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SUMMARY

The existence of axons extending from one retina
to the other has been reported during perinatal
development in different vertebrates. However, it
has been thought that these axons are either a label-
ing artifact or misprojections. Here, we show un-
equivocally that a small subset of retinal ganglion
cells (RGCs) project to the opposite retina and that
the guidance receptor Unc5c, expressed in the
retinal region where the retinal-retinal (R-R) RGCs
are located, is necessary and sufficient to guide
axons to the opposite retina. In addition, Netrin1,
an Unc5c ligand, is expressed in the ventral dien-
cephalon in a pattern that is consistent with impeding
the growth of Unc5c-positive retinal axons into the
brain. We also have generated amathematical model
to explore the formation of retinotopic maps in the
presence and absence of a functional connection
between both eyes. This model predicts that an
R-R connection is required for the bilateral coordi-
nation of axonal refinement in species where refine-
ment depends upon spontaneous retinal waves.
Consistent with this idea, the retinal expression of
Unc5c correlates with the existence and size of an
R-R projection in different species and with the
extent of axonal refinement in visual targets. These
findings demonstrate that active guidance drives
the formation of the R-R projection and suggest an
important role for these projections in visualmapping
to ensure congruent bilateral refinement.

INTRODUCTION

Visual information is perceived by each retina and transmitted to

the brain through retinal ganglion cell (RGC) axons. RGC axons

extend from each eye via the optic nerves andmeet at the ventral

diencephalon to form the optic chiasm. Here, axons in all species
Current Biology 29, 1149–1160,
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cross the midline to join the contralateral tract. In species with

stereoscopic vision, a number of RGCs do not cross at the

chiasm but project, together with contralateral axons from the

other eye, to the superior colliculus (SC) and the lateral genicu-

late nucleus in a topographical and eye-specific manner. The

topographic arrangement at the targets allows the perception

of a continuous visual field image on the target [1–4] and is estab-

lished initially through molecular recognition mediated mainly

by Ephs and ephrins, followed by an activity-dependent local

refinement of exuberant terminals influenced by electrical activ-

ity waves generated spontaneously in the retina before eye

opening [5–8].

In addition to the RGC axons that connect each retina with

targets in the brain, a direct connection between both retinas

(R-R projection) has been reported in different vertebrates

[6, 9–19]. However, R-R axons have been detected in only very

low numbers and seem to be largely absent in adult animals

[11, 14, 15]. As a consequence, they have been considered arti-

facts of the axonal tracing method or a consequence of axonal

projection errors during development. The recent visualization

of a subset of calcium waves traveling from the retina to the

SC in a simultaneous bilateral manner raised the hypothesis

that interactions brought about by an R-R projection could be

responsible for synchronizing retinal waves [6]. This idea is

further supported by recent results demonstrating that enucle-

ation of one eye alters retinal waves in the remaining eye [20].

Here, we demonstrate unequivocally the existence of an R-R

projection that emerges predominately from the central part of

the ventral-nasal retina, a region that transiently expresses the

axon guidance receptor Unc5c. Loss-of-function experiments

revealed that Unc5c, a receptor for Netrin1 that is expressed at

the optic chiasm, is required for RGCs to extend their axons

into the contralateral optic nerve. Conversely, ectopic expres-

sion of Unc5c forces axons to join the contralateral optic nerve.

In addition, Zic2, a transcription factor that specifies ipsilateral

RGCs [21], repressesUnc5c expression in ipsilateral axons, sup-

porting the idea that Unc5c needs to be downregulated in RGC

axons to facilitate growth into the optic tracts.We also found that

retinal expression of Unc5c in different species is consistent with

a computational model in which R-R projections synchronize

retinal spontaneous activity in bilateral species that undergo an
April 1, 2019 ª 2019 The Authors. Published by Elsevier Ltd. 1149
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important axon refinement process during the maturation of the

visual system.

RESULTS

Characterization of the R-R Projection in the Mouse
Visual System
To characterize the development of the R-R projection in the

mouse visual system, embryonic day (E) 13.5 embryos were

electroporated in one eye with EGFP-encoding plasmids

(CAG-EGFP), and three (E16.5), five (E18.5), seven (postnatal

day 2 [P2]), or nine (P4) days later, axon trajectories at the chiasm

were analyzed (Figure 1). This labeling method eliminates the

possibility of labeling artifacts resulting from transfer between

cells. At E16.5, although the majority of EGFP-axons projected

to the contralateral optic tract, some axons entered the contra-

lateral optic nerve (Figures 1A and 1B). By E18.5, more EGFP-

positive axons were found in the contralateral optic nerve and

most had reached the contralateral retina (Figures 1C and 1D).

To visualize the trajectory of EGFP axons in the opposite

retina, we analyzed whole-mount retinal preparations from

E18.5 embryos electroporated at E13.5 and found EGFP axons

all over the retina. The number of labeled axon terminals

decreased at P2, and very few were detected at P4 (Figures 1E

and 1F). The two main types of neurons located in the RGC layer

are RGCs and starburst amacrine cells. Labeling of these cells

with antibodies against Brn3b, Tuj1 (Figure S1A) and choline-

acetyl-transferase (ChAT), respectively, in retinas containing

EGFP-R-R axon terminals revealed that amacrine prolongations

embrace R-R axons at several sights (Figures 1G and 1H).

These experiments confirm the existence of a subpopulation of

retinal neurons whose axons reach the opposite retina at peri-

natal stages and progressively vanish during the first postnatal

week. Although further work is required to determine whether

R-R axons directly contact starburst amacrine cells, our findings

support the hypothesis that these two types of neurons could

establish some type of communication.

Next, we mapped the retinal location of R-R neurons. We

monocularly injected the retrograde tracer cholera toxin

subunit B (CTB)-Alexa-Fluor-594 in newborn mice at several
Figure 1. Characterization of Retino-retinal Cells in Mice

(A) Labeled axons from embryos monocularly electroporated with EGFP-encodin

(B–D) At E16.5, EGFP-labeled axons are present within the contralateral optic nerv

(asterisk, C and D).

(E) Targeted cells (green dots) in retinas electroporated at E13.5 (white flat-mount

flat-mounted retinas) at E18.5–P4.

(F) Mean (± SEM) number of R-R axons in E18.5–P4 retinas after electroporation of

R-R neurons, as not all cells are targeted by electroporation.

(G) Diagram of a P2 retina containing R-R axons labeled from the opposite eye.

amacrine cells labeled with ChAT antibodies.

(H) 3D reconstruction of z-projection with a z-step of 1.5 mm captured from boxe

(I) Middle: diagram of monocular injection of CTB. Left: retinal sections of injecte

sections of contralateral retinas from same animals are shown. Note two retrogr

(J) Top: diagrams of whole-mount retinas retrogradely labeled with CTB at P3,

combined with antibody staining for Brn3a or Islet1/2 (green). Graph shows mea

CTB-positive cells are in the ventral quadrants (ventronasal [VN] and ventrotemp

(K) CTB-488 (green) and CTB-647 (red) were injected in the retina and the ipsilater

mounted retina was analyzed 2 days later. Right: images from the boxed area sh

Error bars indicate ± SEM.

See also Figure S1.
postnatal stages and analyzed the opposite retina 2 days later

(Figure 1I). At P3–P5, retrogradely labeled cells were found

into the RGC layer (Figure 1I), were positive for RGC markers

(Brn3a and Isl1/2), and located predominately in the ventro-nasal

retina (Figure 1J). By P30, no retrogradely labeled cells were

found. In an attempt to label a larger number of R-R cells, we in-

jected AAV5-RFP viruses [22] into the eye of E13.5 mouse em-

bryos and analyzed the opposite retina postnatally. We found

more cells retrogradely labeled than using CTB, and again,

most of them were detected in the ventro-nasal quadrant (Fig-

ure S1B). Because the number of retrogradely labeled cells ap-

pears to depend on the technique and the timing of injection, it

was not possible to quantify the total number of R-R cells. Never-

theless, these experiments demonstrate that R-R RGCs are

mainly located in the ventro-nasal region of the retina.

To determine whether R-R axons are collateral branches of

RGCs that project to visual targets in the brain, newborn mice

were injected with CTB-488 and CTB-647 in the eye and the

ipsilateral superior colliculus, respectively. The retina contralat-

eral to the injections side was analyzed 2 days later. None

of the CTB-488 cells analyzed were positive for CTB-647

(25 CTB-488 cells from three different pups; Figure 1K). Together

with previous studies reporting that retrograde labeling from the

eye and the thalamus do not yield double-labeled cells in the

retina [23, 24], these results demonstrate that R-R cells are not

collateral branches of brain-projecting RGCs.

Netrin1 Is Expressed in the Ventral Diencephalon at the
Time that RGCAxons Transverse the Chiasmatic Region
In contrast to all the other RGC axons, R-R axons do not grow

into the ventral region of the optic chiasm. Possible explanations

for this behavior include the expression of attractive guidance

cues from the contralateral optic nerve and/or repulsive signals

at the ventral diencephalon. Among the guidance cues known

to be expressed in the ventral diencephalon, Netrin1 has an

expression pattern compatible with a putative function as a re-

pellant for R-R RGC axons [25]. In situ hybridization on coronal

and horizontal sections during the period when RGC axons are

navigating through the optic chiasm (E12.5–E14.5) confirmed

that Netrin1 is expressed ventrally in the chiasm at E12.5 and
g plasmids at E13.5 were analyzed at E16.5 or E18.5.

e (cON) (arrowheads, B) and by E18.5 have reached the contralateral optic disc

ed retinas) and tracings of EGFP-labeled axons in the contralateral retina (gray

the opposite eye at E13.5. These numbers do not represent the total number of

(G’–G’’’) Image of boxed area in (G) showing an EGFP R-R axon and starburst

d region in (G) showing ChAT+ cells embracing the axon terminal (red arrows).

d P3 and P30 mice injected with CTB 2 days earlier are shown. Right: retinal

adely labeled cells in the RGC layer at P3.

P5, or P30. Boxed region of P3 retina shows retrogradely labeled cells (red)

n (± SEM) number of labeled cells/retina quadrant. At perinatal stages, most

oral [VT]). At P30, no CTB cells were found.

al superior colliculus (SC), respectively, of newborn mice. The opposite whole-

ow a representative CTB-488 cell negative for CTB-647.
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Figure 2. Netrin1 Is Expressed at the Developing Ventral Chiasm

(A–D) Horizontal (A–B’’) and coronal (C–D’’) serial sections of E12.5 (A–A’’ and C–C’’) and E14.5 (B–B’’ and D–D’’) embryos at the level of the optic chiasm region

stained by ISH for Netrin1 (red) combined with immunofluorescence for Tuj1 (green) to label retinal axons.

(E) Diagram summarizing the spatiotemporal expression of Netrin1 at the optic chiasm (red). RGC axons projecting to the brain (light green) or to the opposite

optic nerve (dark green) are also represented. At E12.5, when RGC axons have not yet arrived at the chiasm, Netrin1 mRNA is expressed predominately in two

patches on both sides of the ventral diencephalon. At E14.5, when axons are at the chiasm region, Netrin1 mRNA surrounds the optic tracts.
detected strongly at the level of the future optic tracts (Figure 2).

At E14.5,Netrin1 continues to be expressed at the chiasm region

and surrounds RGC axons at their most ventral aspect. Thus, the

expression of Netrin1mRNA is consistent with a role in prevent-

ing R-R RGC axons from entering the prospective optic tracts

and growing to the brain.

Unc5c Is Expressed in a Subpopulation of Ventral RGCs
Netrin1 acts through two types of receptors: deleted in colorectal

cancer (Dcc) or its homolog Neogenin andUnc5 [26–31], but only
1152 Current Biology 29, 1149–1160, April 1, 2019
Unc5 receptors mediate repulsion [27, 32–34]. The expression

patterns in the developing mouse retina of three of the four

mammalian Unc5c homologs (Unc5a, Unc5b, and Unc5d) have

been reported, and none show a pattern consistent with a puta-

tive role in the guidance of R-R projections [35]. We therefore

analyzed the expression of the remaining family member,

Unc5c, which has not been reported previously. Using in situ hy-

bridization, Unc5c was not detected in the retina at E13.5 but by

E14.5 was expressed specifically in the ventral region (Figures

3A and 3B). Immunostaining for Brn3a confirmed that Unc5c



Figure 3. Unc5c Is Expressed in Ventral-Central Retina

(A–E) In situ hybridization (ISH) for Unc5c in coronal retinal sections at E13.5 (A), E14.5 (B), E16.5 (C), E18.5 (D), and P2 (E) mice.

(F) Immunoblot detection of Unc5c and Dcc in control (CT) HEK cells and HEK transfected with Unc5c encoding plasmids and in E13.5–P2 retinal lysates. b-actin

was used as a loading control. Graphs show levels of Unc5c and Dcc normalized to actin levels. Peak of Unc5c expression is at E14.5.

(G) Representative images of Unc5c expression (red) in coronal (upper) and horizontal (bottom) retinal sections from E16.5 mouse embryos stained with DAPI

(gray).

(H) Mean (± SEM) fluorescent intensity of Unc5c in each quadrant of E16.5 retinas.

(I) Diagram of a whole-mounted retina summarizing the expression of Unc5c (red).

Error bars indicate ± SEM.

See also Figure S2.
mRNA is expressed in the RGC layer (Figure S2A). Expression

of both Unc5c mRNA and protein was maintained in ventral

retina from E14.5 to E18.5 but switched off after birth (Figures

3A–3F). In situ hybridization on coronal and horizontal retinal

sections confirmed that Unc5c is highly expressed in ventral

areas and weakly in the dorsal retina. Furthermore, Unc5c is de-

tected at higher levels in the nasal than in the temporal quadrant

(Figures 3G and 3H). This expression pattern contrasted with

that of Dcc, which was expressed in RGCs in all retinal regions

[25] (Figure S2B). Importantly, the spatial-temporal expression

pattern of Unc5c mRNA coincides with the location of R-R

RGCs in the retina and with the timing of RGCs extending their

axons across the optic chiasm. Together with the expression

of Netrin1 at the ventral diencephalon, this expression pattern

of Unc5c (Figure 3I) strongly suggested an instructive role for

Unc5c in the development of R-R projections.

Unc5c Is Required for the Formation of the R-R
Projection
To elucidate whether Unc5c is involved in the development

of the R-R pathway, we performed in vivo loss-of-function

experiments. Labeling of all axons from one eye of E17.5

Unc5c-knockout embryos (Unc5c�/�) and control (Unc5c+/+) lit-
termates with the lipophilic tracer DiI revealed a clear reduction

in the labeling of the contralateral optic nerve in Unc5c�/� em-

bryos compared with the controls (Unc5c+/+; Figures 4A–4D).

This finding supports the idea that Unc5c is essential for

the formation of the R-R projection. Retrograde tracing by

depositing a DiI crystal in one optic nerve and analyzing the

opposite retina resulted in many labeled RGCs in the retinas

of E17.5 Unc5c+/+ embryos but very few in Unc5c�/� littermates

(Figures 4E–4H).

To confirm these results, and determine the cell-autonomous

function of Unc5c in guiding the R-R projection, we carried out

additional loss-of-function experiments by specifically downre-

gulating Unc5c in RGCs using short hairpin RNAs (shRNAs).

Plasmids encoding Unc5c shRNA or control scrambled shRNA

were monocularly electroporated in the central retina of E13.5

embryos together with EGFP-encoding reporter plasmids and

the axons from targeted RGCs analyzed at E16.5 or E18.5. The

downregulation of Unc5c mRNA in retinas electroporated with

Unc5c shRNAs confirmed the efficiency of these shRNAs (Fig-

ure S3). As expected, in control embryos, most axons crossed

the midline and projected into the contralateral optic tract and

a small proportion extended into the contralateral optic nerve

(Figures 4I and 4I’). However, embryos electroporated with
Current Biology 29, 1149–1160, April 1, 2019 1153



Figure 4. Unc5c Is Necessary for Establishment of the Retino-retinal Projection

(A–C) DiI was placed into one eye and the labeled axons viewed at the chiasm (A).

(B and C) DiI-labeled E17.5 Unc5c+/+ and Unc5c�/� embryos. The fluorescence intensity in the contralateral optic nerve of the Unc5c�/� embryo is decreased

compared with the control littermate (arrowhead).

(B’ and C’) Higher magnification of the boxed regions in (B) and (C).

(D) Mean (± SEM) normalized fluorescence intensity (FI) in the contralateral optic nerve of E17.5 Unc5c�/� and wild-type embryos monocularly injected with DiI.

(E–G) DiI was applied to one optic nerve and the opposite retina analyzed (E).

(F and G) Whole-mounted retinas from E17.5 Unc5c+/+ and Unc5c�/� embryos retrogradely labeled with DiI. Inserts: tracings of the labeled cells are shown.

(H) Mean (± SEM) number of retrogradely labeled cells in each quadrant of E17.5 wild-type and Unc5c mutant retinas.

(I and J) E16.5 embryos electroporated at E13.5 with control or Unc5c shRNAs plus EGFP-encoding plasmids. Insert: corresponding whole-mounted electro-

porated retina is shown. EGFP-positive axons were present in the contralateral optic nerve of control (I and I’), but not Unc5c shRNA electroporated, embryos

(open arrowhead, J and J’). Unc5c electroporated embryos also displayed an ectopic ipsilateral projection (orange arrowhead).

(K) Mean (± SEM) normalized fluorescence intensity in the contralateral optic nerve and ipsilateral optic tract of E16.5 embryos electroporated at E13.5 with Unc5c

shRNA or control shRNA.

cON, contralateral optic nerve c; cOT, contralateral optic tract; D, dorsal; iON, ipsilateral optic nerve; iOT, ipsilateral optic tract; N, nasal; T, temporal; V, ventral.

Error bars indicate ± SEM. (**p < 0.01, ***p < 0.001, Student’s unpaired t test).

See also Figure S3.
Unc5c shRNAs showed a dramatic reduction in the number of

EGFP axons projecting into the contralateral optic nerve (Figures

4J and 4J’). In addition, a number of labeled axons projected

to the ipsilateral optic tract of Unc5c shRNA-electroporated

embryos (Figures 4I–4K), a phenotype that was not detected

in DiI-labeled Unc5c�/� embryos likely because the endogenous

ipsilateral projection masked those R-R axons that changed

their trajectories to project ventrally. This unexpected result

suggests that Unc5c-deficient axons are not repelled away

from the ventral diencephalon and, consequently, enter the optic

tracts.
1154 Current Biology 29, 1149–1160, April 1, 2019
Unc5c Is Not Expressed in Ipsilaterally Projecting RGCs
In retinal sections, Unc5c appeared to be consistently excluded

from the most peripheral region of the ventral retina (Figures 3C

and3G),which is the locationof theRGCs thatproject ipsilaterally

and express the transcription factor Zic2 [21]. In situ hybridization

for Unc5c combinedwith immunostaining for Zic2 in E16.5 retinal

sections demonstrated that Unc5c and Zic2 are expressed

in mutually exclusive patterns (Figure 5A). In addition, in situ hy-

bridization for Unc5c in Zic2-knockdown embryos (Zic2kd/kd) re-

vealed that Unc5c expression expanded into the peripheral ven-

tro-temporal territory (Figure 5B), the area where Zic2 is normally



Figure 5. Ipsilateral RGCs Do Not Express

Unc5c

(A–A’’) ISH for Unc5c (red) in an E16.5 retinal

section shown as a single channel (A’) or in

combination with immunohistochemistry for Zic2

(green, A and A’’). Red arrowheads indicate

peripheral limit of Unc5c expression, green ar-

rowheads central limit of Zic2 expression, and

white arrowhead the region where the neural retina

meets the ciliary margin zone (CMZ).

(B) ISH for Unc5c (red) combined with immuno-

histochemistry for Zic2 in Zic2 mutant embryos.

Red arrowhead marks the most peripheral limit of

Unc5cmRNAexpression andwhite arrowhead the

region where the neural retina meets the CMZ.

(C and D) ISH for Unc5c (red) in retinal sections

electroporated with EGFP-encoding (C) or Zic2/

EGFP-encoding (D) plasmids. Unc5c mRNA

expression is reduced after ectopic expression

of Zic2.

(E and F) Optic chiasms from E16.5 embryos

electroporated with plasmids encoding Zic2/

EGFP (F) or EGFP alone (E). Red arrowhead in-

dicates the ectopic ipsilateral projection in em-

bryos electroporated with Zic2 and empty arrow-

head the reduced number of EGFP-labeled axons

in the contralateral optic nerve of Zic2 electro-

porated embryos compared to the control.

(G) Mean (± SEM) normalized fluorescence in-

tensity in the contralateral optic nerve and the

ipsilateral optic tract of E16.5 embryos electro-

porated with plasmids encoding Zic2/EGFP or

EGFP alone.

Error bars indicate ± SEM. (**p < 0.01, ***p < 0.001,

Student’s unpaired t test).
expressed [21], suggesting that Zic2 represses Unc5c expres-

sion. Accordingly, ectopic electroporation of Zic2 into the retina

of E13.5 embryos led to downregulation of Unc5c (Figures 5C

and 5D). Furthermore, axons fromRGCs that ectopically express

Zic2 never projected into the contralateral optic nerve (Figures

5E–5G). Altogether, these results suggest that Zic2 represses

the expression of Unc5c in the ventro-temporal retina, making

ipsilateral axons insensitive to repulsive signaling from the ventral

diencephlon, enabling projection to ipsilateral targets.

Unc5c Is Sufficient to Guide Retinal Axons to the
Contralateral Retina
Wenext askedwhether Unc5c is sufficient to guideRGCaxons to

the contralateral retina. Plasmids encoding Unc5c (CAG-Unc5c)

together with CAG-EGFP plasmids, or CAG-EGFP plasmids

alone,wereelectroporated in utero into the retinasofE13.5mouse

embryos, and 3 (E16.5) or 5 (E18.5) days later, the projection

phenotype of the targeted RGCs was analyzed (Figure 6A). As in
Current
previous experiments, a small propor-

tion of control EGFP axons entered the

contralateral optic nerve (more at E18.5

than at E16.5; Figures 6B and 6D). In em-

bryos electroporated with Unc5c-encod-

ing plasmids, fewer EGFP axons reached

the chiasm region compared with con-

trols.Thismayoccurbecausesomeaxons
ectopically expressingUnc5cmisproject intraretinally (Figure S4),

likely asa consequenceofNetrin1expressionat theoptic disc [36]

(Figures S4C and S4C’). However, most Unc5c-misexpressing

axons were still able to exit the retina by passing through the

ring of Netrin1 expression at the optic disc (Figures S4D and

S4D’). Importantly, a largepercentageof theUnc5c-missexpress-

ing axons that reached the optic chiasm grew into the contralat-

eral optic nerve (Figures 6C and 6E), demonstrating that Unc5c

is sufficient to redirect RGC axons to the contralateral retina.

These gain-of-function experiments demonstrate that Unc5c-

expressing axons are able to transverse the optic disc, despite

Netrin1 expression in this region, and that Unc5c is sufficient to

redirect axons to the contralateral optic nerve.

The R-R Projection May Synchronize Retinal Waves to
ModulateBilateralAlignmentofTopographicVisualMaps
Our data confirm the existence of an R-R projection and identify

guidance mechanisms by which this connection is established.
Biology 29, 1149–1160, April 1, 2019 1155



Figure 6. Unc5c Is Sufficient to Guide RGC

Axons into the Opposite Optic Nerve

(A) EGFP or Unc5c/GFP-encoding plasmids were

electroporated into one eye of E13.5 embryos

and axons growing into the opposite optic nerve

analyzed at E16.5 or E18.5.

(B–E) E16.5 (B and C) and E18.5 (D and E) embryos

electroporated with Unc5c-encoding plasmids

(C and E) display an increase in the number of R-R

axons (arrowheads) compared to age-matched

controls (B and D).

(F) Mean (± SEM) normalized fluorescence

intensity in the cON of E16.5 embryos after

electroporation of EGFP or Unc5c/GFP-encoding

plasmids.

Error bars indicate ± SEM. (***p < 0.001, Student’s

unpaired t test).

See also Figure S4.
However, although it has been suggested that an R-R projection

may help synchronize retinal waves, its specific function remains

unknown. To shed some light on this question, we used a simpli-

fied version of the classical self-organizing map (SOM) model

[37–39]. In the previously proposed SOM model, neighboring

neurons compete through lateral interactions to develop into a

spatially organized ‘‘topographic map.’’ Although this powerful

self-organizing principle can produce a reasonable local distri-

bution of receptive fields, it is necessary to lower the levels of

randomness in order to achieve a global order that characterizes

the correct orientation of the retinotopic map. This can be

accomplished either by introducing some initial order in the early

connectivity weights between neurons of the pre- and postsyn-

aptic layer or by structuring the input that the postsynaptic layer

receives (see STAR Methods and Figures S5 and S6 for addi-

tional details on themathematical model). In themodel proposed

here, when the sizes of the pre- (retina) and postsynaptic (SC or

tectum) tissues are similar (low s-molecular values), a congruent

map may be established by using a symmetric gradient of mo-

lecular guidance cues, one that determines a point-to-point

mapping with adequate precision (Figures 7A, S5, and S6).

However, when the size of the target tissue is larger than that

of the retina (high s-molecular values), the final map cannot be

establishedwith only a simplemolecular gradient because errors

in topology and folding accumulate. In this latter case, the proper

layout of the bilateral retinotopic map critically depends on

the synchronization of activity in both maps, particularly in the

form of coordinated waves (Figures 7B and S6).

Thus, this mathematical model predicts that the establish-

ment of congruent visual maps in image-forming visual targets

may be determined by a point-to-point tagging mechanism in

species where the retina and the target tissue have a similar

size but that a synchronizing factor must exist in species

where RGC axons first create a rough map based on tags

and then later undergo a wide refinement process dependent

on retinal spontaneous activity. This synchronizing factor

may be the R-R connection, and in its absence, topological

and unfolding errors increase when the target tissue is bigger

than the retina.

The retina and the tectum of lower vertebrates have similar

sizes by the time that retinal axons project into this target.

Furthermore, it is known that visual mapping in these vertebrates
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is established according to a fairly accurate axonal targeting,

with only modest further refinement [40] (Figure 7A). In contrast,

the target tissue is larger than the retina in amniotes, and the

initial collection of arbors reaching the visual targets is loosely

organized around the position of the future terminal. A substan-

tial degree of local remodeling then takes place, including the

elimination of overshooting portions of RGC axons as well as

the removal of inappropriately located branches, to establish

the final map [40] (Figure 7B). This local axonal remodeling

depends on the action of retinal spontaneous activity [5, 7,

41, 42], and according to our predictive model, both retinas

should be connected to assure the synchronization of this activ-

ity and promote a bilaterally congruent refinement. Otherwise,

axonal refinement would occur independently in each side and

thereby create a fractured visual field.

Retinal Expression of Unc5c Correlates with the
Existence of an R-R Projection and the Extent of Axonal
Refinement at the Visual Targets in Different Species
In zebrafish, retinal axons directly travel to their final locations on

the optic tectum, and axon refinement at these visual nuclei is

very modest [40]. However, both chickens and mice use an

‘‘overshoot and refine’’ strategy for axons to establish proper

connections at the targets in the brain. This occurs upon axons

extending into the caudal regions of the tectum in the case

of chickens and posterior superior colliculus in the case of

mice. To assess a putative correlation between the expression

of Unc5c in the retina and the existence of an R-R projection

and its function in refinement, we analyzed Unc5c expression in

the developing retinas of zebrafish and chickens. Expression of

Unc5c was not detected in the developing zebrafish retina at

the time that RGC axons grow to reach their targets (36–48 h

postfertilization [hpf]; Figures 7C and 7D) [43]. Accordingly,

monocular injections of DiI in zebrafish embryos did not reveal

R-R projections (Figures 7E and 7E’). In chickens, the existence

of a transient R-R projection has been reported previously [17].

In agreement with this, we detected Unc5c in the RGC layer of

the developing chicken retina (Figure S7). In ferrets, the period

of retinal wave-dependent axon refinement is extended for

several weeks after birth. We analyzed the expression of Unc5c

mRNA in ferrets and found it is expressed in the RGC layer of

the ventral retina both embryonically (E34) and postnatally (P1)



Figure 7. The R-R Connection through Evo-

lution

(A) Working model of the function of R-R in

different species. In species where the size of the

tectum and retina is similar, the establishment of

bilaterally congruent maps may rely on point-to-

point molecular tagging mechanisms.

(B) In species where the size of the visual target

is larger than the retina, map topography relies

both on a molecular tagging mechanism and a

later refinement process, dependent on waves of

spontaneous activity. The presence of an R-R

connection may enable the synchronization of

retinal waves from each eye, driving symmetrical

refinement in both hemispheres.

(C and D) ISH for Unc5c in horizontal (C) and

coronal (D) sections of the zebrafish retina re-

vealed no expression of Unc5c.

(E and E’) A 36- to 48-h post fertilization (hpf) ze-

brafish embryo stainedwith DAPI andmonocularly

injected with DiI shows no retinal axons entering

into the contralateral retina.

(F and G) ISH forUnc5cmRNA in horizontal (F) and

coronal (G) sections from P0 ferret retinas. Unc5c

mRNA is expressed in the RGC layer of ventral and

temporal retina.

(H) Schematic diagram representing monocular

DiI anterograde labeling. Optic chiasm of a DiI-

labeled P0 ferret is shown. White arrowhead

points to the axons into the contralateral optic

nerve.

(I) Schematic diagram representing retrograde

CTB-labeling. CTB injection was performed at P1,

and labeled RGCs were visualized by red fluo-

rescence in whole-mount retinas 1 day later.

(J–J’’) ISH for Unc5c mRNA and immunohisto-

chemistry for Zic2 in a coronal retinal section

from an E34.5 ferret embryo counterstained with

DAPI. Red arrowheads mark the most peripheral

limit of Unc5c mRNA expression and green

arrowheads the central limit of Zic2 expression.

Zic2 and Unc5c mRNA expression is mostly

complementary.

CTB, cholera toxin subunit B-Alexa594; RGCl,

retinal ganglion cell layer. See also Figures S5, S6,

and S7 and Table S1.
(data not shown; Figures 7F and 7G). An R-R projection has not

been reported previously in ferrets, and to investigate whether

they have it, we monocularly injected DiI into a newborn ferret

and followed the traced axons. High fluorescence intensity was

detected in the contralateral optic nerve, indicating the presence

of axons projecting to the opposite retina (Figure 7H). Retrograde

labeling byCTB injection into one eye of P1 ferrets demonstrated

the existence of R-R neurons in the ventral retina matching the

expression of Unc5c, with the extent of these neurons being

greater than inmice (Figure 7I). Moreover, as inmice, the expres-

sion pattern of Zic2 in the developing retina was complementary

to Unc5c expression in ferret (Figure 7J). These results in mouse,

zebrafish, chick, and ferret strongly support a conserved evolu-

tionary role for the Zic2-Unc5c-Netrin1 axis in regulating the
formation of the R-R projection, which may be essential for the

correct functioning of the visual system in amniotes.

DISCUSSION

The existence of an R-R projection that connects both eyes has

beenacontroversial issue for sometime.Here,monocular electro-

poration of EGFP-reporter plasmids during embryonic stages

definitively demonstrates the existence of an R-R projection that

is established during embryogenesis and early postnatal stages.

The formation of this visual pathway depends onUnc5c-mediated

signaling in RGC axons and, likely, on its ligand Netrin1, which is

expressed at the ventral aspect of the developing diencephalon.

Species without R-R projections (e.g., zebrafish) do not express
Current Biology 29, 1149–1160, April 1, 2019 1157



Unc5c in the retina, whereas species with R-R-projecting neurons

(e.g., mouse, chick, and ferret) express Unc5c in the RGC layer

when retinal axons are passing through the optic chiasm region.

Theseobservationsuncover aconserved role forUnc5c incontrol-

ling the formation of R-R projections in the developing retina and

indicate a positive selection for thismechanism through evolution.

Togetherwith functional experiments and a computationalmodel,

our results suggest that theR-Rprojectionplayan important role in

the congruency of visual maps in species that undergo intensive

retinal wave-dependent axon refinement during development.

Unc5c/Netrin1 Repulsive Signaling as a Candidate to
Direct R-R Axons to the Contralateral Optic Nerve
Although our data are consistent with a repulsive role for

Netrin/Unc5c signaling in directing navigation of R-R axons at

the chiasm, further experiments are crucial to confirm this idea.

Conditional removal of Netrin1 from the chiasm region would

be necessary to uncover the role of Netrin1 in the formation

of the R-R. Also, because (1) EphB2 is expressed in the ventral

retina [44], (2) Netrin and ephrins play a synergistic effect

in axons expressing EphBs and Unc5 receptors [45], and

(3) ephrinB2 is expressed at the midline [46], further work is

needed to establish whether EphB2 and/or ephrinB2 is involved

in modulating Unc5c-mediated guidance of R-R axons.

The Function of the R-R Projection in Different Species
A simple, single-retina SOM model, when stimulated randomly

with a uniform distribution, can readily generate postsynaptic

maps that reproduce the geometry of the presynaptic layer (Fig-

ures 7 andS6). Thesemaps, however, are rarely orientedcorrectly

because there are four different ways in which two square grids

canbe oriented relative to each other, and only one of these orien-

tations is topologically correct. Thus, the probability of generating

the correct map between the retina and its targets in the brain is

only 1/24 (�4%). Furthermore, if we consider that two indepen-

dent retinas must be correctly laid out at the same time, the

probability drops even further to (1/24)2 (�0.02%). Our modeling

results show that the concurrent contribution of the gradients

of molecular guidance cues and the bilateral coordination of

retinal activity afforded by an R-R projection helps avoid such an

orientation error.

Retinal waves have been proposed as an evolutionary adapta-

tion in animals with extended periods of visual development [47]

to help set a functional visual system before eye opening. Coor-

dinated waves of spontaneous activity occur in the visual system

before the onset of visual experience in all amniote species that

have been examined to date (turtles, chicks, rats, mice, ferrets,

cats, and monkeys) [7, 48]. In mice, the number of R-R axons

seems to peak at perinatal stages, a period that coincides with

the cholinergic phase of spontaneous retinal activity (see [49]

for a recent review). Compared with mice, ferrets experience

an extended period of spontaneous retinal waves that last

several weeks after birth [5, 50–52]. Non-amniote vertebrates

only have a brief gestational period before the beginning of

vision, and as such, the role of spontaneous patterned activity

in these species is likely assumed by sensory experience.

Interestingly, spontaneous waves have not been found in non-

amniotes [47, 53]. Our results demonstrating that ferrets have

more R-R axons thanmice, and zebrafish lack an R-R projection,
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support the hypothesis that, in amniotes, both retinas must be

connected to ensure a correct bilateral refinement. The fact

that chickens have Unc5c, but not Zic2 [21], also argues that

R-R projections emerged during evolution to match axonal

refinement in the visual targets at both sides of the brain and sug-

gests that stereoscopic vision, which depends on Zic2-driven

ipsilateral projection, emerged on top of this feature. Adams

and Horton theorized years ago that spontaneous waves would

need to occur simultaneously in both eyes to generate the

striking symmetry observed in the global patterns of dominance

columns [54]. The results shown here provide an avenue by

which spontaneous retinal waves could be synchronized in order

to fine-tune bilateral topographic maps and give rise to a

congruent visual image in direct visual nuclei, as well as in the

visual cortex of animals that have a particularly elaborated visual

system.
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Software and Algorithms
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Fiji ImageJ https://fiji.sc

MATLAB MathWorks https://www.mathworks.com;
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Other

DAPI staining Sigma-Aldrich Cat#10236276001

DiI crystals Thermo Fisher Scientific Cat#D3911
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

B6D2F1 (DBA2—C57BL/6) mice used for electroporation, in situ hybridization, immunofluorescence or DiI tracing experiments were

housed in a timed-pregnancy breeding colony at the Instituto de Neurociencias de Alicante, Spain. Zic2 knockdown mice (Zic2kd/kd

mice) were originally obtained from the RIKEN Repository. Unc5c knockout mice (Unc5crcm) were obtained from Jackson Labora-

tories (Stock Number: 001607). Females were checked for vaginal plugs at approximately noon each day. E0.5 corresponds to

the day when the vaginal plug was detected, with the assumption that conception took place at approximately midnight. Conditions

and procedures were approved by the IN Animal Care and Use Committee and met European (2013/63/UE) and Spanish regulations

(RD 53/2013).

Fertilized chicken embryos were obtained from Granja Santa Isabel, Córdoba, Spain. Eggs were incubated on their sides in a

humidified incubator at 37�C until the desired embryological stage. All embryos were staged according to Hamburger and

Hamilton [60].

Zebrafish were maintained at 28�C under standard conditions, and the embryos were staged as described previously [61].

Pigmented sable ferrets (Mustela putorius furo) were obtained from Euroferret (Copenhagen, Denmark) and kept at the

Animal Facilities of the Universidad Miguel Hernández on a 16:08 h light:dark cycle. Ferrets were treated according to Spanish
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and European Union regulations, and experimental protocols were approved by the Institutional Animal Care and Use Committee of

the University.

METHOD DETAILS

Plasmids
Unc5c coding sequence was cloned in the mammalian expression plasmid pCAG. Unc5c shRNA target sequence were designed

using the GenScript siRNA Target Finder tool located at https://www.genscript.com/ssl-bin/app/rnai and cloned into the

pSilencer2.1 plasmid using the pSilencer Kit (Thermo Fisher Scientific) in accordance with the manufacturer’s recommendations.

Mouse Unc5c RNAi target sequence was cloned using the following primers:

50-GATCCGAACCACCGTGACTTTGAGTTCAAGAGACTCAAAGTCACGGTGGTTCTTTTTTGGAA-30 and 50-AGCTTTTCCAAAAA

AGAACCACCGTGACTTTGAGTCTCTTGAACTCAAAGTCACGGTGGTTCG-30.
In utero electroporation and DiI tracing
Plasmidic DNA solution was injected into embryonic retinas as described previously [59, 62]. Forward DiI labeling in P0 ferret and

E16.5 mice was performed as described previously [63]. After 6 days at 37�C for mice and 45 days at 37�C for ferrets, brains

were removed and the optic chiasm exposed in whole mount under a fluorescence dissenting microscope. DiI crystals were dis-

solved in dimethyl sulfoxide and injected into the retina of 36-48 hours postfertilization (hpf) zebrafish embryos using a micropipette.

CTB injections and adenovirus infection
Cholera toxin B subunit (CTB)-Alexa 594, 647 or 488 (Thermo Fisher Scientific) retrograde injections in P1, P3 and P28 in mouse and

P1 ferret were performed as described [64]. For viral infection into the embryonic mouse retinas adenoviruses encoding for tdTomato

(pAAV-CAG-tdTomato, Addgen#59462-AAV5) were injected into the retinas of E13.5 embryos following a surgical protocol similar to

that used for in utero electroporation.

Western Blot
Immunoblotting was performed to assess the presence of Unc5c and DCC across retinal development. HEK cells transfected with a

Unc5c encoding plasmid and retinas from E13.5, E14.5, E15.5, E16.5, E18.5 and P2 were dissected and homogenized in lysis buffer

(IGEPAL, cOmplete Mini EDTA-free protease inhibitor cocktail tablets (Sigma-Aldrich) in PBS 1x pH 7.4) and passed through a 1 mL

insulin syringe with a 20G needle. Insoluble materials were incubated (30 min on ice) and pelleted by centrifugation at 16000 g for

15 min at 4�C. Protein concentration was assayed with protein assay dye reagent concentrate (BioRad) and samples were boiled

in Laemmli’s buffer (Sigma-Aldrich) and loaded in a gel according to standard protocols. Antibodies anti-b-actin (Sigma-Aldrich),

anti-DCC (santa cruz), anti-Unc5c (Abcam) were used.

In situ hybridization and immunohistochemistry
E12.5 mouse embryos were extracted from the pregnant mother and fixed by immersion with 4% paraformaldehyde (PFA) in phos-

phate buffer saline (PBS, pH 7.4). Later stages embryos were intracardially perfused. Mouse and ferret heads, chicken embryos and

zebrafish were post-fixed in the same fixative for 4 hours, and washed in PBS three times. The tissue was cryoprotected in 30% (w/v)

sucrose in PBS and frozen in dry ice. Coronal sections (20 mm)were obtainedwith a cryostat (SLEEmedical GmbH,Mainz) and stored

at�20�C until used. In situ hybridization was performed according to reported methods [65]. A riboprobe to detect mouse and ferret

Unc5c mRNA was synthetized using the following primers: 50-CGGCCCCGAAGAATGGAGGC-30 and 50-GGTCAGCACAACGGGTC

GGG-30 from E14.5 mouse embryos cDNA. To detect zebrafish Unc5c mRNA we used a riboprobe cloned in a TOPO plasmid

(Thermo Fisher Scientific) from zebrafish cDNA at 36-48 hpf using the following primers: 50-GACACGCAGGACGCACTCAAG-30

and 50-CCCACAGGTCCAGGATCACTC-5. To detect chicken Unc5cmRNA a riboprobe, cloned in a TOPO plasmid, was synthetized

using the following primers: 50-CGGCCCCGAAGAATGGAGGC-30 and 50-GGTCAGCACAACGGGTCGGG-30 from E7 chicken

embryos.

Netrin1 was detected using a specific antisense riboprobe (gift of Prof. Orly Reiner (Weizmann Institute of Science, Rehovot,

Israel)). For immunohistochemistry, antigen retrieval was performed before blocking and incubation with specific primary antibodies.

The following primary antibodies were used: chicken anti-GFP (Aves Labs); rabbit anti-Zic2 (Herrera’s lab [55–58];), mouse anti-Tuj1

(Covance), rabbit anti-Tuj1 (Abcam), mouse anti-Brn3a (Chemicon), rabbit anti-calbindin (Swant), goat anti-ChAT (Millipore). For

immunofluorescence detection, Alexa 488, Alexa 546, and Alexa 647 (Invitrogen, Molecular Probes) secondary antibodies were

used. A DAPI staining solution was used to visualize nuclei (2 mg/mL).

Microscopy setup
Images were captured with an Olympus FV1000 confocal IX81 microscope/FV10-ASW software. Deconvoluted z stack images data

acquired from tissue section by confocal microscopy were rendered in three dimensions using IMARIS 9.2.1 (Bitplane, Zurich,

Switzerland). Chiasm images were acquired using a Leica MZ16F stereoscope.
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Mathematical Model
We generated a simplified version of the self-organizing map (SOM) model originally described by [37–39]. The topography of the

RGCs is represented by a regular square mesh of size 11 by 11 with the cells in the nodes. Those cells project to a postsynaptic layer

of the same size, initially with synapses connecting all pre- and postsynaptic neurons in a non-specific manner. Thus, a representa-

tion of the location of the center of mass (CM) of the normalized weights,w, of the synaptic connections results in amesh contained in

a unit square (Figure S5). Themodel incorporates the role of the gradients ofmolecular guidance cues in establishing topography as a

Gaussian function which sets the strength of the initial weights of the synaptic connections, based on the proximity between the pre-

synaptic and postsynaptic neurons as,

MG= e
�
kðrpre + rnoise1Þ�ðrpost + rnoise2Þ k 2

2$s2
molecular

where MG is the weight of the molecular gradient for each presynaptic neuron respect to all of the postsynaptic neurons, smolecular

determines the specificity or strength of the molecular gradient and rnoise introduces a level of normally distributed noise between

connections, with mean 0 and standard deviation snoise (Figure S5).

By stimulating the retina with different stimuli (see below), the synaptic weights change according to a Hebbian rule as follows:

dwi = l$e�t
t$e�ðX�xwÞ2 + ðY�ywÞ2

2s2 $ðrs �wiÞ
where dwi is the change in the i synaptic weight wi, l is the weight decay term, t is the time expressed in number of iterations, t is the

time constant for the l decay, X and Y are the arrays holding the coordinates of retinal ganglion cells, xw and yw are the coordinates of

the cell closest to the stimulus location whichwill receive the strongest effect, s gives the extent to which the activation propagates to

neighboring cells, and finally, rs is the vector containing the positions of the stimulus.

The different types of retinal activity used are shown in Figure S6. First, random patterns activate each retina with a sequence of

independent uniform random stimuli. This stimulus classmodels the emergence of retinotopic topography in the absence of R-R pro-

jections. Second, locally coupled stimuli activate synchronously a small subset of RGCs retinotopically matched in both retinas for

the first few iterations (100) of the model. Afterward, the activation of both retinas followed a sequence of independent uniform

random stimuli as in the previous scenario. Last, binocularly matched retinal waves were triggered near the center of a retinal

mesh and travel toward the periphery at the same speed in both retinas. The radius of the wave of stimulation increased at a rate

of 2 10�4 (per iteration), and stimuli were applied randomly around that radius following a Gaussian distribution of mean 0 and sigma

0.04. In each case, the final synaptic strength onto each postsynaptic neuron Ni is the normalized average of all of its weighted con-

nections. Bymodeling the development of the right and left postsynaptic targets simultaneously, wewere able to study how the pres-

ence or absence of R-R connections, and the different patterns of coordinated activity that they afford, could affect the establishment

of bilaterally congruent retinotopic maps in visual structures receiving direct retinal inputs (Figure S6). The model returns correct

results, i.e., perfectly matched left and right retinotopic layouts, only when the unfolding and orientation of both postsynaptic sheets

is the same as the orientation in the presynaptic RGC layer. On the other hand, incorrect results could come in the form of different

orientations between pre and postsynaptic sheets or incorrect unfolding, which produce disruptions on the topographic map. Model

parameters and code are provided in Table S1 of the accompanying Supplemental Information and Sofware and Algorithms in the

STAR Methods section.

QUANTIFICATION AND STATISTICAL ANALYSIS

To quantify retinal projections at the optic chiasm level, squared regions of interest (ROI) were superimposed on the width of the optic

nerve close to the electroporated retina, the opposite optic nerve, the contralateral optic tract and the ipsilateral optic tract in regions

proximal to the chiasm. Fluorescence intensity within each ROI wasmeasured using ImageJ Software and normalizedwith respect to

the background. The percentage of fluorescence intensity in each ROI relative to the optic nerve ROI on the electroporated side was

then represented in a graph. Statistical analyses were performed when appropriate, error bars indicate ± SEM (*p < 0.05, **p < 0.01,

***p < 0.001, Student’s unpaired t test)
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