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The normal impact of a symmetric rigid body with an initi u?ment liquid half-space

is considered using both Wagner theory and a model of is&{gas pre-impact cushioning.
a

The predictions of these two theories are compared e of different body shapes.

Both theories assume the impactor has small deadrise IQIMovel solutions of the Wagner

-_—
normal impact problem for a symmetric body with a power-law shape are presented, which
generalize the well-known results for a pareb‘ola a wedge. For gas cushioned pre-
impacts, it is shown that a pocket of gas lﬁ;@ even for body shapes with a cusp at

the body minimum. A scaling law is deﬁ%ﬁ hat relates the dimensions of the trapped
gas pocket to the slope of the bo y.\ﬁa{ pre-impact gas cushioning, surface tension is

shown to smooth the liquid fre surfamdelay the instant of touchdown for a smooth

parabolic body, while for a edgmcreasing surface tension initially delays touchdown,
before hastening touchdo n& importance of surface tension is increased further. For
a flat-bottomed wedge, gai }rﬁi,nment is again predicted in the gas-cushioning model,
although the locati o&iﬁal touchdown, either on the transition between the wedge and

the flat bottom

body shape/

/
QY

the side of the wedge, now depends upon the parameters of the
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Since the pioneering work by Wagner!, which investigated the loads experienced by seaplanes
landing upon water, many authors have sought to characterize the pressures and loads generated

by impacts between solid bodies and liquids in the context of ship slamming, naval architecture and

aircraft ditching. If gravity, surface tension and viscous effects are lected, then the theory of
matched asymptotic expansions, has facilitated and formalized the %\Qnt of Wagner theory,

theory has been applied to

which seeks to predict the pressure, the impact load and the fr ce evolution for small times
after the initial impact between liquid and body? . More re (&X\{

smaller scale droplet impacts and splashing”*

Wagner theory traditionally assumes the role of the ‘urroﬂydmg gas is negligible. However,
models of pre-impact gas cushioning have also been develope d solved numerically to investigate
how a gas pressure build-up prior to impact may thO&)he impact and deform the liquid free-
surface before the solid body contacts the li 111 Gas ushioning is important in ship slamming,

where it has been shown that gas cushioni duce the maximum impact pressures for bodies
0-12

with deadrise angles of less than three{degre ] . Trapped air can also significantly influence

wave impacts on walls, which has importa
and determining sloshing behaviour N
cushioning assume inviscid gas behayiour' 6. However, more recently viscous effects in the gas

1@3“9. Models of pre-impact viscous gas cushioning are usually
r

developed to describe bubble
£

tengfon'®*" and impacts with porous surfaces

tfimplications for the construction of coastal defences'

he transport of LNG'. The earliest models of gas

have been shown to be si

ment in droplet impacts, and have been extended to incorporate

20

gas compression?’, sirfa 2

. However, they have
also been applied and sttecesstully compared to experiments of solid body impacts with a quiescent

liquid?*?*. Fo lét impacts, while a reduction in the surrounding gas pressure suppresses splash

2 it doeswiot eliminate the formation of the trapped gas bubble beneath the droplet?®,

importagit implications for bubble entrapment in spray coated surfaces. Consequently,

understanding lh)w gas influences impact dynamics is important in many practical situations.

ike W}agner theory, in which touchdown occurs the instant the solid body reaches the undis-
t ‘B‘tﬁ @uld free-surface, models of gas-cushioned impact indicate that there is a delay in the
instant of touchdown due to the free surface being deformed out of the path of the impactor. This
implies that there exists a time interval after the initial touchdown in Wagner theory and before
the delayed touchdown in models of gas cushioning, where, subject to their respective assumptions,

both theories hold. It is in this interval that we shall investigate the similarities and differences
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FIG. 1. A gas-cushioned liquid-solid impact for the normal i %ﬂa symmetric body.

between the two theories, as well as highlighting cases whexe ‘ﬁioning is expected to play a

f\

significant role in the impact dynamics.
Although Wagner theory historically does not (*onsid%" the gas phase, attempts have been
made to extend Wagner theory by incorporating gas effects into post impact behaviour. These

attempts have assumed both viscous'® and i M gas behaviour. However, existing models

of gas cushioning in post-impact assume %is no gas pressure build-up in the pre-impact
02

phase, with the liquid free-surface re m.u) isturbed until touchdown. Consequently, these
_~
extensions of Wagner theory are u&e describe the post-impact evolution of the pocket of
0

trapped gas, which is observed dn elswof pre-impact gas cushioning. Conversely, numerical
solutions of pre-impact cushionil;g\%fs are only valid up to the point of first contact between
liquid and solid, and henc czﬂl?bbcurrently describe post-impact dynamics.

Section II describesé:ﬁr on of a model of viscous gas-cushioned impact between a solid
body and an initially qui entfinviscid liquid, as well as the assumptions under which this model

is valid. Section, Mes Wagner theory for small times after impact in the absence of gas

cushioning. c [V investigates and compares gas-cushioned impact model behaviour with

Wagner the fbr a/r nge of different body shapes including a quadratic body (§IV A), a wedge

(§IV B), power-law shaped body (§IV C), and a flat-bottomed wedge (§IV D). Conclusions and
furthér-dis (5

)

I .\’RE-IMPACT GAS CUSHIONING

ssidns are given in §V.

The influence of gas cushioning on the impact dynamics of a symmetric body approaching a
normal impact with a liquid free-surface (as illustrated in figure 1), will be investigated. For an

incompressible Newtonian fluid, the velocity @, with components (@, ©) in the (Z, §) direction

3
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V-u=0, (la)

Eﬂz-@a: —;@gﬂvw (1b)
Here p is the fluid pressure, p is the fluid density, p is the fluid viscosity and ¢ is the time. A
solid body with boundary 3(#) — V' and characteristic length scal moves normally towards
the undisturbed liquid free-surface with uniform velocity V. Eﬁiien , a property of the
liquid will be denoted by a subscript [, while a subscript g willédenote a property of the gas. On
the boundary of the solid body 7 = 3(%) — V#, no-slip and/n X&\ation boundary conditions
imply (a4, 9,) = (0, =V), while on the liquid free-surface.y ﬁtﬁ f), the kinematic boundary
condition implies w, = @;. The interfacial stresses ar addit%mally balanced across the liquid
free-surface. Here a tilde represents a dimensional \@able.

It is assumed that the gas pressure build-up i e gasfdoes not influence the liquid until the
vertical separation between the solid body am\Fe liquid free-surface is of size 2L, where € is a

ined.

small parameter whose value is to be deterﬁdgr bodies of small deadrise angle, the horizontal
er a

extent of the gas cushioning region is r,% will be assumed to be of size ¢L. However, the

of the body L, and consequent ,,g\b\o ioning only effects a small region about the location
with least separation between the solid body and the liquid free-surface. The characteristic time
/VNS:ich is the time taken for the solid body to transcend the gas

cushion in the absence 6f free-surface deformation. Driven by the descent speed of the body, the

horizontal extent of the cushioning % still much smaller than the characteristic length scale
as\Cu

scale for the problem is 2

characteristic vertical and¥iorizéntal velocity in the liquid and the characteristic vertical velocity in
the gas are take tojb\However, given the small aspect ratio of the gas cushion, the horizontal

gas velocity faster (with characteristic velocity V/e), to preserve the mass of gas.

Given the.chadracteristic time scale and velocity in the liquid, a liquid pressure increase from

the ambient pressufe of magnitude p;V?/ is required to maintain a leading order contribution

this
% otion. Coupled interactions between the gas and liquid are required for gas cushioning,

sristic scale, there is insufficient pressure build-up at the liquid free-surface to induce

fromgthe ssu}e in the Navier-Stokes equations (1) for the liquid. For pressures smaller than
m

~
and ‘eonsequently an equivalent characteristic pressure scale is required in the gas, so that the

two fluids are coupled through the normal stress balance across the liquid free-surface. With this
pressure scale in the gas, the leading-order behaviour in the horizontal momentum conservation

equation is governed by a balance between the pressure gradient and the vertical viscous term.

4
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For water and air, the impact of a solid body with L = 1m and V = 0.1 ms™!, results in ¢ = 0.0056,
validating the assumption that ¢ is a small parameter. The viscous gas can be assumed to be

incompressible, if the characteristic gas pressure p;V? /e, is smaller thaiyhe ambient gas pressure py.

This condition is satisfied for impact velocities®’ \
3 N

1/7
DPotg
VK ‘/com = ; 3
' (ﬂ?R> \a ¥
and consequently, the gas can be assumed to be incompressi lé))r impact velocities in this range.
‘H

For water and air, Voomp = 0.56 ms~! for bodies with chéraeteristic length L = 1 m. The liquid is

assumed to be incompressible throughout. 3
If the Navier-Stokes equations (1) are non—dimen(’owal' d in both the liquid and the gas, using
the scales described, then for p,/p < ¢ and ¢ << 1,"he leading-order behaviour in the gas layer is

governed by \8
“?'}:, (4a)

Qp :. " (4b)
\ (4c)

while for a Reynolds numh rﬁQS plV'L g > 1, and e < 1, the leading-order behaviour in the
rize

Euler equations

L _ Qw_ Op o Ou_ Om
Y ot oz’ ot Y’

Ne are non-dimensional. For V = 0.1ms™! and L = 1m; Re; ~ 100000

(5a, b, c)

which justifies the simplifications described above, as the terms neglected

liquid, evolution can be determined on the lower half-space to leading order.

Th Vert)cal momentum equation in the gas film (4c) implies p, = py(z, t), and consequently,
u hnﬁggrating the mass conservation equation and the horizontal momentum equation from the
liquidiree-surface y = h(z, t) to the solid body position y = s(z) — t, it is found that the rate of

change of the free-surface height and the gas pressure are related through the equation

E+1_ 592 (s(z) —t—h) 9 | (6)
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6

fife liquid pressure at the free surface using either a Green’s function'® or a complex variable

approach!” in the lower half-space occupied by the liquid, through the expression

O?h 1 [ pede

o T —o0o * —&

(7)

Here the kinematic boundary conditions have been used to relate i)(e mterfacial fluid velocities
to temporal derivatives of the free-surface position. Compare to}he earlier analysis of gas-

cushioned droplet impacts by Smith, Li, and Wu'7, this equatN n additional minus sign,
as the positions of the fluids are reversed, with the liquid n ‘0)02@/1
having an outward pointing unit normal in the positive iy direction.

The gas and liquid pressures in equations (6) ani @) cohpled across the liquid free-surface

g the lower half-space and

by the normal stress balance. At the interface,t iq discontinuity in the normal stresses
between the liquid and gas, and this differenc%ji tfie” dimensional surface tension coefficient

o, multiplied by the curvature of the interfac\\Nl the non-dimensionalization described herein,
this implies \\
0h
\Q Pg T O @, (8>
&ﬁ{e

to leading order, where the reciptoc reduced Weber number o = ¢/We. Here the Weber
number We = p,V2L/5. For V&\%&‘l and L = 1m; 0 ~ 4 x 107°, indicating that surface
tension should be neglected forSmpacts of this size. However, for slower impact velocities (V =
0.02ms™!), involving s allerrﬁs (L =0.1m); 0 ~ 0.04. It will be shown that surface tension

parameters of this siZe can_have a significant influence on the impact dynamics and so the surface

tension term is r

1nNacﬂitate analysis of smaller scale impacts. For V = 0.02ms ! and L =
ag)(pla) ~ 0.06 and Re; ~ 2000, and so the assumptions underpinning the

reduction ofigthe Navier-Stokes equations remain valid.
Givenf a presctifed non-dimensional body position y = s(z) — ¢, equations (6), (7) and (8)
forma.glosed s)stem of equations governing two-dimensional pre-impact cushioning of a liquid-

solid 'mpac‘s. With surface tension included, the boundary integral equation (7) and normal

equation (6).

To facilitate direct comparison with Wagner theory, it is expedient to define both the liquid
velocity potential ¢;, and the liquid displacement potential ;. For ¢ < 1, the liquid velocity

6


http://dx.doi.org/10.1063/1.5086510

I I; This manuscript was accepted by Phys. Fluids. Click here to see the version of record. |
A e

ntial and the liquid pressure are connected through the linearized Bernoulli equation

Publishing 96

while following Korobkin??, the liquid displacement potential is defined to be
02,

G = / (9b)
Upon integrating these expressions

aw v =— [ iy, <\ (10a)

(I)l(l‘v Y, t) = _/t ¢l( ) T (1Ob)

These integrals differ from those proposed by Koro@ ,49)'5 the pre-impact gas pressure build-up

and

induces liquid motion from large negative timexikr than just from ¢ = 0, which is the case for
i

Wagner theory. However, in the absence of oning, p;(x, 0, t) =0 for —oo < t < 0, so the
liquid remains at rest until ¢ = 0 and the ral relations are recovered.

III. WAGNER THEORY \\ \
Wagner theory for the normal%{o a symmetric solid body with an incompressible quiescent
liquid is now reviewed. W; gn‘er\tj‘eory is used to investigate post-impact behaviour, as shown in
figure 2(a). The liquid/non-di sionalization used in the previous section is again employed,
while the impact is dssu /d tg’occur in a vacuum, so the corresponding non-dimensionalization
of the gas phase i ot\bQired. In the absence of gas cushioning, the solid body described in the
previous section
w4, 0,
extent of the wet

cts a quiescent liquid at x = y = 0 and time ¢ = 0, as there is no gas pressure

build-up an =0 for t < 0. Assuming a small deadrise angle for the body, the horizontal

region between body and liquid is much smaller than the penetration depth?,

and gousequently, the disparate vertical and horizontal length scales used to non-dimensionalize

he bBedy p§31t10n in gas-cushioned impacts are again employed, guaranteeing a consistent body
m oth cases.

e 11qu1d free-surface h(x, t) is disturbed by the penetration of the body, leading to turnover

points at x = +¢(t), where the free-surface position becomes multivalued as a result of splash jets

ejecting liquid from the path of the body?”. The free-surface height below the turnover point tends

to zero in the far-field, a long way from the impactor. An outer problem can now be formulated for

7


http://dx.doi.org/10.1063/1.5086510

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record. |

Publishing

FIG. 2. (a) A two-dimensional liquid-solid,impaet_and the corresponding mixed boundary value problem

for (b) the liquid velocity potential anQ }iquid displacement potential.

N\

the liquid velocity potentia necting the turnover point position, the free surface h(z, t) below
the turnover point and the bedy pesition. Like the liquid problem for gas cushioning, the Wagner
outer problem for S‘? indes ?1 penetration depths can be solved in the lower half-space. Local

inner analyses are % the turnover jet root region and in the jet itself, to resolve the local
to

liquid behavio c‘lge e turnover point and in the liquid jet*®. However, on the scale of

le}n, e liquid free-surface height matches the vertical position of the body at the

cﬂ), which gives rise to the Wagner condition

S ~ s(c(t)) —t = h(c(t), t). (11)

For the outer problem, the liquid velocity potential satisfies the mixed boundary value problem

8
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W + 8_y2 =0, y <0, (12&)
¢l :O, Yy = Oa |{E| > C(t) ) (12b)
¢ (12¢)

67_y:_1’ y=0, |z[ £c(t),
¢ —0, T2 + 23—>\ (12d)
which is summarized in figure 2(b). On the liquid free-surface %ﬁ{mtic boundary condition

implies )
06, _ oh <

= —_  for

= =0, > _ 13

9y o y i (13)

The liquid velocity potential ¢; and the stream functiong )atisfy the Cauchy-Riemann equa-
tions. If we define the complex-valued holomorphic t@

wile, ) = @QQ i (14)

where z = = + iy, then upon substitutign &Eﬁy"s Integral formula

Sue(z e t) Soy (7, y, 1)
. > 1, t) — igbl, (§7 1, t)
. —— 7 dc. (15)

tions have been used to eliminate v, while ( = £ + in. Taking
ng a = 0, followed by a return arc through deep water and noting
af :t%/ , this integral can be inverted to find®!

Here the Cauchy-Riemann
an anticlockwise contounf~y

that 0h/0t is unbou

3\((:3, y, t) —igry(x, y, t)

_ 1 A(C) [¢l,§(§v n, t) - igbl, (67 m, t)] dC
y ~ 2miA(z) f{y (—2 : ) (16)
where, for s= I« u(, the characteristic function
-‘b —/z?—c(t)?  for z < —c(t),
b Ax) = —iyJe(t)? =22 for |z| < c(t), (17)

22 — c(t)? for x> ¢(t).

In full generality equation (16) includes an additional term equivalent to a constant multiplying
the homogeneous solution of this problem. However, if the integral of kinetic energy is to remain

bounded, then this constant is necessarily zero®.

9
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@(x t)=—1+ _ =l for |x| > ¢(t) (18)
ot 22 — c(t)? ’
which matches equation 2.41 of Oliver®. Alternatively, for ¢ = £ —i0 and z = z —i0 with |z| < ¢(t),
an expression for d¢;/0x(x, 0, t) is recovered from the real part of eqt‘étion (16). Integrating this

expression with respect to x, before differentiating with respect to ,.g'bves e liquid pressure over

the wetted surface
m(z, 0, t) = M, for x (19)
c(t)? — a2

Here the dependence of the vertical velocity of the free urface,) ) and the liquid pressure (19),

on the body shape s(z) is encapsulated in c(t). (1
@laeement potential ®;, and its com-

A similar analysis can be conducted for thedliq
plex conjugate ¥;. The corresponding mixed % value problem for the liquid displacement

8:r2 ~

potential satisfies:?
0*® 82<I> \
A w y <0, (200)
P, = \ y=0, |z| > c(t), (20D)
6(1); \

y =0, [z <c(t), (20¢)
V2?2 +y? — oo. (20d)

This mixed bound va e p{oblem is summarized in figure 2(c). Integrating the kinematic

boundary condit, th respect to time implies

8<I>
L= —h on y=0, |z|>c(t). (21)

If the co plex—éjilued holomorphic function

b VVZ(’Z? t) = CI)I(SU, Y, t) + i‘Ijl('T7 Y, t)v (22>

I~

is substituted into Cauchy’s integral formula, then

Q) (x, y, t) —iD (2, y, 1)
_ i% (I)l,f(ga m, t) - iq)l,n(ga m, t) dC (2?))

271 Jy (—z

10
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ecling (I>l$ to remain bounded at x = +¢(t) and using the characteristic function (17), this
PUb“%'l]tl&gz 1 can be inverted to give3!

Q). (x, y, t) —iDyy (2, y, 1)
_ A(Z) % [@l,§(§7 n, t) - iq)l,n(§7 n, t)] dC
2mi Jy A(Q) (C—2) ’

(24a)

where the consistency condition

f1sl6 0 = 91,6 )] ¢ )\ (24b)

A
must additionally be satisfied. \

For ( = ¢ —i0 and z = x —i0 with |z| > ¢(t), the imaginarwgart ef equation (24a) and the real

part of equation (24b) give

h(z, t) = Vet e , (25a)
and
/c(t t\t’éj) 0. (25D)

upon the application of the boundar<‘i ﬁ ons (20c) and (21). A scaled horizontal position X =

x/c(t), can be defined and hence th ace position can be expressed as

M‘ L / ,_2 Hd= (26a)

(=2 - X?)

for X > 1, while the co v C nd1t10n implies

) e (26b)

0 1 - 2
This scaled homn nt}dmate facilitates the convenient evaluation of these integrals. For a
given body apﬁ , the consistency condition can be integrated to determine the contact line
p081t10n ile ﬁe corresponding free-surface height for |z| > ¢(t) is obtained by substituting

for the bady sh e and integrating either equation (25a) or (26a).

&E&LLTS AND DISCUSSION

=~

A. uadratic-shaped body

The impact of a quadratic parabola-shaped body s(x) = az? for a > 0 is investigated first.

Given the disparate horizontal and vertical scaling in the gas layer, this body shape is the local

11
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Free surface, A(x,f) and
body position s(x)-¢

Free-surface velocity, /,(x,t)
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FIG. 3. Free-surface and body positio (to}t‘)«hfree—surface velocity (top right), pressure at the free

surface (bottom left), and liquid ve ocig\(w ial at the free surface (bottom right), for the impact of a

parabola s(z) = 22 (black dotted g\\'ﬁ\e Wagner solution is shown for x < 0, while the viscous gas

cushioning model is shown f 0. Profiles are shown at every second non-dimensional integer time
usﬁ

step. In the absence of gaé cushigning touchdown occurs at ¢t = 0 (thick dashed blue line), while profiles

for t < 0 are shown asfthi ashyd blue lines. Profiles for ¢ > 0 are shown as thin solid red lines, except

the final profile (@d ine), which is immediately prior to touchdown in a gas-cushioned impact.

£
approxi ﬁon«&a/circular impactor for a =

normal ( and}arallel (L,) to the undisturbed free surface for of &« = L/(2L,). Consequently, an
ﬁ

and of an elliptical impactor with semi axes

N[

elliptical ims)actor is oblate with respect to body motion for @ < % and is prolate for a > % Viscous

ushiening of liquid-solid impacts with smooth bodies has previously shown good agreement
wit ex&riments%’?‘l. However, until now, a comparison of the viscous gas cushioning model and
Wagner theory has not been undertaken. Inviscid gas cushioning in impacts of quadratic-shaped

bodies has also been investigated!®.

For a quadratic shaped body s(x) = z?, the differences in impact dynamics between pre-impact

12
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Pumi%%yi]tg( ns (top left), are shown alongside the corresponding free-surface velocities (top right), liquid
pressures at the interface (bottom left) and liquid velocity potentials at the interface (bottom right).
In Wagner theory, touchdown occurs at ¢ = 0, with the liquid remaining at rest until this time.
Wagner theory solutions can be readily obtained for ¢t > 5, although the final profile is shown at
this instant to facilitate direct comparison with pre-impact gas cus@( ing. For Wagner theory,
the equation (25b) gives rise to the well-known contact line positj n3

c(t) =1/ —, Y (27a)
while for |z| > ¢(t), the free-surface height -&‘

h(z, t) = ar* —t — a@ Thezeft)?, (27b)
)

is obtained from equation (25a). As the body pemgctrates’the liquid, the displaced liquid accu-

mulates around the sides of the body, to sa@ agner condition (11). The wetted surface
occupies |z| < ¢(t). The leading-order li ichwre predicted by Wagner theory is unbounded

NS

at x = £c(t) (see equation (19)), and @%gu ize this pressure, asymptotic analysis in the jet
root region surrounding the free-surface fhover point must be conducted*®. Our interest is in
the outer Wagner problem on lemgth Z\bgcomparable to pre-impact gas cushioning, so the local
analysis necessary to regularize mre at the contact line is not described.

In gas-cushioned impa S7?(3f is a build-up of pressure in the gas separating the impactor

from the liquid free-surfdce jta ing from large negative times. This deforms the liquid free-surface,
deflecting it out of the p offthe oncoming impactor. The liquid moved out of the path of the

a.ﬁ%}v\ehorizontal distance away from the point of initial minimum separation

odly and the liquid free-surface, and it is at these points that touchdown initially

with subfequent préssure maxima occurring where the separation between the body and the liquid
free- cedis least. The pressure profiles generated closely match those associated with viscous
gas- ‘hion%d droplet impacts, as the models of droplet cushioning by viscous gas of Smith, Li,
a lt and Purvis and Smith!®, are recovered by defining the vertical separation between the
solidtbody and the liquid free-surface to be f(z, t) = s(z) —t — h(z, t) in equations (6) and (7).
Beneath the impactor a region of trapped gas is formed by the deformation of the liquid free-
surface, so that the leading-edge of the body is surrounded by gas at touchdown. At the points of

initial touchdown, cusps form on the free surface®?. The pocket of trapped gas subsequently evolves

13
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PUbII%%yi]tg( n 7,, and maximum vertical height h, of the initial pocket of trapped gas are of the order

23,24

of the characteristic horizontal and vertical length scales®**, and consequently,

b PV

A
AN

L2 1/3
rp = elr* = ('ug ) T';, (28a>

1
hy = 2 LI, = ( ,:5]152> : e, (28b)
For a = %, the numerically calculated pre-factors are 75 %h; ~ 4.10, while for a =
Ly rp &~ 2.78 and hy ~ 3.29. For an axisymmetric body s(r) = fr With radial distance r, the same
scaling laws hold with r; ~ 6. For an ax1symmet b initial radius of the trapped gas

pocket has been experimentally measured and exce nt agjeement with this scaling law has been
obtained?®. The same scaling laws hold for incompréessible; viscous gas-cushioned droplet impacts,
where again excellent experimental confirma %&@ result has been found?*.

The similarities and differences betweenﬂ&ifoﬁles predicted by Wagner theory and pre-impact
gas cushioning are now described. To ?&? .21:1 comparison, the horizontal location cgas(t), of

the point of minimum separation bg\en he body and the liquid free-surface in gas-cushioned

impacts, is defined to be \\
Cons (1) = m>151 [s(x) —t — h(z, t)]. (29)

gas
Despite the absence of gas cu)ing in Wagner theory, there are many similarities between the
li

two different types id frée-surface profile. Both theories conserve the liquid mass moved
out of the path of twac or by predicting a liquid build-up at the sides of the penetrating

body. In both r theory (for |z| > ¢(t)), and in pre-impact cushioning (for |z| > cgas(t)), the

free-surface ‘decags to its undisturbed value for |x| — oo. This decay is faster for Wagner theory
(where gh/0x is Kounded as x approaches ¢(t)), than the corresponding decay with pre-impact

cushiening<(where 0h/0z is bounded throughout). For pre-impact cushioning a pocket of gas is

The pressure predicted by Wagner theory becomes unbounded as ||  ¢(t) and further local

asymptotic analysis is required to regularize the pressure in these regions®. However, outside these

regions, the pressure profiles predicted by Wagner theory and in pre-impact cushioning can be

14
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tly compared The horizontal location of the maximum pressures is very similar in both

P“b“%'ﬂdﬂé: . Also, the pressure obtained at x = 0 for ¢t > 0 is of a similar magnitude.

As |z| N\, c(t), the free-surface velocity predicted by Wagner theory becomes unbounded, like
the Wagner pressure. Again, a local asymptotic analysis is required to regularize the free-surface
velocity at these points. However, outside a small region Surroundl these points, the velocity
profiles predicted by Wagner theory can be compared with the co E&Kdmg velocity profiles
predicted in gas cushioned impacts. For both x > ¢(t) and = as he free surface has
a positive upwards velocity, which enables the accumulatlon 0 around the sides of the
impactor. These positive velocities again both decay as |% —/ o0 He abhng the free surface to
return to its undisturbed position in the far field. In Wagner thegry, the boundary conditions on
the mixed boundary value problem for the liquid velogityspotential (12¢) equates the downwards
velocity of the liquid boundary to the body descent s{;@d fO) |z| < ¢(t). As touchdown approaches,
the corresponding free-surface velocity with gaﬁ;\mﬁg, tends towards the same body descent

a gas

speed for & < cgas(t), despite the fact there is r}b\
The free-surface velocity in the gas entrainntent problem matches that predicted by Wagner theory,

shion separating liquid from the impactor.

as gas is unable to escape from the regio 1 Q! f the impactor after the pressure has bifurcated.

This is because the pressure gradlenﬁgm the pressure maxima and hence there is no gas flux
un

at these points. As the entraine ble to drain out of the path of the impactor, it must
be carried along in front of the impactor and naturally, both the gas and the liquid free-surface

must therefore obtain a ye cal v 0(31ty comparable to the impactor.

Gas-cushioned im 1 ga )n exhibit non-zero liquid velocity potentials for ¢ < 0, due to the
gas pressure bulld th not present in Wagner theory. However, at the time of touchdown
in the gas-cushiéned 10de the liquid velocity potential on the free surface is very similar in both
cases. Withdgas /cus igning, the transition of the liquid velocity potential at @ = cgs(t) is much
more gr n Wagner theory, as a result of the smoother pressure. With gas cushioning,
the proﬁ 5 of t e liquid velocity potential just before touchdown do not exhibit the same sharp
peaks assoaiated with the pressure and the free-surface position, and consequently, calculations

d o e liquid velocity potential may be better suited for extension into the post-impact

Y
cushioning phase.

In figure 3 it is noticeable that the horizontal location of c¢(f) and cgs(t) are similar at touch-
down. This similarity between gas-cushioned behaviour and Wagner theory (black dotted line,

equation (27a)) is illustrated graphically in figure 4 for @ = 1. In gas-cushioned impacts cgas(?)

15
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Horizontal position of cgys(6)

Time, t

FIG. 4. A comparison of cgas(t) against c(t) (black dotted lifie);*for awparabola with o = 1. The position
of cgas(t) is shown for o = 0 (thick solid blue line), o =.0.0 daslbdotted red line) and o = 0.04 (thin

solid red line). In a gas-cushioned impact, the evolut'ouQSbShGV)n until the instant of touchdown.
L

deviates from z = 0 before ¢t = 0, due to h%on of the free-surface profile and pressure.

For o = 0 (thick solid blue line), the ositlmt) > ¢(t), until ¢ &~ 1.7, when the horizontal
motion of ¢(t) overtakes cgas(t). Subgequ }B@*ﬁhe position of cg.s(t) is slightly behind, but closely
follows ¢(t) until touchdown. As surf N i

times close to ¢ = (0. This is becau

on increases Cgas(t) does not deviate from z = 0 until

Mapﬂlary pressure dominates over the liquid inertial pres-

sure for large o, with the fr

face not deforming before touchdown in this limit. The transition
to this curvature preseryin G:hiour is observed even for comparatively small 0. Once cgas(t)
deviates from z = O a(e te sion acts to prevent the formation of steep gradients on the free
surface and so for e Caas(t) becomes smaller as ¢ increases. The closest agreement at

touchdown is o a1 in t e absence of surface tension. If the relative difference in the horizontal

position of « is defined to be
E — 100% |C(t> — Cgas(t)|

c(t)
then, in the'absence of surface tension, £ = 2.88% at touchdown. The evolution of cg,s(t) is plotted

u Wue
~

impagts. No touchdown occurs before t = 24 when ¢ = 0.04. With surface tension, greater

(30)

own, which indicates surface tension delays the instant of touchdown in gas-cushioned

deviation between cg,s(t) and c(t) is observed at later times, with cgas(f) obtaining a maximum
value at ¢t = 10.54 for o = 0.02 and at ¢ = 19.55 for o = 0.04, before cg,s(t) begins to move back

towards x = 0.
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FIG. 5. Gas-cushioned impacts of a adrbshs.ped body s(z) = 22 (black dotted line) with surface

tension parameters (a) o =0, (b) o,= 0. d¥c) o = 0.04. In the absence of gas cushioning touchdown

would occur at ¢ = 0 (thick dashed b\mﬂe;. Profiles are shown at every fourth non-dimensional integer
time step except in (a) and (¥), re the final profile (thick solid red line), is shown immediately before
touchdown. In (c), touchdown dees not occur before ¢ = 24.
AY,
The inflifencefof surface tension on the free-surface and pressure profiles in gas-cushioned im-

pacts is further ilhaStrated in figure 5 for @ = 1 and o = 0, 0.02 and 0.04. Gas-cushioned droplet

earli d), we find surface tension acts to smooth both the free-surface and pressure profiles,

impaets, &)rface tension were previously investigated by Purvis and Smith!®. As with this

1 1& er delaying the instant of touchdown. This smoothing is particularly noticeable where
the curvature of the free surface is greatest. With surface tension, the delay between the instant
touchdown would have occurred in the absence of gas touchdown and the actual touchdown time
increases with . There is a corresponding increase in the horizontal extent of the gas pocket,

while just prior to touchdown, capillary waves on the free surface are prominent for o = 0.04.
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Free surface, h(x,f) and
body position s(x)-¢

Free-surface velocity, /,(x,t)
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=38 ——
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otential, ¢(x,0,7)

Pressure, p;(x,0,f)
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Position, x

Position, x

FIG. 6. Free-surface and body positio (to}mfree—surface velocity (top right), pressure at the free
surface (bottom left), and liquid ve ocig\{

w ial at the free surface (bottom right), for the impact of a
wedge |z| (black dotted line). The Mhltion is shown for z < 0, while the viscous gas cushioning

model is shown for z > 0. Fo own occurs at ¢ = 0 (thick dashed blue line), in the absence of gas

cushioning. Profiles are ghown“at eyery eighth non-dimensional integer time step, except for the final
£

profile at ¢ = 38 (thiyso red lifie), which is just before touchdown in a gas-cushioned impact.

B. Wedgeshaped body
V.

Wagnfr theorysdnd viscous gas-cushioned impacts are now investigated for the wedge s(z) =
o |x| gt 0. Gas entrapment in impact experiments for rigid wedge-shaped bodies has
been bserx&d for deadrise angles of less than 3 degrees'®3®. These very small deadrise angles are
c Yg;en\t with the disparate horizontal and vertical length scales employed herein. However, the
preséuce of the gas is usually inferred from pressure traces, rather than being observed directly.
Recent advances in high-speed photography, which have enabled direct measurement of the contact
line evolution associated with the gas pocket in the impact of a rounded body?*3?, have not

been applied to a wedge-shaped body and consequently, experimental validation of the predicted
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surface proﬁles in gas-cushioned wedge impacts is not possible. Impact experiments with
P“b“%ﬁh% shaped bodies are most often conducted with deadrise angles larger than 3 degrees and
gas entrapment is not observed®¢3® in this regime. Wilson'® models and calculates the free-
surface deformation and the horizontal gas profile for a wedge impact cushioned by an inviscid

gas. However, results of the viscous gas cushioning model used herein and a direct comparison
with Wagner theory have not previously been presented.
Figure 6 shows the evolution of the body and free-surface puofi em&) the free-surface
velocity (top right), the pressure at the interface (bottom left) ad\t\thquld velocity potential at
@)ow

the interface (bottom right) for & = 1. Both Wagner theo or < 0), and the viscous
gas cushioning model (shown for x > 0), assume the S small deadrise angle. Despite
the pointed tip of the wedge, the gas-cushioned impac modé} predicts that a pocket of gas is
entrapped, resulting in a delay to touchdown. The (@1& ism for this matches that observed with
the quadratic-shaped body. &Z

For Wagner theory, the wedge initially imp&qhe liquid at t = 0, with the liquid at rest before
this time. For ¢ > 0, Wagner theory predi&i-.m\‘tact line position?

it
= 1
\\7 ul (310)
and free-surface elevation
\\ 2ax . [c(t)
h(z, t)s= —t + — arcsin| —= | , (31Db)
\ T T
for |x| > c(t).

£

For wedge impact, thete apé again many similarities in the behaviour predicted by the two
models. The hori
with £ = 10.89
tal loc

%Witlon of cgas(t) and ¢(t) are similar throughout the impact evolution,

at’ touchdown in the gas-cushioned model without surface tension. This gives

similar hori ions for the maximum pressure in both theories. For wedge impact, the

downwaills velocity of the liquid free-surface in the trapped gas region is even closer to the descent
speedrof thesolid body, than for the impact of a quadratic shaped body. As before, this similarity
is due to th§ gas surrounding the tip of the wedge being unable to drain away after the pressure
bi{it t& orming a pair of local pressure maxima where there is no gas flux. On the liquid free-
surfage the liquid velocity potentials are of comparable magnitude. At the time of touchdown in a
gas-cushioned impact, the liquid velocity potential at the wedge tip is slightly more negative than

the corresponding prediction of Wagner theory, while the non-zero pressures throughout the spatial

domain in a gas-cushioned impact, smooths the liquid velocity potential profiles so they no longer
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FIG. 7. Gas cushioned impact of a wed e—sh} bady s(x) = 4 |z| (black dotted line) with surface tension

parameters (a) o =0, (b) o = 0.02 and =10.04. Profiles are shown at every fourth non-dimensional

Position, x

Position, x

integer time step except for the ﬁnam‘a (thick solid red line), which is shown immediately before

touchdown. In the absence o gﬁ%gsshioning, touchdown occurs at t = 0 (thick dashed blue line).

4

exhibit the cusp at@xnta line associated with Wagner theory. At x = 0 and touchdown, the
@nd velocity potentials at the wedge tip are less than the differences in the

differences in t

liquid veloci p9ten ial at t = 0.

edge impacts with surface tension are shown in figure 7 with a« = 4 and

Gas-cfishione
(a) gr=.0, = 0.02 and (c) o = 0.04. In (b), capillary waves form on the liquid free-surface,

deca% as |r| — oo, matching the waves seen for a quadratic body shape. Values of the

s 7’&? ﬁnsion parameter close to 0 = 0.02 act to delay touchdown beyond the time predicted in

the absence of surface tension, echoing the behaviour seen for a quadratic body shape. However,
further increases in surface tension act to smooth the rapid changes in the free-surface height
at x = 0, which are observed for ¢ = 0. For ¢ = 0.04, this locally reduces the vertical separation

between the wedge tip and the liquid free-surface, initiating an additional local pressure build-up
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Free surface, A(x,f) and
body position s(x)-¢

Position, x

N
N

FIG. 8. Free-surface and body position for the impact of the body“s(z) = [:L'|3/ 2 (black dotted line), with

an initially quiescent liquid. The Wagner solution is shown fox 2z < 0jywhile numerical solutions for viscous

gas cushioning is shown for z > 0. Profiles are shown every_?four h non-dimensional integer time step,

with the final profile at ¢ = 8 (thick solid red line), w

absence of gas cushioning, touchdown occurs ati\&thic dashed blue line).
s

in the centre of the gas cushion thatedri }a’o\away from the wedge tip. For o = 0.04, the liquid

\Ka

touchdown. However, the pressure\*bhe free surface do not bifurcate, with the largest pressures

occurring at x = 0 throug n‘N%cus ioning period. Initial touchdown occurs at the tip of the

tomelidown occurs with gas cushioning. In the

free-surface is still initially deflected s by a pressure build-up as the wedge moves towards

wedge and a pocket of tzapp as/is not formed. Touchdown is less delayed than in gas-cushioned

impacts without 81?60 e{lsi()}z or in gas-cushioned impacts with smaller values of o, as surface
tension reduces the'liquid free-surface deflection, leading to a concomitant reduction of the time

taken for the wi ao traverse the gas film.

{ 4

ﬂ
C. Q m) body

‘ﬁy i{npact of a body which can be expressed by the power law s(z) = « ]z\'g is now investigated

for x> 0 and 8 > 0. Drop tests®* and numerical simulations*’

involving curved wedges, with
shapes similar to this, have been conducted. However, the minimum mean deadrise angle in these
experiments was 25° and gas entrainment was not observed. The quadratic and wedge-shaped

bodies investigated so far are special cases of this body shape, with § = 2 and g = 1, respectively.
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tituting this body shape into equation (26b), gives the contact line position
Publishing

/8

c(t) = (fi(ji) t) . (32)
(%)

The derivation of this expression is described in appendix A. Evaluating the Gamma func-

tions: I'(1) = 1, F(%) = /7, and I'(2) = 1, facilitates the recovery of equation (27a) for 3 = 2,

while equation (31a) is recovered when 5 = 1. Similarly, subgtituting,the body shape into

equation (26a) gives the free-surface position

ty/x? — c(t)? 1+ 8 24 P\t
h(z,t) = ————o |1, —; —1 33
(l’, ) |l’| 2471 ( ) 2 7-‘ ) m ) ( )
for |z| > ¢(t), where o F1( -, -; -; -) is a hypergeometric fLﬁ@s The derivation of this free-surface
height is presented in appendix B. C

Figure 8 illustrates the solid body s(z) = \x|3/ 2,\»'t\hf}3§”ree—surface height predicted by Wagner
t cu

theory shown for z < 0, and viscous gas pre<im

evolution of the free surface pressure, ve ci@a\d liquid velocity potential are not shown, but
these are consistent with previous res tésln

hioning with ¢ = 0 shown for x > 0. The

agner theory, an unbounded pressure (given by

equation (19)), is predicted at the{eontaef l.i?fe, while for gas-cushioned impacts, the pressure

maximum bifurcates alongside liquidsfree-surface, leading to local pressure maxima at the
point of minimum separation b%\g{t’he solid and the liquid free-surface. In the absence of
surface tension, F = 6.74% attﬁhdown.

For the wedge (8 = 1, the fag-field pressure decays like p, ~ 27! as x — oco. For 8 < 1, the pres-
sure decays more slofvly /n this and numerical solutions of the gas cushioning model satisfying

the far-field condj ﬁw not be obtained. While numerical solutions for gas-cushioned impacts

are only availab [ > 1, the integral in equation (26a) exists for § > —1 (see appendix A).

However, physicdlly réalizable body shapes with a bounded global minimum require 3 > 0. Al-
though rfumerical*sdlutions with gas cushioning could not be obtained for 0 < 8 < 1, the Wagner
theo Q&C\UQA for the free-surface height (33) is valid in this range. As an example of free-
surfake pr §les in this range, the free-surface profiles produced by the impact of a body with
S YJ'B)SL — |z|"/* are shown in figure 9.

As with the quadratic-shaped body and the wedge, there is good agreement between the horizon-
tal positions of ¢(t) and cgas(t) when o = 0. This similarity is obtained for body shapes s(z) = a |z|”

with a = 1. However, the Wagner wetted region and the extent of the gas bubble both depend

upon the body shape parameter a. As « increases, the horizontal extent and area of the trapped
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FIG. 9. The body position and Wagner solution for free-surfage fo hhpact of the body s(x) = |$\1/2
ional

(black dotted line). Profiles are shown at every non-dime &teger time step, from ¢ = 0 (thick

-

dashed blue line), until ¢ = 3 (thick solid red line).

5

-

gas pocket decreases, as the horizontal extentsgf ody within the gas cushioning region also

decreases. Numerical solutions for the gas Mg model are only available for § > 1, and in
this regime the dependence of the soluwgkﬁ s upon « can be codified by scaling lengths and

time by \\
(}&ﬁ\ﬁs),: (a"f_z, a5, oft, 042”55) : (34a)

osidéyrescaled pressures and a rescaled surface tension coefficient

where Kk = —1/(28 — 1),

£
/ / (pg7 b, U) = (05’{]597 anﬁla a4n6) . (34b)

N

This rescaling eliminates « from the body shape and equations (6), (7) and (8). In the absence of

surface tensin, this scaling indicates that if the value of a is doubled, then for a wedge (with = 1),

the horizontal ex of the trapped gas pocket decreases by a factor of four, while the area enclosed
between t solhl body and the liquid free-surface decreases by a factor of eight. For a quadratic
parahola (v&?)'th 3 = 2) the horizontal extent of the trapped gas pocket decreases by a factor of 22/3,

‘ﬂsﬁhe rea enclosed between the solid body and the liquid free-surface decreases by a factor of

~
two.

The horizontal extent of the wetted region also decreases as « increases, as the body rises out of
the liquid more rapidly. The parameter « is removed from the body shape and is not introduced

into the Wagner contact line position and the Wagner free-surface height by defining a rescaled
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& (h, s, t) = (ah, as, af) . (35)

As this rescaled time differs from the rescaled time associated with viscous gas cushioned impacts,
the results of the two theories are no longer directly comparable without further rescaling of

time. However, at a common time ¢ = af = at, corresponding to t touchdown time with gas

cushioning, if the Wagner contact line position from equation (3 ) s expressed in terms of the

rescaled gas cushioning time £, then c(t) ~ a~2/(2%=1)_ In the gas c ning model, the position of
}B\ m equation (34a), Cgas ~

Caas(t) 18 expected to scale like the horizontal spatial coordin 3

x ~ o2/~ Consequently, for variations in a and fixed “(@when numerical solutions with

—
gas cushioning are obtained), the horizontal extent of the gas %0 et and the horizontal extent of

the Wagner wetted region remain similar at the to e of the gas-cushioned impact.

-
D. Flat-bottomed wedge body \\

The final body shape investigated is a Wed wedge s(z) = max(a |z| — 3, 0), for a > 0
and 8 > 0. Impact experiments with th WLE ape show that touchdown initially occurs at the

transition between the flat bottom a‘\he oping side of the wedge Gas cushioning models for
this body shape have previouslyQ%m ered inviscid gas®!'%, while these models also assume
the deadrise angle of the wedge is large, so that the body can be approximated by a flat plate
with the gas pressures tending to\zero at the edge of the flat bottom. With these assumptions,
analytic expressions fof_small rmations of the free-surface profile have been obtained, which

ngle, then the modelling is also valid for the impact of a flat plate.

are in qualitative eme Véth experiments. However, if the sloping sides of a flat-bottomed
wedge have lar de;irX&\a

Impact expezilnents,wvith a flat plate indicate initial touchdown also occurs at the plate edge®?43,

while modelli
ﬂ

location'®. Her¢ we differ from earlier studies by assuming viscous gas cushioning and allowing

of g/ﬁat plate impact in the inviscid gas regime also predicts touchdown in this

smaller deadrise angles on the wedge. Smaller deadrise angles enable non-zero gas pressures outside
e flatshottom region.
Sth'e. absence of gas cushioning, this body shape touches down at ¢ = 0 throughout the
regioiv|z| < B/a. For t > 0, the position of the contact line ¢(¢), is given as the solution of the

transcendental equation®®

e R
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Free surface, h(x,t) and
body position s(x)-t

Free-surface velocity, h/(x,t)
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FIG. 10. Free-surface and body posmon\x free-surface velocity (bottom), for the impact of a

ck dotted line). The Wagner solution is shown for z < 0,

flat-bottomed wedge with o = 1 and

while the solution with viscous ga u mg is shown for = > 0. Profiles are shown at every fourth

non-dimensional integer time

with the final profile immediately before touchdown (thick solid red

line). In the absence of gag c , touchdown occurs at ¢ = 0 (thick dashed blue line).

A

which in general‘must be solved numerically. However, once ¢(t) has been determined the horizontal

velocity of the conta line is given by

~

o o me(t)

5 e = 2,/a2c(t)? — 62'

For t large, the proportion of the wetted surface corresponding to the flat bottom of the wedge
decreases, and in this limit the velocity of the contact line approaches the contact line velocity for

a wedge (given by the derivative of equation (31a) with respect to t). The corresponding liquid
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ar+ _( Bz + ac(t)?

+ arcsin| —————

T c(t) (ax + B)

— — ac(t)?
oz —p arcsin P —ac(t)” : (38)

a c(t) (o — j)

for |z| > c(t) > f/a. 3\

A comparison of the free-surface position and velocity predictedsby Wagner theory and the
viscous gas cushioned impact model is shown in figure 10 fo a‘? 1,8= 15 and ¢ = 0. In viscous
gas cushioned impacts, again there is a build-up in thesgas pressure (not shown), that deflects

the liquid free-surface downwards out of the path of the impactor. This leads to a subsequent
bifurcation of both the free-surface position and the Bressure, with maxima in the pressure and
minima in the vertical separation between the bod‘;’&dl@?d free-surface located at some position
along the inclined side of the flat-bottomed wedge,

The minima in the vertical separationtx‘x“mz{the solid body and the liquid free-surface on
the inclined side of the flat-bottomed e a
The inset in figure 10 (top) shows tgr(ee firface profile in the gas cushioning model, close to the

corner of the solid body at x = #/q. \S point the liquid free-surface is deflected more slowly
out of the path of the solid bod;x\(%nce there is a local thinning of the gas cushion, driven
by the change in gradien of?%)solid body. There are now two possible touchdown locations:
on the sloping sides of, h‘?/{vvé% or at the corner of the body. The location of the touchdown

point depends on thefvalites of & and 3. Touchdown at the transition between the flat bottom and

not the only minima in the vertical separation.

sloping wedge side iwstent with experiments using flat-bottom wedges*!, while touchdown

at the edge ofst ate is also observed in experiments of flat plate impact*>%3. At touchdown,
following tVQ’:ij r observed with other body shapes, the horizontal location of the point
of mininfum’ gas ér thickness on the sloping side of the wedge is broadly comparable to ¢(t),
although horizontal extent of the wetted region predicted by Wagner theory is slightly larger.

Figure lg (bottom) shows the corresponding vertical velocity of the free surface. The maximum
u ws\ velocity of the free surface occurs at |z| = ¢(t) in Wagner theory (where equation (18)
predi¢ts an unbounded free-surface velocity), while in a viscous gas cushioned impact the maximum
upwards velocity of the liquid free-surface occurs for |z| slightly larger than cgs(t). Once the

pressure has bifurcated in the cushioning model, the pressure maxima at © = %cgs(t) again trap

the gas beneath the solid body, causing the gas to descend into the liquid with the speed of the
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AIIB}/. The predicted free-surface velocities in the trapped gas pocket match the body descent

PUb“SD'BéE& except for local regions at the corner of the body (r = +5/«a), and where the vertical
velocity of the free surface rapidly transitions to positive values outside the trapped gas pocket
at & = Fcgas(t). The reduced free-surface descent speed at © = £/« produces the local thinning

of the gas cushion and touchdown observed in the free-surface height profiles.

V. DISCUSSION AND CONCLUSIONS j\

'%\ha e been compared for the

iduid=Particular attention has been

Wagner theory and a model of pre-impact viscous gas ¢

normal impact of a symmetric body with an initially quiescen
—
paid to the time period between ¢ = 0 (when touchdown gccurs in Wagner theory), and the delayed

initial touchdown with gas cushioning, when both t@;ies arewvalid. A range of solid body shapes
have been investigated, including wedges and fldtsbo Oeri‘)Vedges (where viscous gas cushioning
has not been previously investigated), and a g% power law body shape s(z) = a|z|” (for
which both gas cushioning and the Wagn (%\so ion are novel).

Across the range of body shapes inv st;éki\commonalities between the free-surface and pres-
sure profiles generated by gas cushwq d*Wagner theory are found. Driving these common-

reSSN d-up induced either by pre-impact cushioning or, in
% itself. These commonalities are listed as follows:

alities is the distribution of the

Wagner theory, by the liquid-soli

e The horizontal loca nm}uchdown with gas cushioning is broadly similar to the contact
line position in agper thdory at the corresponding time. For the body s(z) = « \x!ﬁ ,
scaling laws shéw that bofh c(t) and cgas(t) have the same dependence on ¢, so the similarity

between ¢ )Ae.sd Cans(?) at touchdown is preserved as a varies.

e The lehl ing pressure (which is largest where the separation between impactor and
liquid.is leas
beyend tlﬁ Wagner wetted region. Gas cushioning pressures remain bounded throughout

-

the clss ioning phase of the impact and regularize the unbounded pressure profiles predicted
b

<

o' Just prior to touchdown in the gas cushioning model, the highest pressures are obtained away

t){ decays gradually to the far-field pressure, spreading the pressure build-up

¢ Wagner outer problem.

from the global body minimum, at ¢(t) in Wagner theory and at cg,(t) with pre-impact gas
cushioning. This is because a large pressure gradient is required at these points to induce

motion in the liquid to move it out of the path of the impactor.
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A (3

’ressure profiles obtained from Wagner theory and pre-impact cushioning, which have com-
Publishing,

arable support, common magnitude (p;V%/¢), and maxima at the same horizontal locations,

will generate similar responses in the liquid free-surface and vertical velocities.

Surface tension in pre-impact viscous gas cushioning is also investigated and is shown to smooth

rapid variations in the free-surface profile. With the inclusion of surfye tension:

e Capillary waves are formed across a range of body shapes FB)%&h body shapes, the
delay in impact due to gas cushioning is increased, as the d&the free surface, associated

with touchdown is unable to form?2. ‘)
~

e The deflection of the free-surface for body shapes with a_s rp corner is reduced. This can

additional local pressure increases. Consequ

facilitate more efficient gas film drainage, as rapid chamnges’in the gradient of the body induce
Ziu-y, @ a wedge, surface tension can hasten

touchdown relative to the time predicte% bLs'e'nce of surface tension.

Having compared models of viscous ga cus.wd pre-impact and Wagner theory, we can now
describe the conditions where the entrai m%t a gas bubble is expected to significantly affect the

impact. From equation (28a), the hKZEn extent of the trapped bubble grows as L increases (as
g]\gﬁv

more of the body is in the cushi \ , and shrinks as V' increases (as less time is available
before impact for the free surface to deform). If the primary interest is the pressure on the body at

horizontal distances much reahihan rp from the body minimum, then models of pre-impact gas

cushioning become less gseful dictive tools, as the maximum pressures at the point of interest

will only be experie?éed e titne after touchdown, when the pre-impact cushioning model ceases
to be valid. In this iw, agner theory, or some alternative theory that includes post-impact
gas cushionin :zuired.

8

. However, these models are initiated with the global body minimum in contact
id.sAs the body does not move towards the liquid in the pre-impact phase, there is no
oppo unit}’)for the pressure to build up prior to touchdown. Consequently, the liquid is at rest,
W un isturbed free surface until touchdown, even though the models include the influence of
air. While there are scenarios where an initially stationary body, in contact with a liquid, starts
to move into the liquid, this configuration is not common for liquid-solid impacts, as the body is

usually in motion before touchdown. Further work is required to couple pre- and post-impact gas

effects in a model that allows body motion in the pre-impact phase. Such a model would extend
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AItPtir 1e period over which gas cushioning can be investigated, enabling a comparison of the effects

PUb“%'[]!ﬂig -ushioning and Wagner theory throughout the initial stages of the impact and not just until
the time the body first touches down.
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Appendix A: Derivation of the contact-line position Q}a?%ver-law body

—~
For the body shape s(z) = a|z|”, the consistency cofidition (26b) implies

| o ga )
ac(t)? /0 \/f_f]%:,ﬁ. (A1)

From equation 8.380.1 of Gradshteyn and Ryz ilN}%eta function B(p, q) satisfies

B(p, q) =2 N

R

for > —1. In this expression, the%*ﬁunction can be written in terms of gamma functions, as

B(%, %) = F(%) F(;)@ Equation (32) is recovered by noting that F(%) = /7.
&
ivatio

Appendix B: Deri n/bf the free-surface height for a power-law body

For the bod@ — ||’ the free-surface position (26a) can be expressed in terms of
e

nction o F(a, b; ¢; z), as given in equation (33). An integral representation

the hyperge%
of the hyperge Jetifc function is given by Abramowitz and Stegun equation 15.3.1%°, with the
form - s re)
3 o Fi(a, by ¢; 2) = T(6)T(c—1b)
I > Re[b] > 0 and |arg(l — z)| < m. The free surface occupying the range = > c(t)
&;1), is considered first. With the substitutions ¢t = 22, 2 = 1/X?, a =1, b= (1+ f3)/2

/01 P A=) (1 =) dt, (B1)

and ¢ = (2 + 3)/2, this integral becomes

—B8 — 145
) =8 4= el )2F1<1 1+5_2+5,1>. (B2)

0 VI-E(E2-X?)  axer(
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AI B’ > 1, the conditions on equation (B1) are satisfied for § > —1, which covers all cases of inter-
PUb“%Qtl.ng »on substituting this integral into equation (26a) and using the contact line position (32), an
expression for the free-surface profile for x > ¢(t) is recovered. Similar considerations for x < —c(t)
(i.e. X < —1) give rise to equation (33).
Using Mathematica®® the hypergeometric function in equation (33 can be expressed in terms

of common functions, for some specific values of 3. For a quadratic o@\ 2 and

3 ct)?
(1, =2 =— B
2 1( ) 2, 3 .132 ) ( 3)
while for a wedge body, =1 and
3 c(t)?
Fi{1,1;= B4
2 1( y L9 27 (L'2 ( )

enabling the recovery of equations (27b) and (31b) wespeetively.
merlin.mbs aipnum4-1.bst 2010-07-25 4.2Ta (PWD,/AO, DPC) hacked
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