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Abstract. In the last few decades extensive studies focusing on both 
qualitative and quantitative descriptions of the Reynolds stress within 
aquatic canopies have been carried out. Although these studies have 
advanced our knowledge of mechanics of flow-vegetation interactions, 
further research in this area is still required. In particular, there is a need for 
development of new simple physically-based relationships describing the 
Reynolds stress profiles within submerged vegetation canopies. This paper 
addresses this issue and proposes a physically justified formulation for the 
Reynolds stress profile within the canopy region. 

1. Introduction
Many phenomena in open-channel flows such as flow resistance, transport of pollutants, 
deposition and erosion of sediments are directly influenced by the primary Reynolds stress. 
Although for flows over smooth and sedimentary rough beds extensive data on Reynolds 
stress are already available, for vegetated flows such information remains limited, especially 
for the region within vegetation canopies. The available data suggest that the Reynolds stress 
in vegetated flows peaks around the top of the canopy and then it rapidly decays downward 
(e.g., Nepf and Vivoni, 2000; Poggi et al., 2004). The sharp decrease in the Reynolds stress 
within the canopy region is mainly caused by the drag due to vegetation elements. To predict 
vertical profiles of the Reynolds stress for flows with submerged vegetation researchers 
proposed a range of models (e.g., Lopez and Garcia, 2001). Although the past studies have 
provided some insights into the Reynolds stress distribution for aquatic flows, further 
research is still required. In particular, development of simple physically-based relationships 
for the Reynolds stress profiles within the canopy region is needed, as it is important for 
solving a range of practical problems, e.g., characterization of hydraulic habitat, 
sedimentation and passive substance transport within canopies. The goal of this paper, 
therefore, is to develop a physically justified relationship of the Reynolds stress distribution 
within a submerged vegetation canopy. In the following section, a relationship describing the 
vertical profile of the Reynolds stress within the canopy is derived first. This is followed by 
a description of experimental data and methods. Then, the proposed formulation is tested 
using extensive laboratory experiments and the effects of flow and vegetation characteristics 
on the driving parameters are identified.
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2. Relationship for the Reynolds stress distribution within the 
vegetation canopy
In general, the vertical distribution of the Reynolds stress in open-channel flows with 
vegetated beds can be complex, especially in the near bed region where the time-averaged 
flow is spatially heterogeneous. Hence, the use of the time-(ensemble-) averaged 
hydrodynamic equations for this region is not practicable due to high spatial variability of 
flow velocities and turbulence characteristics. To resolve this issue, researchers use the 
double-averaged (in both time and space domains) Navier-Stokes (DANS) equations that 
explicitly contain important additional terms such as form-induced stresses and viscous and 
form drag terms for the flow region within the canopy (e.g., Nikora et al., 2007). Considering 
steady, uniform 2D open-channel flow within the vegetation canopy and neglecting effects 
of vegetation porosity the DANS momentum equation for the longitudinal velocity 
component can be presented as:

1
0 e Dx

d
gS F

dz

τ

ρ
= + −

(1)

where eS is the energy slope, which for 2D uniform flow is equal to the bed slope bS ; z is 

the vertical coordinate (with origin at a channel bed); Dx Vx PxF F F= + , 
VxF and 

PxF are the total 
drag, the viscous and form (pressure) drag forces per unit fluid mass, respectively; and τ is 
the total fluid stress ( i.e., the total vertical momentum flux / ' ' /u w uw u zτ ρ ν= − − + ∂ ∂ 

, 

where the first term on the right-hand side of /τ ρ is the spatially-averaged Reynolds stress, 
the second term is the form-induced (also known as dispersive) stress, and the third term is 
the double-averaged viscous stress). It is worth noting, that in high-Reynolds number open-
channel flows with submerged high-density vegetation the main contributor to the total 
vertical momentum flux /τ ρ is ' 'u w− (Poggi et al., 2004). Poggi et al. (2004) found that 

for the dense canopies contribution of uw−   to /τ ρ is less than 5%. Furthermore, above 

the viscous sub-layer /u zν∂ ∂ is negligible compared to ' 'u w− .

The total drag force DxF in (1) is commonly parameterized using a relationship: 
20.5Dx DF C a u= (2) 

where DC is the drag coefficient; a is vegetation density, i.e., the total frontal vegetation 

area per unit fluid volume; and u is the local double-averaged velocity.
Equation (2) shows that for the homogeneous vegetation with height-independent density

a (i.e., a = const), the drag force DxF may change with the vertical coordinate z only if DC

and/or u change with z . Considering the findings of the experimental studies of vertical 
profiles of DC and u (Dunn et al., 1996; Nepf and Vivoni, 2000), we can subdivide the 
vegetation canopy into two regions: the lower canopy (LC) and the upper canopy (UC) (Fig.
1). Within the LC region, the flow is mainly controlled by the balance of the gravity and total 
drag forces, while the total vertical momentum flux being negligible (Fig. 1). In this canopy 
region, the flow velocity and drag coefficient profiles are approximately constant. Thus, from 
Eq. (1) it follows that within the LC region the total drag force is approximately constant 

Dx LC bF F gS= = . In the UC, the total vertical momentum flux /τ ρ significantly contributes 
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a (i.e., a = const), the drag force DxF may change with the vertical coordinate z only if DC

and/or u change with z . Considering the findings of the experimental studies of vertical 
profiles of DC and u (Dunn et al., 1996; Nepf and Vivoni, 2000), we can subdivide the 
vegetation canopy into two regions: the lower canopy (LC) and the upper canopy (UC) (Fig.
1). Within the LC region, the flow is mainly controlled by the balance of the gravity and total 
drag forces, while the total vertical momentum flux being negligible (Fig. 1). In this canopy 
region, the flow velocity and drag coefficient profiles are approximately constant. Thus, from 
Eq. (1) it follows that within the LC region the total drag force is approximately constant 

Dx LC bF F gS= = . In the UC, the total vertical momentum flux /τ ρ significantly contributes 

to the momentum balance, as schematically shown in Fig. 1. Within this region, the mean 
velocity increases with increase in z , resulting in decreasing DC following a relationship 

DC u β−
 , where for submerged flexible vegetation 2β ≈ (Dunn et al., 1996; Nepf and 

Vivoni, 2000). Hence, within the UC region we have 2

DC u ≈ const and, therefore, the 

total drag force Dx UCF F= is also likely to be approximately constant, similar to the situation 

in the LC region. It is worth mentioning that an assumption 2

DC u ≈ const is supported by 
experimental data for the homogeneous flexible vegetation with height-independent density
(Dunn et al., 1996; Nepf and Vivoni, 2000). However, further research is required to verify 
applicability of this assumption for the nonhomogeneous flexible vegetation, e.g., with 
branched morphology.

Fig. 1. Conceptual representation of the vertical profiles of the Reynolds stress, drag coefficient, and 
total drag force within the vegetation canopy.

Thus, assuming that the drag force within the canopy is approximately constant after 
integration of Eq. (1) we obtain a linear relationship for the total fluid stress within the UC 
region:

( ) / ( )Dx bz F gS z Cτ ρ = − + (3)

At z hτ= , where the total vertical momentum flux ( ) / 0hττ ρ = (Fig. 1), the integration 

constant is equal to ( )Dx bC F gS hτ= − − . The elevation z hτ= subdivides the vegetation 
canopy into the LC and UC regions with different momentum transport and drag-forming 
mechanisms. In the UC, the momentum transport is dominated by the total vertical 
momentum flux, while in the LC it is dominated by the gravity effect, as was first pointed 
out by Nepf and Vivoni (2000). Parameters hτ and h ch h

τ τδ = − are the thicknesses of the 
UC and LC regions, respectively; they may be considered as integral measures of the flow-
vegetation interactions. Finally, substituting ( )Dx bC F gS hτ= − − into (3) the relationship for 
the distribution of the total fluid stress within a submerged vegetation canopy can be 
summarized as:

   ( ) / ( )( )   for  
( ) /

   ( ) / 0                               for
UC Dx b

LC

z F gS z h z h
z

z z h
τ τ

τ

τ ρ
τ ρ

τ ρ

= − − ≥

= <





(4)

Considerations presented above allow us to obtain the ratio of the drag force UCF in the 

UC to the drag force LCF in the LC, i.e., /UC LCF F . Expressing each term of Eq. (1)
individually for the LC and UC regions (Fig. 1) and integrating it one obtains: 

/ ( ) 0
cb c h UC c LCgS h F h h F hτ ττ ρ+ − − − = (5)
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where 
chτ is the total fluid stress at the top of the canopy. Recalling that the drag force in the 

LC is LC bF gS= (Fig. 1) and rearranging (5), we obtain:

/
1

( )
chUC

LC b c

F

F gS h hτ

τ ρ
= +

−

(6)

The ratio of drag forces (6) is a measure of the relative contributions of the UC and LC 
regions to the total momentum sink (drag) within the entire vegetation canopy. This ratio is 
likely to be controlled by the flow and vegetation characteristics. For steady and uniform 2D 
flow /

ch b ogS Hτ ρ = ( oH is the depth of the overflow above the vegetation canopy). 
Substituting it into Eq. (6) we derive:

1 1

1 1UC c

LC c c c c

F h h hH H

F h h h h h h h
τ τ

τ τ τ

− −

= − = − − −
− −

   
   
   

(7)

Equation (7) shows that the dependence of the ratio of drag forces on the relative 
submergence is in general non-linear. For emergent conditions, i.e., / 1cH h = and 

/ 1ch hτ = , the ratio / 0UC LCF F = , implying that there is no UC region. When / cH h → ∞ , 
e.g., for terrestrial canopies, the LC region becomes negligible. Previous studies have shown 
that for flexible vegetation / ch hτ reaches a constant value at / 2cH h ≈ (Nepf and Vivoni, 

2000) while for rigid vegetation it becomes constant at / 4cH h ≈ (Nezu and Sanjou, 2008). 

Thus, for a relatively high submergence (e.g., / 2 4cH h ≥ − ) the ratio / ch hτ is 
approximately constant and Eq. (7) becomes linear, i.e.:

/ /UC LC cb cF F H h= + (8)

where ( ) 11 ( / )c constb h hτ

−= − and ( ) 11 / ( / ) 1c constc h hτ

−
= − − are constants, as ( / )c consth hτ ≈

const. Further research is needed to develop predictive methods to assess the key parameters 
hτ , or b and c in (8) for potential use in applications. These parameters are likely to be 
dependent on vegetation properties, e.g., stem/plant morphology. 

Thus, using the DANS momentum equation for steady and uniform 2D open-channel 
flow within the vegetation canopy, a simple relationship (4) for the total fluid stress and an 
expression for the drag force ratio (7) are deduced. To test proposed relationships, an 
extensive programme of laboratory experiments was carried out. The details on the 
experimental data and their analysis are presented in the following section.

3. Experiments and methods

3.1. Experimental set-up

Laboratory experiments were carried out in a 12.5 m long and B = 0.3 m wide rectangular 
glass-sided tilting flume (Fig. 2). An adjustable weir located at the discharge tank was used 
to minimize backwater effects and extend the section of (quasi-)uniform flow. The water 
discharge Q was measured by an electromagnetic flow meter Sitrans MAG 5100 W. Ten 
piezometric intakes tapped along the centre line of the flume bed were used to measure water 
surface slope. The water depth H and deflected canopy height ch were measured at ten 
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3. Experiments and methods

3.1. Experimental set-up

Laboratory experiments were carried out in a 12.5 m long and B = 0.3 m wide rectangular 
glass-sided tilting flume (Fig. 2). An adjustable weir located at the discharge tank was used 
to minimize backwater effects and extend the section of (quasi-)uniform flow. The water 
discharge Q was measured by an electromagnetic flow meter Sitrans MAG 5100 W. Ten 
piezometric intakes tapped along the centre line of the flume bed were used to measure water 
surface slope. The water depth H and deflected canopy height ch were measured at ten 

evenly-spaced cross-sections along the flume using decimal rulers glued to the glass side wall 
of the flume. 

A three-component Nortek down-looking ADV was used to measure instantaneous 
velocities Fig. 2. A sampling duration of 120 s, sampling frequency of 25 Hz, and standard 
ADV measurement volume of 0.25 cm³ were used. To conduct laboratory experiments, two 
types of artificial flexible garden grasses, i.e., EasyPlants (EP) and EverGreens (EG), have 
been selected (Fig. 2 and Table 1). The stems are arranged as groups of uniformly distributed 
plants weaved to a thin black plastic base (Fig. 2c). Each plant consisted of exactly 16 for 
EP100/EP50 and on average 20.8 (varied from 19 to 24) for EG100 individual stems of
undeflected height 3.59 and 4.38 cm, respectively. The key parameters for both grasses are 
shown in Table 1, including porosity φ and the stem flexural rigidity J . 

Fig. 2. Experimental set-up: a) Armfield flume fully covered by artificial flexible grass EP100; b) a
measurement hole within the vegetation canopy EP100; c) side view of EP100.

The experiments involved measurements of the: (a) bulk hydraulic parameters (water 
depth, water surface level, flow rate, and channel bed slope); (b) vegetation characteristics 
(canopy height, density, geometrical and biomechanical characteristics, and porosity), and
(c) instantaneous velocities measured at a single location in the middle of the flume (along 
and across the channel). The ranges of the main parameters are shown in Table 1.

Table 1. Grass characteristics and ranges of experimental parameters.

Grass
ID

a φ J Exp. 
No bS

mU
Q

BH
= / cH h /B H

(1/m) (-) (Nm²) (%) (m/s) (-) (-)

EG100 372 0.98 42.29 E-07 32
0.05 0.15 3.00 0.71
1.00 0.85 9.72 2.30

EP100 268 0.97 7.73  E-07 31
0.05 0.17 3.49 0.75
0.40 0.57 11.81 2.52

EP50 134 0.99 7.73  E-07 29
0.05 0.17 3.64 0.74
0.40 0.56 12.66 2.38

3.2. Data analysis 

In the proposed relationship (4), the total fluid stress is approximately equal to the Reynolds 
stress, i.e., ( ) / ' ' ( )z u w zτ ρ ≈ − , since contributions from both form-induced (Poggi et al., 

2004) and viscous stresses are negligible. Therefore (4) can serve as a relationship of the 
Reynolds stress distribution within the canopy. In the present study, the primary Reynolds 
stress is determined as:

( )1/ 22 2

' ' ( ) ' ' ( )verRS u w z v w z= +
(9)

cm

b)

c)

Flow
direction

a)

'
x
u u u= +

'
z
w w w= +

'
y
v v v= +
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where the second term on the right-hand side of (9) is used to eliminate potential probe 
misalignment effects in the computation of the primary Reynolds stress. 

The parameters of Eq. (4) for the UC region, i.e., the gradient ( )UC bA F gS= − and 

intercept ( )UC bC F gS h Ahτ τ= − − = − , are found by best fitting the measured profiles (9) to 

Eq. (4) using the experimental data within the range / 0.55 0.9cz h = − . This range has been 
determined by visual assessment of the measured vertical profiles of the Reynolds stress. 
Then, using the obtained parameters A and C , the constant drag force UCF for the UC and 

the level hτ of the negligible vertical turbulent transport of momentum are determined as:

UC bF A gS= + (10)

hτ = / ( ) /UC bC F gS C A− = −− (11)

To compare estimates of hτ from (11) with the penetration depth 
ph proposed in Nepf 

and Vivoni (2000), their “10%-technique” was applied to the vertical profiles of Reynolds 
stress (9). Specifically, the penetration depth is estimated as the distance from the channel 
bed to an elevation where the Reynolds stress decays to 10% of its maximum value. 

4. Tests of the Reynolds stress relationship
The Reynolds stress relationship (4) is tested using the experimental data for all three data 
sets described in section 3.1. The data demonstrate that Eq. (4) approximates the Reynolds 
stress distribution within the upper canopy very well. This implies that the parameters A
and C in (10) and (11) can be used to estimate the upper canopy drag force UCF and the 
depth of negligible vertical turbulent transport of momentum hτ . 

The depth of negligible vertical turbulent transport of momentum hτ is compared in Fig.
3 to the penetration depth estimated using Nepf and Vivoni’s (2000) 10%-technique. As 
expected, the data show that / ch hτ values are approximately 10% smaller than /p ch h . 

Fig. 3. Correlation of / ch hτ with the penetration depth /p ch h estimated using Nepf and Vivoni’s 

(2000) 10%-technique. Solid line denotes y x= relationship. 

Fig. 4a demonstrates the dependence of /UC LCF F on relative flow submergence / cH h . 

The data show that with increase in / cH h the ratio of drag forces /UC LCF F increases. For 

an experimental range of / cH h , covered in the present study, i.e., / 3 12.7cH h = − , the 
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Fig. 4a demonstrates the dependence of /UC LCF F on relative flow submergence / cH h . 

The data show that with increase in / cH h the ratio of drag forces /UC LCF F increases. For 

an experimental range of / cH h , covered in the present study, i.e., / 3 12.7cH h = − , the 

following ranges of /UC LCF F have been obtained: 3.1−13.6 for EG100, 3.1−12.2 for EP100 
and 3.7−11.8 for EP50. Fig. 4a shows that for a given value of relative submergence, the ratio 
of drag forces /UC LCF F increases with increase in vegetation density. In general, the drag 

force ratio /UC LCF F may be comparable to the ratio of the turbulent stress gradient 

' ' /u w z∂ − ∂ to the pressure gradient /g H x∂ ∂ (or to the gradient of the channel bed 

/bz x∂ ∂ for uniform flow, where bz is the bed elevation), proposed in Nepf and Vivoni 

(2000). Indeed, taking into account that /b b LCg z x gS F∂ ∂ = = and considering the flow 
within the UC region, Eq. (1) can be re-written as:

1 /
1UC

LC LC

F d dz

F F

τ

ρ
− =

(12)

The right-hand term in (12) is equivalent to the ratio ( ) ( )' ' / / /bu w z g z x∂ − ∂ ∂ ∂ . In 

agreement with (12), the Nepf and Vivoni (2000) data in Fig. 4a, which covers flexible low-
density vegetation with 0.88cah = , are consistent with the drag force ratio /UC LCF F
values. 

Fig. 4. Dependence of /UC LCF F (a) and / ch hτ
(b) on / cH h . Black lines of different styles in 

plot (a) show tests of Eq. (8) for a range of / ch hτ values. Symbols as in Fig. 3.

Fig. 4a also serves as a test of Eq. (7), covering a range of / ch hτ from 0 (the turbulent 
stress penetrates to the bed) to 0.5 (the total vertical momentum flux is fully absorbed within 
the upper half of the canopy). The experimental data demonstrate that Eq. (7) approximates 
the drag force ratio fairly well. For example, the EG100 data points closely collapse around 
a straight theoretical line for / 0.5ch hτ = , consistent with Eq. (7) and the average value of 
the unconfined limit of / ch hτ

= 0.53 (Fig. 4b). A good agreement between the experimental 
data and Eq. (7) suggests that when the penetration depth reaches its unconfined limit, i.e., 
becomes independent of relative submergence and only depends on vegetation parameters, 
the dependence of /UC LCF F on / cH h can be described by a simple linear relationship (8).

The dependence of / ch hτ
on the relative submergence is illustrated in Fig. 4b. The data 

show that for a range of / cH h , investigated in the present study, the ratio / ch hτ
remains 

approximately constant with increase in the relative submergence, consistent with 
expectations. Fig. 4b also shows that for a given / cH h value, the ratio / ch hτ

increases with 
increase in the vegetation density. Furthermore, for given values of both the vegetation 
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density and relative submergence, increasing bed slope leads to decrease in / ch hτ
, as has 

already been seen in Fig. 3. 
Unfortunately, the present study does not cover / 3cH h < . However, based on the results 

of Nepf and Vivoni (2000) who demonstrated that the relative penetration depth decreased 
from around 1 for emergent vegetation, i.e., / 1cH h = , to an unconfined limit at / 2cH h ≈

(their data are also shown in Fig. 4b), it is reasonable to assume that / ch hτ should be 
decreasing within the range / 1 3cH h = − . This assumption may be further supported by the 
results of Nezu and Sanjou (2008) who also found that the relative penetration depth reached 
its unconfined limit, but at much higher value of the flow submergence / 4cH h ≈ . The noted 
discrepancy between Nezu and Sanjou (2008) and Nepf and Vivoni (2000) data most likely 
relates to the significant differences in plant rigidities (flexible in Nepf and Vivoni (2000) 
versus rigid in Nezu and Sanjou (2008)), morphologies, and densities. Potential effects of 
secondary currents should also not be dismissed. 

5. CONCLUSIONS
A new physically-based relationship describing the Reynolds stress profiles within the 
submerged vegetation canopy is proposed. The relationship is deduced using the DANS 
momentum equation for steady and uniform 2D open-channel flow within the vegetation 
canopy. The key parameter of the proposed relationship hτ subdivides the canopy into the 
upper and lower canopy regions with different momentum transport and drag-forming 
mechanisms. Within the upper canopy the momentum transport is dominated by the total 
vertical momentum flux, while in the lower canopy part it is dominated by the gravity action. 
The ratio of the drag forces acting in the upper and lower canopy regions is approximated by 
a simple non-linear relationship that links this ratio to the relative penetration depth / / ch hτ

and flow submergence / cH h . When / ch hτ approaches a constant value above some 
threshold flow submergence the relationship / ( / )UC LC cF F f H h= becomes linear. The drag 
force ratio /UC LCF F may be interpreted as a measure of the relative contributions of the upper 
and lower canopy regions to the total momentum sink (drag) occurring within the entire 
vegetation layer. The experimental data support the proposed relationship fairly well, 
consistent with the assumption that the total drag within the submerged vegetation canopy is 
approximately constant within both the upper and lower canopy regions. 
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