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The normal impact of a symmetric rigid body with an initially quiescent liquid half-space

is considered using both Wagner theory and a model of viscous gas pre-impact cushioning.

The predictions of these two theories are compared for a range of different body shapes.

Both theories assume the impactor has small deadrise angle. Novel solutions of the Wagner

normal impact problem for a symmetric body with a power-law shape are presented, which

generalize the well-known results for a parabola and a wedge. For gas cushioned pre-

impacts, it is shown that a pocket of gas is entrained even for body shapes with a cusp at

the body minimum. A scaling law is developed that relates the dimensions of the trapped

gas pocket to the slope of the body. For pre-impact gas cushioning, surface tension is

shown to smooth the liquid free-surface and delay the instant of touchdown for a smooth

parabolic body, while for a wedge, increasing surface tension initially delays touchdown,

before hastening touchdown as the importance of surface tension is increased further. For

a flat-bottomed wedge, gas entrainment is again predicted in the gas-cushioning model,

although the location of initial touchdown, either on the transition between the wedge and

the flat bottom or along the side of the wedge, now depends upon the parameters of the

body shape.
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I. INTRODUCTION

Since the pioneering work by Wagner1, which investigated the loads experienced by seaplanes

landing upon water, many authors have sought to characterize the pressures and loads generated

by impacts between solid bodies and liquids in the context of ship slamming, naval architecture and

aircraft ditching. If gravity, surface tension and viscous effects are neglected, then the theory of

matched asymptotic expansions, has facilitated and formalized the development of Wagner theory,

which seeks to predict the pressure, the impact load and the free-surface evolution for small times

after the initial impact between liquid and body2–6. More recently this theory has been applied to

smaller scale droplet impacts and splashing7–9.

Wagner theory traditionally assumes the role of the surrounding gas is negligible. However,

models of pre-impact gas cushioning have also been developed and solved numerically to investigate

how a gas pressure build-up prior to impact may cushion the impact and deform the liquid free-

surface before the solid body contacts the liquid. Gas cushioning is important in ship slamming,

where it has been shown that gas cushioning can reduce the maximum impact pressures for bodies

with deadrise angles of less than three degrees10–12. Trapped air can also significantly influence

wave impacts on walls, which has important implications for the construction of coastal defences13

and determining sloshing behaviour during the transport of LNG14. The earliest models of gas

cushioning assume inviscid gas behaviour15,16. However, more recently viscous effects in the gas

have been shown to be significant17–19. Models of pre-impact viscous gas cushioning are usually

developed to describe bubble entrapment in droplet impacts, and have been extended to incorporate

gas compression20, surface tension18,21 and impacts with porous surfaces22. However, they have

also been applied and successfully compared to experiments of solid body impacts with a quiescent

liquid23,24. For droplet impacts, while a reduction in the surrounding gas pressure suppresses splash

jet formation25, it does not eliminate the formation of the trapped gas bubble beneath the droplet26,

which has important implications for bubble entrapment in spray coated surfaces. Consequently,

understanding how gas influences impact dynamics is important in many practical situations.

Unlike Wagner theory, in which touchdown occurs the instant the solid body reaches the undis-

turbed liquid free-surface, models of gas-cushioned impact indicate that there is a delay in the

instant of touchdown due to the free surface being deformed out of the path of the impactor. This

implies that there exists a time interval after the initial touchdown in Wagner theory and before

the delayed touchdown in models of gas cushioning, where, subject to their respective assumptions,

both theories hold. It is in this interval that we shall investigate the similarities and differences
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FIG. 1. A gas-cushioned liquid-solid impact for the normal impact of a symmetric body.

between the two theories, as well as highlighting cases where gas cushioning is expected to play a

significant role in the impact dynamics.

Although Wagner theory historically does not consider the gas phase, attempts have been

made to extend Wagner theory by incorporating gas effects into post impact behaviour. These

attempts have assumed both viscous18 and inviscid27,28 gas behaviour. However, existing models

of gas cushioning in post-impact assume that there is no gas pressure build-up in the pre-impact

phase, with the liquid free-surface remaining undisturbed until touchdown. Consequently, these

extensions of Wagner theory are unable to describe the post-impact evolution of the pocket of

trapped gas, which is observed in models of pre-impact gas cushioning. Conversely, numerical

solutions of pre-impact cushioning models are only valid up to the point of first contact between

liquid and solid, and hence cannot currently describe post-impact dynamics.

Section II describes the derivation of a model of viscous gas-cushioned impact between a solid

body and an initially quiescent inviscid liquid, as well as the assumptions under which this model

is valid. Section III describes Wagner theory for small times after impact in the absence of gas

cushioning. Section IV investigates and compares gas-cushioned impact model behaviour with

Wagner theory for a range of different body shapes including a quadratic body (§IV A), a wedge

(§IV B), a power-law shaped body (§IV C), and a flat-bottomed wedge (§IV D). Conclusions and

further discussions are given in §V.

II. PRE-IMPACT GAS CUSHIONING

The influence of gas cushioning on the impact dynamics of a symmetric body approaching a

normal impact with a liquid free-surface (as illustrated in figure 1), will be investigated. For an

incompressible Newtonian fluid, the velocity ũ, with components (ũ, ṽ) in the (x̃, ỹ) direction
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satisfies the Navier-Stokes equations

∇̃ · ũ = 0, (1a)
∂ũ

∂t̃
+ ũ · ∇̃ũ = −1

ρ
∇̃p̃+ µ

ρ
∇̃2ũ. (1b)

Here p̃ is the fluid pressure, ρ is the fluid density, µ is the fluid viscosity and t̃ is the time. A

solid body with boundary s̃(x̃) − V t̃ and characteristic length scale L, moves normally towards

the undisturbed liquid free-surface with uniform velocity V . Subsequently, a property of the

liquid will be denoted by a subscript l, while a subscript g will denote a property of the gas. On

the boundary of the solid body ỹ = s̃(x̃) − V t̃, no-slip and no-penetration boundary conditions

imply (ũg, ṽg) = (0, −V ), while on the liquid free-surface ỹ = h̃
(
x̃, t̃

)
, the kinematic boundary

condition implies ũg = ũl. The interfacial stresses are additionally balanced across the liquid

free-surface. Here a tilde represents a dimensional variable.

It is assumed that the gas pressure build-up in the gas does not influence the liquid until the

vertical separation between the solid body and the liquid free-surface is of size ε2L, where ε is a

small parameter whose value is to be determined. For bodies of small deadrise angle, the horizontal

extent of the gas cushioning region is larger and will be assumed to be of size εL. However, the

horizontal extent of the cushioning region is still much smaller than the characteristic length scale

of the body L, and consequently, gas cushioning only effects a small region about the location

with least separation between the solid body and the liquid free-surface. The characteristic time

scale for the problem is ε2L/V , which is the time taken for the solid body to transcend the gas

cushion in the absence of free-surface deformation. Driven by the descent speed of the body, the

characteristic vertical and horizontal velocity in the liquid and the characteristic vertical velocity in

the gas are taken to be V . However, given the small aspect ratio of the gas cushion, the horizontal

gas velocity must be faster (with characteristic velocity V/ε), to preserve the mass of gas.

Given the characteristic time scale and velocity in the liquid, a liquid pressure increase from

the ambient pressure of magnitude ρlV 2/ε is required to maintain a leading order contribution

from the pressure in the Navier-Stokes equations (1) for the liquid. For pressures smaller than

this characteristic scale, there is insufficient pressure build-up at the liquid free-surface to induce

liquid motion. Coupled interactions between the gas and liquid are required for gas cushioning,

and consequently an equivalent characteristic pressure scale is required in the gas, so that the

two fluids are coupled through the normal stress balance across the liquid free-surface. With this

pressure scale in the gas, the leading-order behaviour in the horizontal momentum conservation

equation is governed by a balance between the pressure gradient and the vertical viscous term.
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This balance implies19

ε =
(

µg
ρlV L

)1/3

. (2)

For water and air, the impact of a solid body with L = 1 m and V = 0.1 m s−1, results in ε = 0.0056,

validating the assumption that ε is a small parameter. The viscous gas can be assumed to be

incompressible, if the characteristic gas pressure ρlV 2/ε, is smaller than the ambient gas pressure p0.

This condition is satisfied for impact velocities20

V � Vcomp =
(
p3

0µg
ρ4
lR

)1/7

, (3)

and consequently, the gas can be assumed to be incompressible for impact velocities in this range.

For water and air, Vcomp = 0.56 m s−1 for bodies with characteristic length L = 1 m. The liquid is

assumed to be incompressible throughout.

If the Navier-Stokes equations (1) are non-dimensionalized in both the liquid and the gas, using

the scales described, then for ρg/ρl � ε and ε� 1, the leading-order behaviour in the gas layer is

governed by
∂ug
∂x

+ ∂vg
∂y

= 0, (4a)

−∂pg
∂x

+ ∂2ul
∂y2 = 0, (4b)

−∂pg
∂y

= 0, (4c)

while for a Reynolds number Rel = ρlV L/µg � 1, and ε� 1, the leading-order behaviour in the

liquid is governed by the linearized Euler equations
∂ul
∂x

+ ∂vl
∂y

= 0, ∂ul
∂t

= −∂pl
∂x

, and ∂vl
∂t

= −∂pl
∂y

. (5a, b, c)

Here variables without a tilde are non-dimensional. For V = 0.1 m s−1 and L = 1 m; Rel ≈ 100000

and ρg/(ρlε) ≈ 0.15, which justifies the simplifications described above, as the terms neglected

are smaller than the terms retained. Assuming that the vertical height of the disturbances to the

liquid free-surface are of size ε2L, i.e. a O(ε) smaller than the characteristic vertical extent of the

liquid, the liquid evolution can be determined on the lower half-space to leading order.

The vertical momentum equation in the gas film (4c) implies pg = pg(x, t), and consequently,

upon integrating the mass conservation equation and the horizontal momentum equation from the

liquid free-surface y = h(x, t) to the solid body position y = s(x)− t, it is found that the rate of

change of the free-surface height and the gas pressure are related through the equation
∂h

∂t
+ 1 = − 1

12
∂

∂x

[
(s(x)− t− h)3 ∂pg

∂x

]
. (6)
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From the leading order liquid behaviour, the acceleration of the liquid free-surface can be related

to the liquid pressure at the free surface using either a Green’s function16 or a complex variable

approach17 in the lower half-space occupied by the liquid, through the expression

∂2h

∂t2
= − 1

π
−
∫ ∞
−∞

pl,ξ dξ
x− ξ

. (7)

Here the kinematic boundary conditions have been used to relate the interfacial fluid velocities

to temporal derivatives of the free-surface position. Compared to the earlier analysis of gas-

cushioned droplet impacts by Smith, Li, and Wu17, this equation has an additional minus sign,

as the positions of the fluids are reversed, with the liquid now occupying the lower half-space and

having an outward pointing unit normal in the positive y direction.

The gas and liquid pressures in equations (6) and (7) are coupled across the liquid free-surface

by the normal stress balance. At the interface, there is a discontinuity in the normal stresses

between the liquid and gas, and this difference equals the dimensional surface tension coefficient

σ̃, multiplied by the curvature of the interface. With the non-dimensionalization described herein,

this implies

pl = pg + σ
∂2h

∂x2 , (8)

to leading order, where the reciprocal of the reduced Weber number σ = ε/We. Here the Weber

number We = ρlV
2L/σ̃. For V = 0.1 m s−1 and L = 1 m; σ ≈ 4 × 10−5, indicating that surface

tension should be neglected for impacts of this size. However, for slower impact velocities (V =

0.02 m s−1), involving smaller bodies (L = 0.1 m); σ ≈ 0.04. It will be shown that surface tension

parameters of this size can have a significant influence on the impact dynamics and so the surface

tension term is retained to facilitate analysis of smaller scale impacts. For V = 0.02 m s−1 and L =

0.1 m; ε ≈ 0.02, ρg/(ρlε) ≈ 0.06 and Rel ≈ 2000, and so the assumptions underpinning the

reduction of the Navier-Stokes equations remain valid.

Given a prescribed non-dimensional body position y = s(x) − t, equations (6), (7) and (8)

form a closed system of equations governing two-dimensional pre-impact cushioning of a liquid-

solid impact. With surface tension included, the boundary integral equation (7) and normal

stress balance (8) are efficiently solved by taking Fourier transforms of both the pressure and

free-surface22. This is coupled to an implicit finite difference solver for the Reynolds squeeze film

equation (6).

To facilitate direct comparison with Wagner theory, it is expedient to define both the liquid

velocity potential φl, and the liquid displacement potential Φl. For ε � 1, the liquid velocity
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potential and the liquid pressure are connected through the linearized Bernoulli equation

∂φl
∂t

= −pl, (9a)

while following Korobkin29, the liquid displacement potential is defined to be

∂2Φl

∂t2
= pl. (9b)

Upon integrating these expressions

φl(x, y, t) = −
∫ t

−∞
pl(x, y, τ) dτ, (10a)

and

Φl(x, y, t) = −
∫ t

−∞
φl(x, y, τ) dτ. (10b)

These integrals differ from those proposed by Korobkin30, as the pre-impact gas pressure build-up

induces liquid motion from large negative times, rather than just from t = 0, which is the case for

Wagner theory. However, in the absence of gas cushioning, pl(x, 0, t) = 0 for −∞ < t < 0, so the

liquid remains at rest until t = 0 and the usual integral relations are recovered.

III. WAGNER THEORY

Wagner theory for the normal impact of a symmetric solid body with an incompressible quiescent

liquid is now reviewed. Wagner theory is used to investigate post-impact behaviour, as shown in

figure 2(a). The liquid non-dimensionalization used in the previous section is again employed,

while the impact is assumed to occur in a vacuum, so the corresponding non-dimensionalization

of the gas phase is not required. In the absence of gas cushioning, the solid body described in the

previous section impacts a quiescent liquid at x = y = 0 and time t = 0, as there is no gas pressure

build-up and pl(x, 0, t) = 0 for t < 0. Assuming a small deadrise angle for the body, the horizontal

extent of the wetted region between body and liquid is much smaller than the penetration depth4,

and consequently, the disparate vertical and horizontal length scales used to non-dimensionalize

the body position in gas-cushioned impacts are again employed, guaranteeing a consistent body

shape in both cases.

The liquid free-surface h(x, t) is disturbed by the penetration of the body, leading to turnover

points at x = ±c(t), where the free-surface position becomes multivalued as a result of splash jets

ejecting liquid from the path of the body27. The free-surface height below the turnover point tends

to zero in the far-field, a long way from the impactor. An outer problem can now be formulated for
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FIG. 2. (a) A two-dimensional liquid-solid impact and the corresponding mixed boundary value problem

for (b) the liquid velocity potential and (c) the liquid displacement potential.

the liquid velocity potential, connecting the turnover point position, the free surface h(x, t) below

the turnover point and the body position. Like the liquid problem for gas cushioning, the Wagner

outer problem for small times and penetration depths can be solved in the lower half-space. Local

inner analyses are required at the turnover jet root region and in the jet itself, to resolve the local

liquid behaviour close to the turnover point and in the liquid jet4,5. However, on the scale of

the outer problem, the liquid free-surface height matches the vertical position of the body at the

contact line x = ±c(t), which gives rise to the Wagner condition

s(±c(t))− t = h(±c(t) , t) . (11)

For the outer problem, the liquid velocity potential satisfies the mixed boundary value problem
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∂2φl
∂x2 + ∂2φl

∂y2 =0, y < 0, (12a)

φl =0, y = 0, |x| > c(t) , (12b)
∂φl
∂y

=− 1, y = 0, |x| < c(t) , (12c)

φl →0,
√
x2 + y2 →∞, (12d)

which is summarized in figure 2(b). On the liquid free-surface the kinematic boundary condition

implies
∂φl
∂y

= ∂h

∂t
, for y = 0, |x| > c(t) . (13)

The liquid velocity potential φl and the stream function ψl satisfy the Cauchy-Riemann equa-

tions. If we define the complex-valued holomorphic function

wl(z, t) = φl(x, y, t) + iψl(x, y, t) (14)

where z = x+ iy, then upon substitution in Cauchy’s Integral formula

φl,x(x, y, t)− iφl,y(x, y, t)

= 1
2πi

∮
γ

φl,ξ(ξ, η, t)− iφl,η(ξ, η, t)
ζ − z

dζ. (15)

Here the Cauchy-Riemann equations have been used to eliminate ψ, while ζ = ξ + iη. Taking

an anticlockwise contour γ along y = 0, followed by a return arc through deep water and noting

that ∂h/∂t is unbounded at ±c(t), this integral can be inverted to find31

φl,x(x, y, t)− iφl,y(x, y, t)

= 1
2πiΛ(z)

∮
γ

Λ(ζ) [φl,ξ(ξ, η, t)− iφl,η(ξ, η, t)] dζ
ζ − z

, (16)

where, for z = x− i0, the characteristic function

Λ(x) =



−
√
x2 − c(t)2 for x < −c(t) ,

−i
√
c(t)2 − x2 for |x| < c(t) ,√

x2 − c(t)2 for x > c(t) .

(17)

In full generality equation (16) includes an additional term equivalent to a constant multiplying

the homogeneous solution of this problem. However, if the integral of kinetic energy is to remain

bounded, then this constant is necessarily zero5.
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For ζ = ξ − i0 and z = x− i0, the imaginary part of equation (16) gives

∂h

∂t
(x, t) = −1 + |x|√

x2 − c(t)2
, for |x| > c(t) , (18)

which matches equation 2.41 of Oliver5. Alternatively, for ζ = ξ− i0 and z = x− i0 with |x| < c(t),

an expression for ∂φl/∂x(x, 0, t) is recovered from the real part of equation (16). Integrating this

expression with respect to x, before differentiating with respect to t, gives the liquid pressure over

the wetted surface

pl(x, 0, t) = c(t) ċ(t)√
c(t)2 − x2

, for |x| < c(t) . (19)

Here the dependence of the vertical velocity of the free surface (18) and the liquid pressure (19),

on the body shape s(x) is encapsulated in c(t).

A similar analysis can be conducted for the liquid displacement potential Φl, and its com-

plex conjugate Ψl. The corresponding mixed boundary value problem for the liquid displacement

potential satisfies:29

∂2Φl

∂x2 + ∂2Φl

∂y2 =0, y < 0, (20a)

Φl =0, y = 0, |x| > c(t) , (20b)
∂Φl

∂y
=t− s(x) , y = 0, |x| < c(t) , (20c)

Φl →0,
√
x2 + y2 →∞. (20d)

This mixed boundary value problem is summarized in figure 2(c). Integrating the kinematic

boundary condition (13) with respect to time implies

∂Φl

∂y
= −h, on y = 0, |x| > c(t) . (21)

If the complex-valued holomorphic function

Wl(z, t) = Φl(x, y, t) + iΨl(x, y, t) , (22)

is substituted into Cauchy’s integral formula, then

Φl,x(x, y, t)− iΦl,y(x, y, t)

= 1
2πi

∮
γ

Φl,ξ(ξ, η, t)− iΦl,η(ξ, η, t)
ζ − z

dζ. (23)
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Expecting Φl,x to remain bounded at x = ±c(t) and using the characteristic function (17), this

integral can be inverted to give31

Φl,x(x, y, t)− iΦl,y(x, y, t)

= Λ(z)
2πi

∮
γ

[Φl,ξ(ξ, η, t)− iΦl,η(ξ, η, t)] dζ
Λ(ζ) (ζ − z) , (24a)

where the consistency condition∮
γ

[Φl,ξ(ξ, η, t)− iΦl,η(ξ, η, t)] dζ
Λ(ζ) = 0, (24b)

must additionally be satisfied.

For ζ = ξ− i0 and z = x− i0 with |x| > c(t), the imaginary part of equation (24a) and the real

part of equation (24b) give

h(x, t) =

√
x2 − c(t)2

π

∫ c(t)

−c(t)

t− s(ξ) dξ√
c(t)2 − ξ2 (ξ − x)

, (25a)

and ∫ c(t)

−c(t)

t− s(ξ) dξ√
c(t)2 − ξ2

= 0, (25b)

upon the application of the boundary conditions (20c) and (21). A scaled horizontal position X =

x/c(t), can be defined and hence the free-surface position can be expressed as

h(c(t)X, t) = 2X
√
X2 − 1
π

∫ 1

0

s(c(t) Ξ) dΞ√
1− Ξ2 (Ξ2 −X2)

− t, (26a)

for X > 1, while the consistency condition implies∫ 1

0

s(c(t) Ξ) dΞ√
1− Ξ2

= πt

2 . (26b)

This scaled horizontal coordinate facilitates the convenient evaluation of these integrals. For a

given body shape s(x), the consistency condition can be integrated to determine the contact line

position c(t), while the corresponding free-surface height for |x| > c(t) is obtained by substituting

for the body shape and integrating either equation (25a) or (26a).

IV. RESULTS AND DISCUSSION

A. Quadratic-shaped body

The impact of a quadratic parabola-shaped body s(x) = αx2 for α > 0 is investigated first.

Given the disparate horizontal and vertical scaling in the gas layer, this body shape is the local
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FIG. 3. Free-surface and body position (top left), free-surface velocity (top right), pressure at the free

surface (bottom left), and liquid velocity potential at the free surface (bottom right), for the impact of a

parabola s(x) = x2 (black dotted line). The Wagner solution is shown for x < 0, while the viscous gas

cushioning model is shown for x > 0. Profiles are shown at every second non-dimensional integer time

step. In the absence of gas cushioning touchdown occurs at t = 0 (thick dashed blue line), while profiles

for t < 0 are shown as thin dashed blue lines. Profiles for t > 0 are shown as thin solid red lines, except

the final profile (thick solid red line), which is immediately prior to touchdown in a gas-cushioned impact.

approximation of a circular impactor for α = 1
2 and of an elliptical impactor with semi axes

normal (L) and parallel (Lx) to the undisturbed free surface for of α = L/(2Lx). Consequently, an

elliptical impactor is oblate with respect to body motion for α < 1
2 and is prolate for α > 1

2 . Viscous

gas cushioning of liquid-solid impacts with smooth bodies has previously shown good agreement

with experiments23,24. However, until now, a comparison of the viscous gas cushioning model and

Wagner theory has not been undertaken. Inviscid gas cushioning in impacts of quadratic-shaped

bodies has also been investigated16.

For a quadratic shaped body s(x) = x2, the differences in impact dynamics between pre-impact
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gas cushioning and Wagner theory are illustrated in figure 3. The body and liquid free-surface

positions (top left), are shown alongside the corresponding free-surface velocities (top right), liquid

pressures at the interface (bottom left) and liquid velocity potentials at the interface (bottom right).

In Wagner theory, touchdown occurs at t = 0, with the liquid remaining at rest until this time.

Wagner theory solutions can be readily obtained for t > 5, although the final profile is shown at

this instant to facilitate direct comparison with pre-impact gas cushioning. For Wagner theory,

the equation (25b) gives rise to the well-known contact line position

c(t) =
√

2t
α
, (27a)

while for |x| > c(t), the free-surface height

h(x, t) = αx2 − t− α |x|
√
x2 − c(t)2, (27b)

is obtained from equation (25a). As the body penetrates the liquid, the displaced liquid accu-

mulates around the sides of the body, to satisfy the Wagner condition (11). The wetted surface

occupies |x| ≤ c(t). The leading-order liquid pressure predicted by Wagner theory is unbounded

at x = ±c(t) (see equation (19)), and to regularize this pressure, asymptotic analysis in the jet

root region surrounding the free-surface turnover point must be conducted4,5. Our interest is in

the outer Wagner problem on length scales comparable to pre-impact gas cushioning, so the local

analysis necessary to regularize the pressure at the contact line is not described.

In gas-cushioned impacts, there is a build-up of pressure in the gas separating the impactor

from the liquid free-surface starting from large negative times. This deforms the liquid free-surface,

deflecting it out of the path of the oncoming impactor. The liquid moved out of the path of the

impactor accumulates some horizontal distance away from the point of initial minimum separation

between the solid body and the liquid free-surface, and it is at these points that touchdown initially

occurs. After the initial pressure build-up beneath the impactor, the pressure profiles also bifurcate,

with subsequent pressure maxima occurring where the separation between the body and the liquid

free-surface is least. The pressure profiles generated closely match those associated with viscous

gas-cushioned droplet impacts, as the models of droplet cushioning by viscous gas of Smith, Li,

and Wu17 and Purvis and Smith18, are recovered by defining the vertical separation between the

solid body and the liquid free-surface to be f(x, t) = s(x)− t− h(x, t) in equations (6) and (7).

Beneath the impactor a region of trapped gas is formed by the deformation of the liquid free-

surface, so that the leading-edge of the body is surrounded by gas at touchdown. At the points of

initial touchdown, cusps form on the free surface32. The pocket of trapped gas subsequently evolves
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to form a bubble23,33. Following the scaling argument presented in §II, the horizontal touchdown

position rp, and maximum vertical height hp of the initial pocket of trapped gas are of the order

of the characteristic horizontal and vertical length scales23,24, and consequently,

rp = εLr?p =
(
µgL

2

ρlV

)1/3

r?p, (28a)

and

hp = ε2Lh?p =
(
µ2
gL

ρ2
l V

2

)1/3

h?p. (28b)

For α = 1
2 , the numerically calculated pre-factors are r?p ≈ 4.38 and h?p ≈ 4.10, while for α =

1; r?p ≈ 2.78 and h?p ≈ 3.29. For an axisymmetric body s(r) = 1
2r

2, with radial distance r, the same

scaling laws hold with r?p ≈ 6. For an axisymmetric body, the initial radius of the trapped gas

pocket has been experimentally measured and excellent agreement with this scaling law has been

obtained23. The same scaling laws hold for incompressible, viscous gas-cushioned droplet impacts,

where again excellent experimental confirmation of this result has been found34.

The similarities and differences between the profiles predicted by Wagner theory and pre-impact

gas cushioning are now described. To assist this comparison, the horizontal location cgas(t), of

the point of minimum separation between the body and the liquid free-surface in gas-cushioned

impacts, is defined to be

cgas(t) ≡ min
x≥0

[s(x)− t− h(x, t)] . (29)

Despite the absence of gas cushioning in Wagner theory, there are many similarities between the

two different types of liquid free-surface profile. Both theories conserve the liquid mass moved

out of the path of the impactor by predicting a liquid build-up at the sides of the penetrating

body. In both Wagner theory (for |x| > c(t)), and in pre-impact cushioning (for |x| > cgas(t)), the

free-surface decays to its undisturbed value for |x| → ∞. This decay is faster for Wagner theory

(where ∂h/∂x is unbounded as x approaches c(t)), than the corresponding decay with pre-impact

cushioning (where ∂h/∂x is bounded throughout). For pre-impact cushioning a pocket of gas is

entrained about the tip of the body (for |x| < cgas(t)). This is not present in Wagner theory, as

the liquid boundary follows the body shape on the wetted region |x| < c(t), and consequently, at

an equivalent time, the disturbance of the liquid surface is greater with pre-impact cushioning.

The pressure predicted by Wagner theory becomes unbounded as |x| ↗ c(t) and further local

asymptotic analysis is required to regularize the pressure in these regions5. However, outside these

regions, the pressure profiles predicted by Wagner theory and in pre-impact cushioning can be
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directly compared. The horizontal location of the maximum pressures is very similar in both

models. Also, the pressure obtained at x = 0 for t > 0 is of a similar magnitude.

As |x| ↘ c(t), the free-surface velocity predicted by Wagner theory becomes unbounded, like

the Wagner pressure. Again, a local asymptotic analysis is required to regularize the free-surface

velocity at these points. However, outside a small region surrounding these points, the velocity

profiles predicted by Wagner theory can be compared with the corresponding velocity profiles

predicted in gas cushioned impacts. For both x > c(t) and x > cgas(t), the free surface has

a positive upwards velocity, which enables the accumulation of liquid around the sides of the

impactor. These positive velocities again both decay as |x| → ∞, enabling the free surface to

return to its undisturbed position in the far field. In Wagner theory, the boundary conditions on

the mixed boundary value problem for the liquid velocity potential (12c) equates the downwards

velocity of the liquid boundary to the body descent speed for |x| < c(t). As touchdown approaches,

the corresponding free-surface velocity with gas cushioning, tends towards the same body descent

speed for x < cgas(t), despite the fact there is now a gas cushion separating liquid from the impactor.

The free-surface velocity in the gas entrainment problem matches that predicted by Wagner theory,

as gas is unable to escape from the region in front of the impactor after the pressure has bifurcated.

This is because the pressure gradient is zero at the pressure maxima and hence there is no gas flux

at these points. As the entrained gas is unable to drain out of the path of the impactor, it must

be carried along in front of the impactor and naturally, both the gas and the liquid free-surface

must therefore obtain a vertical velocity comparable to the impactor.

Gas-cushioned impacts again exhibit non-zero liquid velocity potentials for t < 0, due to the

gas pressure build-up, which is not present in Wagner theory. However, at the time of touchdown

in the gas-cushioned model, the liquid velocity potential on the free surface is very similar in both

cases. With gas cushioning, the transition of the liquid velocity potential at x = cgas(t) is much

more gradual, than in Wagner theory, as a result of the smoother pressure. With gas cushioning,

the profiles of the liquid velocity potential just before touchdown do not exhibit the same sharp

peaks associated with the pressure and the free-surface position, and consequently, calculations

based on the liquid velocity potential may be better suited for extension into the post-impact

cushioning phase.

In figure 3 it is noticeable that the horizontal location of c(t) and cgas(t) are similar at touch-

down. This similarity between gas-cushioned behaviour and Wagner theory (black dotted line,

equation (27a)) is illustrated graphically in figure 4 for α = 1. In gas-cushioned impacts cgas(t)
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FIG. 4. A comparison of cgas(t) against c(t) (black dotted line), for a parabola with α = 1. The position

of cgas(t) is shown for σ = 0 (thick solid blue line), σ = 0.02 (dash-dotted red line) and σ = 0.04 (thin

solid red line). In a gas-cushioned impact, the evolution is shown until the instant of touchdown.

deviates from x = 0 before t = 0, due to the bifurcation of the free-surface profile and pressure.

For σ = 0 (thick solid blue line), the position cgas(t) > c(t), until t ≈ 1.7, when the horizontal

motion of c(t) overtakes cgas(t). Subsequently, the position of cgas(t) is slightly behind, but closely

follows c(t) until touchdown. As surface tension increases cgas(t) does not deviate from x = 0 until

times close to t = 0. This is because the capillary pressure dominates over the liquid inertial pres-

sure for large σ, with the free surface not deforming before touchdown in this limit. The transition

to this curvature preserving behaviour is observed even for comparatively small σ. Once cgas(t)

deviates from x = 0, surface tension acts to prevent the formation of steep gradients on the free

surface and so for a given time, cgas(t) becomes smaller as σ increases. The closest agreement at

touchdown is obtained in the absence of surface tension. If the relative difference in the horizontal

position of c(t) and cgas(t) is defined to be

E = 100% |c(t)− cgas(t)|
c(t) , (30)

then, in the absence of surface tension, E = 2.88% at touchdown. The evolution of cgas(t) is plotted

until touchdown, which indicates surface tension delays the instant of touchdown in gas-cushioned

impacts. No touchdown occurs before t = 24 when σ = 0.04. With surface tension, greater

deviation between cgas(t) and c(t) is observed at later times, with cgas(t) obtaining a maximum

value at t = 10.54 for σ = 0.02 and at t = 19.55 for σ = 0.04, before cgas(t) begins to move back

towards x = 0.
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FIG. 5. Gas-cushioned impacts of a quadratic-shaped body s(x) = x2 (black dotted line) with surface

tension parameters (a) σ = 0, (b) σ = 0.02 and (c) σ = 0.04. In the absence of gas cushioning touchdown

would occur at t = 0 (thick dashed blue line). Profiles are shown at every fourth non-dimensional integer

time step except in (a) and (b), where the final profile (thick solid red line), is shown immediately before

touchdown. In (c), touchdown does not occur before t = 24.

The influence of surface tension on the free-surface and pressure profiles in gas-cushioned im-

pacts is further illustrated in figure 5 for α = 1 and σ = 0, 0.02 and 0.04. Gas-cushioned droplet

impacts with surface tension were previously investigated by Purvis and Smith18. As with this

earlier study, we find surface tension acts to smooth both the free-surface and pressure profiles,

while further delaying the instant of touchdown. This smoothing is particularly noticeable where

the curvature of the free surface is greatest. With surface tension, the delay between the instant

touchdown would have occurred in the absence of gas touchdown and the actual touchdown time

increases with σ. There is a corresponding increase in the horizontal extent of the gas pocket,

while just prior to touchdown, capillary waves on the free surface are prominent for σ = 0.04.
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FIG. 6. Free-surface and body position (top left), free-surface velocity (top right), pressure at the free

surface (bottom left), and liquid velocity potential at the free surface (bottom right), for the impact of a

wedge |x| (black dotted line). The Wagner solution is shown for x < 0, while the viscous gas cushioning

model is shown for x > 0. Touchdown occurs at t = 0 (thick dashed blue line), in the absence of gas

cushioning. Profiles are shown at every eighth non-dimensional integer time step, except for the final

profile at t = 38 (thick solid red line), which is just before touchdown in a gas-cushioned impact.

B. Wedge-shaped body

Wagner theory and viscous gas-cushioned impacts are now investigated for the wedge s(x) =

α |x|, with α > 0. Gas entrapment in impact experiments for rigid wedge-shaped bodies has

been observed for deadrise angles of less than 3 degrees10,35. These very small deadrise angles are

consistent with the disparate horizontal and vertical length scales employed herein. However, the

presence of the gas is usually inferred from pressure traces, rather than being observed directly.

Recent advances in high-speed photography, which have enabled direct measurement of the contact

line evolution associated with the gas pocket in the impact of a rounded body23,33, have not

been applied to a wedge-shaped body and consequently, experimental validation of the predicted
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free-surface profiles in gas-cushioned wedge impacts is not possible. Impact experiments with

wedge-shaped bodies are most often conducted with deadrise angles larger than 3 degrees and

gas entrapment is not observed36–38 in this regime. Wilson16 models and calculates the free-

surface deformation and the horizontal gas profile for a wedge impact cushioned by an inviscid

gas. However, results of the viscous gas cushioning model used herein and a direct comparison

with Wagner theory have not previously been presented.

Figure 6 shows the evolution of the body and free-surface profile (top left), the free-surface

velocity (top right), the pressure at the interface (bottom left) and the liquid velocity potential at

the interface (bottom right) for α = 1. Both Wagner theory (shown for x < 0), and the viscous

gas cushioning model (shown for x > 0), assume the wedge has small deadrise angle. Despite

the pointed tip of the wedge, the gas-cushioned impact model predicts that a pocket of gas is

entrapped, resulting in a delay to touchdown. The mechanism for this matches that observed with

the quadratic-shaped body.

For Wagner theory, the wedge initially impacts the liquid at t = 0, with the liquid at rest before

this time. For t > 0, Wagner theory predicts a contact line position4

c(t) = πt

2α, (31a)

and free-surface elevation

h(x, t) = −t+ 2αx
π

arcsin
(
c(t)
x

)
, (31b)

for |x| > c(t).

For wedge impact, there are again many similarities in the behaviour predicted by the two

models. The horizontal position of cgas(t) and c(t) are similar throughout the impact evolution,

with E = 10.89% at touchdown in the gas-cushioned model without surface tension. This gives

similar horizontal locations for the maximum pressure in both theories. For wedge impact, the

downwards velocity of the liquid free-surface in the trapped gas region is even closer to the descent

speed of the solid body, than for the impact of a quadratic shaped body. As before, this similarity

is due to the gas surrounding the tip of the wedge being unable to drain away after the pressure

bifurcates forming a pair of local pressure maxima where there is no gas flux. On the liquid free-

surface the liquid velocity potentials are of comparable magnitude. At the time of touchdown in a

gas-cushioned impact, the liquid velocity potential at the wedge tip is slightly more negative than

the corresponding prediction of Wagner theory, while the non-zero pressures throughout the spatial

domain in a gas-cushioned impact, smooths the liquid velocity potential profiles so they no longer
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FIG. 7. Gas cushioned impact of a wedge-shaped body s(x) = 4 |x| (black dotted line) with surface tension

parameters (a) σ = 0, (b) σ = 0.02 and (c) σ = 0.04. Profiles are shown at every fourth non-dimensional

integer time step except for the final profile (thick solid red line), which is shown immediately before

touchdown. In the absence of gas cushioning, touchdown occurs at t = 0 (thick dashed blue line).

exhibit the cusp at the contact line associated with Wagner theory. At x = 0 and touchdown, the

differences in the liquid velocity potentials at the wedge tip are less than the differences in the

liquid velocity potential at t = 0.

Gas-cushioned wedge impacts with surface tension are shown in figure 7 with α = 4 and

(a) σ = 0, (b) σ = 0.02 and (c) σ = 0.04. In (b), capillary waves form on the liquid free-surface,

which decay as |x| → ∞, matching the waves seen for a quadratic body shape. Values of the

surface tension parameter close to σ = 0.02 act to delay touchdown beyond the time predicted in

the absence of surface tension, echoing the behaviour seen for a quadratic body shape. However,

further increases in surface tension act to smooth the rapid changes in the free-surface height

at x = 0, which are observed for σ = 0. For σ = 0.04, this locally reduces the vertical separation

between the wedge tip and the liquid free-surface, initiating an additional local pressure build-up
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FIG. 8. Free-surface and body position for the impact of the body s(x) = |x|3/2 (black dotted line), with

an initially quiescent liquid. The Wagner solution is shown for x < 0, while numerical solutions for viscous

gas cushioning is shown for x > 0. Profiles are shown at every fourth non-dimensional integer time step,

with the final profile at t = 8 (thick solid red line), when touchdown occurs with gas cushioning. In the

absence of gas cushioning, touchdown occurs at t = 0 (thick dashed blue line).

in the centre of the gas cushion that drives gas away from the wedge tip. For σ = 0.04, the liquid

free-surface is still initially deflected downwards by a pressure build-up as the wedge moves towards

touchdown. However, the pressure and the free surface do not bifurcate, with the largest pressures

occurring at x = 0 throughout the cushioning period. Initial touchdown occurs at the tip of the

wedge and a pocket of trapped gas is not formed. Touchdown is less delayed than in gas-cushioned

impacts without surface tension or in gas-cushioned impacts with smaller values of σ, as surface

tension reduces the liquid free-surface deflection, leading to a concomitant reduction of the time

taken for the wedge to traverse the gas film.

C. Power-law body

The impact of a body which can be expressed by the power law s(x) = α |x|β is now investigated

for α > 0 and β > 0. Drop tests39 and numerical simulations40 involving curved wedges, with

shapes similar to this, have been conducted. However, the minimum mean deadrise angle in these

experiments was 25◦ and gas entrainment was not observed. The quadratic and wedge-shaped

bodies investigated so far are special cases of this body shape, with β = 2 and β = 1, respectively.
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Substituting this body shape into equation (26b), gives the contact line position

c(t) =
√π
α

Γ
(

2+β
2

)
Γ
(

1+β
2

)t
1/β

. (32)

The derivation of this expression is described in appendix A. Evaluating the Gamma func-

tions: Γ(1) = 1, Γ
(

3
2

)
= 1

2
√
π, and Γ(2) = 1, facilitates the recovery of equation (27a) for β = 2,

while equation (31a) is recovered when β = 1. Similarly, substituting the body shape into

equation (26a) gives the free-surface position

h(x, t) =
t
√
x2 − c(t)2

|x| 2F1

(
1, 1 + β

2 ; 2 + β

2 ; c(t)
2

x2

)
− t, (33)

for |x| > c(t), where 2F1( · , · ; · ; · ) is a hypergeometric function. The derivation of this free-surface

height is presented in appendix B.

Figure 8 illustrates the solid body s(x) = |x|3/2, with the free-surface height predicted by Wagner

theory shown for x < 0, and viscous gas pre-impact cushioning with σ = 0 shown for x > 0. The

evolution of the free surface pressure, velocity and liquid velocity potential are not shown, but

these are consistent with previous results. In Wagner theory, an unbounded pressure (given by

equation (19)), is predicted at the contact line, while for gas-cushioned impacts, the pressure

maximum bifurcates alongside the liquid free-surface, leading to local pressure maxima at the

point of minimum separation between the solid and the liquid free-surface. In the absence of

surface tension, E = 6.74% at touchdown.

For the wedge (β = 1), the far-field pressure decays like pg ∼ x−1 as x→∞. For β < 1, the pres-

sure decays more slowly than this and numerical solutions of the gas cushioning model satisfying

the far-field conditions could not be obtained. While numerical solutions for gas-cushioned impacts

are only available for β ≥ 1, the integral in equation (26a) exists for β > −1 (see appendix A).

However, physically realizable body shapes with a bounded global minimum require β > 0. Al-

though numerical solutions with gas cushioning could not be obtained for 0 < β < 1, the Wagner

theory prediction for the free-surface height (33) is valid in this range. As an example of free-

surface profiles in this range, the free-surface profiles produced by the impact of a body with

shape s(x) = |x|1/2 are shown in figure 9.

As with the quadratic-shaped body and the wedge, there is good agreement between the horizon-

tal positions of c(t) and cgas(t) when σ = 0. This similarity is obtained for body shapes s(x) = α |x|β

with α = 1. However, the Wagner wetted region and the extent of the gas bubble both depend

upon the body shape parameter α. As α increases, the horizontal extent and area of the trapped
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FIG. 9. The body position and Wagner solution for free-surface for the impact of the body s(x) = |x|1/2

(black dotted line). Profiles are shown at every non-dimensional integer time step, from t = 0 (thick

dashed blue line), until t = 3 (thick solid red line).

gas pocket decreases, as the horizontal extent of the body within the gas cushioning region also

decreases. Numerical solutions for the gas cushioning model are only available for β ≥ 1, and in

this regime the dependence of the solution profiles upon α can be codified by scaling lengths and

time by

(h, s, t, x) =
(
ακh̄, ακs̄, ακt̄, α2κx̄

)
, (34a)

where κ = −1/(2β − 1), alongside rescaled pressures and a rescaled surface tension coefficient

(pg, pl, σ) =
(
ακp̄g, α

κp̄l, α
4κσ̄

)
. (34b)

This rescaling eliminates α from the body shape and equations (6), (7) and (8). In the absence of

surface tension, this scaling indicates that if the value of α is doubled, then for a wedge (with β = 1),

the horizontal extent of the trapped gas pocket decreases by a factor of four, while the area enclosed

between the solid body and the liquid free-surface decreases by a factor of eight. For a quadratic

parabola (with β = 2) the horizontal extent of the trapped gas pocket decreases by a factor of 22/3,

while the area enclosed between the solid body and the liquid free-surface decreases by a factor of

two.

The horizontal extent of the wetted region also decreases as α increases, as the body rises out of

the liquid more rapidly. The parameter α is removed from the body shape and is not introduced

into the Wagner contact line position and the Wagner free-surface height by defining a rescaled
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free-surface height ĥ, a body height ŝ, and time t̂, which satisfy

(h, s, t) =
(
αĥ, αŝ, αt̂

)
. (35)

As this rescaled time differs from the rescaled time associated with viscous gas cushioned impacts,

the results of the two theories are no longer directly comparable without further rescaling of

time. However, at a common time t = αt̂ = ακt̄, corresponding to the touchdown time with gas

cushioning, if the Wagner contact line position from equation (32) is expressed in terms of the

rescaled gas cushioning time t̄, then c(t̄) ∼ α−2/(2β−1). In the gas cushioning model, the position of

cgas(t) is expected to scale like the horizontal spatial coordinate and so from equation (34a), cgas ∼

x ∼ α−2/(2β−1). Consequently, for variations in α and fixed β > 1 (when numerical solutions with

gas cushioning are obtained), the horizontal extent of the gas pocket and the horizontal extent of

the Wagner wetted region remain similar at the touchdown time of the gas-cushioned impact.

D. Flat-bottomed wedge body

The final body shape investigated is a flat-bottomed wedge s(x) = max(α |x| − β, 0), for α > 0

and β > 0. Impact experiments with this body shape show that touchdown initially occurs at the

transition between the flat bottom and the sloping side of the wedge41. Gas cushioning models for

this body shape have previously only considered inviscid gas4,16, while these models also assume

the deadrise angle of the wedge is large, so that the body can be approximated by a flat plate

with the gas pressures tending to zero at the edge of the flat bottom. With these assumptions,

analytic expressions for small deformations of the free-surface profile have been obtained, which

are in qualitative agreement with experiments. However, if the sloping sides of a flat-bottomed

wedge have large deadrise angle, then the modelling is also valid for the impact of a flat plate.

Impact experiments with a flat plate indicate initial touchdown also occurs at the plate edge42,43,

while modelling of a flat plate impact in the inviscid gas regime also predicts touchdown in this

location15. Here we differ from earlier studies by assuming viscous gas cushioning and allowing

smaller deadrise angles on the wedge. Smaller deadrise angles enable non-zero gas pressures outside

the flat-bottom region.

In the absence of gas cushioning, this body shape touches down at t = 0 throughout the

region |x| < β/α. For t > 0, the position of the contact line c(t), is given as the solution of the

transcendental equation4,5

πt

2 −
√
α2c(t)2 − β2 + β

(
π

2 − arcsin
(

β

αc(t)

))
= 0, (36)

24

http://dx.doi.org/10.1063/1.5086510


-20

-15

-10

-5

 0

 5

 10

F
re

e 
su

rf
ac

e,
 h

(x
,t

) 
an

d
 

 b
o

d
y
 p

o
si

ti
o
n

 s
(x

)-
t

t=0
t=8

-12

-10

-8

-6

12 15 18

-1

-0.5

 0

 0.5

 1

-60 -45 -30 -15 0 15 30 45 60

F
re

e-
su

rf
ac

e 
v
el

o
ci

ty
, 
h
t(
x
,t

)

Position, x

t=0
t=8

FIG. 10. Free-surface and body position (top), and free-surface velocity (bottom), for the impact of a

flat-bottomed wedge with α = 1 and β = 15 (black dotted line). The Wagner solution is shown for x < 0,

while the solution with viscous gas cushioning is shown for x > 0. Profiles are shown at every fourth

non-dimensional integer time step, with the final profile immediately before touchdown (thick solid red

line). In the absence of gas cushioning, touchdown occurs at t = 0 (thick dashed blue line).

which in general must be solved numerically. However, once c(t) has been determined the horizontal

velocity of the contact line is given by

ċ(t) = πc(t)
2
√
α2c(t)2 − β2

. (37)

For t large, the proportion of the wetted surface corresponding to the flat bottom of the wedge

decreases, and in this limit the velocity of the contact line approaches the contact line velocity for

a wedge (given by the derivative of equation (31a) with respect to t). The corresponding liquid
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free-surface height is given by

h(x, t) = −t− β

+αx+ β

π
arcsin

(
βx+ αc(t)2

c(t) (αx+ β)

)

−αx− β
π

arcsin
(
βx− αc(t)2

c(t) (αx− β)

)
, (38)

for |x| > c(t) > β/α.

A comparison of the free-surface position and velocity predicted by Wagner theory and the

viscous gas cushioned impact model is shown in figure 10 for α = 1, β = 15 and σ = 0. In viscous

gas cushioned impacts, again there is a build-up in the gas pressure (not shown), that deflects

the liquid free-surface downwards out of the path of the impactor. This leads to a subsequent

bifurcation of both the free-surface position and the pressure, with maxima in the pressure and

minima in the vertical separation between the body and liquid free-surface located at some position

along the inclined side of the flat-bottomed wedge.

The minima in the vertical separation between the solid body and the liquid free-surface on

the inclined side of the flat-bottomed wedge are not the only minima in the vertical separation.

The inset in figure 10 (top) shows the free-surface profile in the gas cushioning model, close to the

corner of the solid body at x = β/α. At this point the liquid free-surface is deflected more slowly

out of the path of the solid body, and hence there is a local thinning of the gas cushion, driven

by the change in gradient of the solid body. There are now two possible touchdown locations:

on the sloping sides of the wedge or at the corner of the body. The location of the touchdown

point depends on the values of α and β. Touchdown at the transition between the flat bottom and

sloping wedge sides is consistent with experiments using flat-bottom wedges41, while touchdown

at the edge of the plate is also observed in experiments of flat plate impact42,43. At touchdown,

following the behaviour observed with other body shapes, the horizontal location of the point

of minimum gas layer thickness on the sloping side of the wedge is broadly comparable to c(t),

although the horizontal extent of the wetted region predicted by Wagner theory is slightly larger.

Figure 10 (bottom) shows the corresponding vertical velocity of the free surface. The maximum

upwards velocity of the free surface occurs at |x| = c(t) in Wagner theory (where equation (18)

predicts an unbounded free-surface velocity), while in a viscous gas cushioned impact the maximum

upwards velocity of the liquid free-surface occurs for |x| slightly larger than cgas(t). Once the

pressure has bifurcated in the cushioning model, the pressure maxima at x = ±cgas(t) again trap

the gas beneath the solid body, causing the gas to descend into the liquid with the speed of the
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body. The predicted free-surface velocities in the trapped gas pocket match the body descent

speed, except for local regions at the corner of the body (x = ±β/α), and where the vertical

velocity of the free surface rapidly transitions to positive values outside the trapped gas pocket

at x = ±cgas(t). The reduced free-surface descent speed at x = ±β/α produces the local thinning

of the gas cushion and touchdown observed in the free-surface height profiles.

V. DISCUSSION AND CONCLUSIONS

Wagner theory and a model of pre-impact viscous gas cushioning have been compared for the

normal impact of a symmetric body with an initially quiescent liquid. Particular attention has been

paid to the time period between t = 0 (when touchdown occurs in Wagner theory), and the delayed

initial touchdown with gas cushioning, when both theories are valid. A range of solid body shapes

have been investigated, including wedges and flat-bottom wedges (where viscous gas cushioning

has not been previously investigated), and a generalized power law body shape s(x) = α |x|β (for

which both gas cushioning and the Wagner outer solution are novel).

Across the range of body shapes investigated, commonalities between the free-surface and pres-

sure profiles generated by gas cushioning and Wagner theory are found. Driving these common-

alities is the distribution of the pressure build-up induced either by pre-impact cushioning or, in

Wagner theory, by the liquid-solid impact itself. These commonalities are listed as follows:

• The horizontal location of touchdown with gas cushioning is broadly similar to the contact

line position in Wagner theory at the corresponding time. For the body s(x) = α |x|β,

scaling laws show that both c(t) and cgas(t) have the same dependence on α, so the similarity

between c(t) and cgas(t) at touchdown is preserved as α varies.

• The gas cushioning pressure (which is largest where the separation between impactor and

liquid is least), decays gradually to the far-field pressure, spreading the pressure build-up

beyond the Wagner wetted region. Gas cushioning pressures remain bounded throughout

the cushioning phase of the impact and regularize the unbounded pressure profiles predicted

by the Wagner outer problem.

• Just prior to touchdown in the gas cushioning model, the highest pressures are obtained away

from the global body minimum, at c(t) in Wagner theory and at cgas(t) with pre-impact gas

cushioning. This is because a large pressure gradient is required at these points to induce

motion in the liquid to move it out of the path of the impactor.
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• Pressure profiles obtained from Wagner theory and pre-impact cushioning, which have com-

parable support, common magnitude (ρlV 2/ε), and maxima at the same horizontal locations,

will generate similar responses in the liquid free-surface and vertical velocities.

Surface tension in pre-impact viscous gas cushioning is also investigated and is shown to smooth

rapid variations in the free-surface profile. With the inclusion of surface tension:

• Capillary waves are formed across a range of body shapes. For smooth body shapes, the

delay in impact due to gas cushioning is increased, as the cusp on the free surface, associated

with touchdown is unable to form32.

• The deflection of the free-surface for body shapes with a sharp corner is reduced. This can

facilitate more efficient gas film drainage, as rapid changes in the gradient of the body induce

additional local pressure increases. Consequently, for a wedge, surface tension can hasten

touchdown relative to the time predicted in the absence of surface tension.

Having compared models of viscous gas cushioned pre-impact and Wagner theory, we can now

describe the conditions where the entrainment of a gas bubble is expected to significantly affect the

impact. From equation (28a), the horizontal extent of the trapped bubble grows as L increases (as

more of the body is in the cushioning region), and shrinks as V increases (as less time is available

before impact for the free surface to deform). If the primary interest is the pressure on the body at

horizontal distances much greater than rp from the body minimum, then models of pre-impact gas

cushioning become less useful as predictive tools, as the maximum pressures at the point of interest

will only be experienced some time after touchdown, when the pre-impact cushioning model ceases

to be valid. In this situation, Wagner theory, or some alternative theory that includes post-impact

gas cushioning, is required.

Post impact behaviour with gas cushioning has previously been investigated with both viscous18

and inviscid27,28 gas. However, these models are initiated with the global body minimum in contact

with the liquid. As the body does not move towards the liquid in the pre-impact phase, there is no

opportunity for the pressure to build up prior to touchdown. Consequently, the liquid is at rest,

with an undisturbed free surface until touchdown, even though the models include the influence of

air. While there are scenarios where an initially stationary body, in contact with a liquid, starts

to move into the liquid, this configuration is not common for liquid-solid impacts, as the body is

usually in motion before touchdown. Further work is required to couple pre- and post-impact gas

effects in a model that allows body motion in the pre-impact phase. Such a model would extend
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the time period over which gas cushioning can be investigated, enabling a comparison of the effects

of gas cushioning and Wagner theory throughout the initial stages of the impact and not just until

the time the body first touches down.
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Appendix A: Derivation of the contact-line position for a power-law body

For the body shape s(x) = α |x|β, the consistency condition (26b) implies

αc(t)β
∫ 1

0

Ξβ dΞ√
1− Ξ2

= πt

2 . (A1)

From equation 8.380.1 of Gradshteyn and Ryzhik44, the beta function B(p, q) satisfies

B(p, q) = 2
∫ 1

0
Ξ2p−1

(
1− Ξ2

)y−1
dΞ,

for Re[p] > 0 and Re[q] > 0. If we choose p = (1 + β)/2 and q = 1/2, then equation (A1) implies

αc(t)β B
(

1 + β

2 ,
1
2

)
= πt,

for β > −1. In this expression, the beta function can be written in terms of gamma functions, as

B
(

1+β
2 , 1

2

)
= Γ

(
1+β

2

)
Γ
(

1
2

)
/Γ
(

2+β
2

)
. Equation (32) is recovered by noting that Γ

(
1
2

)
=
√
π.

Appendix B: Derivation of the free-surface height for a power-law body

For the body shape s(x) = α |x|β, the free-surface position (26a) can be expressed in terms of

the hypergeometric function 2F1(a, b; c; z), as given in equation (33). An integral representation

of the hypergeometric function is given by Abramowitz and Stegun equation 15.3.145, with the

form

2F1(a, b; c; z) = Γ(c)
Γ(b) Γ(c− b)

∫ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a dt, (B1)

where Re[c] > Re[b] > 0 and |arg(1− z)| < π. The free surface occupying the range x > c(t)

(i.e. X > 1), is considered first. With the substitutions t = Ξ2, z = 1/X2, a = 1, b = (1 + β)/2

and c = (2 + β)/2, this integral becomes
∫ 1

0

Ξβ dΞ√
1− Ξ2 (Ξ2 −X2)

= −
√
πΓ
(

1+β
2

)
2X2Γ

(
2+β

2

) 2F1

(
1, 1 + β

2 ; 2 + β

2 ; 1
X2

)
. (B2)
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As X > 1, the conditions on equation (B1) are satisfied for β > −1, which covers all cases of inter-

est. Upon substituting this integral into equation (26a) and using the contact line position (32), an

expression for the free-surface profile for x > c(t) is recovered. Similar considerations for x < −c(t)

(i.e. X < −1) give rise to equation (33).

Using Mathematica46 the hypergeometric function in equation (33) can be expressed in terms

of common functions, for some specific values of β. For a quadratic body, β = 2 and

2F1

(
1, 3

2; 2; c(t)
2

x2

)
= −

2x2
(√

x2 − c(t)2 − |x|
)

c(t)2
√
x2 − c(t)2

, (B3)

while for a wedge body, β = 1 and

2F1

(
1, 1; 3

2; c(t)
2

x2

)
=
x |x| arcsin

(
c(t)
x

)
c(t)

√
x2 − c(t)2

, (B4)

enabling the recovery of equations (27b) and (31b), respectively.
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