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The landscape of the Karrat region, central West Greenland, contrasts between high elevation low relief
topography, steep sided fjords and deep bathymetric troughs. The mechanisms controlling its formation are
highly debated, with initial work suggesting it to be the result of episodic tectonic uplift throughout the late
Cenozoic and alternative models implying it is the product of more recent isostatic uplift in response to
differential glacial erosion. Here the results of a comprehensive low temperature thermochronological study
(apatite fission track and apatite (U\\Th)/He) and landscape evolution model are presented that helps establish
the source of the modern elevated landscape and the region's complex geomorphology. Joint modelling of the
apatite fission track and apatite (U\\Th)/He data outlines two significant periods of cooling, in the Mesozoic
and Cenozoic respectively. The first (150 Ma – 110 Ma) correlates to the onset of extension between West
Greenland and eastern Canada, suggesting uplift of the region during active rifting, while the second period
(50 Ma - 0 Ma) is coeval to the cessation of volcanism in the region and likely represents widespread erosion.
These results suggest the basement escarpment likely remained at height during extrusive volcanism and was
later uncovered following exhumation of the volcanic succession. Moreover, this latter phase of exhumation is
outlined in the results of landscape evolution modelling, implying it likely encompassed localised differential
erosion of the volcanic pile, producing a pre-glacial landscape that later aided ice stream onset and the advance
of the Uummannaq Ice Stream. Glacial exhumation of the region was likely characterised by differential erosion,
shaping the modern geomorphology through preferential ice stream development and isostatic rebound. These
results highlight the complex interaction between rift tectonics and surface processes across the Karrat region
and adds to a wider understanding of the post-rift evolution of passive continental margins.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The elevated topography of glaciated Atlantic passive margins
continues to stimulate considerable debate and discussion across the
geological community (e.g., Rohrman et al., 1996; Hansen, 1996; Riis,
1996; Japsen and Chalmers, 2000; Japsen et al., 2005; Anell et al.,
2009; Eidvin et al., 2014). Several continental margins exhibit low relief
high elevation topography surrounded by low lying plains, deep
bathymetry or sedimentary basins, believed to have formed through
either episodic post-rift uplift (Green, 1989; Redfield et al., 2005;
Japsen et al., 2006; Bonow et al., 2014; Japsen et al., 2014; Redfield
and Osmundsen, 2014; Green et al., 2018) or a combination of pre-rift
topography, rift flank uplift and denudational isostasy (Hendriks and
Andriessen, 2002; Medvedev et al., 2008; Nielsen et al., 2009;
Medvedev et al., 2013; Medvedev and Hartz, 2015; Egholm et al.,
. This is an open access article under
2017). Diverse approaches have been utilised in attempts to better con-
strain the extent and timing of passive margin uplift across the Atlantic
(Hansen, 1996; Riis, 1996; Rohrman et al., 1996; Japsen, 1998; Nielsen
et al., 2009; Gołędowski et al., 2013; Pedersen et al., 2016), though a de-
finitive consensus is yet to be agreed upon.

The landscape of the Nuussuaq Basin, central West Greenland,
is heavily glaciated and includes elevated topography (≤2 km)
believed to have formed through either widespread differential erosion
(Medvedev et al., 2013; Jess et al., 2018) or late Cenozoic episodic uplift
(Bonow et al., 2006; Japsen et al., 2006). Peneplains within the
landscape have previously been suggested to outline three periods of tec-
tonic uplift between 36 Ma – 2 Ma and totalling ~3 km (Bonow et al.,
2014; Japsenet al., 2006), supportedby thermalhistorymodelling andoff-
shore unconformities (Japsen and Chalmers, 2000; Chalmers, 2000).
These conclusions have been criticised previously, with Redfield (2010)
concluding uncertainties within the wider thermochronological dataset
could not define late Cenozoic uplift, while Jess et al. (2018) questioned
both the modelling approach and interpretation of peneplains in the
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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landscape. Furthermore,Medvedev et al. (2013) and Jess et al. (2018) pro-
posed the basin's elevated topography may instead be the result of
lengthy widespread exhumation, instigating significant positive feedback
from the lithosphere and preservingmuch of the older topography under
cold-based ice during glaciation (Strunk et al., 2017). This alternative in-
terpretation of basin evolution appears to suit much of the data and geol-
ogy in theNuussuaq Basin better, though the cause of topography and the
complex geomorphology across the surrounding basement margins re-
mains unclear.

The present work focuses on the elevated basement margin to the
NE of the Nuussuaq Basin (Fig. 1), which exhibits both high elevation
low relief topography (N2 km) and deep bathymetric troughs
(0.6 km) (Fig. 2). The application of both a high-density elevation profile
of apatite fission track and apatite (U\\Th)/He data and landscape
evolution modelling are utilised to establish the timing of topographic
generation across the basement margin and infer the key factors that
helped shape the geomorphology. Collectively, the results aid in
establishing a conceptual model that outlines how the interaction
of rift tectonics, volcanism and differential exhumation combine to
generate the modern landscape.

2. Geological and geomorphological setting

2.1. Geology

The geology of the study area has an Archaean-Proterozoic meta-
morphic basement overlain by Mesozoic sediments of the Nuussuaq
Basin and Cenozoic volcanics of the West Greenland Igneous Province.

The basement rocks of the Karrat region are part of the wider
Rinkian Fold Belt that formed in the Paleoproterozoic during the
Trans-Hudson Orogeny (~1.87 Ga) (Sidgren et al., 2006; St-Onge et al.,
2009). The principal basement units consist of the Archaean Umanak
and Tasiussaq gneisses and the metasediments of the Karrat Group,
a Paleoproterozoic clastic passive margin sequence that formed atop
the Archaean gneisses (Grocott and McCaffrey, 2017). Following the
Trans-Hudson orogeny, the region is thought to have remained at the
Fig. 1. Simplified geological map of the Karrat region displaying the sample locations (white ci
The geology of the region is made up of three principal sections; Proterozoic basement to
The basement topography map of Greenland highlights the key topographic regions of Greenla
cratonic heart of Laurentia, though much of the observable geological
record was since eroded away as a result of Mesozoic-Cenozoic
rifting and widespread glaciation. Isolated sedimentary accumulations
and low temperature thermochronological data from across the
Slave Craton, northern Canada, suggest much of the region may have
experienced subsidence and uplift during the Palaeozoic (Flowers
et al., 2012; Ault et al., 2013; Pinet et al., 2013), though the lack of
further geological evidence renders this interpretation contentious.

Rifting between Greenland and Canada is believed to have
commenced as early as the Late Triassic (Larsen et al., 2009), subse-
quently forming the Nuussuaq Basin within central West Greenland
during the Early Cretaceous (Dam et al., 2009). The documented clastic
stratigraphy within the basin spans the Mid-Cretaceous to Early
Palaeocene, detailing two periods of active rifting (Mid-Cretaceous;
Late Cretaceous/Early Palaeocene) and the presence of a major deltaic
system prograding from the SE (Dam et al., 2009). Within the Karrat
region, only the coastal/terrestrial sands of the Upper Naes Formation
are observable on the islands of Upernivik Ø and Qeqertarsuq, while
the deepmarinemuds of the Itilli Formation are interpreted to underlie
the offshore (Dam et al., 1998a). The end of clastic deposition occurs in
the Early Palaeocene, as canyon and valley fill sequences outline a
significant period of uplift and subsidence within the basin, prior to
the onset of widespread Cenozoic volcanism (Dam et al., 1998b).

The extrusion of lavas from the West Greenland Igneous Province
spanned much of the Palaeocene and Eocene, eventually covering an
area of 50,000 km2 (Storey et al., 1998). Lavaswere sourced frommultiple
volcanic centres across themargin andnowoverliemuchof theNuussuaq
Basin andoffshore domain (Larsen et al., 2016) (Fig. 1). Small outcrops are
found atop the region's highest topography, implying lavas covered the
region during the Palaeogene (Larsen et al., 2016) (Fig. 1), whilst elevated
marine, terrestrial and lacustrine syn-volcanic sediments (~1100 m) are
observed throughout the southern portion of the basin indicating the ex-
tent of uplift in the region following the Palaeocene (Piasecki et al., 1992).
Widespread extrusive volcanism continued until its cessation ~54 Ma,
though localised lava deposits and intrusions continued until ~38 Ma,
marking the end of the onshore geological record (Larsen et al., 2016).
rcles) and the regions location on West Greenland (modified from Pedersen et al., 2014).
the east, Cretaceous sediments in the centre and Palaeogene volcanics to the west.
nd, with the anomalous topography of the Karrat region along the western margin.



Fig. 2. Digital Elevation Model of the Karrat region showing sample locations and AFT ages from elevated topography (contours are spaced 500 m apart). Major geomorphological
characteristics of the region include high elevated topography incised by deep fjords to the east, a low bathymetric trough in the centre of the region and elevated bathymetry and
topography to the west. AFT ages range between 65 Ma – 278 Ma, though the three ages (grey) are believed to have been locally reheated and thermally reset during volcanism,
rendering them unusable within this study. The DEM used is the Bedmachine v3 from Morlighem et al. (2017).
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2.2. Geomorphology

The modern geomorphology of the Karrat region is characterised by
high elevation basement topography, thin, steep sided fjords and a
deep bathymetric trough underlying Igdlorssuit Sund (Fig. 2). This com-
plex geomorphology has been predominantly shaped by selective linear
erosion and ice streamonset in the region, asmultiple fjord glaciers con-
verged and flowed south then west onto the continental shelf as the
Uummannaq Ice Stream (UIS). The underlying geology of the region
and pre-glacial landscape have been cited as possible controls on the
ice stream's development, restricting outlet glacier flow pathways and
forcing them to coalesce and coverage, forming the UIS (Roberts et al.,
2013; Lane et al., 2014). The geology and geomorphology appear inher-
ently linked, with the muds and sands of the Itilli Formation underlying
the deep bathymetry of Igdlorssuit Sund and basalts and gneisses under-
lying the higher topography of Ubekendt Ejland and the basin margin
(Fig. 1). This correlation implies the underlying geology may have been
a primary control on the topographic evolution of the region, conceiv-
ably providing additional insight into the regional landscape evolution.
3. Methodology

3.1. Apatite low temperature thermochronology

This study utilises apatite fission track (AFT) and apatite (U\\Th)/He
(AHe) thermochronology to determine the thermal history of the region
and the timing of uplift along the basement margin. AFT dating is pred-
icated on the fission decay of 238U that produces linear damage trails
within the apatite crystal lattice (spontaneous fission tracks). These
tracks represent the extent of fission decay, while a second set of tracks,
generated following irradiation of a grain, signifies the remaining
radioactive isotope concentration. The comparative densities of both
sets of tracks are used to calculated a thermochronological age, while
the distribution of confined track lengths assists in defining the style
of cooling through the partial annealing zone (PAZ; 120 °C – 60 °C)
(Gallagher et al., 1998). Details of sample preparation can be found in
the supplementary data, while track densities, track lengths and Dpar
(kinetic annealing parameter; Carlson et al., 1999) were measured on
a Zeiss HAL 100 microscope employing FTstage software (Dumitru,
1993) at the University of Glasgow.

AHe dating utilises the diffusion and retention of 4He in apatite from
the alpha decay of 238U, 235U and 232Th (Zeitler et al., 1987). Temperature
sensitivity of the system varies within the partial retention zone (HePRZ;
70 °C – 40 °C) dependent on the thermal history (Stockli et al., 2000),
grain geometry (Farley, 2000) and effect of radiation damage (Shuster
et al., 2006; Flowers et al., 2009) leading to a variety of ages from a single
rock sample. Moreover, age dispersion may also result from additional
sources of 4He or the zonation of radioactive nuclides (Vermeesch
et al., 2007; Ault and Flowers, 2012; Gautheron et al., 2012), which
cannot be attributed for in thermal modelling. These issues have led to
the production of an alternative analytical dating procedure utilising
fragmented (or “broken”) grains, providing a wider range of thermal
history constraints to improve thermal history resolution (Beucher
et al., 2013; Brown et al., 2013). Within this study three samples (Ka5,
Ka11 and Ka15) were analysed for AHe ages, utilising both traditional
whole grain and fragmented grain analysis, in an attempt to improve
modelling resolution. Sample preparation and analyses is outlined in
the supplementary data.

3.2. Thermal history modelling

Thermal history reconstructions within this study were computed
using the Bayesian Transdimensional Markov Chain Monte Carlo
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(MCMC) inversionwithin QTQt (Gallagher, 2012). AFT ages, mean track
length distributions (MTL) and AHe ages are jointly inversemodelled to
produce thermal histories from multiple samples across the Karrat re-
gion. This approach samples N200,000 possible thermal histories and
continually assesses each one with a calculated log-likelihood function,
utilising an acceptance criterion that attempts to improve predictions
(Gallagher, 2012). The output is a probability distribution of model
outcomes from which an ‘expected model’ can be produced (weighted
average of the final probability distribution), yielding a thermal history
derived from the resolution and quality of input data (Gallagher, 2012).
This modelling approach allows for the joint inversion of multiple AFT
and AHe samples from varying elevations, generating a single thermal
history that correlates to all the input data and provides fundamental
information regarding the thermal regime of the study area.

Grain geometry is readily accounted for within the standard thermal
modelling approach, though the addition of a radiation damage model,
alternative 4He diffusion parameters and resampling of the AHe error
are also incorporated within this study. Radiation damage appears
to significantly augment AHe ages across several passive margins
(e.g., Cogné et al., 2012; Guillaume et al., 2013; Leprêtre et al., 2015;
Wildman et al., 2015; Kasanzu, 2017), preserving additional 4He within
vacancies in the crystal structure and increasing the calculated age.
To ensure this effect is accounted for, the radiation damage model and
diffusion parameters outlined in Gautheron et al. (2009) were included
within thermal history modelling. This approach also permits the
resampling of the additional helium activation energy required as a
result of damage vacancies, believed to vary dramatically between indi-
vidual grains (Gerin et al., 2017; Recanati et al., 2017), improving AHe
age predictions further. Moreover, the resampling of AHe age error is
also integrated within the modelling approach, increasing the error on
each AHe age that repeatedly fails to conform to the rest of the input
data, essentially reducing its influence on the final model output.
These integrated features help produce better AHe age predictions in
samples, while also effectively removing data that hinder themodelling
outcome, generating thermal histories best suited to the entire dataset.

3.3. Landscape evolution modelling

In addition to apatite low temperature thermochronology, the appli-
cation of a landscape evolution model (LEM) within this study aims to
determine if the underlying geology of the region acts as a primary
control on the region's topographic evolution. Modelling was carried
out using FastScape (Braun andWillett, 2013), which solves the stream
power law (SPL) over large areas utilising an implicit finite difference
method to produce realistically eroded landscapes from an initial
input geomorphology and pre-defined modelling parameters. The
SPL helps compute the erosion of the landscape through time and is
defined as:

∂h
∂t

¼ −KfA
mSn

where is ∂h/∂t is the rate of incision, Kf is the resistance to incision, A is
drainage area, S is the slope and m and n are constants. Moreover,
isostatic compensation during exhumation of the landscape is calcu-
lated using a thin elastic plate model. Computed landscapes are used
as interpretative tools to better understand how geomorphology has
evolved through time and to isolate the key controls on its evolution.

4. Results

4.1. Apatite low temperature thermochronology

AFT central ages from the Karrat region range between 65.77 ±
5.1 Ma and 277.82 ± 31.28 Ma, while mean track lengths (MTLs)
range between 12.77 ± 1.46 μm and 14.43 ± 1.53 μm (Table. 1). Of
the 19 AFT samples 9 fail the chi-squared test (p b 0.05), suggesting
they do not form a Poisson distribution, though all but Ka11 exhibit no
secondary age populations in a mixture model (Galbraith and Green,
1990). Dpar against AFT age shows amoderate positive correlation, sug-
gesting older ages are likely sourced from slower rates of annealing in
apatite, indicated by higher Dpar values (Carlson et al., 1999), while a
weak correlation is observed between AFT age and uranium concentra-
tion, implying that radiation enhanced annealing may influence the
final AFT ages (Hendriks and Redfield, 2005). Three samples produce
anomalous ages linked to intrusive volcanism and are avoided, with
Ka2 andKa8 extracted fromveins related tomagmatismandKa16 likely
effected by adjacent dykes. Trends of AFT ages against elevation are con-
sistentwith anuplifted and exhumed PAZ, suggesting a significant uplift
event occurred ~130 Ma (Gallagher et al., 1998). Ages above ~1000 m
are consistent with the trend observed following extended residence
within the PAZ, while those below 1000m exhibit a linear trend consis-
tent with rapid uplift (Fig. 3a) (Gallagher et al., 1998). This is further
supported by the trend of MTL against elevation, which exhibits an
initial increase at low elevations before decreasing following ~400 m
(Fig. 3a) (Gallagher et al., 1998). Finally, AFT ages appear to decrease
closer to the Nuussuaq Basin's Cretaceous boundary fault (KBF)
(Fig. 3c), analogous to the AFT ages expected from an eastward
escarpment retreat (Gallagher and Brown, 1999).

AHe ages from whole grains (2 T; 2 grain terminations) of the three
analysed samples (Ka5; Ka11; Ka15) range between 42.0Ma – 321.9Ma
(uncorrected) and 69.9 Ma – 473 Ma (corrected), while fragment
ages (1 T; 1 grain termination) range between 10.1 Ma – 530.5 Ma
(uncorrected) and 15.2 Ma – 886.1 Ma (corrected) (Table. 2). For
whole grain ages, trends of age against eU in Ka5 and Ka15 suggest ra-
diation damage was evident within the grains (Flowers et al., 2009),
while trends of age against the equivalent spherical grain radius (R')
imply that grain geometry only effects Ka5. For fragment ages, trends
of age against eU in only Ka15 suggest radiation damage was present,
while only trends of age against fragment length in Ka11 show a
correlation with grain geometry. Plots of AHe ages against composi-
tional and geometric data can be found in the supplementary data.

Collectively these trends in the AHe data appear to demonstrate
key characteristics of each sample that are crucial in understanding
their age distribution and thermal histories. Ka5 appears consistent
with the trends expected of slow protracted cooling through the
HePRZ (Reiners and Farley, 2001; Flowers et al., 2009), Ka11 shows no
obvious trends, suggesting the combination of controls has obscured
any obvious trends, while the ages Ka15 appear heavily controlled by
radiation damage and possibly a complex thermal history (Flowers
et al., 2009; Gautheron et al., 2009). Moreover, the most obvious
difference between samples is the age distributions (Fig. 3b), where
Ka5 produces a tight left-skewed distribution, while Ka11 and Ka15
appearmuch broader and rounded, suggesting the lower elevated sam-
ples may have experienced more complex thermal histories (Fig. 3b),
consistent with trends in the AFT data (Brown et al., 2013).

4.2. Thermal modelling

Thermal models from four separate localities across the study area
have been compiled, each consisting of multiple samples: Karrat Island,
Qeqertarsuaq, Ingia and Stuben (Fig. 4).

The Karrat Island dataset comprises 7 samples (7 AFT; 2 AHe) which
range significantly in elevation (76 m - 734 m). Thermal modelling re-
sults exhibit accelerated cooling from 160 Ma to 110 Ma (1.7 °C/Myr),
followed by a period of heating to 55 Ma (0.5 °C/Myr) and cooling
to present. The latter period of cooling exhibit two phases of cooling;
the first, from 55 Ma to 14 Ma, has a slow cooling rate (0.7 °C/Myr),
while during the second, from 14 Ma to 0 Ma, the rate is increases
(2.3 °C/Myr) (Fig. 5c). This history predicts AFT age and MTL within
error, while AHe ages b120 Ma are predicted well and ages N120 Ma
are predicted poorly.



Table 1
Table of apatite fission track data from the Karrat Region. ρi,s,d are the respective track densities for induced, spontaneous and dosimeter tracks. Ni,s,d are the respective track counts for induced, spontaneous and dosimeter tracks. U is the uranium
concentration of each grain ((ρi/ρD)[U]STD). Dpar is themeasured length of etch pits parallel to the c-axis. χ2 is the chi-squared value (Galbraith, 2005). Central age and age dispersion are calculated from each sample (Galbraith, 2005), and calculated
from a ζ of 308.3 ± 10.9 and a dosimeter standard IRMM540. Mean track length is the average length of measured tracks that have been corrected against their c-axis values.

Sample
Number

Grains ρd (×106 cm−2)
(Nd)

ρs (×106 cm−2)
(Ns)

ρi (×106 cm−2)
(Ni)

U
(ppm)

Dpar
(μm)

χ2 Age dispersion Central Age
(Ma)

Mean track length
(corrected) (μm)

Std Dev
(μm)

No of
tracks

Latitude Longitude Elevation

Ka1
20 1.36 0.27 0.51 5.66 1.35 0.00 46% 116.55 ± 14.19 14.00 ± 1.12 1.21 53 71.48 −53.13 734

(13002) (403) (770)

Ka2
20 1.37 0.17 0.50 5.48 1.29 0.01 25% 67.36 ± 5.97 14.43 ± 1.15 1.53 42 71.50 −53.13 720

(13002) (395) (1165)

Ka4
20 1.36 0.12 0.10 1.09 1.68 0.99 0% 250.87 ± 26.93 13.47 ± 1.08 1.34 33 71.67 −52.00 1422

(13002) (194) (159)

Ka5
20 1.31 0.15 0.11 1.27 1.59 0.42 22% 277.82 ± 31.28 13.58 ± 1.09 1.63 91 71.69 −52.39 1964

(13002) (235) (171)

Ka8
20 1.36 0.39 0.47 5.21 1.54 0.39 3.30% 172.19 ± 12.16 12.77 ± 1.02 1.46 17 71.52 −52.95 303

(13002) (393) (470)

Ka10
20 1.34 0.25 0.45 5.07 1.47 0.49 0% 114.68 ± 8.03 13.37 ± 1.07 1.28 95 71.51 −53.03 380

(13002) (326) (582)

Ka11
20 1.33 0.60 1.08 12.15 1.64 0.00 23% 115.86 ± 8.11 13.67 ± 1.09 1.31 100 71.52 −53.03 286

(13002) (835) (1492)

Ka12
20 1.37 0.45 0.75 8.25 1.25 0.00 30% 117.25 ± 10.14 13.42 ± 1.07 1.41 100 71.52 −53.02 196

(13002) (654) (1096)

Ka13
20 1.35 0.48 0.85 9.40 1.49 0.30 12% 119.73 ± 8.27 12.88 ± 1.03 1.29 65 71.52 −52.99 160

(13002) (467) (830)

Ka14
20 1.34 0.29 0.60 6.77 1.45 0.02 29% 101.85 ± 10.68 13.17 ± 1.05 1.38 34 71.52 −52.96 182

(13002) (266) (558)

Ka15
20 1.33 0.36 0.64 7.25 1.59 0.94 0% 112.92 ± 5.74 13.55 ± 1.08 1.33 101 71.53 −52.97 76

(13002) (620) (1116)

Ka16
20 1.34 0.60 1.87 21.02 1.34 0.30 13% 65.77 ± 5.1 13.77 ± 1.10 1.31 71 71.53 −52.88 78

(13002) (270) (839)

Ka21a
11 1.32 0.06 0.10 21.02 1.26 0.99 0% 118.46 ± 21.8 14.25 ± 1.14 1.51 6 71.63 −52.14 411

(13002) (47) (80)

Ka21b
13 1.31 0.12 0.19 2.13 1.73 0.60 21% 140.94 ± 20.76 13.69 ± 1.10 1.31 10 71.63 −52.14 411

(13002) (103) (158)

Ka22
20 1.31 0.26 0.54 6.23 1.42 0.00 35% 123.72 ± 14.14 13.18 ± 1.05 1.28 62 71.63 −52.13 301

(13002) (317) (654)

Ka24
20 1.32 0.39 0.58 6.51 1.65 0.00 23% 136.29 ± 10.19 13.76 ± 1.10 1.2 104 71.62 −52.94 1019

(13002) (649) (968)

Ka25
20 1.30 0.57 0.59 6.84 1.65 0.01 17% 191.87 ± 11.76 13.52 ± 1.08 1.41 101 71.62 −52.94 1025

(13002) (1005) (1043)

Ka28
20 1.32 0.37 0.55 6.27 1.72 0.07 17% 139.81 ± 9.61 13.87 ± 1.11 1 101 71.87 −53.05 363

(13002) (579) (854)

Ka29
20 1.35 0.11 0.34 3.76 1.13 0.00 49% 93.81 ± 13.85 13.70 ± 1.10 1.73 10 71.85 −53.05 149

(13002) (149) (194)
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references to colour in this figure legend, the reader is referred to the web version of this article.)
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The Qeqertarsuaq dataset is composed of 2 AFT samples with
only a minor elevation difference (1019 m – 1025 m). Thermal model-
ling results define linear protracted cooling from 200 Ma to 35 Ma
(0.2 °C/Myr), followed by a period of accelerated cooling to present
(1.2 °C/Myr) (Fig. 4a). This history predicts both age and MTL
within error and is likely derived from the bell-shaped track length
distributions of both samples.

The Inigia dataset is composed of 2 AFT samples from a limited
elevation range (149 m - 363 m). Thermal modelling results exhibit
cooling from 170Ma to 130 Ma (1.9 °C/Myr), followed by near thermal
stasis from 130Ma to 29Ma (0.1 °C/Myr) and a second period of cooling
from 29Ma to 0Ma (1.9 °C/Myr) (Fig. 4b). The history predicts both age
and MTL distributions within error, though Ka29 has only 10 measured
track lengths, suggesting the right-skewed track distribution of Ka28
has principle control of the final history.

The Stuben dataset is composed of 4 samples (4 AFT; 1 AHe)
which range significantly in elevation (301 m - 1964 m). Thermal
modelling results outline near thermal stasis from 200 Ma to
142 Ma (0.1 °C/Myr), followed by an initial period of cooling from
142 Ma to 20Ma (0.4 °C/Myr) and a second period of more accelerated
cooling from 20Ma to 0 Ma (0.8 °C/Myr) (Fig. 4d). The history predicts
AFT ages and 3 of 4 MTL within error, with the MTL prediction of Ka22
overestimated by 0.3 μm, and AHe age predictions appear acceptable
with only the 2 oldest ages failing to be adequately replicated.
4.3. Landscape evolution modelling

The initial topography of the landscape model is defined as a sloped
basaltic pile 100 km × 100 km, rising from 10 m to 1500 m (W - E)
with midpoint elevation ranging from 800 m - 1000 m (Fig. 5a). The
underlying geology is composed of three units, each with indepen-
dent density and Kf values derived from corresponding published es-
timates: basalt (ρ = 3000 kg m−3; Kf = 6.7 × 10−6), Cretaceous
sediments (ρ = 2200 kg m−3; Kf = 5 × 10−5) and Proterozoic
basement (ρ = 2800 kg m−3; Kf = 4.2 × 10−6) (Fig. 6) (Stock and
Montgomery, 1999; Braun et al., 2014). Additional model parameters
include; n = 1 and m= 0.3, to account for the tectonic setting and ge-
ology being eroded (Stock and Montgomery, 1999), while the effective
elastic thickness of the lithosphere is set to 15 km (Medvedev et al.,
2013). Further information regarding modelling parameters can be
found in the discussion and supplementary data. Exhumation of the
landscape was completed over 40 Myrs to capture the period between
cessation of volcanism across West Greenland (~55 Ma) and the onset
of Mid-Miocene climatic cooling (~15 Ma), where the physical
weathering regime began changing dramatically (Thiede et al., 2011).

Results show exhumation of the less dense sedimentary unit
becomes highly focused and localised once it is initially exposed, yet
remains consistent across the basalt and basement units, generating a
final landscape characterised by a low-lying trough flanked by two



Table 2
Table of apatite (U\\Th)/He data from the Karrat Region. eU (effective uranium) is calculated as [U] + 0.235[Th]. r' is the effective radius of each grain calculated as
(3length(width/2)))/(2((width/2) + length)). Ft is the calculated correction factor outlined in (Farley et al., 1996). Corrected age is calculated from Measured Age / Ft.

Sample [He] [U] [Th] [eU] Length Width r' Ft Measured age Corrected age

(ncc) (ppm) (ppm) (ppm) (μm) (μm) (μm) (Ma) (Ma)

Ka5 A 0.054 1.14 1.94 1.60 142 111 59.8 0.75 63.0 ± 3.2 84.9 ± 1.6
Ka5 B 0.039 2.06 13.77 5.30 116 70 40.2 0.63 42.0 ± 2.1 69.9 ± 5.3
Ka5 C 0.673 6.67 1.64 7.05 147 116 62.5 0.76 154.1 ± 7.7 202.6 ± 7.0
Ka5 D 0.041 3.76 2.97 4.46 113 74 41.6 0.65 49.0 ± 2.4 77.0 ± 4.5
Ka5-1T a 0.070 0.07 10.63 12.36 133 154 73.1 0.80 26.3 ± 1.3 40.6 ± 12.4
Ka5-1T b 0.058 0.06 2.58 3.11 83 71 37.2 0.61 112.8 ± 5.6 182.6 ± 3.1
Ka5-1T d 0.319 0.32 235.99 242.51 97 126 57.3 0.74 10.1 ± 0.5 17.1 ± 0.9
Ka5-1T e 0.368 0.37 9.18 9.93 98 113 53.8 0.72 368.9 ± 18.4 676.3 ± 9.9
Ka5-1T f 0.076 0.08 7.50 8.22 117 94 50.1 0.70 124.8 ± 6.2 253.5 ± 8.2
Ka5-1T g 0.335 0.33 28.64 29.92 92 81 42.3 0.65 217.2 ± 10.9 507.4 ± 29.9
Ka5-1T h 0.042 0.04 12.06 23.07 77 103 46.3 0.68 49.4 ± 2.5 164.9 ± 23.1
Ka5-1T i 0.043 0.04 16.57 22.11 113 77 42.9 0.66 86.6 ± 4.3 457.4 ± 22.1
Ka5-1T j 0.028 0.03 42.81 75.34 74 68 35.0 0.58 3.5 ± 0.2 6.1 ± 75.3
Ka5-1T k 0.289 0.29 35.20 59.11 96 65 36.5 0.60 38.7 ± 1.9 66.1 ± 59.1
Ka5-1T l 0.109 0.11 0.74 1.85 107 147 65.3 0.77 81.6 ± 4.1 106.0 ± 1.9
Ka5-1T m 0.451 0.45 2.86 5.23 145 114 61.5 0.76 147.9 ± 7.4 196.1 ± 5.2
Ka5-1T n 0.043 0.04 1.39 2.35 102 86 45.4 0.67 76.9 ± 3.8 115.4 ± 2.4
Ka5-1T o 0.041 0.04 1.75 2.90 108 86 46.2 0.68 57.6 ± 2.9 85.7 ± 2.9
Ka5-1T p 0.737 0.74 0.25 3.48 108 126 59.8 0.75 387.0 ± 19.3 515.1 ± 3.5
Ka5-1T q 0.065 0.07 1.20 3.05 71 122 49.4 0.70 64.9 ± 3.2 93.2 ± 3.0
Ka5-1T r 0.059 0.06 1.34 1.66 118 109 55.7 0.73 81.4 ± 4.1 112.0 ± 1.7
Ka5-1T s 0.048 0.05 0.66 1.66 93 101 48.9 0.70 98.0 ± 4.9 141.5 ± 1.7
Ka5-1T t 0.096 0.10 0.67 2.10 112 107 54.2 0.73 115.8 ± 5.8 160.0 ± 2.1
Ka5-1T v 0.020 0.02 4.71 4.40 60 78 35.3 0.59 41.4 ± 2.1 73.2 ± 4.4
Ka11 A 2.395 26.62 62.41 41.28 182 96 56.8 0.74 112.0 ± 5.6 154.3 ± 41.3
Ka11 C 1.908 19.51 10.27 21.92 118 86 47.2 0.69 321.9 ± 16.1 473.0 ± 21.9
Ka11 D 6.952 38.70 11.62 41.43 164 101 58.1 0.74 318.7 ± 15.9 429.5 ± 41.4
Ka11 G 0.299 11.31 6.16 12.76 106 78 42.6 0.65 118.9 ± 5.9 183.9 ± 12.8
Ka11 I 0.674 7.39 3.19 8.14 131 92 51.3 0.71 238.3 ± 11.9 337.2 ± 8.1
Ka11-1T a 0.099 12.96 2.55 13.56 61 101 41.5 0.65 38.6 ± 1.9 60.3 ± 13.6
Ka11-1T c 2.605 65.38 199.22 112.20 111 97 50.6 0.71 73.3 ± 3.7 106.3 ± 112.2
Ka11-1T d 0.158 14.61 39.41 23.87 144 116 61.9 0.76 11.3 ± 0.6 15.2 ± 23.9
Ka11-1T e 0.085 14.08 10.75 16.61 84 80 40.7 0.64 31.2 ± 1.6 49.7 ± 16.6
Ka11-1T f 1.796 29.81 13.12 32.90 121 109 56.4 0.74 123.3 ± 6.2 168.2 ± 32.9
Ka11-1T g 0.075 6.78 2.15 7.28 95 110 52.3 0.72 29.2 ± 1.5 41.0 ± 7.3
Ka11-1T h 5.340 40.26 20.17 45.00 121 102 54.0 0.73 300.1 ± 15.0 416.3 ± 45.0
Ka11-1T i 3.816 16.07 5.29 17.31 142 118 62.6 0.76 355.3 ± 17.8 467.2 ± 17.3
Ka11-1T j 0.117 18.64 4.16 19.61 95 59 33.9 0.57 59.0 ± 2.9 105.6 ± 19.6
Ka11-1T k 0.914 17.66 7.29 19.37 98 85 44.5 0.67 215.1 ± 10.8 324.9 ± 19.4
Ka11-1T l 0.419 10.99 3.58 11.83 98 110 52.7 0.72 98.5 ± 4.9 137.6 ± 11.8
Ka11-1T m 0.191 7.51 3.40 8.31 107 81 43.9 0.66 107.9 ± 5.4 164.2 ± 8.3
Ka11-1T n 0.966 25.61 11.87 28.40 84 89 43.5 0.66 167.5 ± 8.4 256.1 ± 28.4
Ka11-1T o 1.515 16.62 10.13 19.01 139 105 57.4 0.74 167.3 ± 8.4 227.0 ± 19.0
Ka11-1T r 0.218 19.04 3.31 19.82 103 72 40.1 0.63 67.1 ± 3.4 106.9 ± 19.8
Ka11-1T s 0.542 15.97 12.35 18.87 99 66 37.3 0.61 211.7 ± 10.6 356.4 ± 18.9
Ka11-1T u 0.176 11.78 4.17 12.76 72 81 38.9 0.62 95.6 ± 4.8 155.7 ± 12.8
Ka11-1T v 0.722 32.58 9.47 34.80 100 85 44.7 0.67 94.0 ± 4.7 141.3 ± 34.8
Ka15 A 1.122 16.49 4.22 17.48 159 96 55.1 0.73 142.5 ± 7.1 195.6 ± 17.5
Ka15 B 1.105 16.79 13.93 20.06 150 106 58.8 0.75 106.8 ± 5.3 144.0 ± 20.1
Ka15 C 1.286 25.58 23.75 31.16 106 77 42.2 0.65 215.1 ± 10.8 336.2 ± 31.2
Ka15 D 0.967 18.02 8.52 20.02 140 74 43.7 0.66 206.4 ± 10.3 314.7 ± 20.0
Ka15 E 0.819 12.92 10.64 15.42 133 89 50.0 0.70 163.7 ± 8.2 235.0 ± 15.4
Ka15-1T a 0.575 9.50 11.05 13.28 111 89 47.8 0.69 158.6 ± 7.9 232.3 ± 13.3
Ka15-1T b 1.739 28.87 45.65 52.43 112 72 40.9 0.64 184.3 ± 9.2 292.3 ± 52.4
Ka15-1T c 0.263 1.74 5.87 6.28 130 113 59.3 0.75 81.5 ± 4.1 109.1 ± 6.3
Ka15-1T d 0.559 6.85 9.73 11.34 100 81 43.2 0.66 243.1 ± 12.2 374.2 ± 11.3
Ka15-1T e 0.568 19.18 17.90 22.40 73 69 35.0 0.58 237.0 ± 11.9 419.7 ± 22.4
Ka15-1T f 0.396 9.39 16.98 19.18 95 80 42.4 0.65 109.5 ± 5.5 169.9 ± 19.2
Ka15-1T g 0.768 52.71 27.91 40.30 79 74 37.9 0.61 143.3 ± 7.2 242.2 ± 40.3
Ka15-1T h 0.363 5.79 14.41 15.77 98 76 41.3 0.64 130.1 ± 6.5 204.5 ± 15.8
Ka15-1T i 0.027 1.88 5.42 5.87 89 89 44.4 0.67 21.9 ± 1.1 33.0 ± 5.9
Ka15-1T j 0.264 5.61 10.33 11.65 105 94 48.6 0.70 80.4 ± 4.0 116.5 ± 11.6
Ka15-1T k 1.875 52.03 58.01 70.23 64 79 36.7 0.60 214.8 ± 10.7 366.8 ± 70.2
Ka15-1T l 0.123 1.76 19.20 19.61 80 96 44.9 0.67 28.2 ± 1.4 42.1 ± 19.6
Ka15-1T m 0.883 4.13 11.29 12.26 87 70 37.4 0.61 530.5 ± 26.5 886.1 ± 12.3
Ka15-1T n 0.497 2.25 12.21 12.74 104 141 63.0 0.76 62.1 ± 3.1 81.4 ± 12.7
Ka15-1T o 0.035 1.98 7.27 7.73 85 94 45.6 0.68 19.3 ± 1.0 28.7 ± 7.7
Ka15-1T p 0.150 2.90 9.66 10.34 107 114 55.9 0.73 34.0 ± 1.7 46.4 ± 10.3
Ka15-1T q 0.620 19.15 18.98 23.48 95 70 38.5 0.62 181.5 ± 9.1 300.1 ± 23.5
Ka15-1T r 0.433 20.97 15.95 20.88 76 70 36.2 0.60 177.3 ± 8.9 307.6 ± 20.9
Ka15-1T s 0.285 9.60 17.59 19.84 77 81 39.7 0.63 93.2 ± 4.7 150.2 ± 19.8
Ka15-1T u 0.450 24.00 26.22 31.86 67 69 34.2 0.57 143.8 ± 7.2 259.0 ± 31.9
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Fig. 4. Joint inverse thermal histories from across the Karrat region. The ‘expected’ thermal history is highlighted as a black line, while the 95% confidence for the highest and lowest
samples are shown in grey. Model predictions are shown below each thermal history with the prediction for AFT and MTL shown as a dashed red line and AHe as a red triangle.
(a) Qeqertarsuaq: thermal history derived from 2 AFT samples (Ka24; Ka25) exhibiting linear protracted cooling from 200 Ma to 35 Ma (0.2 °C/Myr), followed by a period of
accelerated cooling to present (1.2 °C/Myr). (b) Ingia: thermal history derived from 2 Aft samples (Ka28; Ka29) displaying cooling from 170 Ma to 130 Ma (1.9 °C/Myr), followed by
near thermal stasis from 130 Ma to 29 Ma (0.1 °C/Myr) and a second period of cooling from 29 Ma to 0 Ma (1.9 °C/Myr). (c) Karrat Island: thermal history derived from 7 AFT and
2 AHe samples (Ka1; Ka10; Ka11; Ka12; Ka13; Ka14; Ka15) showing accelerated cooling from 160 Ma to 110 Ma (1.7 °C/Myr), followed by a period of heating to 55 Ma (0.5 °C/Myr)
and cooling to 0 Ma. (d) Stuben: thermal history derived from 4 AFT and 1 AHe sample(s) (Ka4; Ka5; Ka21; Ka22) exhibiting outline near thermal stasis from 200 Ma to
142 Ma (0.1 °C/Myr), followed by cooling from 142 Ma to 0 Ma (0.45 °C/Myr). Each thermal history provides AFT and MTL prediction with in error, with the exception
of Ka22 MTL, which is over predicted by 0.3 μm, while AHe ages N120 Ma in samples Ka11 and Ka15 fail to provide adequate predictions. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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escarpments to the east and west (Fig. 5). Cumulative rock uplift in
response to exhumation during the 40 Myrs of model time ranges
between 322.4 m – 167.8 m, with the highest values at the base of the
basement escarpment and lowest at the model peripheries (Fig. 5c).
Additionally, the sedimentary yield through time exhibits three key
periods: an initial rapidly increasing output (0 Myrs – 5 Myrs; 55 Ma –
50 Ma), a more gradual rise in output following initial exposure of the
underlying units (5 Myrs – 18 Myrs; 50 Ma – 37 Ma) and a decline
of sediment output following the onset of localised exhumation
(18 Myrs – 40 Myrs; 37 Ma – 15 Ma) (Fig. 5b).

5. Discussion

5.1. Topographic evolution of the Karrat region

The AFT/AHe results, thermal histories and LEM presented here
imply much of the topography in the Karrat region is derived from rift
flank uplift along the KBF and has since been preserved by widespread
volcanism, differential erosion and isostatic uplift.

Uplift of the region likely began during rifting in the Early-
Cretaceous and the opening of the Nuussuaq Basin. The trends of AFT
ages andMTL against elevation in the region are indicative of significant
uplift across Karrat ~130 Ma (Fig. 2), most likely along the footwall
of the KBF (Fig. 6a). This is corroborated by thermal histories adjacent
to the KBF that exhibit accelerated cooling between 170 Ma and
110 Ma (Fig. 4a/c), while inland thermal histories exhibit only
protracted cooling (Fig. 4d), likely representing the increase in exhuma-
tion rate along the fault during uplift and lower rates further inland.
Moreover, stratigraphy observed on Upernivik Ø and Qeqertarsuq
records the existence of a laterally migrating syn-tectonic braided flu-
vial systems in theMid-Cretaceous adjacent to the KBF, likely a response
to tectonism and uplift across the fault (Koch, 1964; Dam et al., 2009).

Tectonic quiescence appears to follow this early phase of uplift,
allowing for the accumulation of fluvial sediments and volcanics during
the development of the Nuussuaq Basin and its eventual fill. Thermal
histories derived from locations closest to the KBF each display either
thermal stasis or reheating between 110 Ma and 55 Ma or 25 Ma
(Fig. 4), suggesting the rate of uplift decreased, allowing sediment to
accumulate (Fig. 6b). This is corroborated by the later stratigraphy
from Upernivik Ø and Qeqertarsuq, outlining a period of low energy
estuarine/coastal environments in the Late Cretaceous characterised
by finer grain sizes and bioturbidation (Dam et al., 2009). Furthermore,
the presence of volcanic strata atop themargin and the lack of heating in
the Stuben thermal model suggests the basement escarpment likely
remained at height during volcanism and experienced only limited
burial (Fig. 6c).

The period following the end of volcanism is dominated by wide-
spread cooling in each thermal history model, with the rate of cooling



Fig. 5. Result of FastScape landscape evolution model run to test differential exhumation of the region. (a) Initial model conditions are shown in the top left, with a sloped volcanic pile
underlain by two units, one a weaker “sedimentary” unit and the second being “basement”. Crucially, the z-axis is not to scale and has been exaggerated to ensure the underlying
lithologies are visible. Results of the model are shown in the top right, showing that after 40 Myrs of exhumation a landscape displaying similar characteristics to the modern
geomorphology. (b) The sedimentary yield per million year during the modelled 40 Myrs shows three distinct periods separated by the initial exposure of the underlying basement
units and the onset of localised differential erosion. (c) Cross sections of both the model and modern landscapes highlight the similarities between the two, with both elevated regions
being separated by a region of low-lying topography. It is conceivable that following the onset of glaciation the lower lying areas would experience deep glacial scouring, decreasing
the elevation further, while higher topography areas could see an increase in elevation, similar to the pre-glacial landscape produced in Gołędowski et al. (2013). Further information
regarding FastScape modelling can be found in the supplementary data.
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increasing at various points in the late Cenozoic. This cooling may be
argued to result from exhumation of the landscape following episodic
uplift during the late Cenozoic, as implied by the interpretations of
peneplains in the landscape (Japsen et al., 2006). However, such an in-
terpretation has been contentiously debated within the literature,
with a plausible source for tectonic uplift yet to be outlined and other
alternative non-tectonic explanations available (e.g., Egholm et al.,
2017; Strunk et al., 2017). Instead, cooling more likely represents the
prolonged exhumation of the volcanic pile, following the end of lava
extrusion. This widespread exhumation of the volcanic pile is depicted
in the results of the LEM, illustrating intense localised erosion of the un-
derlying geological units was likely dominant in the region following
volcanism and has shaped the complex pre-glacial geomorphology.
Moreover, exhumation appears to drive up to ~300 m of isostatic
response from the lithosphere uplifting the basement and volcanic
escarpments and further exaggerating the region's undulating geomor-
phology. This interpretation of the post-volcanic history negates
the need for uplift across the region and suggests how the elevated
topography was likely present at the onset of glaciation.

The onset of glaciation in the region was undoubtably vital in creat-
ing the modern geomorphology, influencing the near surface thermal
regime and protecting much of the highest topography from intense
erosion. The thermal history of Karrat Island (Fig. 4c) exhibits a second
phase of more intense cooling from theMiocene onwards, synchronous
to the onset of climate deterioration and glaciation across Greenland
(Eldrett et al., 2009; Thiede et al., 2011), implying more intense glacial
erosion affected the thermal regime (Fig. 6d). Additionally, cosmogenic
radionuclide ages from across the basement demonstrate selective lin-
ear erosion of the basement rock was highly effective during glaciation
and likely led towidespread exhumation of the region, creatingmuch of
the modern fjordal geomorphology (Roberts et al., 2013; Lane et al.,
2014). On Quaternary timescales (Schaefer et al., 2016; Strunk et al.,
2017), this process can lead to the effective preservation of higher to-
pography, as lower exhumation rates persist at greater elevations
(Egholm et al., 2017), and the deepening of fjords and troughs, remov-
ing vast quantities of rock and producing a positive isostatic response
from the lithosphere. The effect of this processes on the pre-glacial land-
scape implied by the LEM would likely encourage the coalescence of
outlet glaciers within the low-lying trough, instigating the early devel-
opment of the Uummannaq Ice Stream. This combination of selective
linear erosion, over-deepening, topographic preservation and isostatic
uplift are likely all fundamental in maintaining the hypsometry of the
modern landscape.

5.2. Wider implications for glaciated margins

The wider geomorphology of the Nuussuaq Basin remains a contro-
versial topic, as some authors interpret the elevated topography to have
been produced from late Cenozoic tectonic uplift (Bonow et al., 2006;
Japsen et al., 2006), while others suggest it is the result of widespread
exhumation, generating ≤800 m of isostatic uplift since the Neogene
(Medvedev et al., 2013). The principal evidence for episodic uplift across
the region is the interpretation of peneplains (uplifted floodplains) in
the landscape andmarine fossils observed at ~1100m on the Nuussuaq
Peninsula, though neither are diagnostic indicators of post-rift tecto-
nism. The interpretation of peneplains remains highly controversial,
with many authors questioning their validity as indicators of uplift
(e.g., Bishop, 2007; Gregory and Goudie, 2011) and others suggesting



Fig. 6. Cartoon outlining the topographic evolution of the Karrat region. (a) Early Cretaceous: significant tectonic uplift occurs along the footwall of the KBF instigated the erosion of the
footwall by early syn-tectonic fluvial systems. (b) Late Cretaceous: tectonic quiescence following uplift allows major fluvial systems to prograde out into the basin bury portions of the
margin in sediment. (c) Eocene: widespread volcanism spreads east and west, burying much of the Cretaceous river valleys in lava, protecting the rift flank for further exhumation.
(d) Quaternary: widespread exhumation following the end of volcanism removes much of the volcanic pile, while selective linear erosion removes large quantities of rock and
preserve the highest topography.
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they result from differential glacial erosion and not tectonic uplift
(Egholm et al., 2017; Strunk et al., 2017). Moreover, while the elevation
of the marine fossils defines the extent of uplift following the
Early Palaeocene, it fails to provide insight into the processes driving
uplift, suggesting both isostasy and thermally-induced doming associ-
ated with volcanism may be considered viable uplift mechanisms
(Medvedev et al., 2013; Jess et al., 2018).

The results and interpretations of this study are more supportive of
exhumation and isostatic uplift rather than tectonic uplift, given that
the thermal models predict widespread cooling from the Eocene
to present, consistent with histories from the Nuussuaq Basin itself
(Jess et al., 2018). Additionally, results of the LEM demonstrate how
differential exhumation may have prompted ~300 m of isostatic uplift
prior to ~15Ma, suggesting exhumation of the landscape likely produce
significant rock uplift, consistent with the conclusions of Medvedev
et al. (2013). This interpretation of the region's evolution promotes
continuous exhumation as the leading factor of uplift across the margin
during its post-rift stage and does not seek further tectonism to drive
uplift across the region. Secondary sources of uplift across the region
may relate to volcanism, with the emplacement of thick igneous intru-
sions and thermal-domingof the lithosphere both likely to cause further
uplift of the landscape during the Palaeocene.

In addition to estimates of uplift, the results of the LEM also have
wider implications regarding the geomorphology of glaciated Atlantic
margins and their underlying geology. Elevated topography across
East Greenland, Norway and Scotland all exhibit considerable marked
glacial geomorphology with over-deepened troughs and preserved
high elevation plateaux. In each case, there is likely a linkwith underly-
ing geology and pre-glacial landscape: many of the characteristics of
fjords across East Greenland have been previously attributed to the
changes in underlying rock lithology (Swift et al., 2008), while analysis
of the Scottish Highlands determined underlying rock strength has a
first order control on glacial geometries (Brook et al., 2004). Moreover,
the complex fjordal morphology of the UIS may also derive from the
pre-glacial drainage system that differential eroded the volcanic pile
and has been highly influenced by the paleo-topography; a characteris-
tic noted across other major glacial system on Greenland (Bamber et al.,
2013; Cooper et al., 2016). These observations collectively suggestmuch
of the glacially driven geomorphological development across Greenland
and other passive continental margins may result from a combination
of underlying geology, pre-glacial landscape evolution and ice sheet
dynamics.
5.3. Dispersion in AHe data: an indicator of Palaeozoic burial?

The addition of AHe ages in two of the thermal models does assist
in resolving thermal histories and reducing confidence intervals,
compared to thermal histories without AHe data. However, AHe ages
N120Mawithin the Karrat thermal history are not effectivelymodelled,
implying additional 4He was present within grains and suggesting
the presence of either unobservable 4He sources (e.g., implantation,
micro-inclusions, zonation) or a more complex pre-rift history. The
destructive nature of AHe analysis makes it hard to characterise each
grain individually, suggesting a catalogue of issues may be responsible,
such as implantation, micro-inclusions or zonation of parent nuclides.
These issues are considered to be fundamental causes of age dispersion
in AHe samples (Ketcham et al., 2011; Gautheron et al., 2012; Zeitler
et al., 2017), though a complex pre-rift history resulting from the
accumulation of sediment across Laurentia in the Palaeozoic may also
be considered (Flowers et al., 2012; Ault et al., 2013). Burial of samples
past ~120 °C is believed to anneal radiation damage vacancies within
apatite (Flowers et al., 2009; Gautheron et al., 2009), though some
authors postulate vacancies may remain, leading to additional 4He
remaining within apatites and increasing the final age (Fox and
Shuster, 2014). This under-annealing of damage vacancies combined
with a pre-rift burial history could increase the ages of higher eU
apatites and produce the wider spread of ages seen in AHe samples.
Both interpretations of the older AHe ages may help explain the wide
dispersion of AHe age in passive margin datasets and encourages
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further work on the subject, though it is difficult to test their viability
with current levels of knowledge.

5.4. Landscape evolution model: uncertainties

Limitations and uncertainties are inherent within the LEM. The initial
assumption of steady-state topography is in place to simplify the results
and reduce processing time and, as such, thismodel should not be consid-
ered as providing a realistic simulation of regional exhumation, but sim-
ply to highlight the importance of rock strength in the exhumational
process. Additionally, the three fundamental uncertainties are the scaling
factors of the streampower law (n,m, Kf), effective elastic thickness of the
lithosphere (EET) and the post-volcanic elevation. Scaling factors n andm
varydepending on tectonic setting, climate and lithology and cangreat ef-
fectmodel outputs, therefore valueswere specifically selected to best suit
the passive margin setting, the geology being eroded and simplify the
modelling process (Stock and Montgomery, 1999). Altering of the Kf

value for the central sedimentary unit only changes the rate at which
the unit erodes (supplementary data) and the initial value should be
regarded as conservative, considering the considerable content of weaker
mudstone within the Cretaceous sediments (Stock and Montgomery,
1999; Dam et al., 2009). Changing of the EET value across the model af-
fects the total maximum isostatic uplift computed (25 km = 101 m;
5 km = 1305 m), though the value used in Medvedev et al. (2013)
does appear best suited to rifted cratonic lithosphere of the study area.
Finally, the maximum post volcanic height of 1500 m is estimated from
outcrops of lavas atop the basementmargins found at this height, though
raising or lowering this maximum elevation appears to only control the
final height of the basement escarpment (supplementary data). These
uncertainties are apparent within the LEM, though the broad and
simplistic nature of the model is suitable for the aim of the study and
helps to establish how differential erosion of the underlying geological
units shapes the landscape.

6. Summary and conclusions

Low temperature thermochronology and landscape evolution
modelling from across the Karrat region of central West Greenland re-
veals a history dominated by rifting in the Mesozoic and widespread
erosion in the Cenozoic. The combination of AFT and AHe data, joint in-
verse thermal history modelling and landscape evolution modelling
demonstrates how themodern topography formed from rift flank uplift
in the Cretaceous that has since been preserved by volcanic cover and
differential erosion.

The topography across the basin margin likely formed during rifting
in the Cretaceous, generated from considerable uplift of the KBF
footwall. Sedimentary deposition and volcanism in the Palaeogene
followed, burying low lying areas of the region, while also protecting
the elevated rift flank from further erosion throughout the Early
Cenozoic. Widespread erosion is interpreted following the end of
volcanism and is believed to remove much of the volcanic pile and in-
duce a significant isostatic response from the lithosphere (~300 m),
uplifting the topography further. Moreover, differential exhumation of
the underlying geology in the late Cenozoic may also be the source of
the postulated pre-glacial landscape that acted as the precursor for the
development and unique geometry of the Uummannaq Ice Stream
onset zone that dominates the modern geomorphology of the region.
This interpretation of the regional landscape evolution suggests that
themodern topography is the result of rift flank uplift in the Cretaceous
and preserved by volcanism and differential erosion thereafter,
negating any requirement for late Cenozoic episodic, tectonic uplift.
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