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1 Introduction  
AC (Alternating Current) power transmission systems have been used since the late 19th Century as a 

universal method of interconnecting multiple power producing plants with load centers. Highly meshed 

AC transmission grids with high redundancy and operating flexibility have been built worldwide. These 

complex AC systems have provided high power availability and security, while multiple voltage levels 

facilitate reduction in losses.  

In addition to transmission lines, there are two key components which are essential for building 

transmission systems: circuit breakers (CBs) and transformers. These two components can be fabricated 

as relatively simple, reliable, and efficient units when AC transmission is used. Circuit breakers enable 

opening a circuit (line) under load and fault currents, which is essential for regular maintenance, system 

expansion, and the physical integrity of large transmission systems. Transformers facilitate voltage level 

change, which is necessary for safety and reliability, but also for reducing losses with long distance 

transmission.   

The shortcomings of AC transmission are numerous, and have been publically debated since the time of 

“war of the currents” between Tesla and Westinghouse on one side and Edison on the other. In particular, 

AC transmission implies reactive current transfers, which increase losses and cause operating difficulties. 

With subsea cable transmission at distances over 50-100km, reactive power issues become severe caused 

by  excessive line charging and AC transmission is not practically feasible.    

HVDC (High Voltage Direct Current) transmission has been used since 1954, but it has experienced 

substantial technological advances and increased application in the last 20 years. The technology is 

facilitated by high-power electronic devices including thyristors and more recently transistors, which 

enabled development of more compact VSC (Voltage Source Converters). The vast majority of HVDC 

systems consist of a single line or cable and use one AC/DC converter at each end. It has not been 

possible to directly connect multiple DC lines in a network, primarily because of lack of suitable DC 

(Direct Current) circuit breakers. Nevertheless, in the last 5 years, two multiterminal VSC HVDC systems 

have been built in China, and others are under design and development.   

DC transmission grids represent a substantial technological advance over point-to-point HVDC 

connections, and they are under investigation for many applications worldwide. In Europe, researchers in 

several major EU projects studied a North Sea cable DC grid as the means for integrating large amounts 

of offshore wind energy and strengthening interconnections between EU countries. In China, there are 

firm plans for building a 4-terminal DC grid with overhead lines.  

The facilitation of DC grids requires the market availability of a DC Circuit Breaker, preferably from 

multiple vendors that all offer acceptable performance, cost, size, losses and reliability. Much has been 

learned from long experience with AC Circuit Breaker technologies, which are standardised at high 

voltage and very high current ratings. However, they are not suitable for DC applications, and the 

technologies for DC CBs will be substantially different from AC CBs. The performance requirements for 

DC CBs in DC grids are more stringent, while DC circuit opening is also technically much more 

challenging.  

In the last 5-10 years some major advances have been made developing High Voltage DC CB 

technologies. Multiple DC CB topologies have been demonstrated in laboratories and brought to the 

market, with the first installations having emerged in recent years.  

2 Basic Performance Requirements for DC Circuit Breakers 

2.1 The role of DC CBs  
The critical functions of DC CBs include controlled opening/closing of circuits and in case of faults 

isolating faulted DC lines, which are necessary to enable continued operation of the remaining portion of 

the DC network. If the faulted line were not isolated, grid voltage would be low and currents would be 

high under the fault condition. High current would likely lead to component damage while low voltage 

would reduce power transfer capability. Fast DC fault isolation is particularly significant for large DC 

grids, which may have numerous converter stations and transmission lines. The converters considered for 
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the European North Sea DC grid are rated at 1.5-2 GW, while the total DC Grid capacity may exceed 150 

GW in some scenarios.   

 Figure 1shows a single line diagram of a 5-node ±400 kV DC grid, which consists of 4 AC/DC bi-pole 

converters rated 800 MVA, 2kA per pole interconnecting the DC grid (busses 1-4) with corresponding 

AC systems, one DC bus without a converter (node 5), 8 DC cables and 16 DC CBs per pole (32 DC CBs 

in total). The grid topology has been selected as an illustrative example that provides reasonable power 

transfer security while trying to limit the number of DC CBs. In comparable AC systems, considering 

modern grid development practices, the number of AC CB would be much higher. The indicated power 

and voltage levels are in the highest range of demonstrated DC CB technology.  

For example, a short circuit fault occurring on line 3-4 would insert a low impedance at the point of fault 

and result in high currents flowing into the fault from all parts of the network (as indicated by red 

arrows). Depending on the impedances of the grid cables and of the severity of the fault itself, the fault 

currents would have different magnitudes, but they can easily reach 10-30 times the rated current (say 20-

60 kA) at some points. These are destructive currents which grid components cannot withstand.  

All high-power AC/DC converters have self-protection control logic, which blocks and disconnects 

converters in the event of disturbances. Typically, self-protection thresholds are set at approximately 2 pu 

current and 0.8 pu DC voltage, which for the considered system implies 4 kA current and a 320 kV 

voltage.  

In conventional AC transmission systems, generators have numerous self-protection controls, but the 

thresholds are significantly higher relative to the nameplate rated variables. The line/cable impedances 

also have much higher values in AC than DC systems because the frequency, f, contributes to the 

reactance (the imaginary part of the impedance, 2πfL, where L is the inductance).  

These factors lead to the conclusion that in a DC system CBs (and protection system) must respond much 

faster than in AC systems, in order to prevent widespread loss in capacity (converter blocking) and 

destructive fault current magnitudes.  

2.2 Operating speed  
In a DC fault situation, current rises, and voltage falls throughout the DC grid during the delays 

associated with DC protection and DC CB operation. Once the DC CBs open and isolate the DC fault, the 

DC voltage recovers and DC power flows over the reconfigured grid at a newly established balance 

operating point, which depends on the number of remaining operating converters and their control 

strategies. The faster the DC CBs operate, the less the DC fault adversely affects the DC grid.     

However, the blocking of nearby converters cannot be completely avoided even with application of the 

fastest available DC CBs. This is because the converters closest to the fault point may experience high 

current and thus block prior to the DC CBs opening. The most recent DC grid studies indicate that 

temporary converter blocking for 10-30 ms is possible until the DC fault is cleared and the converters can 

then be de-blocked to resume normal operation. The need for blocking converters will depend on the grid 

topology and the fault location.  

Many studies indicate that DC grids of various sizes and topologies can recover from any DC line fault if 

the total protection time (DC CB opening time plus protection operation time) is within 

approximaely10ms. This assumes that some converters may block by self-protection temporarily or 

permanently, depending on the grid topology and the strategy used for protecting the network. Permanent 

blocking after fault clearing occurs if the converter becomes isolated, and results in loss of grid capacity.     
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Figure 1. 5-Node DC grid with 4 AC/DC converters, 8 DCcables and 16 DC CBs per pole.  

2.3 Ratings  
In AC systems AC CBs are rated for the largest available fault level at their point of connection (the worst 

case steady-state fault current). The cost and technology status of DC CBs restrict their peak fault current 

ratings, as shown by designs of DC CB prototypes recently brought to the market by manufacturers, 

which are designed for only 15-20kA peak interrupting current. These state-of-the-art DC CBs have lower 

ratings than expected available fault levels at most DC busses for the foreseeable future. Thus, DC CBs 

are required to operate fast, before DC fault current exceeds their ratings, and before it reaches destructive 

levels causing many converters to block and  a resultant wider DC grid voltage collapse.  

2.4 Bidirectional operation 
In many applications, DC CBs will be expected to interrupt fault current in one direction only. Depending 

how protection zones and protection system are configured, some DC CBs may be expected to operate in 

both directions. Also, bidirectional operation may be beneficial as a back-up protection function when 

needed. Application of a unidirectional DC CB may suffice in particular projects and result in substantial 

cost and size savings for some DC CB topologies.  

2.5 Multiple Open/Close operations in short time 
DC Grids with overhead lines would be exposed to frequent faults, many of which would be transient. As 

with overhead AC transmission, reclosing with multiple CB operations within 200-500ms may reasonably 

be expected. With underground or underwater DC cable systems, however, almost all faults are 

permanent and reclosing may not be included in the protection logic. The number of expected operations 

and timing of DC CB duty cycles may result in cost and size implications for some DC CB topologies.      

2.6 Losses, size and weight 
DC CBs operate in a closed state and conduct load current most the time. Closed-state losses in DC CBs 

reduce revenue to their grid operators, and the DC CBs also require additional heat removal equipment. 

DC CBs will be noticeably larger and heavier than AC CBs. In Europe, DC grid studies of offshore 

environments show that DC CB size and weight could have significant implications for platform costs.  

2.7 Cost and reliability  
The ubiquitous application of AC CBs to AC transmission systems facilitates high degrees of power 

supply security and operating flexibility. The simple DC system in Figure 1 has an elementary protection 

strategy but requires 32 DC CBs in total. The example shows applications for a considerable number of 
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DC CBs in future grids would be anticipated. DC CB costs will be higher than AC CBs, and for some DC 

CB topologies perhaps substantially higher than AC CB costs.  

The internal complexity of DC CBs requires further study of their failure modes to fully understand their 

reliability considering that operational experience is minimal. . Some DC CBs using semiconductor 

technologies have self-protection as discussed below, which needs to be considered by grid planners and 

protection system developers.  

2.8 Standardisation of inputs/outputs 
In large DC grids, the protection system will consist of multiple relays (microcontroller-based), which are 

interconnected and use adjusted settings controlled by the grid operator. Grid topology changes and 

expandability must be considered as important factors developing protection logic. Achieving desired 

relay commands with components made by different vendors requires standardization of interconnections 

and interoperability as important DC CB requirements.    

3 Challenges with DC circuit opening 

3.1 DC current commutation  
The first developers of DC systems learned that interrupting DC current is difficult. Trying to separate CB 

contacts under a current flow creates an arc, which for high voltage systems is self-sustaining and 

generates large amounts of heat caused by the arc resistance. With AC currents, there is a natural current 

zero crossing twice every cycle (every 10 ms in 50 Hz systems). This momentary current interruption, 

with the aid of engineering devices that ensure sufficient contact separation and an arc extinguishing 

chamber, enables modern AC CBs to reliably interrupt very large currents within 20-60 ms.  

There are no natural current zero crossings in DC systems. At low voltages of 10-30 V (automotive 

applications) the arc voltage is larger than the system voltage and this reduces the current to zero. At 

higher voltages there are two principal methods to interrupt DC current: 

1) Use power electronics to commutate current into a parallel circuit. Semiconductors provide solid 

insulation, and can interrupt large currents very quickly and without arcing. The principal 

challenges are large component costs and high loses during normal closed-state operation. 

2) Using additional circuits, such as commonly used LC resonant systems, to create current zero-

crossings in mechanical switches. Mechanical switches have practically negligible closed-state 

losses and generally have low weigh, size, and cost at high voltage ratings. The foremost 

challenge is arcing, which implies heavier and more complex contacts necessary for successful 

operation that in turn leads to slower opening speeds.      

Both methods are viable and have been demonstrated on high voltage and large current DC CB units.  

3.2 DC current reduction and dissipation of energy  
The energy dissipation in a device is the product of the current and voltage across the device, multiplied 

by time. With AC CBs there is minimal dissipation of energy because the contacts open when the load 

current crosses zero. Any energy in the system is conveniently dissipated in the arc chamber.  

With DC CBs, the moment of interruption occurs for a large value of DC load current that is reduced for 

interruption by inserting a larger counter DC voltage, usually by the means of non-linear resistors (surge 

arresters). An integral part of all DC CBs, these resistors are also called energy absorbers because they 

need to absorb the energy from the line inductances and thus experience high voltage and high current for 

a short period until the DC current is brought to zero. The expected energy dissipation at a 400 kV DC 

voltage level is on the order of 10-100 MJ that affects the thermal ratings and time constants of the 

absorbers, which is especially important if repeated DC CB operations are required. This degree of energy 

dissipation also influences the DC CB cost, size, and weight.  
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3.3 Series inductor with DC Circuit Breakers 
Each DC CB in HVDC grids requires use of a series inductor on the order of 50-300 mH. Although this 

inductor cannot reduce the amplitude of the DC fault current, it can limit the rate or rise of the fault 

current. Sized for a given protection and DC CB operating times, this inductor limits the peak fault 

current that is experienced by DC CBs and other components in the DC grid. For example, a 400 kV DC 

bus with a desired interrupt time (DC CB opening and protection time) of 4 ms and with a maximum peak 

interrupting current of 16 kA requires inductor of around 100mH.  

Installation of series inductors with DC CBs also facilitate DC grid protection system selectivity, i.e. they 

enable the protection system to differentiate between faults in inner and outer protective zones.  

Because of these multiple requirements for the series inductor, it is not clear if the series inductor will be 

considered as part of future DC CB units, or if it will be regarded as a part of the DC protection system.  

On the negative side, series inductors store energy and negatively influence voltage control of DC grids. 

In addition, the energy stored in the inductor must be dissipated by DC CBs in the event of fault 

interruption.   

4 Main DC CB topologies  
Several manufacturers have invested substantially in further developing DC CBs to high technology 

readiness levels. These manufacturers have reported results from laboratory tests of DC CB prototypes in 

the range of 40-80 kV with peak fault current interruption capabilities of approximately 15-20 kA. Plans 

call for these units to become standard modules through series connections to achieve higher DC voltage 

levels. The communications from manufacturers and data from recent installations indicate that there are 

no substantial obstacles to implement 300-400 kV DC CBs.   

The European Union has directed substantial resources towards understanding DC CBs, including tests of 

several full-scale (70-80 kV) DC CBs at an independent laboratory. There is joint effort by multiple 

manufacturers, grid operators, academia, and consultants substantially contributes towards acceptance of 

DC CBs by advancing the understanding of their control, operating limits, testing, failure modes, and 

interactions with DC grid components. Considerable further effort is being directed toward achieving 

interoperability among various DC CB technologies and different manufacturers, and to initiate 

standardisation.  

Many different DC CB topologies discussed in research papers have been proposed, with some prototypes 

of varying ratings undergoing field tests. Many new patents related to DC CBs have emerged recently, 

and intensive research will continue in this field.  

It is possible to group most DC CB designs into two main families: 1) mechanical DC CBs and 2) hybrid 

DC CBs using semiconductor valves. The typical designs from each family will be presented below for 

illustration purposes, without reference to any particular manufacturer.   

5 Mechanical DC Circuit Breaker 

5.1 Topology 
Figure 2 shows a typical topology of a mechanical HVDC circuit breaker. It consists of the following: 

1) Main branch consisting of a breaker which is able to sustain arcing. Commonly this is an AC VI 

(Vacuum Interrupter) with an enhanced driving mechanism to reduce opening time.   

2) Current injection branches with pre-charged capacitors. Two branches are shown, which enable 

two operations in a short period of time, considering that capacitor charging may take a long 

time. The second branch is not needed if the required breaker duty cycle consists of only a single 

opening. Switches VI3a and VI3b are similar to VI1. The natural resonant frequency of the LC 

circuit can be increased to practical values approximating 2-3 kHz that would reduce the required 

sizes of L1 and C1. The resistors R1 are required for capacitor charging.   

3) Energy absorber which consists of banks of surge arresters. These arresters  are based on standard 

surge arresters widely used in AC systems for overvoltage protection.   
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4) Residual breaker, VI2, which interrupts only a small current, and where opening speed is not 

critical. 

5) Ldc is a current limiting inductor that reduces the rate of rise of fault current.  

The mechanical DC CB presented is also called a current injection DC CB, since it employs pre-charged 

capacitors, C1a and C1b, which substantially improve the speed of each operation.  

 

Figure 2. Mechanical DC Circuit Breaker.  

5.2 Operating principles   
 Figure 3 illustrates interruption of 15kA peak DC fault current with a mechanical DC CB on a 400 kV DC 

system, assuming a DC fault at t=0s. A series inductor of Ldc=240 mH is used.  Figure 3A shows that it 

takes approximately 8 ms for the VI1 contacts to fully separate, and at this instant VI3 closes, injecting an 

oscillating current, IS3 that facilitates a zero crossing of IVI1. When the arc is interrupted in VI1, the DC 

current IDC is transferred to the energy absorber and voltage VDCCB abruptly rises to the clipping voltage 

of the surge arresters, which is commonly around 1.5 pu (600 kV). This high voltage brings a negative 

voltage across inductor Ldc (400 kV-600 kV), enabling fault current suppression. The fault current is fully 

extinguished after an additional 20 ms, as seen in Figure 3B. 

Commonly, manufacturers will specify the time to voltage recovery (8 ms in Figure 3) as the key DC CB 

performance indicator. The peak fault current is specified as the single indicator of interrupting capability 

(15 kA in 0), which is a key parameter for sizing the series inductor Ldc, which could also vary for 

different DC CB technologies because of different opening speeds.  

The expected energy dissipation by the arrestors in this case is around ESA=83MJ, as seen in 0D. Figure 3 

illustrates fault current interruption in the positive direction, but this DC CB topology can similarly 

interrupt DC fault current in the negative direction. However, since the charge of capacitor C1 is unipolar, 

the responses in the negative direction will be slightly different and component stresses might be higher.       
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Figure 3 DC fault current interruption with 400kV, 16kA, 8ms Mechanical DC Circuit Breaker.  

6 Hybrid DC Circuit Breaker 

6.1 Topology 
A representative topology for hybrid DC CB is shown in Figure 4. It consists of the following: 

1) A Main Branch with two 400kV semiconductor valves T2A and T2B (one for each direction). If 

protection in only one direction is desired, then only one valve would be required. Each valve is 

similar to one arm of a (6-arm) VSC HVDC converter. This branch can conduct load current in a 

closed state, but losses would be high with prolonged operation.  

2) The auxiliary branch, which has low resistance, conducts full load current in closed state. This 

branch includes:  

a. A low-voltage semiconductor valve T1. This valve is also called the load commutation 

switch, and it should have a voltage rating comparable with the closed-state voltage drop 

of the valve T2 (i.e. in the order of 10kV).  

b. An ultrafast disconnect switch S1. This switch cannot support arcing (it can open only at 

zero current), but has an extremely fast opening speed. Significant technological 

advances have been made recently using Thomson coil drivers, and the opening speed for 

320kV units has been demonstrated as   approximately 2ms.   

3) Energy absorber, SA, which consists of banks of surge arresters.  

4) Residual breaker S2 which interrupts only the arrester leakage current. Its opening speed is not 

critical. 

Ldc is a current limiting inductor. 
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Figure 4 Hybrid DC Circuit Breaker. 

 

The low voltage valve T1 continuously conducts load current, and it must withstand fault current in the 

period before the protection relay sends the trip signal. In practice, this valve consists of several parallel 

branches, with each branch having a few IGBTs (Insulated Gate Bipolar Transistors) in series. Because of 

the continuous conduction stress, this valve requires a forced liquid cooling system. The main valve T2 

only conducts the fault current for around 2ms and therefore it does not need liquid cooling. However, the 

whole hybrid DC CB should be located indoors (in a valve hall) similar to any large converter.  

6.2 Operating principles  
Figure 5 illustrates a DC fault on a 400 kV DC system interrupted by a hybrid DC CB that uses a series 

inductor of Ldc=76 mH. The fault occurs at t=0s and the current peaks at 15 kA   Figure 5B shows that S1 

begins to open when the current is transferred to T2 and IT1 drops to zero. It takes 2ms for S1 to fully open 

while T2 is conducting. Once S1 is open, the current is commutated to the energy absorber by opening T2. 

As current commutates to surge arresters, their voltage rises to 1.5 pu, which initiates current suppression. 

It takes another 5 ms for the fault current to reduce to zero, as seen in  Figure 5A.  Figure 5D illustrates 

that the expected total energy dissipation in this case is ESA is equal to 21 MJ.  

 



 10 

 

Figure 5. DC fault current interruption with 400kV, 16kA, 8ms Hybrid DC CB. 

6.3 Self protection 
Similar to all high-power converters, the semiconductor valves in hybrid DC CBs have self-protection 

that opens the valves in the event of excessive current. Although unlikely, a failure in some grid 

protection components (relay, sensor, communication, etc.) could fail to send a trip signal to the DC CB 

in a DC fault situation, which results in rising high DC CB current without a DC CB trip command. In 

practical terms this means that the DC CB may open on its own to protect itself at some DC current 

threshold (which is much higher than DC grid protection settings). 

This function will have a largely positive connotation. If the DC grid protection were to fail for whatever 

reason, it can be expected that the hybrid DC CB would open at its self-protection threshold as the last 

line of defense.  

6.4 Fault current limiting 
Hybrid DC CBs can also act as DC fault current limiters. By employing ON/OFF control of the individual 

modules in the valve T2, the number of inserted arresters can be varied, which can regulate current. This 

operating mode is limited by the thermal capability of energy absorbers, and can most likely be achieved 

for only short periods of time.  

This fault limiting operating mode can be beneficial in some applications, for example: 

1. Limiting fault currents allows additional response time for fault clearing by other DC CBs 

installed on other lines in a DC grid. In practical terms, the DC CBs or protection systems on the 

other lines may have slower response times.  

2. Limiting inrush currents when connecting DC lines eliminates the need for pre-insertion resistors 

on the DC CBs.   
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7 DC Circuit Breakers Installed in China 

7.1 Installed hybrid DC CB in the Zhoushan multiterminal system  
Among the islands of the Zhoushan archipelago, the largest power-consuming islands include the main 

island of Zhoushan, followed by the islands of Daishan, Qushan, Yangshan, and Sijiao. The annual load 

of the Zhoushan power grid reached 780 MW in 2010, and is estimated to reach 2000 MW in 2020 as a 

result of higher demand arising from economic development.  

So, a ±200 kV five-terminal VSC-HVDC project, constructed by the State Grid Corporation of China, 

began commercial operation in 2014. It transmits power from the mainland to the five islands. This 

project employ modular multi-level converter and connects by submarine cables. During normal 

operation, the Dinghai converter station on Zhoushan Island provides DC voltage control, and the other 

stations operate in power control modes. As a result, the power flows from Dinghai station to the others. 

Due to the lack of HVDC circuit breakers, clearing a DC fault was originally achieved by slow-acting AC 

system breaker operations. The lack of rapid fault isolation and ability to switch facilities caused several 

technical issues on the system, including the need for improved system security, operating flexibility, 

reliability, and rapid system restoration.  

In 2016 a hybrid DC circuit breaker rated 200 kV was installed at Dinghai station on the Daishan to 

Daishan line, which improved the controllability and reliability of the Zhoushan project (see Figure 6). 
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Figure 6.  The Zhoushan 5-terminal HVDC transmission system with the installed hybrid DC CB 

 

Figure 7 shows the topology and picture of a prototype of 200kV hybrid HVDC circuit breaker. The three 

branches consist of the following:  

1) The Auxiliary branch carries nominal current and contains a series combination of an ultrafast 

mechanical disconnector (UFD) and an auxiliary commutation switch, which consists of a full 

bridge sub-modular (FBSM) employing high power rating IGBTs. The FBSMs appearing in the 

auxiliary branch and main branch adopt the same full-bridge structure that consists of 4 press-

pack IGBTs and a snubber circuit. The auxiliary branch should have as few FBSMs as possible to 

reduce the on-state impedance. Therefore, a matrix of 2×3 FBSM design is used, featuring low 

conduction losses and high reliability. As a means of facilitating maintenance, the design of each 

FBSM uses an integrated modular unit connected by an inductance-less busbar. A water-cooling 

system is needed because the auxiliary branch conducts the long-term load current. Since the 

UFD is opened with zero current, the mass of its inside contacts is reduced, and its driving 

mechanism is designed as a lightweight system. Therefore, compact design is achieved by 

employing a vacuum interrupter (VI) with voltage rating of 40.5 kV and current rating of 2 kA 

rather than an SF6 circuit breaker. The maximum separation time of the breaker must be within 2 
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ms to meet the fault clearance time requirements of the Zhoushan project. As a result, a series 

connection of 6 VI is adopted and each VI is equipped with voltage-sharing devices. 

2) The main branch interrupts fault currents and consists of  four series-connected modular units. 

Each modular unit contains 36 FBSMs in a series connection that is designed for 50 kV voltage 

and 15 kA current breaking capability. A cooling system is not necessary for the main branch 

because it only experiences the fault current for several milliseconds. The FBSM topology 

provides a bidirectional current path and allows for the hybrid circuit breaker to interrupt fault 

current in either direction. In addition, the capacitors in the FBSM enable soft turn-off of the 

IGBTs, significantly decreasing the induced voltage stress and balancing the voltage distribution 

across the modular unit during fault interruption. 

3) The energy absorber branch is made up of surge arresters that limit transient interruption voltages 

(TIV) and dissipate the magnetic energy stored in the system. 
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Figure 7.  200kV hybrid HVDC circuit breaker: (a) topology, and (b) prototype 

The installed hybrid HVDC circuit breaker offers the following advantages: 

 Small footprint and height resulting from the integrated and compact design (installed at a 200 kV 

high potential platform) 

 Low power losses during normal operation resulting from use of fewer power semiconductor 

devices in the main branch (6 FBSMs form a 2×3 matrix, cooling system, power adapter) 

 Use of a lightweight contact system (6 vacuum interrupters in series, 40.5kV because each UFD 

separates without experiencing current 

 Modular design (4 modular units, 50kV each, 36 FBSMs each unit), which facilitates 

maintenance and spare parts, and 

 High reliability resulting from exposure to lower voltages due to the series design that distributes 

voltages during switching. 

Although no relevant IEC standards currently exist, conformance tests must be performed to verify the 

HVDC circuit breaker design. These were developed based on the operating principles and conditions of 

the HVDC breaker, as well as the present VSC-HVDC valve test IEC standard. The type test was divided 

into two parts: the insulation test and the operating test. 

The insulation test verifies the voltage withstanding capacity and the voltage-sharing characteristic of a 

HVDC circuit breaker. The operating test checks the capacity of each core component to withstand 

serious stress and the operational properties under different circumstances. Table 1 shows some of the 

main test items. 

 Table 1  The insulation and operating test items of HVDC circuit breaker 

No.  Test object Items Objective 

1 Insulation Phases to DC voltage withstand test To verify the voltage 
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2 test ground Switching impulse withstand test (SWT) withstanding capacity and 

partial discharge level of 

support structure 3 Lighting impulse withstand test (LWT) 

4 Across the open 

contacts 

DC voltage withstand test To verify the voltage 

withstanding capacity of 

across the open contacts 5 SWT 

6 

Operating 

test 

Key components 

Peak withstand current test 

To verify the current 

withstanding capacitor of 

the circuit breaker 

7 Overload withstand current test  

8 Short-time withstand current test  

9 Short-time withstand current test  

10 

Overall 

prototype 

Rated current interruption test To verify the current 

interruption capacity and 

the interruption time of the 

overall prototype and the 

program correctness of the 

control and protection 

system 

11 Short-circuit current interruption test 

12 Rated current making test 

13 Short-circuit making test 

 

The 200kV hybrid DC circuit breaker successfully passed the test where a 15 kA short-circuit current was 

cleared within 3ms and the transient interruption voltage across the test object exceeded 320kV. 

7.2 Installed Mechanical DC CB in Nan’ao multiterminal system 
The Nan'ao multi-terminal HVDC project, with a ±160 kV rated DC voltage, was completed by China 

Southern Power Grid (CSG) and put into operation at the end of 2013. This project includes three 

converter stations: Sucheng station, Jinniu station and Qing'ao station. The project collects wind power 

supplied to Jinniu and Qing’ao stations and sends it to the mainland. This project originally adopted the 

same method of using AC breakers to interrupt DC faults as utilized in the Zhoushan project, which 

achieved the lowest possible power losses and capital expenses but meant the project suffered from slow 

DC fault clearing times. The problem was upgraded in 2017 by installing three mechanical DC circuit 

breakers rated 160kV (See Figure 8). 
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Cable

100MW

50MW

DC 

Breaker

Sucheng station Jinniu station

Qingao station
 

Figure 8.  The Nan’ao 3-terminal HVDC transmission system with installed mechanical DC CB. 

 

Figure 9 illustrates the topology and a picture of the installed prototype 160kV mechanical HVDC circuit 

breaker. It consists of the following: 

1) The main branch consisting of four 40 kV rated DC voltage vacuum interrupters (VIs) connected 

in series, which satisfy requirements for meeting system voltage levels and fast response times. 

Adequate voltage-sharing during dynamic events and static state requirements are achieved by 
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arming each VI with a transient grading capacitor Cj, damping resistor Rj, and static voltage-

sharing resistor RX.  

2) The current injection branch is divided into a high-voltage side and a low-voltage side that are 

completely isolated electrically through use of an air-core transformer with mutual inductance M, 

where the high coupling factor k allows for high energy transfer efficiencies. Air core design is 

the most efficient solution because of high power transfer at high frequency.  

3) The energy absorber consists of banks of surge arrestors, directly connected to the series 

connection of the four VIs. 

VI1

Cj Rj

Rx

MOV

C1

C2

SCR

High-voltage side

Low-voltage side

L2

L1Rc Dc

Tc

M

VI2 VI3 VI4

UPS

D

Rx Rx Rx

Rj Rj RjCj Cj Cj

 

(a) (b)

Main branch

Current 

injection 

branches

Energy absorber

Main 

branch

Current 

injection 

branches

Energy 

absorber

 

Figure 9.  160kV mechanical HVDC circuit breaker: (a) toplogy, and (b) prototype. 

Similar to the operating principle described in Section 5, the Nan’ao mechanical HVDC CBs use a 

combination of an inductor and pre-charged capacitors to produce the current zero across the VIs. The 

difference is that the storage capacitor in this scheme is charged on the low-voltage side of the CB rather 

than at the high-voltage side. This technical solution charges the storage capacitor C1 to the target voltage 

by introducing a UPS boost circuit. The UPS voltage is boosted by the isolation transformer Tc, and then 

rectified into a DC voltage through the high voltage silicon rectifier, Dc, where the resistor Rc is used to 

limit the inrush current during the charging process. 

Compared to conventional mechanical DC circuit breakers, this mechanical HVDC circuit breaker offers 

advantages of reduced costs, footprint, and height that are achieved by utilizing an air-core coupling 

reactor and smaller size of key components appearing in the injection branch. 

Experimental results show that the mechanical high-voltage DC circuit breaker successfully interrupted a 

9.2kA fault current with peak of TIV reaching 272kV in 3.9 ms. 

7.3 DC CB installed in Zhangbei HVDC grid 
Due to its geographical advantage, the Zhangbei region of North China has seen considerable renewable 

wind resource development and this trend is expected to continue until 2020. However, successfully 

integrating these resources presents challenges resulting from their asymmetric distribution with energy 

consumption, and their intermittent and highly variable characteristics. Implementing HVDC facilities 

helps resolve many of these concerns and the availability of a viable HVDC circuit breaker makes the 

construction of HVDC grids feasible. As a result, a ±500kV/3000 MW four-terminal HVDC Grid project 

has been proposed. 

The project adopts a four-terminal ring, and the operating configuration is a bipolar topology with a 

metallic return line (see Figure 10). The Zhangbei and Kangbao converter stations are the sending 

terminals collecting local wind power. The Fengning converter station is a regulating terminal connected 

to a local pumped-storage hydro-plant which can smooth the output power fluctuations of the wind power 

resources. The Beijing converter station is the receiving terminal used to supply renewable power for 

Beijing.  
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Figure 10.  The Zhangbei four-terminal HVDC grid with DC CB 

The Zhangbei project adopts a half-bridge modular multi converter (MMC) technology and uses overhead 

lines. As a result DC breakers must be configured at the both end of line to clear potential DC faults such 

as lighting induced faults. A 500kV DC breaker prototype was developed in 2018 and the project is 

scheduled for operation by 2020. 
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