 
b

o
u

n
d

 (
cp

m
/m

g 
p

ro
te

in
/M

B
q

 t
ra

ce
r

Cell line

No blocker

10uM PMPA



A typical 18F labelling experiment of 15   was performed as follows: L-selenomethionine (40 μL of  a  2 mM 

solution in water) and compound 15 (0.2 mg in 40 μL of water) were added successively to an Eppendorf 

tube containing a solution of fluorinase (5 mg in 50 mm phosphate buffer, 80 μL). The contents were mixed well 

with a pipette and to this mixture was added [18F]fluoride  in  [18O]water  (572  MBq,  80  μL),  making a total 

volume  of  240  μL.  The contents were again well mixed and incubated at 37 °C for 45 min. After this time, the 

reaction was stopped, the mixture denatured by heating at 95 °C for 5 min and water (250 μL) added before being 

clarified by centrifugation (13 000 rpm, corresponding to 16 060g, 5 min). The supernatant was injected into a 

Shimadzu Prominence HPLC system equipped with a quaternary pump, a degasser, a flow cell detector and a 

diode array   detector using a Phenomenex Kingsorb C 18 (250 × 10.00 mm, 5 μm) column and a guard cartridge.  

Mobile phase:  0.05% TFA in water (solvent A) and 0 .0 5 % TFA in MeCN (solvent B); linear gradient: 15% solvent 

B to 38% solvent B over 16 min, 95% for 5 min, and back to 15% B for 10 min to re-equilibrate the column.  

Flow rate: 2.5 mL min−1.  The radioactive fraction corresponding to the reference of [18F]16 was collected, 

diluted with water (50 mL) and loaded onto a pre-activated Waters Oasis HLB® Cartridge (conditioned with 2 

mL EtOH and 5 mL w a t e r ). The cartridge was washed with 20 mL of water and the desired product   was   

collected by eluting with  1   mL  of ethanol, to give 19.2 MBq (3.4%, decay uncorrected) of >99% pure product 

of [18F]16. 
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