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Abstract

Predicting the permeability of coalbed methane (CBM) reservoirs is significant for coalbed meth-

ane exploration and coalbed methane development. In this work, a new fracture permeability

model of coalbed methane reservoir with high-dip angle in the southern Junggar Basin, NW China

is established based on the Poiseuille and Darcy laws. The fracture porosity in coalbed methane

reservoir is calculated by applying 3D finite element method. The formation cementing index m

was calculated by combining fractal theory and the data of acoustic logging, compensated neutron

logging, and density logging with the space method. Based on Poiseuille and Darcy laws, the

curvature s is introduced to derive this new method for obtaining the permeability of the original

fractures in coalbed methane reservoirs. Moreover, this newly established permeability model is

compared with the permeability from the well testing, which shows a very good correlation

between them. This model comprehensively includes the effects of fracture porosity, reservoir

pore structure, and development conditions on fracture permeability. Finally, the permeability

prediction of coalbed methane reservoir with high-dip angle in the southern Junggar Basin, NW

China is conducted, which correlates very well with the well test permeability (R2¼ 0.83).

Therefore, this model can be used to accurately predict the coalbed methane reservoir perme-

ability of low rank coals in the southern Junggar Basin. The permeability of the No.43 coalbed

methane reservoir for the coalbed methane wells without well testing data is evaluated, which

ranges from 0.000251 to 0.379632 mD. This significant change in permeability may indicate a

complex coalbed methane reservoir structure in the southern Junggar Basin, NW China.

1School of Energy Resources, China University of Geosciences, Beijing, China
2Coal Reservoir Laboratory of National Engineering Research Center of CBM Development & Utilization, School of

Energy Resources, China University of Geosciences, Beijing, China
3School of Engineering, Fraser Noble Building, King’s College, University of Aberdeen, Aberdeen, UK

Corresponding author:

Yidong Cai, China University of Geosciences, No.29 Xueyuan Road, Haidian District, Beijing 100083, China.

Email: yidong.cai@cugb.edu.cn

Energy Exploration & Exploitation

2019, Vol. 37(1) 125–143

! The Author(s) 2018

DOI: 10.1177/0144598718807552

journals.sagepub.com/home/eea

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution

4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and

distribution of the work without further permission provided the original work is attributed as specified on the SAGE and

Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

http://orcid.org/0000-0002-4915-5615
mailto:yidong.cai@cugb.edu.cn
http://dx.doi.org/10.1177/0144598718807552
journals.sagepub.com/home/eea
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0144598718807552&domain=pdf&date_stamp=2018-10-25


Keywords

Permeability model, CBM reservoir, fractal dimension, logging data, southern Junggar Basin

Introduction

Coalbed methane (CBM) is favorable for energy support, environmental protection, and
mining safety (Cai et al., 2011; Karacan et al., 2008, 2011). The SJB covers an area of
230� 50 km2, which located at the northern Xinjiang Uygur Autonomous Region, NW
China. The major coal-bearing intervals are the Badaowan Formation (J1b) and the
Xishanyao Formation (J2x). The vitrinitre reflectance is of 0.38%–0.7% Ro,m, which belongs
to the low-rank coal. The CBM reservoir properties are relatively poor, with permeability of
0.002–1.220 mD and porosity of 0.56%–9.73% (Chen et al., 2006, 2017; Fu et al., 2016; Li
et al., 2017; Yin, 2009). Petrophysical properties including permeability, cementation factor,
and porosity of CBM reservoirs have crucial impacts on CBM exploration and development
(Li, 2016; Clarkson et al., 2011). Permeability of CBM reservoir is one of the key factors for
evaluating CBM productivity. Many literatures related to permeability mainly emphasize the
primary CBM reservoir permeability (Espinoza et al., 2014; Shovkun and Espinoza, 2017),
dynamic permeability (Connell et al., 2016; Espinoza et al., 2015; Gentzis et al., 2009) and the
relative gas/water permeability during gas production (Clarkson et al., 2011; Connell, 2016;
Gensterblum et al., 2014).

Laboratory measurements, numerical simulation by production data, well injection/fall-
off tests, and geophysical logging methods can be used to evaluate the CBM reservoir
permeability (Chatterjee and Paul, 2013; Mitra et al., 2012). The well logging may provide
an economic and convenient way to acquire the CBM reservoir permeability (Saboorian
et al., 2015; Zhou and Ya, 2014). However, a reliable permeability estimation model is firstly
required to accurately evaluate the CBM reservoir permeability by the geophysical logging
data. Multiple models of CBM reservoir permeability were established by using the well
logging data of resistivity, density, gamma, and acoustic time (Chatterjee and Pal, 2010;
Chatterjee and Paul, 2013; Saboorian et al., 2015; Yang et al., 2006; Zhou and Ya, 2014).
However, these models have limitations for the specific high-dip CBM reservoir in the
Hedong area of the SJB. Coal, as a typical dual porous material, includes matrix pores
and fractures (Cai et al., 2013). Fracture performance determines the initial CBM reservoir
permeability (Connell et al., 2016). Fracture permeability correlates with compensated den-
sity logging, shallow lateral resistivity logging (LLS), deep lateral resistivity logging (LLD),
microsphere focusing logging data (MSFL), and the conductivity difference values of
MSFL-LLD, MSFL-LLS, and LLS-LLD with the use of cluster and correlation analysis.
The dual laterolog resistivity logging (LLS and LLD) is the well-established method to
evaluate fracture permeability (Saboorian et al., 2015).

Many fracture permeability models were established with different fracture performance
(Li et al., 2011), for instance, the three ideal fracture models of sheet, matchstick, and cube
shape. A 3D finite element method to establish a fracture porosity calculation model has
been discussed by many scholars (Cai et al., 2014; Martin and Malone, 2017). However, the
general model to accurately describe the fracture complexity is difficult. Additionally, the
fractures in the high rank coals (Ro,m> 2.5%) may be compacted by the overlying compres-
sive stress. The fracture width can effectively constrain the CBM reservoir permeability
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(Levine, 1996). Recently, the fractal theory was applied to evaluate the fracture complexity

through the analysis of well logging data (Kundu et al., 2016; Masoumi et al., 2017; Ruspini

et al., 2017; Yan et al., 2017; Zheng and Li, 2015).
In this paper, a new model for fracture permeability in a CBM reservoir will be estab-

lished with the combination of the m value (formation cementation index) and the fracture

porosity and the total porosity of the coal reservoir through the 3D finite element method.

Then, the cementation index m value of CBM reservoir was detailed evaluated by the fractal

dimensions from the well logging of acoustic logging (AC), compensated neutron logging

(CNL), and density logging (DEN). Finally, the predicted permeability will calculated with

the established fracture permeability model, which compares with the permeability results

from the actual well test.

Geological background

The study area is located in the eastern part of the SJB. The southern Junggar Basin (SJB)

covers an area of �30,000 km2, which belongs to the foothills of the northern Tianshan

Mountains and the eastern uplift. Due to the Himalayan movement, a series of large-scale

thrust faults and a large number of pressure-torsional geological structures were developed.

With the formation of large-scale fault structures, many secondary faults have been devel-

oped in the study area. Along the margin of the SJB, the anticline belts are developed from

north to south, namely the Hutubi-Anji-West lake anticlines, the Huo-Ma-Tep backslope,

and the piedmont belt. The anticline structures are closely associated with CBM exploration

in the SJB, which include the Fukang, Toutun River, Changji, Karaza, Qigu, and

Nankangkang anticlines. The structure of coal-bearing strata in the east is more complex

than in the west (Chen et al., 2017). The high-dip anticline and fault structures developed in

the Hedong area of the SJB, which provides favorable conditions for the CBM accumula-

tion locally. This study is mainly aimed at the coal seams of No.43 and No.45 of Xishanyao

Formation in SJB, and explores the original fracture permeability model of the main coal

seam (Figure 1).

Establishment of high-dip fracture permeability model

Model derivation

In this work, fluid flow in a complex fracture in real CBM reservoir is assumed to be

equivalent to fluid flow in a single fracture (Figure 2). The CBM reservoir is set to be a

cube with side length L¼ 1, the fracture length La and the fracture aperture b. The inlet

pressure of the fluid through the fracture is p1, and the outlet pressure is p2.
Generally, the fluid flow in the fractures of CBM reservoirs satisfies the Darcy’s law

Q ¼ Ak p1� p2ð Þ
lL

(1)

where p1 and p2 are the pressures at the inlet and outlet of the fluid; A is the cross-sectional

area of the coal; L is the model length of the coal; l is the viscosity of the fluid; Q is the

flow rate and K is fracture permeability.
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According to Poiseuille’s law, the flow of fluid through a single fracture is

Q ¼b3La p1� p2ð Þ
12lL

(2)

where b is the fracture aperture; La is the distance the fluid flows.
Substituting equation (2) into equation (1), the fracture permeability can be rewritten as

k ¼ b3La

12A
(3)

Figure 1. (a) Location map of study areas in the Junggar Basin, (b) structure outline map of Urumqi
Hedong, stratigraphic distribution characteristics, (c) distribution of main coal seam, (d) column of a Jurassic
stratigraphic section in the southern Junggar Basin; the target strata of CBM in the Xishanyao Formation
strata are presented.
CBM: coalbed methane.
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When the flow path becomes tortuous, the flow through will be reduced. Therefore, the

influence of the fracture buckling on the flow process needs to be considered. The equation
(3) can be substituted as

k ¼ b3La

12A

1

s
(4)

where s is the tortuosity of coal fractures. s is defined as the square of the ratio of the travel
length La of the fluid flow through the length L of the actual CBM reservoir (Wyllie and

Spangler,1952). Here, s is described as

s ¼ La

L

� �2

(5)

Substituting equation (5) into equation (4), the fracture permeability can be replaced by

k ¼ b3

12La
(6)

Winsauer and Shearin (1952) established the relationship between s and formation

factor F

s ¼ Fuð Þ2 (7)

The formation factor F in CBM reservoirs can be described by Archie formula

F ¼ a

um
(8)

where a is the lithology index; m is the formation cementation index.

Figure 2. Schematic diagram of fracture system of coal reservoir.
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Substituting equations (7) and (8) into equation (4), La can be written as

La ¼ a � L
um�1

(9)

Assume that the fracture area of coal per unit volume is S

S ¼ pbLa (10)

The fracture porosity can be expressed as

u ¼ bS

2L3
(11)

Substituting equation (10) into equation (11), the fracture aperture can be written as

b ¼
ffiffiffiffiffiffiffiffiffiffiffi
2uL3

pLa

s
(12)

Substituting equations (9) and (12) into equation (6), the fracture permeability can be

rewritten as

k ¼
ffiffiffi
2

p
L

7
8u

5
2m�1

6p
3
2a

5
2

(13)

Here, the fracture model is presented in a cubic unit. Where the length and lithology

index values are constant, the fracture permeability expression can be simplified as

k ¼ cu
5
2m�1 (14)

where c is a constant.
This model firstly introduced the cementation index (m value) and fracture porosity into

the fracture permeability, which can finely describe the controlling factors of fracture

permeability.

Fracture porosity

The fracture porosity is very important to verify the accuracy of the model. This paper uses

3D finite element method combined with logging data to obtain fracture porosity of the

regional CBM reservoirs.

Fracture performance. The fracture dip states can be divided into low-dip fractures, medium

inclined fractures, and high-dip fractures using the deep lateral and shallow lateral
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logging data. The angle ranges are [0�, 50�], [50�, 74�], and [74�, 90�], respectively.

Y ¼ Rd�Rsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd�Rs

p
(15)

With reference to Figure 2 and equation (15), the relationship between Y and the angle of

inclination of the fracture can be determined (Table 1).
The effect of fracture dip on dual lateral log response through extensive data (Li et al.,

1996) has been summarized as shown in Figure 3. Ra is the apparent resistivity, A is the

fracture dip, and Por is the fracture porosity. For the CBM reservoirs in the SJB, the dual

lateral logging response is a positive difference in the high-angle fracture state.

Calculation of fracture porosity. When determining the dip angle belongs to a certain fracture

state, the approximate inversion formula of the dual lateral logging response is

rd ¼ ðd1 þ d2xÞ þ ðd3 þ d4xÞrb (16)

rs ¼ ðs1 þ s2xÞ þ ðs3 þ s4xÞrb (17)

Table 1. Fracture state and assignment of fracture state coefficient.

Value Status A1 A2 A3

Y> 0.1 High-dip fracture 8.522532 �8.242788 7.1236� 10�4

0< Y< 0.1 Medium inclined fracture �17.6332 20.36451 9.3177� 10�4

Y< 0 Low-dip fracture �0.992417 1.97247 3.18291� 10�4

Figure 3. Effect of fracture inclination on dual laterolog.
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x ¼ ufrm (18)

where rd, rs, rb, and rm represent the deep lateral conductivity, shallow lateral conductivity,

original reservoir conductivity, and mud conductivity, respectively; d1, d2, d3, d4, s1, s2, s3,

and s4 are the coefficients. Although the original reservoir resistivity is uncertain, for a

certain dip angle A reservoir resistivity should be a constant. Substituting equation (16)

into equation (17), the x can be rewritten as

x ¼ A1rs þ A2rd þ A3 (19)

where A1, A2, and A3 are the coefficients.
Based on the 3D finite element method, the values for different dip angles A1, A2, and A3

are presented as shown in Table 1.
First, we need to correct the mud resistivity in the formation. As the burial depth of the

coal seam increases, the temperature rises and the resistivity of the drilling fluid decreases.

Take Well-7 as an example, the resistivity of drilling fluid configured at 25�C is 1.96, which

corresponds to the resistivity of drilling fluid at 18�C

Rm 18ð Þ¼ Rm 1 þ 0:023 � t1�18ð Þð Þ¼ 2:2756X �m (20)

The bottom temperature of the target coal seam is 21.96�C, and the resistivity of the

target coal seam drilling fluid is

Rmf
¼ Rm 18ð Þ= 1 þ 0:023 t2�18ð Þð Þ¼ 2:0856X �m (21)

The fracture-related parameters of coal reservoirs in the Fukang area of the southern

margin of the Junggar Basin are shown in Table 2. From Table 2, it can be seen that the

regional development is inclined and high-angle coal seams, the fracture porosity is between

1& and 25&.

Formation cementation index (m value) by fractal methods

Fractal characteristics of well logging curves. The formation (fracture) cementation index

(m value) can reflect the difficulty of fluid flow through a fracture or reservoir.

Generally, the m value increases as the fracture curvature increases. When the fluid

flows through long and curved fractures, that is, densely populated fracture areas, the

m value is large (typically 1.8–2.2). When the fluid flows through a short and straight

fracture, the value of m could take the minimum (ideally 1.0) as shown in Figure 4. To

accurately determine the reservoir resistivity, a high accuracy of formation cementation

index m is required. Logging curves can continuously record the petrophysical parameters

with ongoing drilling. The fractures can be reflected by the logging curves. The perme-

ability of the formations at different scales has a similar distribution when they have the

same complexity due to the self-similar structures in these complex formations. The log-

ging curve is an indirect reflection of the physical property of the formation including the

fracture features. The fractal dimension of the logging curve can be calculated using the
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embedded space method (Shi and Pan, 2000; Wang et al., 1998; Yang et al., 2006). The
specific steps are as follows:

(1) Establishing phase space. If there are n data points, the data sequence of a logging
curve are (x1, x2, . . ., xn). The establishment of vector space into N groups of data
~Y1; ~Y2; ~Y3; . . . ; ~Yn

� �
, each vector comprising a space dimension u. The truncated u

data constitutes one vector of the phase space. And one (or A) data is moved backward
to intercept u data, which in turn constitutes another vector. Interception is performed
on a well log curve at regular intervals to obtain the corresponding expansion
data sequence

~Y1 x1; x2; x3; . . . ; xuð Þ
~Y2 x1þA; x2þA; x3þA; . . . ; xuþAð Þ
~Y3 x1þ2A; x2þ2A; x3þ2A; . . . ; xuþ2Að Þ
..
.

~Yi x1þ i�1ð ÞA; x2þ i�1ð ÞA; x3þ i�1ð ÞA; . . . ; xuþ i�1ð ÞAð Þ
..
.

~YN x1þ N�1ð ÞA; x2þ N�1ð ÞA; x3þ N�1ð ÞA; . . . ; xuþ N�1ð ÞAð Þ

(22)

where i¼ 1, 2, . . . ,N. The one-dimensional space of the time series is presented to the
u-dimensional phase space.

Table 2. Well logging data and fracture porosity of coalbed methane reservoir in the southern
Junggar Basin.

Well RLLD RLLS Rm t2 Rmf Y uf（10�3）

W1 1351 433 0.37 35.79 0.26 1.201 3.754

W2 9113 8514 1.4 19 1.37 0.068 1.518

W3 403 450 2.5 20.32 2.38 �0.108 7.122

W4 292 296 0.51 25.4 0.51 �0.013 1.881

5514 1551 0.51 28.32 0.48 1.355 2.254

W5 165 142 0.43 20.17 0.48 0.153 5.208

216 162 0.43 21.24 0.46 0.289 7.041

300 242 0.43 24.09 0.44 0.216 3.716

W6 394 334 0.41 31.23 0.36 0.166 1.929

W7 957 993 1.96 21.96 2.09 �0.037 2.88

W8 216 186 2.34 16.25 2.83 0.151 23.812

413 361 2.34 18.55 2.68 0.135 11.703

336 316 2.34 23.6 2.41 0.063 13.639

W9 8701 428 1.62 35 1.16 2.271 20.834

W10 2295 2319 0.94 24.09 0.82 �0.010 0.618

W11 966 601 0.32 25.1 0.28 0.480 1.753

Note: RLLD is the deep lateral resistivity, X�m; RLLS is the shallow lateral resistivity, X�m; Rm is the mud resistivity

configured at a specific temperature, X�m; t2 is the formation temperature, �C; Rmf is the corrected mud resistivity, X�m;

Y is the crack state. uf is the fracture porosity, &.
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(2) Calculating the Euclidean distance between points in phase space. For any two vectors in
the embedding space, such as ~Yi; ~Yj i; j ¼ 1; 2; 3; . . . ;Nð Þ, the distance between them is

Rij ¼ ~Yi � ~Yj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
c¼1

xcþ i�1ð ÞA � xcþ i�1ð ÞAð Þ2
s

(23)

where i 6¼ j.

(3) Statistical Rij at different scales. For a given scale e, the number of distances satisfying
the condition of Rij< e(i 6¼ j) is S(e). The total number is N2 for any two vector combi-
nations. The ratio of the number of distances satisfying the conditions under this scale
to the total number of distances is

C eð Þ ¼ S eð Þ
N2

(24)

Figure 4. Core currents with different cementation levels.
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(4) Calculating the fractal dimension D. The fractal dimension can be expressed as

D ¼ lim
e~0

lgC eð Þ
lge

(25)

When the vector dimension u takes a value of 6 or more, the calculated correlation

dimension is very stable. Therefore, for taking the length, according to the sampling rate

of 8 sampling points per meter of the current logging curve, the length cannot be less than 1

m. Otherwise, the fractal dimension cannot be calculated.

Determination of the m value. In this work, the formation cementation index (m value) will be

calculated by using the vector dimension U¼ 10. To make the scale e have the ability to

automatically select value, e1¼ 1.1� e0 (e0 is the value of controlling C(e0) � 0.06) is used to

generate the sequence e. The sequence C(e) value is obtained. If choosing the appropriate

sequence e, there are

C eð Þ / eD (26)

logC eð Þ / Dloge (27)

Line segments can be expressed as

logC eð Þ ¼ Dlogeþ A (28)

where D is the slope of the line, which is the fractal dimension; A is the intercept of the

line segment.
AC, CNL, and DEN can reflect the pore structure of the formation. If the fractal

dimensions for AC, CNL, and DEN are DAC, DCNL, and DDEN, respectively, the fractal

dimension of the formation cementation index (m value) is named Dm. According to the

fractal dimension of the three logging curves, the scholars used the factor analysis method to

obtain the coefficient relationship, and compared with the experimental values, the results

are more consistent and meet the basic requirements of the analysis. In this area, the fractal

dimension of the well log is obtained. Using the same method, the ratio of the coefficients is

approximately 2:1:1. Therefore, this method can be used for analysis. The Dm has a strong

linear correlation with the formation cementation index (m value) (Li et al., 1996)

Dm ¼ DCNL þDDENð Þ þ 2 �DAC½ 	=4 (29)

For instances, the AC, CNL, and DEN data of the corresponding A5 coal seam are

selected from the Well W1. Using above equation (28), the fractal dimensions can be cal-

culated. There are 65 logging data points in the coal seam. To improve the accuracy of the

results, the step length is set to be 1 to establish the vector space. Then the relationship

between logC(e) and loge can be established.
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As shown in Figure 5(a), the fractal dimension of AC is 1.4936. Similarly, the CNL and

DEN fractal dimensions are 1.9873 and 1.5808, respectively (Figure 5(b) and (c)). The

fractal dimension of the formation cementation index of the A5 coal seam in well W1 is

1.638825. Compared with the formation cementation index obtained by rock electricity

experimental test, the value using the fractal method through the geophysical logging

includes the CBM reservoir heterogeneity, which can provide a more accurate value

closer to the real CBM reservoir. Therefore, the fractal dimension of the formation cemen-

tation index of the other coal seams is normally distributed between 1.2 and 1.9.

Model validation and high-dip fracture permeability prediction

In Figure 6(a), a fitted relationship is established by using the fracture porosity and the well

test permeability. Currently, the fracture permeability is proportional to the cubic of frac-

ture porosity. Figure 6(b) shows that the fracture permeability and the fracture cubic poros-

ity show a good correlation in the CBM reservoir of the SJB. To perform the logarithm of

equation (14), the CBM reservoir permeability of the coal is expressed as

lnk / 5

2
m� 1

� �
lnuf (30)

According to equation (30), the correlation line between them can be established as

shown in Figure 7. For CBM reservoirs in the SJB, the original permeability is measured

by the well testing, which can reflect the comprehensive permeability of the CBM reservoir.

Figure 5. Fractal dimension fitting lines of different well logging curves. (a) Acoustic logging fractal
dimension fitting line, (b) compensated neutron logging fractal dimension fitting line, and (c) density logging
fractal dimension fitting line.
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Figure 6. The relationships between fracture porosity, u3
f and the permeability of test well. (a) The

relationship between fracture porosity and the permeability of test well; (b) the relationship between u3
f and

the permeability of test well.

Figure 7. The relationship between the permeability of the model and the permeability of test well.
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Table 3. Original parameters of coal reservoir in the southern Junggar basin.

Well uf（10�3） m k(md) lnk (2.5m�1)lnuf

W1 3.754 1.525 0.05 �2.99573 �18.266

W2 1.518 1.782 0.048 �3.03655 �17.0857

W3 7.122 1.519 0.038 �3.27017 �17.568

W4 1.881 1.686 0.008 �4.82831 �19.6057

2.254 1.614 0.041 �3.19418 �15.9672

W5 5.208 1.481 0.14 �1.96611 �13.3974

7.041 1.436 0.1 �2.30259 �14.4917

3.716 1.722 0.003 �5.80914 �20.6724

W6 1.929 1.431 0.095 �2.35916 �15.081

W7 2.88 1.610 0.4 �0.91629 �11.3081

W8 23.812 1.783 0.05 �2.99573 �15.3832

11.703 1.546 0.26 �1.34707 �12.311

13.639 1.821 0.05 �2.99573 �13.7603

W9 20.834 1.638 0.009 �4.71053 �17.2969

W10 0.618 1.258 0.05 �2.99573 �15.8575

W11 1.753 1.197 0.35 �1.04982 �12.6499

Table 4. Predicted original high-dip fracture permeability of the coalbed methane reservoir.

Well RLLD RLLS uf(10
�3) m k(md)

W12 197.6115 175.743 4.751 1.54755 0.064265

W13 637.0831 628.5951 5.078 1.654475 0.032655

2468.351 1498.578 3.187 1.853175 0.002981

840.3619 773.9346 2.447 1.7674 0.00358

W14 643.5307 599.5862 3.627 1.6057 0.026594

2671.551 1716.444 2.957 1.69665 0.00907

W15 1416.645 632.4151 6.068 1.6078 0.06192

253.6067 272.3821 3.158 2.1276 0.000327

W16 1038.085 1023.866 1.926 1.976525 0.000371

1790.367 1353.15 1.382 1.9397 0.000251

W17 151.9463 101.763 18.858 1.6233 0.379632

W18 526.3326 290.147 11.178 1.5866 0.196549

W19 357.3441 347.9555 9.044 1.807375 0.032862

192.5594 198.3738 6.908 1.9236 0.008715

232.7805 243.7512 5.849 1.943875 0.005308

W20 259.6933 264.5244 3.493 1.742525 0.008538

W21 141.1221 180.6684 20.141 1.7922 0.170119

326.94 271.8523 15.352 1.77895 0.108759

839.9478 674.1568 6.978 1.68585 0.04573

4368.241 995.8639 13.952 1.730225 0.120894

W23 92.63686 101.5141 9.012 2.0098 0.008705

315.6703 275.9209 4.082 2.020375 0.001371

702.251 505.3412 4.187 2.138775 0.000591

W24 186.5877 137.085 10.729 1.86284 0.03236
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The calculated permeability of this model and the measured permeability by well testing are
shown in Table 3. In Table 3, the derived fracture porosity and formation cementation index
values are brought into equation (30) to obtain the value of (2.5m-1)lnuf. lnk is the loga-
rithmic value of actual well test permeability. From Table 3, the fracture porosity
and formation cementation index of the CBM reservoir in the study area vary greatly,
and the plane heterogeneity is relatively strong, which indicates variable fracture
permeability.

As shown in Figure 7, the calculated permeability fitted well with results from the well
testing (R2¼ 0.8315), which indicates that the model can be used to accurately predict the
original formation permeability of coal reservoirs in the southern margin of the Junggar
Basin. The mathematical fracture permeability is proportional to the cube of the fracture

Figure 8. The relationships between coal reservoir permeability, fracture porosity, and dip angle. (a)
Relationship between dip angle and fracture porosity; (b) relationship between dip angle and coal reservoir
permeability.

Yang et al. 139



porosity. Here, the formation cementation index introduced in this model shows strong

superiority and accuracy. The equation (30) can be rewritten as

5

2
m� 1

� �
lnuf¼ 1:8034lnk� 10:397 (31)

Due to the limited well testing permeability in the SJB, the established permeability

model was used to evaluate the CBM reservoir permeability in Hedong mining area of

the SJB. The equation (31) is obtained by using the well testing permeability of the CBM

reservoir in the study area. Therefore, the fracture permeability can be rewritten as

k ¼ e

5
2
m�1ð Þlnuþ10:397

1:8034 (32)

The final application of equation (32) yields the corresponding fracture permeability of

the CBM reservoir (Table 4). In the Table 4, the fracture permeability of coal reservoirs in

the SJB is generally low. The relationship between the fracture porosity, the original per-

meability and the dip angle are established as shown in Figure 8. When the fracture develops
at a low angle, the fracture porosity and the original permeability of the CBM reservoir

should decrease as the angle increases. When the fractures develop in an inclined state, the

fracture porosity and permeability values are disorganized and no obvious change trend due

to the scarce data points. When fractures develop at high angles, fracture porosity and

permeability of coal reservoirs decrease with increasing dip angle, which may need more

works. The reservoir permeability of the No. 43 coal seam in the SJB is predicted as shown
in Figure 9. Horizontally, the permeability of the No. 43 coal seam changed drastically.

Figure 9. The no. 43 seam permeability distribution by the established high-dip fracture permeabili-
ty model.
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The permeability change of the No. 43 coal seam showed a downward trend first and then
increased from the south to the north part in the SJB. In the study area, the permeability of
the CBM reservoir is 0.005–5mD. In general, the area near the Hongshanzui-Bayangbeigou
fault is the high-permeability zone of the No. 43 coal seam, whereas the center of the
Yadaowan syncline is the low-permeability zone, which indicates that the local geological
structure could be the main factor that causing the permeability variation in the plane.

Conclusions

In this work, a new model for fracture permeability in a CBM reservoir is established with
the combination of the m value (formation cementation index), the fracture porosity and the
total porosity of the coal reservoir through the 3D finite element method. Then, the cemen-
tation index m value of CBM reservoir is detailed evaluated by the fractal dimensions from
the well logging of AC, CNL, and DEN. Finally, the predicted permeability is calculated
with the established fracture permeability model, which may indicate the complex geological
structure for the CBM reservoir in the southern Junggar Basin, NW China. The main
conclusions can be made:

1. The high-dip fracture porosity of CBM reservoirs was obtained by 3D finite element
method, which ranges from 0.618% to 20.834%. The reservoir temperature can affect
the accuracy of fracture porosity. AC, CNL, and DEN can effectively reflect the pore
structure of CBM reservoirs. The formation cementation index m is calculated based on
the logging data of AC, CNL, and DEN combining with fractal method.

2. Comparing the permeability from established model and well test, there is a perfectly
linear correlation between them (correlation coefficients is 0.83). Therefore, the original
permeability of the CBM reservoir obtained by the established model can accurately
reflect the original permeability of the high-dip angle CBM reservoir in the southern
Junggar Basin, NW China.

3. The reservoir permeability of the No. 43 high-dip angle CBM reservoir in the SJB changes
drastically (0.005–5mD). The permeability change of the No. 43 coal seam showed a
downward trend first and then increased from the south to the north part in the SJB.
The area near the Hongshanzui-Bayangbeigou fault is the high permeability zone, whereas
the center of the Yadaowan syncline has low permeability, which indicates that the geo-
logical structure could be the main factor for causing the regional permeability variation.
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