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Abstract  

A new family of mixed formate–acetate containing coordination polymers of formulae 

M(HCOO)2–x(CH3COO)x(C3H8N2O2) [M= Mn (1), Co (2), Zn (3) and Cd (4)] and 

Cd(CH3COO)2(C3H8N2O2) (5) (C3H8N2O2 = ethyl carbazate) are described. The compounds 

have been crystallised from aqueous solution and characterised using elemental analysis, IR 

and UV/visible spectroscopy, TGA, NMR and PXRD and the single-crystal structures of 1 

and 3 have been determined.  These isostructural compounds consist of M2+ ions coordinated 

by N,O-chelating ethyl carbazate molecules and four bridging acetate or formate anions 

(some of which are disordered). The resulting coordination polyhedra for the metal atoms are 

distorted MO5N octahedra. The polyhedral connectivity (via both formate and acetate 

bridges) generates double layers propagating in (100) with the topology of a square grid for 

the metal…metal links.  Intra-layer N−H…O hydrogen bonds help to establish the structures.   

 

Keywords: layered coordination network; mixed carboxylate; bidendate ligand; crystal 

structure 

 

 

 

 

 

 



Introduction 

Metal-organic frameworks (MOFs) have been intensively studied in recent years due to their 

structural diversity and potential applications in various fields including catalysis, gas 

storage, magnetism and separation [1–5]. A variety of ligands have been used to synthesise 

MOFs with different structures: in this context, carboxylate ligands have been particularly 

effective owing to the diversity of their coordination modes [6–8]. A large number of 

different carboxylates in combination with various neutral blocking ligands have been 

hitherto used to synthesis MOFs with different topologies [9–11].  As well as long-chain and 

aromatic carboxylates, simple anions such as formate and acetate are effective in forming 

MOFs, where their small size, strong coordinating power and flexible coordination modes 

lead to distinct structures, which are often layered [12–16].  

In terms of our own studies in this area, we have recently described a series of coordination 

polymers using bridging anionic ligands such as formate and thiocyanate in combination with 

ethyl carbazate as a chelating, blocking ligand [17, 18]. In continuation of these studies, we 

now describe the synthesis, characterisation and single-crystal structures of a new series of 

mixed formate–acetate compounds M(HCOO)2–x(CH3COO)x(C3H8N2O2)  (M = Mn, Co, Zn 

and Cd) and Cd(CH3COO)2(C3H8N2O2) where C3H8N2O2 = ethyl carbazate. 

 

Experimental 

Elemental analyses for C, H, and N were carried out using a Perkin Elmer–240B CHN 

element analyzer. The metal contents were determined using EDTA complexometric 

titrations after decomposing the complexes with dilute hydrochloric acid.  Hydrazine contents 

were determined by titration using KIO3 solution [19]. The IR spectra (KBr pellets) were 

recorded between 4000 and 400 cm–1 using a Shimadzu FTIR 8000 spectrophotometer. The 



UV/visible spectrum for an aqueous solution of the cobalt compound was recorded on a 

SYSTRONICS 119 spectrometer and 1H-NMR spectra were obtained on a Bruker 400/500 

MHz instrument. Thermal analyses were performed on a Perkin-Elmer Pyris Diamond and 

NETZSCH STA 449 F3 Jupiter thermal analyzer under oxygen/nitrogen atmospheres with a 

heating rate of 20 °C min–1.  

 

Synthesis and Characterisation  

M(CHO2)2–x(C2H3O2)x(C3H8N2O2)  [M = Mn (1), Co (2), Zn (3) and Cd (4)] 

Ethyl carbazate (ec) (0.208 g, 0.002 mol) was dissolved in an aqueous solution (25 ml) of 

formic acid (85%, 0.1 ml, 0.002 mol). To these solutions, 0.001 mol of the respective metal 

(Mn, Co, Zn, Cd) acetate hydrate (for example Mn(CH3COO)2.4H2O: 0.245 g), dissolved in 

50 ml of water, were added. The resulting solutions of pH ~ 4 were placed on a water-bath 

and concentrated to about one third of their initial volume.  These were then put aside for 

crystallization at room temperature: after one week, the solid products formed were recovered 

by filtration, rinsed with ethanol and dried in air. Compounds 2 and 4 formed as powders 

whereas products 1 and 3 contained single crystals large enough for structure determination. 

Yields: 1 (78%), 2 (83%), 3 (90%), 4 (86%). IR (KBr disk, cm–1): 1; (N–H) 3249, (N–N) 

1101, asym(OCO) 1605 + 1575, sym(OCO) 1452 + 1384, (C=Oec) 1695; 2; (N–H) 3231, 

(N–N) 1114, asym(OCO) 1605 + 1580, sym(OCO) 1450 + 1370, (C=Oec) 1695; 3; (N–

H) 3236, (N–N) 1120, asym(OCO) 1619 + 1570, sym(OCO) 1455 + 1369, (C=Oec) 1700; 

4; (N–H) 3234, (N–N) 1116, asym(OCO) 1615+ 1576, sym(OCO) 1460 + 1373, (C=Oec) 

1695. 

Elemental analysis (found, calc., %): C6H12N2O6Mn, 1: Mn (20.60, 20.89), C (26.98, 27.38), 

N (10.70, 10.65), H (4.52, 4.56); hydrazine (12.30, 12.17);  C6H12N2O6Co, 2: Co (21.80, 



22.08), C (27.02, 26.97), N (10.20, 10.49), H (4.82, 4.50); hydrazine (12.30, 11.99); 

C6H12N2O6Zn, 3: Zn (24.10, 23.92), C (26.22, 26.34), N (10.13, 10.24), H (4.01, 3.75);  

hydrazine (11.80, 11.70); C6H12N2O6Cd, 4: Cd (34.60, 35.08), C (22.86, 22.47), N (9.10, 

8.74), H (4.20, 3.75); hydrazine (10.20, 9.99). 

1H-NMR (400 MHz, DMSO, δ in ppm) for 3: 1.16(t, 3H), 1.83(s, 3H), 4.02(q, 2H), 8.25(s, 

1H).  

 

Cd(C2H3O2)2(C3H8N2O2) (5) 

This compound was prepared by replicating the above procedure except that formic acid was 

replaced by acetic acid. The dark pink solid formed after two weeks was recovered by 

filtration, washed with alcohol and dried in air. The compound is hygroscopic on exposure to 

air. Yield: 82%. IR (KBr disk, cm–1): (N–H) 3250, (N–N) 1202, asym(OCO) 1560, 

sym(OCO) 1419, (C=Oec) 1693; Elemental analysis (found, calc., %): C7H14N2O6Cd: 

hydrazine (10.20, 10.44), Cd (33.40, 33.61), C (25.26, 25.14), N (8.10, 8.37), H (3.20, 3.59). 

1H-NMR (500 MHz, DMSO, δ in ppm) for 5: 1.16(t, 3H), 1.83(s, 3H), 4.02(q, 2H), 4.29(s, 

1H).  

Crystal structure determinations  

Intensity data for 1 (colourless block, 0.48  0.40  0.36 mm) and 3 (colourless slab, 0.41  

0.36  0.21 mm) were collected at room temperature on a Nonius KappaCCD diffractometer 

(graphite monochromated Mo K radiation,  = 0.71073 Å) and empirical absorption 

corrections were applied during data reduction (transmission-factor ranges = 0.503–0.862 and 

0.778–0.928 for 1 and 3, respectively). The manganese structure was easily solved in space 

group P21/c (No. 14) by direct methods with SHELXS-97 and the structural model was 



developed and refined against F2 with SHELXL-97 [20]. The O2/C2/C3 side chain of the ec 

ligand is disordered over two orientations; atom C6 is part of a partially occupied acetate ion 

and atoms C5, O5 and O6 correspond to overlapped formate and acetate ions (vide infra): the 

site occupancies of these groups of atoms were refined (constrained to sum to unity in each 

case). All the H atoms were geometrically placed and refined as riding atoms (C–H = 0.96–

0.97 Å; N–H = 0.86–0.90 Å) with the constraint Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C) 

applied. The similar monoclinic unit cells indicated that 1 and 3 are isostructural and the atom 

positions from 1 (with Zn replacing Mn) were used as the starting model for 3, with the same 

disorder model applied: a slightly different refined formate to acetate ratio resulted. Key 

crystallographic and data collection parameters are summarised in Table 1 and full details are 

available in the supplementary materials (cif files).  

 

Results and discussions 

Synthesis 

The elemental analysis data for 1–4 are in reasonable agreement with the proposed chemical 

compositions of these compounds. When freshly prepared, all these phases are colourless 

except 2, which is pale pink. When stored in air, the manganese compound transforms to a 

dark brown solid after a week, which was also observed for its formate analogue [17], 

whereas compounds 3 and 5 transform to pale blue and pink colours, respectively. 

Compounds 1–4 are slightly soluble in cold water whereas compound 5 is readily soluble in 

water. We have already reported [17] a family of compounds of general formula 

M(HCOO)2(C3H8N2O2) (M = Mn, Co, Zn and Cd), which were prepared by reacting the 

respective metal formate with an aqueous mixture of ec and formic acid. By adapting the 

same procedure, except with metal acetates replacing formic acid, we could isolate the new 



family of compounds, M(HCOO)2–x(CH3COO)x(C3H8N2O2), reported here. Interestingly, our 

attempt to prepare the analogous ‘pure acetate’ compounds of putative formula 

M(CH3COO)2(C3H8N2O2) was not successful except with cadmium, which resulted in a 

hygroscopic, light pink solid.   

Spectroscopic data  

The IR spectra for 1–5 are similar to each other and band assignments were made by 

comparison to literature data [17].  Except for compound 5, two distinct asymmetric (between 

1615–1570 cm–1) and symmetric (between 1450–1369 cm–1) carboxylate stretching 

vibrations could be assigned for compounds 1–4, which we ascribe to the presence of both 

formate and acetate ligands. For compound 5, the asymmetric and symmetric acetate-

carboxylate vibrations are observed at 1560 and 1419 cm–1, respectively. The frequency 

differences of ≤ 200 cm–1 between the asymmetric and symmetric stretches indicate that the 

both the formate and acetate ions are coordinated as bridging bidentate (2) ligands. All the 

spectra exhibit a band occurring around 1700 cm–1
, which is characteristic of the C=O (amide 

group) stretching frequency of ethyl carbazate: the shift to lower frequency in these metal 

complexes compared to the free ligand (1735 cm–1) strongly suggest that the carbonyl O atom 

is coordinated to the metal, as conformed by the crystal structures. Besides these, absorptions 

centred around 3240 (for 5, 3250) cm–1 and 1120 (for 5, 1201) cm–1 are in accordance with 

N–H and N–N stretching vibrations, respectively, of ethyl carbazate, which signify the 

coordination of the terminal nitrogen atom to the metal atom.  

The UV/visible spectrum for 2 shows a broad absorption band with max= 19600 cm–1 (510 

nm), which can be assigned to the usual 4T1g(F) → 4T1g(P) transition for an octahedral Co2+ d7 

system [21]. 



The proton NMR spectra of 3 and 5, recorded as representative examples, show a triplet 

around 1.16 ppm for –CH2-CH3 and a quartet at 4.06 ppm for –OCH2-CH3 groups. For both 3 

and 5, the spectra show a broad singlet at 4.23 ppm, which can be assigned to the NH2 

protons. In the spectrum of compound 3, two peaks (s, 8.25 ppm for HCOO– and s, 1.83 ppm 

for CH3COO–) are observed. However in 5, a singlet at 1.83 ppm is observed due to the 

presence of just acetate ions. 

 

Thermal analysis 

TGA for compound 5 was performed under a nitrogen atmosphere whereas all other 

compounds were studied in an oxygen atmosphere. Compound 2 is stable up to 215 °C on 

heating whereas compounds 1, 3, 4 and 5 start to decompose below 200 °C. In general, the 

thermal behaviour of these five compounds is similar to those of the already reported formate 

complexes [17]. The observed (calculated) percentage weight losses are 40.5 (39.6) for 1, 

39.5 (39.0) for 2, 38.5 (38.0) for 3, 31.5 (32.5) for 4 and 30.5 (31.1) for 5 for the first 

decomposition step for all the compounds, which is due to the loss of ethyl carbazate to result 

in the respective metal–carboxylate intermediates.  DTA shows an endothermic peak for this 

decomposition in each case.  The intermediates from 1–4 further decompose to yield the 

respective metal oxides as final residues: total percentage mass losses are 70.5 (73.0) for 1, 

71.5 (71.9) for 2, 70.5 (70.2) for 3 and 69.5 (59.9) for 4. The DTA traces show an exothermic 

peak for the formation of these oxides. Conversely, the cadmium carboxylate intermediate 

from compound 5 decomposes in an endothermic fashion as shown by DTA to results in 

cadmium metal [observed = 62.5, calculated = 61.6) as end residue. The metal-oxide/metal 

formation temperatures for compounds 1, 2, and 4 are found to be relatively low (below 400 

°C) compared to 3 and 5 (above 600 °C). 



 

Powder diffraction  

X-ray powder diffraction data for 1–4 were collected on a Bruker AXS D8 Advance 

Diffractometer using Cu K radiation: the resulting similar powder patterns (see 

supplementary materials) strongly suggest that 1–4 are isostructural.    

 

Crystal structures 

Although they have slightly different refined formate to acetate ratios, 

Mn(CHO2)1.689(C2H3O2)0.311(C3H8N2O2) (1) and Zn(CHO2)1.839(C2H3O2)0.161(C3H8N2O2) (3) 

crystallise in the same space group and with almost the same unit-cells and may be regarded 

as being isostructural. This description will focus on the manganese phase and note 

significant differences in the zinc phase where appropriate. Selected geometrical data 

(including hydrogen bonds) for 1 and 3 are given in Tables 2 and 3, respectively.  

The asymmetric unit of 1 contains one manganese ion, one formate anion (C4/O3/O4), one 

disordered (overlapped) formate (C5/O5/O) + acetate (C5/C6/O5/O6) ion in a 0.689 

(15):0.311 (15) ratio and one ethyl carbazate ligand (Figure 1).  When symmetry-generated 

species are considered, the metal ion adopts a somewhat distorted MnNO5 octahedral 

coordination geometry (angular variance [22] = 61.52) arising from an N,O-bidentate ec 

ligand and four bridging-monodentate formate/acetate ions. The disordered formate/acetate 

ions are orientated in a cis arrangement with respect to the metal ion.  The Mn1–O1 bond to 

the ec ligand is noticeably longer than the charge-assisted Mn–O formate/acetate bonds: the 

mean Mn–O separation is 2.187 Å.  In 3, the angular variance for the ZnO5N octahedron is 

48.52 indicating rather less angular distortion and the mean Zn–O separation is 2.110 Å.  



The bidentate connectivity of the ec ligand to the metal atom in 1 results in a five-membered 

–Mn1–N1–N2–C1–O1– chelate ring [bite angle = 72.13 (8)] in which the four ligand atoms 

are almost co-planar (r.m.s. deviation for N1/N2/C1/O1 = 0.008 Å) and the metal atom is 

significantly displaced from their mean plane by 0.500 (8) Å to result in an envelope 

conformation. The side-chain of the ec ligand is disordered over two orientations in a 0.573 

(8):0.427 (8) ratio.  Equivalent data for the zinc phase are: chelate bite angle = 75.33 (7); 

r.m.s. deviation = 0.010 Å; metal-ion displacement = 0.519 (5) Å and disorder ratio = 0.583 

(10):0.417 (10).  

In both phases, all the formate/acetate ions bridge a pair of metal ions: the C4 (formate) 

species generate [010] chains and the C5 (disordered formate/acetate) ions generate [001] 

chains.  Together, these lead to a polymeric, layered network of M–O–C–O–M (M = Mn or 

Zn) links that propagates parallel to (100).  In terms of metal coordination polyhedra, double 

octahedral layers result (Figure 3), with the ethyl side chains of the ec ligands projecting into 

the inter-layer regions. Topologically, in terms of metal–metal connectivity, a highly 

puckered square network arises (Figure 4), in which the MnMn separations are 5.3432 (6) 

Å and 5.9891 (7) Å [equivalent data for the ZnZn separations in 3 = 5.2117 (5) Å and 

5.8609 (5) Å]. The extended structures are consolidated by N–HO and bifurcated N–

H(O,O) hydrogen bonds arising from the hydrazine moiety of the ethyl carbazate ligand 

(Tables 2 and 3), all of which are intra-layer, with almost no differences apparent between 1 

and 3.  

 

Summary  

A new family of mixed-ligand, layered, coordination networks of formula M(HCOO)2–

x(CH3COO)x(C3H8N2O2) have been prepared and characterised to complement the 

M(HCOO)2(C3H8N2O2) family reported earlier [17].  It may be noted that no disorder is 



found in the structure of the pure formate containing compounds. However, replacing one of 

the formate anions by slightly bulkier acetate anion, reported herein, resulted in the 

disordered structures. Our attempts to prepare pure acetate-containing compounds resulted in 

a hygroscopic compound only with the larger cadmium atom.  It seems that subtle features 

are involved when different alkyl carbazates combine with metal ions and different 

carboxylate anions and we are continuing our studies of such systems. 

 

Supplementary materials  

IR spectra of 1 and 5, UV/visible spectrum of 2, TGA/DTA traces for 1–5, X-ray powder 

patterns for 1–4.  Full details of the crystal structures of 1 (CCDC 1484593) and 3 (CCDC 

1484594) in cif format are available from the Cambridge Crystallographic Data Centre, 12 

Union Road, Cambridge CB2 1EZ, UK, or e-mail deposit@ccdc.cam.ac.uk.  
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Figure captions  

Figure 1: the asymmetric unit of 1 (40% displacement ellipsoids) expanded to show all the 

bonded ligands.  Just one orientation of the ethyl carbazate side chain is shown and in terms 

of the disordered (overlapped) C5/C6/O5/O6 formate/acetate anions, one is shown as a 

formate ion and one as an acetate ion.  Symmetry codes: (i) 1–x, y–½, ½–z; (ii) x, 3/2–y, z–½. 

Figure 2: the asymmetric unit of 3 (50% displacement ellipsoids) expanded to show all the 

bonded ligands. Just one orientation of the ethyl carbazate side chain is shown and the 

disordered (overlapped) C5/C6/O5/O6 formate/acetate anions are both shown as acetate ions.  

Symmetry codes: (i) 1–x, y–½, ½–z; (ii) x, 3/2–y, z–½. 

Figure 3: the packing in 1 viewed down [001]: the MnO5N octahedra are shown in polyhedral 

representation.   

Figure 4: the topological linkage of the metal nodes in 1 viewed down (100).   

 


