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Neoproterozoic copper cycling, and 
the rise of metazoans
J. parnell1 & A. J. Boyce2

the rise of animal life is temporally related to the increased availability of oxygen in the hydrosphere 
and atmosphere during the Neoproterozoic. However, the earliest metazoans probably needed 
relatively low oxygen concentrations, suggesting additional environmental and/or biochemical 
developments were involved. Copper was required in the exploitation of oxygen by the evolving 
animals, through the development of respiratory proteins and the extracellular matrix required for 
structural support. We synthesize global data demonstrating a marked enrichment of copper in the 
earth’s crust that coincided with the biological use of oxygen, and this new biological use of copper. 
the copper enrichment was likely recycled into the surface environment by weathering of basalt and 
other magmatic rocks, at copper liberation rates up to 300 times that of typical granitic terrain. The 
weathering of basalts also triggered the sturtian glaciation, which accelerated erosion. We postulate 
that the coincidence of a high availability of copper, along with increased oxygen levels, for the first 
time during the Neoproterozoic supported the critical advances of respiration and structural support in 
evolving animals.

The precise timing of the first metazoans is uncertain, but the evidence focuses on a time at or shortly after 
the first of the two major Neoproterozoic glacial intervals (‘Sturtian’) as the time at which metazoans started to 
appear1,2. This was a time of increasing concentrations of oxygen in the atmosphere, inviting inference of a genetic 
link between the availability of oxygen and animal evolution3–6. However, recent assessments of the requirements 
of the first metazoans conclude that oxygen was only needed at low levels that had already been available for some 
time5–8. This implies that a Neoproterozoic oxygenation event was not the sole requirement for the rise of animal 
life. The use of oxygen required availability of copper9–11, which we show was likely being cycled at unprece-
dented levels in surface environments at that time. Thus, the higher oxygen levels of the late Neoproterozoic were 
exploited by innovative use of the available copper.

Copper is used by all domains of life12–14, and it has been inferred that the availability of copper influenced 
the timing of the evolution of multicellular life15,16. Proteins evolved to utilize copper in new ways following the 
oxygenation of the Earth13,17,18. The new copper proteins were, accordingly, used by animals and other eukaryotes 
(Fig. 1). Copper is used by organisms living in oxygen-rich environments, while most anaerobes do not use it13. 
There was a marked increase in protein fold domains (biologically functional 3-D structures) related to aerobic 
metabolism at ~700 Ma17, i.e. at about the time of the Sturtian glaciation, and today up to 160 copper proteins 
are found in eukaryotes12 Initially, copper proteins helped to bind and neutralize oxygen and negate oxygen 
toxicity9,10, but copper also conferred benefits to enhance the radiation of metazoans. Cupredoxins catalysed 
the reduction of oxygen to water in the respiratory chain18,19. The copper-bearing cytochrome c oxidase (COX) 
is the terminal enzyme in the mitochondrial respiratory chain required for the synthesis of ATP for energy in 
cells20.Two classes of copper protein are of particular importance to animals in allowing the breathing of oxy-
gen, and the development of body architecture. These are the oxygen-carrying hemocyanin respiratory proteins, 
and lysyl-oxidases (LOX) whose primary role is in the modelling of extracellular matrix, including the synthe-
sis of collagen and elastin11,21 essential to the transition from unicellular to multicellular organisms, including 
animals. These copper-dependent proteins diversified in the Neoproterozoic, coincident with the flourishing of 
animals14,22.

Evidence for the antiquity of hemocyanin in molluscs derives from a ~735 Ma molecular clock age23 and an 
inferred occurrence in the Cambrian Burgess Shale24. This is consistent with a general increase in the biological 
use of copper at that time15. Sponges are the earliest diverging metazoan group, for which body fossils, molec-
ular clock dates and lipid biomarkers all indicate a record back to the mid-Cryogenian, following the Sturtian 
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glaciation3,25,26. The copper protein hemocyanin was used by the last common metazoan ancestor and accord-
ingly, was used by the earliest sponges27. Sponges were similarly the first organisms in which LOX enzymatic 
activity may have sculpted extracellular matrix to allow, for example, structural support22. The most abundant 
protein in animals is collagen, which provides essential mechanical support and was used by the earliest meta-
zoans28,29. A requirement for oxygen in collagen has formerly been viewed as an expression of how animal evo-
lution was dependent upon oxygen30, but recently this constraint has been questioned5. An alternative essential 
requirement for collagen synthesis is copper11,21, based on the LOX enzymes. Collagen formation may have been 
a consequence of the detoxification of oxygen31, which copper proteins engendered9,10. The exploitation of these 
copper-dependent proteins was therefore fundamental to the earliest metazoan physiology.

Whilst copper had always been available, albeit in lower concentrations15, the increased levels of oxygen in 
combination with anomalous availability of copper allowed a major innovation in how copper was used. There 
had even been previous episodes of high copper availability32, but before the critical rise in oxygen. This coin-
cidental availability of relatively high levels of both copper and oxygen allowed their integrated use by the new 
metazoans. Further, the increased oxygen levels also ensured that the copper could be readily recycled at the 
Earth’s surface. Copper is strongly redox-sensitive, and in oxidizing conditions is mobile33. Thus, the high oxygen 
facilitated high copper mobility and availability, which in turn could be used by the metazoans to exploit the 
oxygen. The focus on copper as the element important to the metazoans reflects the critical combination of its 
abundance in basalts and mobility in oxidizing conditions, which is a combination not shared by other elements.

The Sturtian glaciation at ~700 Ma likely enhanced the availability of copper to a possible role in subsequent 
evolution. Glacial erosion is especially important as a source of finely ground material with high bioavailability34. 
The global Sturtian event in particular caused extensive deep erosion of copper-enriched crust, bringing copper 
to the surface environment just as oxygen levels increased and the first metazoans appeared. The Proterozoic crust 
had become enriched in copper32 through a succession of Palaeoproterozoic-Mesoproterozoic volcanic massive 
sulphide (VMS), copper porphyry and other granite-hosted deposits. Then, global Neoproterozoic magmatic 
activity35 was widely associated with copper mineralization. Volcanic deposits on at least thirteen palaeoconti-
nents host copper mineralization in the 900 to 700 Ma interval, prior to the Sturtian glaciation (Table 1).

Weathering of the Neoproterozoic basalts has been implicated in carbon dioxide drawdown and cooling, 
which triggered the Sturtian glaciation6,36–38. The basalts of this magmatic episode would have been highly weath-
erable6,36, and the weathering of an atypically large volume of basalt at that time would have liberated anom-
alous amounts of copper to surface systems. The average basalt has a copper content about seven times that 

Figure 1. Timeframe for magmatic and sedimentary copper mineralization, enhanced weathering of magmatic 
rocks, metazoan evolution, and copper protein utilization. Data from refs22,23,29,31,32,40. Oxygenation profile 
from ref. 4. Copper concentrations also exhibit high levels in Neoproterozoic black shales, shown by Cu/Ti 
levels47 and copper in pyrite48. First use of copper proteins by metazoans uncertain but at least as old as shown. 
PAL = Present Atmosphere Level.
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of the average granite (mean values 90 ppm basalt, 13 ppm granite39), which would normally have dominated 
the detritus from eroding continents. Considering also the greater susceptibility of basalt to weathering, up to 
twenty times faster than granitic rocks40, the erosion of typical basaltic terrain might increase the flux of copper 
by two orders of magnitude relative to typical granitic terrain. The contrast would have been even greater in the 
Cryogenian, when the basalts were conspicuously mineralized by copper. Even unmineralized early Cryogenian 
basalts contain copper levels higher than normal. The model for accelerated weathering is based on basalts on 
the Laurentian continent8,38,40, where the Franklin Igneous Province (FIP) covers an area exceeding 2 million 
km2. Multiple data sets from Alaska to Greenland show mean copper levels in the FIP over twice those of average 
basalts (Fig. 2, Table 2), and FIP basalts also contain native copper. These statistics combine to indicate the liber-
ation of copper by weathering of the FIP up to 300 times that of granitic terrain, independent of any additional 
enhancement due to rapid glacial weathering. Evidence from ɛNd values for an enhanced contribution of eroded 
magmatic rock to marine sediments from about 750 to 600 Ma40 suggests that this potential was realized.

The high flux of copper into the surface/near-surface environment immediately before the Sturtian glaciation 
is evident from the widespread copper mineralization of clastic sedimentary successions beneath the diamictite. 
It is very likely that these copper reservoirs were exposed during the extensive (global, long-lived) Cryogenian 
glaciation, which would have caused further weathering and erosion. Where glacial diamictites are preserved, 
there is no doubt about the supply of copper. Sturtian diamictites lie unconformably on copper-mineralized 
rocks in Australia, Africa, North America and Greenland. Clasts of copper ore in the diamictites, in Canada41 

Plate Locality Age (Ma) Cu ore (%) (Ref.) Volcanic setting

Laurentia Victoria Island, NWT ~725 <0.1-> 4.055 basalts

South China Pingshui ~900 1.0356 volcanic massive sulphide

North China Jinchuan ~825 0.757,58 rift-related magmatism

Siberia Ioko-Dovyren 740–700 0.28–0.6459 rift-related mafic intrusion

India Khetri Copper belt ~850 1.1–1.760 rift-related volcanics

Arabia Saudi Arabia ~800 0.37–2.561 volcanic massive sulphide

Nubia Eritrea ~780 0.99–3.9162 volcanic massive sulphide

West Africa Morocco 750–700 2.5–3.563,64 rift-related volcanics

Congo N. Namibia ~745 1–1065 rift-related volcanics

Kalahari S. Namibia 900–800 366 rift-related volcanics

Sao Francisco Mara Rosa Arc 900–800 0.4367,68 volcanic arc Cu-Au

Rio de la Plata Uruguay ~715 ?69 volcanic massive sulphide

Australia South Australia ~800 ~370 syn-sedimentary magmatism

Table 1. Global occurrence of Early Neoproterozoic Copper ore, and ore grades in volcanic rocks, in 13 
tectonic plates.

Figure 2. Anomalous copper contents in Franklin Igneous Province. Copper contents for 8 sets of samples in 
FIP, and mean value, relative to global mean values for basalt and granite. Data sources in refs 71–76 (Table 2).
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and Greenland42, convincingly demonstrate down-cutting into the underlying ores. FIP basalts interfinger with 
the diamictite in Alaska and contribute clasts to it43. Evidence of copper sulphide replacement of early pyrite in 
the Central African Copper Belt indicate that copper mineralization was still taking place during burial of the 
diamictites44. Similarly, copper mineralization in south Australia continued from pre-diamictite volcanic rocks 
into post-diamictite sediments45, indicating that copper cycling spanned the period of glaciation, and also left 
ore in periglacial breccias46. The African copper belt deposits, together with early Cryogenian copper deposits in 
western Canada, constitute most of the known resources of sediment-hosted copper32, implying the availability 
of exceptional amounts of copper in the upper crust at that time. In summary, a widespread copper-rich sub-
strate to the diamictites, copper-rich basalt interfingering with diamictite, copper-rich detritus in diamictites, 
and the flush of copper-rich fluids through diamictites combine to indicate an unprecedented flux of copper to 
the Sturtian surface.

Globally, the enhanced availability of copper in the surface environment is evident from the chemistry of 
marine organic-rich shales47 and the chemistry of pyrite48 precipitated during the early burial of the shales, which 
give a measure of seawater composition. Copper levels in Neoproterozoic shales and the diagenetic pyrite are 
both higher than at any other phase of Earth’s history47,48. This records a higher supply of copper than hitherto, 
which was extracted from seawater by the precipitation of sulphides under locally anoxic conditions. Following 
the Neoproterozoic, as the oceans became predominantly oxic, more copper was retained in solution and thereby 
bioavailable. The surface chemistry in the immediate aftermath of the Sturtian glaciation can be inferred from the 
earliest diagenetic sulphides in the postglacial succession. The sulphur isotope composition of diagenetic pyrite in 
the glacial-postglacial succession indicates an origin through (low-temperature) microbial sulphate reduction49. 
Exceptionally, the postglacial sulphides include copper sulphides, with isotopic compositions similar to those of 
accompanying pyrite, and also attributable to microbial sulphate reduction49. The formation of discrete copper 
sulphides is strong evidence for a copper-rich environment during and after the glaciation49.

It is possible that episodes of copper mineralization are missing from the earlier Proterozoic record due to gaps 
in preservation, but the occurrence of multiple examples of both magmatic and sedimentary copper mineraliza-
tion in the Neoproterozoic strongly suggests that this was an exceptional period of copper delivery to the upper 
crust. Basalts in general are commonly mineralized by copper, to the extent that they constitute a recognized ore 
type50, so the huge FIP represented a major reservoir of copper. The release of copper from basalts was enhanced 
under oxic conditions51. The anomalous availability of copper during the Sturtian glaciation does not mean that 
the glaciation was critical to the flux of copper. Rather, the glaciation and release of copper were both products 
of a single process, i.e. the weathering of the FIP basalts, which consumed carbon dioxide to cause cooling36 
and liberated the metal. This is why the sediments below the Sturtian diamictite were already mineralized by 

Region Unit Age (Ma) Cu content (%) (n) Reference

1. Alaska Kikiktat volcanics 719.5 146.7 (21) 71

2. Nunavut Coronation sills 723 220.4 (19) 72

3. Victoria Island Natkusiak Fm. Basalt 723 135.6 (24) 73

4. Victoria Island Natkusiak Fm. basalt 723 210.0 (9) 74

5. Murray Island Coronation sills 723 228.3 (12) 75

6. Bathurst Inlet Coronation sills 723 396.4 (14) 75

7. Somerset/POW Islands Dikes 723 101.0 (7) 75

8. Greenland Franklin-Thule sills 716–720 357.5 (4) 76

Table 2. Copper contents in basalts, Laurentia.

Figure 3. Schematic cycling of copper in Neoproterozoic era. Early Neoproterozoic enrichment of the crust in 
copper, followed by glacial and other erosion, introduced copper to surface environments where it facilitated 
use of elevated oxygen by metazoans.
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copper-rich groundwaters in several parts of the world. The model for weathering-induced cooling emphasizes 
that weathering was enhanced shortly before the glaciation due to a combination of continental break-up and 
low latitude position of the continents36,37,40. Break-up triggered magmatism, and an equatorial setting provided 
a suitable tropical climate in which basalts yield a large proportion (>50%) of their copper52. Thus these factors 
would have accelerated the flux of copper to surface environments prior to, and during, the Sturtian glaciation.

The high availability of copper was not a short-lived phenomenon. Following the Sturtian glaciation, the record 
of high copper flux continued in the later Cryogenian and Ediacaran, including for example copper-mineralized 
flood basalts across Eastern Europe and Ukraine53, and mineralized sediments in North Africa, Siberia and 
Australia45,54. The continuing record of copper mineralization, and recycling of older Proterozoic copper depos-
its, in the latter part of the Neoproterozoic, shows that the anomalous supply of copper persisted from the origin 
of the metazoans through to the Cambrian explosion of life. Following peak delivery of copper to the upper 
crust, continued access to the copper was facilitated by the higher oxygen content of the atmosphere from the late 
Neoproterozoic onwards. Increased oxygen allowed greater concentrations of dissolved copper in surface waters 
and seawater33. Prior to the late Neoproterozoic, when oceans were anoxic, lower levels of dissolved copper lim-
ited its potential use. Then in the late Neoproterozoic copper was readily available to support the development of 
the copper-dependent proteins that facilitated the early evolution and diversification of animals (Fig. 3).

Methods
Copper contents in basalts in the Franklin province of the Laurentian continent were collated from published 
literature, and summarized as mean values for distinct regions. The composite value for the whole province is 
a weighted mean from constituent regions. Copper ore grades are most recent estimates available for deposits 
considered viable for mining, in published literature. Estimates are for either the largest deposit or ore province 
in each continent.
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