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from extensive molecular dynamics calculations carried out with large system sizes (number of
particles, N) and long times. Accurate formulas for the compressibility factor of the HS solid and

fluid branch are proposed, which represents the metastable region and takes into account its
divergence at close packing. Some basic second-order thermodynamic properties are obtained
and a maximum in some of their derivatives in the metastable fluid region is found. The ther-
modynamic parameters associated with the melting-freezing transition have been determined to
four digit accuracy which generates accurate new values for the coexistence properties of the HS
system. For the self-diffusion coefficient, D, it is shown that relatively large systems (N > 10%) are
required to achieve an accurate linear extrapolation of D to the infinite size limit with a D vs. N—1/3
plot. Moreover, it is found that there is a density dependence to the value of the slope in the linear
regime. The density dependent correction becomes practically insignificant at higher densities
and the hydrodynamic formula found in the literature is still accurate. However, with decreasing
density the density dependence of the size correction cannot be neglected, which indicates that
other sources of N-dependence, apart from those derived on purely hydrodynamic grounds, may
also be important (and as yet unaccounted for). A detailed analytic representation of the density
dependence of the HS self-diffusion coefficient and the HS viscosity, 1, is given. It is shown that
the HS viscosity near freezing and in the metastable region can be described well by the Krieger-
Dougherty equation. Both D and n start to scale at high densities and in the metastable region in
such a way that Dn? = const, where p ~0.97, and D — 0 and n — « at a packing fraction of 0.58
density which coincides with some previous predictions of the HS glass transition density.

1 Introduction

The hard sphere (HS) system has proved to be an invaluable
model for simple and colloidal liquids, and granular media over
many decades, in part because its simple analytic form lends itself
to approximate analytic treatments of physical properties. It is
also useful as a reference system for perturbation theories of sys-
tems interacting with more realistic potentials.' Despite the sim-
plicity of the potential, accurate values of its basic fluid and solid
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properties are accessible only by computer simulations, which has
a limited accuracy. Because of advances in computer software and
hardware a very accurate representation of the HS properties is
now feasible and the ‘exact’ or ‘true’ solution can be approached
with minimal finite size effects. Some properties need high accu-
racy, for example the face centered cubic (fcc) crystalline arrange-
ment is only more stable than the hexagonal close packed (hcp)
form by a very small free energy difference. Values of, 0.005kgT
and 0.001164(8)kpT,= where kg is Boltzmann’s constant and 7' is
the temperature, have been calculated.

There are a number of HS properties that require long sim-
ulations with large systems to be calculated with sufficient pre-
cision to resolve certain issues. This study uses molecular dy-
namics (MD) simulation to perform this task. Improved statistics
of the compressibility factor, Z, data at high density (including
the metastable fluid region) enable the accuracy of a number of
proposed analytic equations of state (EoS) to be tested and im-
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proved. A more accurate equation of state of the fluid and solid
regions will also lead to improved values for the coexisting fluid-
solid densities.

Many theories of the dynamics of the molecules in the liquid
state also require accurate values of the fluid self-diffusion co-
efficient, D, and shear viscosity, 1, in the thermodynamic limit,
to test adequately (e.g., the applicability of the Stokes-Einstein
relationship,#). It is known that D has a significant system size
dependence which can be reduced significantly by taking about 1
million particles in a simulation. Using simulations with typically
this number of hard spheres more accurate values of D and 7 for
all densities in the thermodynamic limit have been obtained here.
In Sec. 2 some technical simulation details and formulas defining
basic calculated properties are given. In Sec. 3 the equations of
state of the fluid and solid regions, other derived thermodynamic
properties, and values of some properties at coexistence are pre-
sented. The self-diffusion coefficient and shear viscosity data are
presented and discussed in Sec. 4. The main conclusions are sum-
marized in Sec. 5.

2 Calculated quantities and simulation de-
tails

Most of the MD simulations carried out in this work were per-
formed using the DYNAMO program.” In the study of the equa-
tion of state, the calculations covered essentially the entire den-
sity range from the very dilute fluid up to nearly the close packed
fcc crystal value. Most of the calculations were made with
N = 1098500 particles. Additionally, to establish the system size
dependence calculations were also made employing, 2048, 8788,
16384, and 131072 particles. The system was equilibrated typ-
ically for 1.2 x 10° collisions, then the reported quantities were
computed by averaging over a further 7.9 x 10° collisions. To im-
prove and establish the statistical uncertainties at each density
the simulation was carried out at least 10 — 100 times starting
from different random initial particle velocities. The compress-
ibility factor, Z = P/pc3kgT (where P is the pressure, p = N/V is
the number density, and V is the volume) was calculated from the
MD simulations using the collision rate formula,©

Y(N)\/mo?xnf C
3N I

Zyp =1+ (D

where m is the sphere mass, ¢ is the hard sphere diameter, § =
1/kpT, C is the number of collisions between the spheres and 7 is
the duration of the simulation. The quantity y(N) is a correction
factor to convert the pressure calculated in the NVEM ensemble
to the value for the NVT ensemble, and is given by

r [3(N721)+1]
A ET T ?

where T is the gamma function. All quantities reported here are
in the usual HS units of kgT for energy, o for length.

The self-diffusion coefficient was obtained in two ways, by the
velocity autocorrelation function (VACF) and the mean square
displacement (MSD) routes. The differences between the value
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of D obtained with those two approaches was found to be less
than 0.001. In the fluid phase the calculations were performed for
the systems containing, 108 < N < 1098500 particles.

The shear viscosity was computed using the Helfand-Einstein
relation.Z8 For discontinuous potentials such as the HS, it is
more convenient to use this approach than the more conventional
Green-Kubo (GK) route.”2 The viscosity calculations were car-
ried out using three system sizes, N = 16384, 131072, and 1098500
particles in the simulation box. Although as the viscosity has a
relatively weak N-dependence most calculations of this property
were performed for a system of N = 16384 particles. In these sim-
ulations the system was equilibrated for 8.2 x 10% collisions, and
then production data were collected over the following 8.7 x 10°
collisions. Each simulation was conducted at least 20 — 40 times to
improve the statistics, and each density was started from different
initial random velocities. Statistical errors in all simulation prop-
erty averages were estimated by the block average method. 19

The ensemble error in the compressibility factor is caused by
suppressed fluctuations in the canonical ensemble. The magni-
tude of the required correction increases with density, but for a
system of N ~ 10% particles, even at high densities (e.g., p = 0.9),
the correction is about 100 times smaller than the usual statistical
error or uncertainty from the system fluctuations.

The correction to the thermodynamic limit of the compressibil-
ity factor and shear viscosity due to the periodic boundary con-
ditions becomes insignificant for systems of N > 10* particles. In
the case of the self-diffusion coefficient the N-dependence is sig-
nificant and requires a special treatment as will be discussed in
Sec. 4.

3 Equation of state and thermodynamic
properties

3.1 Fluid branch EoS

The compressibility factor for the HS fluid as a function of par-
ticle number density calculated by the present MD simulations
is given in Table 1. The range of densities covered includes
the metastable fluid region. The same fluid region has been
the subject of intensive investigation over the years and many
different equation of state formulas have been proposed to
represent Z(p).1 112 A common feature of most of these is that
the first few terms are taken to be the separately calculated virial
coefficients which give very good agreement with the simulation
data at low densities. However, their performance deteriorates
substantially at higher densities near fluid-solid coexistence.
Figure [1| shows the differences between the MD generated
compressibility factors and several accurate EoS and the widely
used simple Carnahan-Starling (CS) EoS. As may be seen the
EoS of Kolafa, Labik and Malijevsky (KLM),22 reproduces the
simulation data remarkably well across the entire fluid region
(typically to an accuracy of ~ 10~%). This unique feature of the
KLM formula was noted previously by Bannerman et al.,1% and is
an exception to the usual trend. The KLM EoS is a semi-empirical
equation fitted to the MD simulation data of N = 13500 spheres
in which the appropriate error corrections are included.13
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Table 1 The density dependence of the compressibility factor, Z, for the
hard sphere fluid and metastable region obtained by MD simulations car-
ried out in this work. Values in parenthesis are the standard deviations of
the last two digits

p VA P VA

0.050 1.11191724(54) 0.924 11.681268(35)
0.075 1.17368377(84) 0.926 11.762165(34)
0.100 1.2397199(12) 0.928 11.843840(38)
0.125 1.3103543(17) 0.930 11.926137(34)
0.150 1.3859479(23) 0.932 12.009235(33)
0.175 1.4668928(35) 0.934 12.092987(40)
0.200 1.5536043(45) 0.936 12.177520(41)
0.225 1.6465633(56) 0.938 12.262842(35)
0.250 1.7462744(47) — metastable fluid below —
0.275 1.8532923(48) 0.940 12.348898(37)
0.300 1.968231(11) 0.942 12.435706(38)
0.325 2.0917610(63) 0.944 12.523358(37)
0.350 2.2246014(90) 0.946 12.611809(42)
0.375 2.367604(11) 0.948 12.701034(37)
0.400 2.521620(13) 0.950 12.791119(40)
0.425 2.6876590(64) 0.952 12.882011(40)
0.450 2.866803(14) 0.954 12.973800(43)
0.475 3.060275(13) 0.956 13.066362(48)
0.500 3.269404(11) 0.958 13.159807(45)
0.525 3.495687(12) 0.960 13.254192(41)
0.550 3.740771(13) 0.962 13.349378(52)
0.575 4.006506(16) 0.964 13.445579(48)
0.600 4.294977(18) 0.966 13.542609(50)
0.625 4.608496(18) 0.968 13.640669(46)
0.650 4.949656(20) 0.970 13.739576(56)
0.675 5.321367(23) 0.972 13.839472(62)
0.700 5.726960(29) 0.974 13.940438(58)
0.725 6.170145(25) 0.976 14.042271(58)
0.750 6.655087(32) 0.978 14.145144(62)
0.775 7.186613(22) 0.980 14.249059(62)
0.800 7.770090(34) 0.982 14.35401(13)
0.825 8.411741(29) 0.984 14.459996(92)
0.850 9.118659(55) 0.986 14.56712(11)
0.875 9.899059(48) 0.988 14.67525(10)
0.890 10.406592(25) 0.990 14.78449(12)
0.892 10.476619(28) 0.992 14.89475(11)
0.894 10.547264(25) 0.994 15.00623(11)
0.896 10.618508(29) 0.996 15.11869(12)
0.898 10.690330(28) 0.998 15.23240(14)
0.900 10.762722(27) 1.000 15.34732(12)
0.902 10.835762(26) 1.002 15.463245(89)
0.904 10.909422(28) 1.004 15.580454(89)
0.906 10.983652(29) 1.006 15.698727(84)
0.908 11.058586(30) 1.008 15.818126(71)
0.910 11.134103(26) 1.010 15.938796(87)
0.912 11.210279(32) 1.012 16.060594(80)
0.914 11.287115(28) 1.014 16.18361(10)
0.916 11.364582(30) 1.016 16.30766(12)
0.918 11.442737(30) 1.018 16.43289(11)
0.920 11.521605(32) 1.020 16.55921(24)
0.922 11.601085(33)
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Fig. 1 (a) The difference between the simulation results for the com-
pressibility factor from this work, and the predictions of various hard
sphere fluid equations of state, defined as A = Zyp — Zupaiyiic- KeY: Axkru
- Kolafa, Labik and Malijevsky,13; Ay, - Bannerman et al., ™ Acg -
Carnahan-Starling,™; Ago; - Kolafa,181Z; Ay - virial equation (with
Bg),18: Ay ro - virial equation (with B;1),19. In the lower frame (b) are
shown the deviations of: (i) the MD data of this work and the KLM EoS
given in Eq. (3) which is labelled, Axry = Zyp — Zkiu (red solid dots),
and (ii) the MD data of this work, and the mKLM formula from Eq. @),
which is given the symbol, A,kim = Zmup — Zukm (black open symbols).
The standard error bars are given for the two cases. The vertical dashed
line denotes the freezing density.

For the range of applicability, p < 1.03, this EoS has the follow-
ing analytic form,

Zxkim = 1+4x+6x2 +2.3647684x° —0.8698551x* 3)
+1.1062803x° — 1.095049x° + 0.637614x’
—0.2279397x'0 4+ 0.1098948x'* — 0.00906797x%2,

where x={/(1—{) and { = np/6 is the packing fraction. Using
the MD data given in Table 1 obtained for N ~ 10° particles and a
large number of state points the following slight modification of
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the KLM EoS is,

Zmkim = 1+4x+6x2+2.3647684x° —0.8698551x  (4)

+1.1062803x° — 1.1014221x° + 0.66605866x”
—0.03633431x% —0.20965164x'0
+0.10555569x'4 — 0.00872380x22,

which gives an even better representation of the HS fluid EoS up
to p = 1.02. In the above modified KLM equation (called ‘mKLM"),
the first six terms are exactly the same, one extra term is added
and the values of the higher order term coefficients are changed.
The performance of both equations is shown in the lower frame,
(b) of Fig. [1] (note the small abscissa range). In what follows
the mKLM expression in Eq. (@) is used as the default analytic
EoS, unless stated. The accurate simulation data can provide in-
sights into the behavior of the compressibility factor through its
density derivatives. It is worth stressing that the second deriva-
tive calculated directly from MD data is captured by the mKLM
formula. As the EoS has been determined accurately up to its
second derivative any EoS feature of the fluid branch connected
with the first or second derivatives of Z should be revealed with
the mKLM formula given in Eq. (4). Also, this reparametrized
EoS enables more conclusive statements on the behavior of other
derived thermodynamic quantities to be made, which are covered
in Sec. 3.4.

300f

200! Z"

N :

. 60/ £

N 50

N I Pl
100 095  1.01

Fig. 2 The compressibility factor, Z and its first and second density
derivatives obtained from the modified mKLM formula in Eq. (solid
lines) and by numerical differentiation of the original MD data (symbols).
The two vertical dashed lines denote the approximate freezing and melt-
ing densities. In the inset the first density derivative is shown in the region
close to the point of inflection.

Figure [2| presents the density dependence of Z, and its first,
7' = dZ/dp and second, Z" = d*Z/dp? density derivatives. The
mKLM EoS reproduces the Z” maximum produced by the MD
simulations. Up to the second derivative perhaps the only no-
table feature is in the metastable region which exhibits a point of
inflection in the first derivative of Z. This is located at a density of,
pr =1.007 ({ =0.527) which corresponds to the limiting density of
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the metastable HS fluid p ~ 1.012 ({ ~0.530) recently reported by
Isobe and Krauth,2? above which in simulations the fluid started
to form fcc nuclei. The present calculations with N > 10* parti-
cles indicate that just up to this density there is a high probability
that the system will persist along the fluid branch. For p > p; this
probability is substantially lower and decreases rapidly with in-
creasing density. Nucleation is a process dominated by statistical
fluctuations and even for smaller systems in some simulations it
was found that the system could be taken gradually to the melt-
ing density without nucleating. Previous workers have also found
that the probability of freezing in the metastable fluid region de-
pends on the length of the simulation, the density and the system
size. 132122l The important new observation here is that the in-
flection point or maximum in the second derivative of Z in the
metastable region can be assigned to a well defined process, i.e.,
the start of a high probability of nucleation of solid nuclei.

3.2 Solid branch EoS

In contrast to the fluid branch, the number of proposed equations
of state for the HS solid is rather small,232% A notable one is the
equation of state of Speedy, 2> referred to as Zg here,
3 Aw-B)

B=1w ™ w_C ®
where w = p/pcp, pcp = 1.4142 is the fcc close packed density, and
A =0.5921, B=0.7072 and C = 0.601 are the equation constants
obtained by fitting Eq. to HS MD simulation data available
at the time. The first term takes into account the divergence of
Z at p = p.p, which is represented in Eq. as a pole at p., in
accordance with an expression in the limiting free volume equa-
tion of state.2® Figure [3| shows the difference between the MD
generated Z of this work and the prediction of various analytic
equations of state for the hard sphere solid. As may be seen in
Fig.[3} the simple empirical equation of state in Eq. represents
the solid branch remarkably well. Using the MD results in Table
2 revised values for the Speedy EoS constants were calculated to
be, A =0.5864, B=0.7085 and C = 0.6055. This reparametrization
of the Speedy EoS is referred to as, Zg,, which is seen to represent
the simulation data with an accuracy better than 103, even in the
metastable solid in the coexistence region, seen on the left hand
side of Fig. |3} Note that, at high densities near to p,, the Speedy
formula given in Eq. in both its Zg and Zg, forms gives a small
but persistent deviation from the simulation results. This means
that the second empirical term may not to be the most appropri-
ate representation of the limiting behavior of the HS solid branch.
The inset in the figure clearly indicates that in this limiting region
an exponential (rather than a rational function) form would be
a better choice. Moreover, the remaining tiny residual part (i.e.,
Z—-3/(1—w)—Aexp(B(l —w)) —E) is a straight line with a large
slope on a log-lin scale, which means that two well separated ex-
ponential functions are required to represent satisfactorily the HS
solid branch. Taking into account these observations, a revised
formula for the compressibility factor, Zgy, is,

Zsi = AP 0PI L, ©)
— W
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where the coefficients are, A = 0.061622, B = 6.151, C = 3.8437 x
1075, D =27.72 and E = —0.49541. As may be seen in Fig.|3| the
performance of the above equation is slightly better than Eq.
and the limiting high density behavior is now much better ac-
counted for. Recently it has been argued that the free-volume
equation for the HS crystal should also contain an extra term,%®
which yields an additional free-volume contribution to the com-
pressibility factor of the form, 1/(c;w+ ;) where ¢y and ¢, are
constants. A modification of Zg; for the solid branch incorporat-
ing this extra term, referred to as Zgj, is

3 1

Zsp = —+
52 cw—+cp

— +ALI L LU LE (7)

The equation Zs, was found to give a better agreement with
the MD data if ¢; =1, ¢; = 3/2, A =0.025882, B =8.689, C =
3.5433 x 107%, D =34.377, and E = —0.85973 are used. The above
equation with these parameters yields Z values that, as revealed
in AZ, are practically indistinguishable from the simulation data.
The expression Zg, is used in the calculations of the free energy
reported below.

Fig. 3 The difference, AZ, between the compressibility factor Z from MD
and the prediction of the equation of state for the hard sphere solid. The
vertical dashed lines on left and right denote the approximate melting
and close packing densities, respectively. The black open triangles (Zs)
are from Eq. with the original coefficients of Speedy, the magenta
open squares are from Eq. with the new set of coefficients (i.e., Zs,).
The blue solid points are Zs; from Eq. @ and the red open circles are
Zs, from Eq. (7). In the inset the convergence of the divergent term,
W =Z-3/(1—w)—E derived from Eq. (7) to maximum close packing is
shown.

3.3 Fluid-solid coexistence region

Establishing the fluid-solid coexistence boundary parameters of
the HS system has been the subject of considerable interest since
at least the 1950s, and the pioneering MD simulation work of
Alder and Wainright.2Z The location of the transition pressure
and densities is not a straightforward task however and conse-
quently there is some scatter in the literature results even today.
Finite size effects, %829 do influence significantly the parameters
characterizing the fluid-solid boundary, which can be reduced us-
ing large N systems, as in this work. Thermodynamic integra-
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Table 2 The compressibility factor, Z, of the hard sphere solid and
metastable region obtained in these MD simulations. Values in paren-
thesis are the standard deviations of the last two digits

o V4 p Z
0.99 10.053019(61) 1.20 19.4684310(43)
1.00 10.249112(19) 1.21 20.4311538(56)
1.01 10.463778(14) 1.22 21.4941538(53)
1.02 10.696236(11) 1.23 22.6736404(49)
1.03 10.946568(10) 1.24 23.9895836(52)
— metastable solid above — 1.25 25.4668429(49)
1.04 11.215150(15) 1.26 27.1367198(36)
1.05 11.502723(13) 1.27 29.0392033(48)
1.06 11.810217(10) 1.28 31.2262022(35)
1.07 12.138823(12) 1.29 33.7663683(39)
1.08 12.4899835(59) 1.30 36.7524001(63)
1.09 12.8654017(74) 1.31 40.3125530(32)
1.10 13.2670527(65) 1.32 44.6295693(22)
1.11 13.6972133(29) 1.33 49.9729990(38)
1.12 14.1585807(87) 1.34 56.7576817(32)
1.13 14.6541871(50) 1.35 65.6568583(32)
1.14 15.1875924(55) 1.36 77.8405325(38)
1.15 15.7629452(83) 1.37 95.5371959(43)
1.16 16.3850184(42) 1.38 123.580746(54)
1.17 17.0593924(56) 1.39 174.790587(78)
1.18 17.7926751(35) 1.40 298.062562(53)
1.19 18.5926092(48) 1.41 1006.468451(33)

tion, Y has been used to establish the phase boundary param-
eters. Accurate representations of the compressibility factor of
the HS fluid and solid branches in analytic form are presented in
Egs. and (7), respectively. Consequently, the Helmholtz free
energy, F, at any density on the phase diagram can be obtained
directly by thermodynamic integration if the free energy of fluid
and solid reference states are known. The chemical potential can
be obtained from the free energy using, u/kgT = F /NkgT +Z.
Fluid-solid coexistence is determined using the simultaneous, P
and u equality condition.2Y For the fluid,

F(p) _ F(P)ideal +/P Z(p') -1
NkgT NkgT 0 p’

where the mKLM EoS given in Eq. was used for Z and the
reference state used is the ideal gas,

dp’, ®

In(27N)

F(p)ideal
2N

=In(pA3)—1
NkgT n(pA’) — 1+

9
where the Stirling formula is used for N! and the thermal de
Broglie wavelength term A is replaced by 3. For the solid phase
the free energy was calculated using,

F(p)  F(preys) +/P Z(p')

= dp’ 10
NkpT NkgT Pref p/ P ( )

where p,.r is the reference state number density, F(p,.s) is the
Helmbholtz free energy at that density, and Z is Zs, defined in
Eq. (7). The Helmholtz free energy in the fcc crystal has been
calculated from a number of reference densities. The free energy
value for the density, p = 1.04086 has been determined in sev-
eral works (mainly with the Frenkel and Ladd method,2! or its
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modifications) giving an average value of, 4.9590 to an accuracy
of 0.0002,28:22132133 " Vega and Noya determined the free energy
also at p = 1.099975 to be 5.631(1) and at a density of 1.15 to be
6.273(2).28

16.1}
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Fig. 4 (a) The chemical potential vs. pressure of the hard sphere system
in the coexistence region. The crossing point of the red and blue lines
specifies the coexistence pressure, P., and chemical potential, . and
their dependence on the reference density of the solid in Eq. ({0). Three
reference points are described in the main text. The different colored
points represent the coexistence pressure and chemical potential from
the literature: 1 - Fernandez et al.,®4; 2 - Vega and Noya,28; 3 - Frenkel
and Smit,2% 4 - Sweatman,2; 5 - Ustinov,2¢ and tw - this work (for dif-
ferent reference points). The boxes indicate the statistical uncertainty of
each estimate. The chemical potential value for Fernandez et al. was
estimated here with P,, obtained in that paper and using the mKLM EoS.
Frame (b) shows the pressure as a function of density in the fluid-solid
transition region.

The resulting chemical potential vs. pressure dependence for
the two phases in the coexistence region is shown in Fig. [4(a)
using data from this work. The intersection point gives the co-
existence pressure, P, and chemical potential, u. values. In
addition different values for the intersection point from other
works together with their statistical uncertainties are also given
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Table 3 The coexistence values for various properties of the hard sphere
system from this work. Values in parenthesis are the standard deviations
of the last one or two digits

Property Fluid Solid
density 0.9392(1) 1.0376(1)
packing fraction 0.4918(1) 0.5433(1)
pressure 11.5712(10) 11.5712(10)
chemical potential 16.0758(20) 16.0758(20)
heat capacity 4.374(1)

compressibility 0.01895(1)

on the figure. As may be seen the crossover point determined
here depends slightly on the reference density used in Eq. (10).
In particular, P = 11.5712(10) for p,.r = 1.04086 (filled black cir-
cle), P = 11.566(10) for p,.r = 1.099975 (open diamond) and
P =11.578(10) for p,.y = 1.15 (open triangle). These predictions
mutually agree within their uncertainty limits. As the most firmly
established reference free energy value is that for p,.; = 1.04086,
our best estimate of the location of the fluid-crystal HS transi-
tion is where, P, = 11.5712(10), py = 0.9392(1), p,, = 1.0376(1),
and U, = 16.0758(20). The main results established in this work
for the coexistence region are shown graphically on the P against
p diagram in Fig. [4(b). The obtained HS coexistence pressure
and densities are in very close agreement with those reported by
Frenkel and Smit (P, = 11.567, py = 0.9391, p,, = 1.0376).59

A summary of some of the coexistence property values is given
in Table 3. To date, the most accurate estimate of the coexis-
tence pressure from other work is P, = 11.5727(10), 34 which was
determined using the tethered Monte Carlo approach. It is note-
worthy that the calculations performed in this work by a different
method yields practically the same value within the same level of
accuracy. The very good agreement of P., obtained by the two
routes provides strong extra confirmation of the accuracy of the
value of P, derived here. Examples of different estimates of the
location of the coexistence values (P, l¢,) are shown in Fig. a).
Figure [4(a) indicates that the location of coexistence point con-
verges towards a relatively small (P, 1) region on the plot, which
can be considered to be practically a point.

3.4 Thermodynamic properties

Basic second-order thermodynamic properties of the HS fluid
can be obtained as the limiting case of the expressions for the
soft sphere fluids given in Table I in Ref.2Z. All of these quan-
tities are expressed in terms of Z and its first density deriva-
tive, Z' = dZ/dp only. For example, the isobaric heat capacity,
Cp/Nkg =3/2+2%/(Z+ pZ'), and the isobaric bulk modulus is,
Bs = Br +2pkTZ?/3, where Br/pkgT = Z + pZ' is the isother-
mal bulk modulus. Thus, an accurate representation of the HS
thermodynamic quantities such as the bulk moduli, heat capac-
ity, volume expansion coefficient, isothermal pressure coefficient,
Griineisen parameter, Joule-Thompson coefficient, and sound ve-
locity can be obtained directly from this work using the compress-
ibility factor and its density derivatives. These data lead to the
conclusion that up to the freezing density, py, all of these quan-
tities evolve monotonically. As already noted, above the coexis-
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tence density, the second derivative, Z”, has a maximum in the
metastable region (see Fig. [2) and therefore some related fea-
tures in the thermodynamic properties might be expected in the
metastable region for the density range, p > p,. Figure|5|shows
that Cp and the isothermal compressibility, ¥y = 1/Br, display a
point of inflection in their first derivative. The figure therefore
indicates that just above the freezing density the HS system has
a maximum in the second derivative of the specific isobaric heat
capacity and in the compressibility.

It has been shown recently; 8 that for hard spheres, the expres-
sion (x/2pkgT)’ represents exactly the thermodynamic curvature
parameter, R, which was introduced by Ruppeiner as a basic in-
variant in thermodynamics.2274U This quantity is defined in terms
of derivatives of the free energy, and has units of volume. It has
been suggested that the magnitude of R could be a measure of the
size of mesoscopic organized structures in the system.2%42 The R
parameter has been studied for different molecular systems and
it has been put forward as a property that could be used to delin-
eate various regions on the fluid part of the phase diagram.43:44
In general, however, the R quantity is not easy to compute and
its physical interpretation is still debated. In contrast, the com-
pressibility is a more readily appreciated and accessible physical
property than R. Thus, the established simple explicit expression
for R of the HS system in terms of y may also provide a useful ref-
erence system or surrogate for further studies of R in other model
systems.
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Fig. 5 The second order thermodynamic properties of the HS system in
the high density range which includes the metastable region. The vertical
dashed lines from left to right denote the approximate freezing and melt-
ing densities of the hard sphere system, respectively. In the figure the
thin solid red line represents the first derivative of y for the fluid branch
calculated from the mKLM EoS in Eq. (4) and for the solid branch cal-
culated from the Zg, EoS given in Eq. . The bold blue line represents
the first derivative of the isobaric heat capacity, Cp, calculated from the
mKLM equation of state. The black solid points indicate the points of
inflection in these two quantities.

4 Dynamical properties

The self-diffusion coefficient, D, and shear viscosity, 1, are key
quantities in understanding the dynamics and molecular-level re-
laxation processes in liquids. In the infinite dilution limit they are
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given by kinetic theory of the HS fluid, 4>

3 (kT \'? 5 kpT\ /2
Dy (L) , Mo (m3> . D

- 8po2 \ mn ~ 1602 T

The Enskog value, 4> for the self-diffusion coefficient is given by

Dg = 1.01896D, bap , (12)
Z—-1
and the HS viscosity is,
1.01
NE = Nobap (Z—j +0.840.7737(Z — 1)) , (13)

where b, = 2763 /3 is the second virial coefficient of the hard
sphere fluid. In the following analysis the mKLM EoS was
used for Z in Eqs. (I2) and (13). For dilute systems the above
formulas are accurate but the D and n values of model systems
from these formulas increasingly deviate from the simulation
values with increasing density. Any simulation is carried out for
a finite number of particles and thus the thermodynamic limit
is estimated by extrapolation of the data to infinite system size.
For many physical quantities all finite-size corrections to leading
order vary as O(N~!) and thus an accurate estimate of their
limiting thermodynamic value is straightforward for relatively
modest system sizes.'? However, in the case of the self-diffusion
coefficient the size-dependence is much stronger (~ N~!/3, see
below) and therefore more problematic to characterize. Much
larger system sizes are required to perform a meaningful extrapo-
lation to infinite system size. Even in the case of such an intensely
studied system as the HS fluid, the forms of the N-dependent
self-diffusion coefficient, Dy(p) and the thermodynamic-limit
values, Do.(p), have still not been determined definitively. We
first consider the self-diffusion coefficient below.

4.1 Self-diffusion coefficient

System size corrections must be applied to the calculated self-
diffusion coefficients for all liquids owing to the significant differ-
ence between Dy_,(p) and the values of D obtained with values
of N ~ 10*. The N-dependence of the self-diffusion coefficient has
been the subject of investigations for a range of liquids.’28:46726
From these studies, it has been firmly established by hydrody-
namic theory and simulations that the effects of periodic images
for sufficiently large N can be represented by the following ana-

lytic expression,
A

Dy = Do — 7 a4
where L is the cubic simulation cell side length, D. is the
self-diffusion coefficient of the infinitely sized system and A is a
constant which is independent of the system size. Thus, to lead-
ing order, the finite-size corrections are inversely proportional to
the side length of the cubic simulation cell or equivalently N -1/3,
The key problem is that it is not known in advance what value of
N or L can be considered to be ‘sufficiently large’ for this limiting
linear regime to apply. Moreover, the value of N (or ‘N;’) where
the linear regime starts, usually cannot be established precisely
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Fig. 6 The MD HS self-diffusion coefficient values, Dy, against N~!/3
(black open circles) for the density p = 0.2. The red line is a linear fit to
the MD data for systems where the number of particles is in the range,
108 < N < 5324. The blue line represents a linear fit to the data for the
larger systems systems in the range, 16384 < N < 1098500. The Dy val-
ues shown on the figure are for systems composed of 108, 500, 864,
1372, 2048, 5324, 8788, 16384, 37044, 70304, 131072, 275684, 530604 and
1098500 hard spheres.

and may depend on various factors such as the system density
and the type of interparticle interaction.

Figure 6] for p = 0.2 shows that in the case of hard spheres the
linear regime develops only for systems composed of more than
Ny ~ 10* particles. This is rather unexpected as usually systems
of a few thousands particles are considered to be sufficiently
large to be essentially in the thermodynamic limit for other
properties. The figure also demonstrates that by applying the
formula in Eq. to systems with N < N; a ‘limiting value’
value of D is predicted which in general is different from the
true De.. In addition, such a ‘limiting value’ can depend on the
number and range of points chosen for the extrapolation. This
is not always the case, however, as for not too small systems
and/or not too low densities the linear correction when applied
to the range of states where N < N; can produce a limiting
value for D which is close to the true D. within the statistical
uncertainty of the simulations. This indicates that the linear
correction formula given in Eq. can represent the trend in
the data for a range of N values that is relatively small. To be
certain one is in the correct linear regime is a very demanding
task which is computationally impracticable in many cases, and
it is tempting to estimate D.. from Eq. using a range of N
which is generally too small to give an accurate value for De.
It has also been pointed out recently,2 that for certain types of
real systems, such as ionic liquids, the size dependence has to
be adequately addressed (the linear regime has to be reached)
and simulations of large systems are necessary. Therefore, to
summarize, the optimum criteria for extrapolating the Dy(p)
data to the infinite system size limit are still not firmly established.

The second issue that needs to be considered is what system

parameters the coefficient A in Eq. depends on. From hy-
drodynamic analysis A is equal to kgT & /61 where the constant
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Fig. 7 Density dependence of the correction factor K; in Eq. . The
K, -values (red solid points) are obtained from the linear fit to the Dy data
with Eq. for systems 16384 < N < 1098500 at densities listed in Table
4. The solid black line is the function K; = v/(v + D..) described in main
text. The dashed magenta line is the function, Kr = v/(v+Dg). The
two green diamond symbols represent Fushiki’s correction,4® and are
explained in the main text.

& =2.837297 and 7 is the solvent viscosity. 420l We denote A in
the hydrodynamic approximation by Ay. For large N the size de-
pendence of 1 is irrelevant (as it is negligible anyway) and thus
Ay is independent of the system size. The data for Dy in the lin-
ear regime indicates that in general A # Ay, i.e., the slope does
not agree with the hydrodynamic prediction. At higher densi-
ties (close to the freezing) A ~ Ay but on decreasing density the
difference increases considerably. We consider this to be an im-
portant finding as it demonstrates that other sources of N depen-
dence, apart from those derived on purely hydrodynamic grounds
may also be important. Such a possibility was noted by Heyes et
al.%Z who treated A as a density dependent empirical parameter
instead of using Ay. Also, a similar size dependence of the self-
diffusion coefficient was observed by Fushiki,4® for the HS fluid
(N <16384) at p =0.88 and 0.47. This was attributed to aspects of
the diffusion mechanism of a molecular scale solute particle, such
as the long-time behavior of the velocity autocorrelation function,
which are not included in the purely hydrodynamic treatment
leading to Ay. A corrected formula for the slope was proposed
in Ref4® with the form, KAy with the factor, Kp = v /(v+Dg),
where v = n/pm is the kinematic viscosity and Dg is Enskog’s
value for D given in Eq. (I2). Recently, deviations from the Ay
slope have also been reported for HS binary mixtures.23

The Dy data in the linear regime enable A(p) and D.. to be de-
termined, as well as establishing the form of the correction factor,
K) = A/Ay. This correction factor, shown in Fig. [7] is found to
be well represented by a simple modification of the Fushiki’s cor-
rection (the solid black line in the figure) which in turn gives the
following explicit formula for the scaling constant in Eq. (I4),

\% ékBT
V+ Do | 671 °

A=K 2 Ay = l: (15)
Note that this is basically Fushiki’s correction in which Dg has
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been replaced by D.. (the two formulas converge when p — 0).
This provides a route to improve the hydrodynamic correction
factor.

0.92]
z 0.9
0.88

0.27]
z0.26]
(@)
0.25]
0.24
0

0.036 |

Z
0 0.034|
0.032;

Fig. 8 The MD self-diffusion coefficient, Dy against N~'/3 (black open
circles). The frames from top to bottom are, respectively, for a dilute sys-
tem (p = 0.2), an intermediate density (p = 0.5) and dense (p = 0.9) HS
fluid. The blue line in each frame represents the linear fit with Eq.
for large systems composed of 16384 < N < 1098500 particles. The hori-
zontal solid black line represents the self-diffusion coefficient in thermo-
dynamic limit, D... The red solid points are the D.. = Dy +AL~! with 4
as given in Eq. and the magenta open square symbols represent
the D.. = Dy + Ay L~!. The MD data points considered are for 500, 864,
1372, 2048, 5324, 8788, 16384, 37044, 70304, 131072, 275684, 530604 and
1098500 particles.

The set of Dy corrected with the A and Ay factors is shown in
Fig. [§|for densities in the dilute, intermediate and dense HS fluid
ranges. Following on from Fig.|7} and as may be seen using Ay in
Eq. the formula overestimates the limiting self-diffusion co-
efficients practically over the entire (p,N) domain of N values. At
higher densities the correction factor becomes nearly unity and
Ap can be used for A. As may be seen in Fig. |8] all reasonable
values of A will give the correct value of D., for large enough N.
The objective of using Eq. is to obtain D. from the smallest
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Table 4 Self-diffusion coefficient (in units of o(kzT /m)'/?) and shear vis-
cosity (in units of 6—2(mksT)"/?) of the hard sphere fluid and metastable
region in the thermodynamic limit. Values in parenthesis are the standard
deviations of the last two digits

P D.. n

0.10 1.94786(56) 0.1950(10)
0.15 1.24636(43) 0.21076(85)
0.20 0.89989(26) 0.22989(96)
0.25 0.69308(35) 0.25837(31)
0.30 0.55523(13) 0.29385(41)
0.35 0.45527(42) 0.33893(67)
0.40 0.37845(25) 0.39527(73)
0.45 0.31663(18) 0.46684(91)
0.50 0.265009(96) 0.5573(11)
0.55 0.221105(98) 0.6708(13)
0.60 0.183259(83) 0.8198(18)
0.65 0.150317(81) 1.0094(25)
0.70 0.121081(97) 1.2674(46)
0.75 0.095425(75) 1.6280(66)
0.80 0.072934(61) 2.1577(70)
0.85 0.053298(40) 3.006(43)
0.86 0.049608(32) 3.224(48)
0.87 0.046203(30) 3.474(66)
0.88 0.042720(53) 3.742(67)
0.89 0.039478(39) 4.059(74)
0.90 0.036254(44) 4.468(65)
0.91 0.033286(43) 4.917(66)
0.92 0.030326(37) 5.336(55)
0.93 0.027419(36) 5.932(86)
0.94 0.024746(38) 6.603(76)
0.95 0.022134(22) 7.338(98)
0.96 0.019695(20) 8.50(11)
0.97 0.017357(27) 9.77(16)
0.98 0.015082(16) 11.00(17)
0.99 0.013013(17) 12.76(23)
1.00 0.011053(14) 15.38(33)
1.01 0.009222(12) 18.16(36)

values of N as possible. The correction A = K; Ay for low and in-
termediate densities gives the correct D., for a range of smaller N
than using the hydrodynamic treatment (i.e., L = Ag).

The resulting D., are given in Table 4 and are compared with
the values from previous studies in Fig. E} The data are plotted
in a normalized form by dividing by the Enskog self-diffusion co-
efficient, Dg, calculated from Eq. for each density. It was
reported in the previous studies that the density dependence of
the normalized self-diffusion coefficient can be well represented
by a polynomial which in the present study is,

Dw/Dg = 1+aip +ap® +asp’ +asp* +asp’ +asp®,  (16)

where a; = —0.0118979, ap = 4.32042, a3 = —10.9115, a4 =
17.2687, as = —18.0587, ag = 6.7426. Erpenbeck and Wood,>Z fit-
ted their MD hard sphere D simulation data when extrapolated
to infinite N by this polynomial where the coefficients ay,--- ,aq
are [0.038208, 3.182808, —3.868772, 0, 0, 0] and Heyes et al.4/
gave the set of values, [0.277645, 3.98964, 26.49881, —134.0015,
110.7344, 0]. As shown in the inset of Fig.[9] the overall agree-
ment between these three explicit expressions is quite good, the
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differences in D../Df in the fluid phase being less than 0.03.
Moreover, considering only the data for higher densities (p > 0.8)
the HS self-diffusion coefficient can be very well (see Fig.10a) rep-
resented by the expression, D = A,(p,; — p)?, where A, = 0.58057,
pa = 1.1011 and d = 1.7282. We find that the Vogel-Fulcher func-
tional form, D o< exp(A, /(P — pa)), Where A,r is a constant, does
not fit the data as well in the same density range.

Fig. 9 The ratio, D../Dg, from the MD simulations with D.. derived from
Eq. (T4) using the analytic formula for 4 given in Eq. (T5) (the red solid
points) and the polynomial fit of Eq. (T6) (solid red line). Key: EW
simulation-derived data (square green symbol) and the polynomial fit (the
solid green line) is taken from Erpenbeck and Wood.2Z HCPE, are extrap-
olated MD data of D (open black circles) and the polynomial fit (the solid
black line) from Heyes et al.#Z. The inset shows the difference between
D../Dg of this work (tw) from the EW (solid black line) and HCPE (dashed
blue line) data.

4.2 Viscosity

Studies on various fluid systems have verified that the shear vis-
cosity is less dependent on system size than the self-diffusion co-
efficient. Nevertheless, it is natural to investigate quantitatively
how significant is the N-dependence of the viscosity. This is an im-
portant question because 7 is a collective quantity and is there-
fore usually calculated with relatively small systems, for which
the statistical uncertainties can still be restrictive. Recently this
issue has been investigated by Kim et. al.®® who performed de-
tailed studies of Lennard-Jones (LJ) and star-polymer model sys-
tems at relatively high densities. They demonstrated that the
shear viscosity in dense fluids exhibits strong and complex size
effects in small systems, but without any overall systematic size
dependence and that above a certain length scale, reliable shear
viscosity values were obtained without any noticeable scaling be-
havior with system size.

Accurate MD HS shear viscosities carried out in this work also
indicate that above a certain length scale there is no noticeable
system size dependence and therefore systematic scaling behav-
ior in the shear viscosity. Moreover this lack of the size depen-
dence and size scaling is observed for large systems (N > 10%)
at all studied densities, and not only at high densities. The MD
data also indicate that some size scaling occurs at low densities

10| Journal Name, [year], [vol.], 1

for small systems composed of less than about 5000 particles and
this scaling appears to behave as, ~ 1/N.
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Fig. 10 (a) The HS self-diffusion coefficient, D.., (black open circles) as
a function of p; — p near the freezing point in a log-log scale. The red line
represents a fit to the MD data with the D..(p > 0.8) =Ay(p; —p)¢ formula.
In the inset the difference between fit and D.. is shown on a linear scale
(dashed line denotes the freezing density). (b) The HS fluid viscosity,
n, as a function of p; — p near the freezing point is shown on a log-log
scale. The open circles are the MD data for N = 16384 particles from this
work. The red line represent the fit to the MD data with Eq. (T7), and the
blue line represents a fit to the MD data with Eq. (T8). In the inset the
differences between both fits and MD data are shown on a linear scale.

The calculated values of the HS shear viscosity are given in Ta-
ble 4. With decreasing density the Enskog kinetic theory predic-
tion for the shear viscosity, ng, becomes increasingly more accu-
rate. Therefore it is natural to express the viscosity normalized by
the Enskog value, and the relationship, n = ng f(p) can therefore
be used to express the actual viscosity in terms of the analytic
Enskog expression at arbitrary fluid density. A possible empiri-
cal form of the correction factor, f(p), is f(p) = 14 d;p%, where
d; = 2588 and d» = 11.11, was proposed in Refs.4Z48 which rep-
resents well the MD simulation data within the statistical uncer-
tainties over nearly the entire fluid, except in the high density
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region. We seek to improve the fitting of the viscosity data in this
region too.

The following simple expression gives a quite accurate repre-
sentation of the HS viscosity near freezing and in the metastable
region

Ay
———, for p>038. a7
ps—p)?
An alternative formula, in which the inverse shear viscosity is lin-
early dependent on 1/p, is

Nkp = (

l =Ap (i — l) for p > 0.8, (18)
n pPo P

with coefficients, Ay = 0.25465, p; = 1.1016, g = 1.7883 and Ay =
—1.5896, pg = 1.036 obtained from a non-linear least squares fit to
the MD viscosity values in Table 4. The obtained p, from Eq.
is practically the same (within 0.001) as that obtained with the
D =Ay(py—p)* formula for D(p > 0.8).

The formula in Eq. is of the Krieger-Dougherty (KD) equa-
tion form, which is widely used in the colloid literature to repre-
sent the packing fraction dependence of the shear viscosity and
was used in Ref.*8 with ¢ and p; fitted to HS simulation data, and
As = no(6ps/m)4. In that study the value of p; was not taken to
be the actual location of the singularity (which was difficult to
estimate at the time) but adjusted to match the simulation data
at lower packing fractions. Therefore the high density region still
needs to be accounted for in any improved fitting to that expres-
sion.

Fig. 11 The ratio n/ng of the hard sphere system is shown. Figure
shows MD data for N = 16384 particles (black open circles). The red
line represent the analytic formula in Eq. (T9). In the inset the difference
between the analytic formula and MD data is shown.

The treatment in Eq. for the viscosity dates back to
Batschinski,>? and Hildebrand,©2¢l and has also been exploited
for soft sphere fluids.©2 As may be seen in Fig. [10| both of these
simple expressions reproduce the simulation data of the dense HS
fluid region quite well, apart from close to the melting line. The
performance of Eq. is better, probably in part because it has
three disposable parameters rather than two. Nevertheless, the
data on a log-log scale are consistent with a straight line which
clearly indicates that Eq. is fully consistent with the simu-
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lation data, and even extends into the metastable region (seen
in the inset). It means also that the density p; = 1.1016 may
be considered to be the location of the singularity, which corre-
sponds to § ~ 0.58, the value close to that usually taken for the
HS glass transition, 32 and it is also higher than the melting
density (1.0376, see Table 3). It is always possible that more ac-
curate viscosity values than we can practicably obtain in the range
p > 1.01 would change the slope or even the form of the line in
this limit. The red line in Fig. gives us however no reason to
expect such a deviation of the shown trend at higher densities.
The representations of the viscosity in the dilute (ng) and
dense regions (ngp) can be combined with a ‘bridging’ function,
fB(p) to represent accurately n(p) over a wide density range,

n(p) =nefs+(1— fa)nkp- (19

The function, fp(p), must go from 0 for p > 0.8 and to 1 as p — 0.
An example of a function which satisfies these requirements is,
f8(p) =1/(14exp(—17.477424.963p%1283)), The inset in Fig.
shows that the formula in Eq. represents the viscosity of HS
fluid within the statistical uncertainties of the MD data. Also, as
may be noticed in the inset, for p < 0.4, there is a small deviation
in the form of a tiny regular ‘hump’. This feature and its possible
relation to the D/Dg behavior as a function of density shown in
Fig.[0]may be worth further study.
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Fig. 12 Different forms of modified Stokes-Einstein relation for the equi-
librium and metastable hard sphere fluid. The symbols are the MD data
of this work and the solid lines are analytic functions for the self-diffusion
coefficient in Eq. and viscosity in Eq. (T9). In the inset the fractional
SE obtained with p = d/q = 0.97 (triangles) is shown and the solid line is
the constant 0.155 obtained with the D and n formulas for p > 0.8.

The self-diffusion coefficient and viscosity data and their rep-
resentations in Egs. and can be used to test vari-
ous semi-empirical relationships used in the literature to relate
these two quantities, notably the Stokes-Einstein, SE, formula and
more recent generalizations. ¥ In Fig. the original SE rela-
tion, D o< ! is shown along with the fractional SE,®® D o =7
and the SE variant involving the density, D o p!/31~1 467 The
metastable region up to p; ~ 1.01 is considered. The best per-
formance is obtained for the fractional SE, 8 with p = 0.96 i.e.,
the value close to that found previously by Heyes et al.4Z. The
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product Dn? is approximately constant, with a value of 0.152 for
p > 0.4. Thus, the results indicate the fractional SE applies well
also in the metastable region (at least up to the point of infection,
p1). Also, as p; 2 ps the formulas for D and 7 for p > 0.8 yield ex-
actly the fractional SE with p = d/q = 0.97 which is shown in the
inset of Fig. A value of p =0.975 for HS data up to p ~0.955
was obtained in Ref#Z and it is shown here with more accurate
data that this relation also applies to states in the metastable fluid
region. Also, the results in Fig[12] clearly indicate that the prod-
uct, D1, cannot be constant, which follows from isomorph the-
ory and has been demonstrated in practice for the LJ system re-
cently®® The SE modification with p~!/3 replacing the diameter
of the particle,”% applies only approximately for the HS fluid and
cannot be considered in general as a superior relation for hard
sphere systems as suggested recently in Refs. 467,

5 Conclusions

Extensive new Molecular Dynamics calculations using large hard
sphere systems performed to obtain accurate representations of
thermodynamic and dynamical properties have aided in resolv-
ing a number of issues. A new formula for the compressibility
factor, Z, of the HS solid branch is proposed, which represents
the metastable region and takes into account its divergence at
close packing. Also a reparameterization of the Kolafa, Labik and
Malijevsky fluid equation of state (EoS) is made. A maximum in
the second derivative of Z, found in the metastable region corre-
lates well with the start of a high probability of solid nucleation.
A detailed study of basic second-order thermodynamic derivative
properties of the HS fluid is performed. There is a maximum in
the second derivative of the isobaric heat capacity and the com-
pressibility in the metastable fluid region. Detailed knowledge
of the HS compressibility throughout the whole fluid range ob-
tained here could be useful in exploring Ruppeiner’s thermody-
namic curvature parameter, 3249 a5 an exact relationship between
these quantities has been pointed out here.

The thermodynamic parameters associated with the freezing-
melting transition have been determined to four digit accuracy.
Combined with the results obtained by Fernandez et al.,*% this
work has generated accurate new values for the coexistence val-
ues of certain properties of the HS system which for the densities
is in perfect agreement, to +1 in the last quoted digit (fourth
or fifth significant figure), with the values given in Ref2%, The
methodology in the two treatments was different as the teth-
ered Monte Carlo approach and the thermodynamic integration
method were applied. The mutual excellent agreement between
the two routes provides additional confidence in the coexistence
values determined in both studies. We consider that further im-
provement in these values should concentrate mainly on improv-
ing the accuracy of the reference point Helmholtz free energy of
the HS crystal.

For the self-diffusion coefficient, D, it is shown that relatively
large systems (N > 10%) are required to achieve an accurate linear
extrapolation of D to infinite size. This is a rather unexpected re-
sult as usually systems of a few thousands particles are considered
to be sufficiently large to be in the linear regime for typical phys-
ical properties. This requirement is not entirely universal, how-
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ever, as for not too small systems and not too low densities the lin-
ear correction outside the ‘true’ linear region can provide a quite
satisfactory estimation of D in the infinite system size limit. In
general, larger systems are required, as there is a density depen-
dence of the value of the slope in the linear regime of D(N~!/3)
according to Eq. of this work. The density dependent cor-
rection becomes practically insignificant at higher densities and
the hydrodynamic formula found in the literature is still accurate.
However, with decreasing density the density dependence of the
size correction cannot be neglected, which indicates that other
sources of N-dependence, apart from those derived on purely hy-
drodynamic grounds, may also be important. These trends would
be worth further investigation in future work.

The established formula for the N-dependence of the self-
diffusion coefficient in Eq. provides a general form for the
system size correction which is possible also applicable to other
molecular different systems (not only to the HS), but this would
need to be tested.

From the MD self-diffusion and viscosity data of this work, for-
mulas representing their density dependence in the thermody-
namic limit have been obtained. It has been shown here that the
hard sphere inverse self-diffusion coefficient and shear viscosity
near freezing and in the metastable fluid region can be described
well by a Krieger-Dougherty type of equation with a limiting (sin-
gular) density in both cases which is statistically the same as the
HS glass transition value, p,. Combination of these two depen-
dencies leads to the fractional Stokes-Einstein equation, which
has gained increasing popularity since the 1980s,%8 and here has
the specific form, Dn? = 0.155, where p = 0.97. This suggests that
there is ‘decoupling’ of D and 7 even in the metastable fluid state
for densities below pg, and this generic relationship Zlland general
trend 7273 has been observed in experimental systems. In practice
in simulations this limiting density is difficult to achieve without
the system nucleating. Solid nucleation manifests a particularly
extreme case of heterogeneous dynamics, HD, (highly coopera-
tive and intermittent motion of the molecules) and different qual-
itative trends in the density dependence of the self-diffusion coef-
ficient and shear viscosity. HD has been widely studied for highly
dense metastable fluids (see e.g., Refs.Z#72) although experi-
mentally temperature is the usual independent variable rather
than the density. In fact, one of the main advances made in the
present work is that we have characterized and parametrized the
metastable fluid region of hard spheres much better than in previ-
ous work, and to an extent where the fundamental underpinning
characteristics of the metastable fluid state could be more rigor-
ously investigated.

The hard sphere model was originally developed as a convenient
and analytically tractable model and reference system for the
static and dynamical properties of small molecule liquids. The
equations and other new results presented in this report can be
used for any molecular model which uses the HS system as ref-
erence system. Isomorphic theory has become a powerful com-
plementary approach for small molecule liquids.Z® However for
colloidal and granular systems the HS model still retains its cen-
tral role, as often the details of the true interaction potential are
not so important (at least for those systems where the attractive

This journal is © The Royal Society of Chemistry [year]



interactions can be neglected).
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