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Abstract. The role of gooperative effects (i.e. synergy) in transmission of infection
is investigated analytically, and “numerically for epidemics following the rules of
Susceptible-Infected-Susceptible,(SIS) model defined on random regular graphs. Non-
linear dynamics are shown to lead to bifurcation diagrams for such spreading
phenomena exhibiting three distinct regimes: non-active, active and bi-stable. The
dependence of bifurcation loci on node degree is studied and interesting effects are
found that contrast with the behaviour expected for non-synergistic epidemics.
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1. Introduction

Epidemics in nétworks is an important and interesting topic attracting a lot of research
activity/[2, 14, 37,40]. Recently, significant attention was paid to discontinuous phase
transitions observed for spreading phenomena in complex networks [3,6,7,9, 13, 20—
22,2832, 35)" Discontinuous phase transitions are typically exhibited by the so-
called threshold models [37], such as the second Schlogl’s model for autocatalytic
reactionss[41], quadratic contact process [27], the Watts model [33,46] and generalised
contact process [6,7]. In these models, the nodes can be in different states which evolve
according to certain dynamical rules. Within threshold models, the state of nodes
changes when a certain threshold is achieved, e.g. a node can change its state when the
number of its neighbours exceeds some threshold. Bi-stability regions for concentration
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of infected nodes characteristic of discontinuous transitions were also found for an SIS
model with adaptive network topology in which susceptible nodes try to avoidscontacts
with infected nodes by breaking the links with them and then rewiring these links-to
other randomly chosen nodes [22,24,32]. Bootstrap percolation on uncorrelated.complex
networks [3] provides one more example of discontinuous behaviour. This.is a two-state
model describing active and non-active nodes. A node becomes active and remains in
such state if k of its neighbours are active. The size of the giant a¢tive component can
exhibit a discontinuous transition when the initial concentrationfof active nodes is used
as a control parameter. =

The synergy model introduced in Ref. [38] describes, non-linéar co-operative
effects in communication between nearest neighbours in a network which can lead to
discontinuous phase transitions in common epidemic models [21]. The key ingredient
of the synergy model is that the transmission of infection is described by means of
continuous (in contrast to discrete for the threshold models) functions of discrete
variables such as the number of nearest neighbetirs in ascertain state. Motivation for
including synergy effects into the model comes from the e’xperimental observations for
e.g. soil-born epidemics [30] and spreading, phenomena/in social networks [12,26].

In this paper, we discuss the role of cooperative (synergistic) effects in transmission
of infection and demonstrate how these effects ean lead to discontinuous transitions.
The analysis is undertaken for the SIS"process.spreading on random k-regular graphs.
The aim of our analysis is two-fold vand consists of developing a minimal and
sufficient analytical frameworky(single-site mean-field) capturing all significant effects
and suggesting a numerical progedure for supporting analytical findings. The description
is presented in terms of bifurcation theory [44] which naturally suits our aims.

N
2. The model

2.1. The rate equation.

We propose a model for synergistic SIS spread on a network of N nodes whose
connectivity defines a random k-regular graph in which each node is randomly connected
to k different nodes.” The state of each node 7 at time ¢ is characterised by a state
variable o;(#) which can be either o;(t) = 0 or 0;(t) = 1 corresponding to susceptible
(S) or infeeted (L)sstate, respectively. In a time interval §t, nodes can change their state
according to the following dynamical rules. If node ¢ is in the state I (i.e. o;(t) = 1)
at time step.t.then it can change its state to S at time step t + dt (i.e. o;(t + dt) = 0)
with probability pdot. Here, the parameter p is the recovery rate which is assumed
to berindependent of the states of other nodes in the network and is the same for all
nodes. If node i is in the state S (0;(t) = 0) then it can go to the state I at step
t4 0t due to infection transferred from its n;(t) = anzl o, (1) = Z]:n:1 om(t) infected
neighbours where the node number i,, of neighbour m for brevity is replaced by just
its nearest-neighbour index m. This occurs with probability A, «)d0t, where A, ) is the
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total transmission rate. The infection can be transmitted to node ¢ independently by any
of its infected neighbouring nodes, {i;|j = 1,...,n;(t)}, with probability \;40#, where
Ai;i 18 the individual transmission rate of infection from neigbouring infected nodeizt6
node ¢. For brevity, the transmission rate will be denoted as A\i; = A;,; inpthe following,
i.e. the j-th infected neighbour of node ¢ is numbered by the index j. &or independent
transmissions in a particular configuration for node i surrounded by nj(#) infeeted nodes,
the total transmission rate is related to individual transmission rates as
ni(t)
Aot = 1= [T (1 = Nist) - - (1)
J

In a standard formulation [2,37] which ignores cooperative effects, the individual
transmission rates are assumed to be constant values, Ajiv= A, which do not depend
on the state of neighbours of node i, so that thé total transmission rate equals
Ay = [1 = (1 = A6t)"®] /6t. In case of the synérgistic transmission, the individual
transmission rates do depend on the neighbourheodref nede ¢ and below we consider a
case when individual transmission rates depend onfthe mifmber of infected neighbours
of node 4, i.e. A\j; = Ay, 1), but do not depend on the properties of neighbour j such as
its degree [21, 38, 45].

In order to make the definition (1) of the total transmission rate for synergistic
transmission clearer, let us consider a simple example for a particular local configuration
C in a 3-regular graph. Assume that Chat time ¢ consists of a central uninfected node
i =0, ie. og(t) =0, two infected neighbouring nodes iy =1 (j =1) and iy =2 (j = 2),
i.e. 01(t) = 1 and 05(t) = 1, andsoneuninfected neighbouring node i3 = 3 with o3(¢) = 0,
or symbolically C' = Cy = 0oM1;N15MN0s(the subscript in Cs indicates that there are two
infected neighbours). Let Tgrbesthe event that the central node changes its state at time
t + dt through transmission ofdnfection from the infected neighbours. The infection can
be transmitted to nede 0 by means of several independent (by assumption) events, i.e.
To = (TN T20)U(TogMThg)U(T10NTag), where Ty (T jo) is the event of transmission (non-
transmission) of infeetion from infected neighbour j to node 0. Alternatively, infection
might not be tramsmitted and this corresponds to the event To=T10NT4. Fora given
configuration @gytheprobability for node 0 to be infected is P(Tp|Cy) = 1— P(Ty|Cy) =
1 — P(T1o N T9)C5) & T P(T1o|Co)P(T'y|Cy) = 1 — (1 — P(T1]Cy)) (1 — P(T|Cs)),
where P(L;0|C4) isthe probability of transmission of infection from neighbour j to
node 0/given configuration C,. This conditional probability P(Tj|C2) is defined in
terms_ofhindividual transmission rates differently for synergistic and non-synergistic
trapsmission. For non-synergistic transmission, P(T;|C2) = P(Tjo|00 N'1;) = Adt, i.e.
it i8,a non-zero constant value for all recipient-donor pairs in the network if recipient
0 is in"S=state and donor j is in I-state. In particular, the non-synergistic transmission
probability P(7}o|C2) does not depend on the state of all other neighbours of node
0 except node j and thus P(Tp|Cy) = 1 — (1 — A6t)%. In contrast, for synergistic
transmission, the value of P(Tjo|C2) depends on the number of infected nodes in Cy,
Le. P(Tjo|C2) = X0t (j = 1,2), and thus P(T|Cy) = 1 — (1 — X\90t)? where index 2
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in the transmission rate refers to the two infected nodes in C5. For configuration €,
with n infected neighbours surrounding a non-infected central node 0, the synergistic
transmission probability is P(7p|C,,) = Apdt = 1 — (1 — A\,,6t)™ while thé non-synergistie
is P(Ty|Cp) = Aot = 1— (1 —Xot)™. The two types of transmission are equivalent if A,
does not depend on number of infected neighbours of the recipient (suseeptible eentral
node), i.e. A, = A

Under these dynamical rules, the change of the probability P(o;(t) = 1) = p;i(t)
per unit time dt obeys the following equation:

5p(;-£t) _ p(t 52 —pi(t) _ R(pi, {o;(1)}) @)

~

where

R(pi,{o;(t)}) = —ppi(t +Z > AP0 Budai(D)}) Susionn (3)

n=1{o;(t)}
is the rate function with A, obeying Eq. (1). _The, first contribution to R is the
probability for node i to recover per time step/dt, i.exthe recovery rate. The second
contribution is the infection probability per umit/ time and it is proportional to the

probability P (0;(t),{c;(t)}) = P <ai(t) N {aj(t)}§:1> for node i to be in state S

and its neighbours in a configuration with statesy{o; (15)}?21 at time t. The total rate

of infection is accounted for by summation over all the possible configurations of the

neighbourhood, {o;(¢)}, for all the possible values of the number of infected neighbours,
n (with 6,1, being the Kronecker-delta).

For a partlcular example of 'the synergistic SIS process on a 3-regular graph,
the double-summation term multipliedsby ¢ in Eq. (3) represents the probability of
infection of susceptible nodeyi = 0 by its neighbours (7 =1,2,3 ) at time t + dt, i.e.
P(ToN00) = > oy P(10|E) P(€') where the summation is taken over configurations with
fixed state of the central mede, g4(t) = 0, and all possible o;(t) for its neighbours, i.e.
explicitly,

53 SN (0,0), {05 (0)) B = 3 PRICPC)

n=L{o;(t)}

y Z(l - (1 - /\n(st)n)P(On) ) (4)

where €, is aonfiguration with n infected neighbours of non-infected node 0, i.e.
Co =010, N0zN 03 for no infected neighbours, C; = 0o N ((1;N02N03)U(0;N12N03) U
(04M02N13)) for one infected neighbour, Cy = 0,N((1;N12M05)U(11N02N13)U(0,N12N13))
for'two infected neighbours, and C5 = 0y N 1; N 15 N 13 for three infected neighbours.
The probabilities of configurations with particular number of infected nodes are given
by standard expressions, e.g. P(Cy) = P(0pN11N12N03)+ P(0oN1;N02N13) + P(0pN
0; N 15N 13).

Eq. (3) for marginal probabilities p; can be obtained from the full set of 2V rate
equations for the state probabilities P ({O’i(t)}i\il), which are similar to Eq. (2), by
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summing up all the equations with fixed value of ¢;(t) = 1 on the left-hand side/0f these
equations. The sum taken over all state variables equals zero, reflecting the conservation
of probability while the partial sum with fixed o;(t) = 1 leads to a lot of cancellations.for
the rate terms (on the right-hand side of these equations), describing transition events
occurring away from the neighbourhood of node 7 so that the surviving terms describe
only the events in which the nearest neighbours of i are involved. The rate,equations
similar to Eq. (3) but without synergy effects are used for description 6f spreading
processes, especially in dealing with dynamical correlations [17439,43}.

The model introduced above is well defined for any dt < 1/\,but we will focus on
two dynamics:

(i) Discrete-time dynamics (d-time): The state of nodes changes in discrete time
steps, dt, and they do so simultaneously (i.e. updatestare synchronous). We set
0t = 1 for d-time dynamics in the sequel which implies that the rates coincide with
probabilities.

(ii) Continuous time dynamics (c-time): The time step is infinitesimal, i.e. 6t — dt.
Accordingly, dp; — dp; and A,, = nA,.

2.2. Forms of synergy

In our model, the synergistic effe¢ts are.incorporated in the individual transmission
rates, A,. Two particular synergistic mechanisms are analysed below: S-synergy and
[-synergy.

For S-synergy, the k — n; suseeptible neighbours of node ¢ multiplicatively affect
the individual transmission rates. In gemeral, this can be represented by an exponential
functional form, i.e. ~

An, = min{ae’#01/6t} (5)
with a being the inherent transmission rate when all the neighbours of ¢ are infected
(n; = k) and there are noysusceptible neighbours of i which could affect the strength of
the attack by the infected neighbours. The parameter § controls the synergy strength of
susceptible neighbours. Positive values of 5 correspond to constructive synergy in which
the susceptible neighbotrs of ¢ encourage the transmission. In contrast, negative values
represent situations in which susceptible neighbours of ¢« multiplicatively cooperate to
prevent transmission to ¢. For example, the transmission towards a node i of degree
k > 118 reduced by a factor e® when there is only one susceptible node connected to
1. Similarly, if/two neighbours of node 7 are in susceptible state, the greater support
leads to the reduction of infection rate by factor (€’B>2, etc. The minimum condition
in Eq. (5) ensures that the probability of transmission in time step 0t is at most 1 for
any « and f. This form of synergy was proposed as an important factor for the spread
of social content [21]. Other functional forms of A, can be used as well although the
main features of the synergistic SIS processes are expected to be qualitatively similar
(see e.g. [21,38,45] where a linear dependence of ), on n corresponding to additive
cooperation was studied).
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For the second type of synergy, I-synergy, the individual transmission rates are
multiplicatively affected by n; infected neighbours of susceptible node ¢ swhich the
infection is attempted to be passed to [38], i.e.

An, = min{ae?™=Y 1/5t} . (6)
Here, « is the inherent rate of infection corresponding to the case in whichitransmission
to i comes from a single infected neighbour, i.e. when n; = 1. The'synergy parameter
B accounts for the strength of cooperation (5 > 0) or interference (. < 0) between the
infected neighbours of 7. ~

It follows from comparison of Egs. (5) and (6) that I-symérgy is similar to S-
synergy with inverse sign of the synergy strength, i.e. with, 5 xeplaced by —f in
Eq. (5) although with a significant distinction. Indeed, Eq. (5) can be rewritten
as A, = (e P17 A=) g0 that it has the formyof Bg. (6) but with inherent
transmission rate (ae*B (1*’“)) dependent on the node/degree k. In contrast, the inherent
transmission rate for I-synergy in Eq. (6) is the same for all nodes independent of their
degree. This difference between two types of synergy.cam be especially significant in
heterogeneous networks where the nodes have different /degrees.

For both types of synergy, the individuaktransmission rates are continuous functions
of the discrete variable n; giving the number of infected neighbours. This is in contrast
to the threshold models where thestransmission rates are described by discontinuous
(threshold) functions of n; [6,7,9,27,35,43,47]. The synergistic individual transmission
rates are determined by two parameters; ixe. by the inherent transmission rate a and
by the synergy strength /3, and their dependence on « and [ is described by continuous
functions. In the synergy-free€ase, i.e. for 5 = 0, these rates do not depend on n;, and
just coincide with the inherent transmission rate. All these properties of the synergistic
transmission rates make possiaé torinvestigate the influence of cooperative effects on
SIS process in the whole (B, @) parameter space and reveal, as shown below, quite a rich
behaviour even for the simplestscase of the SIS spread on k-regular graphs.

3. Methods

To analyse the proposed model, one can either simulate the process numerically by
means of Monté Carlo (MC) sampling of the trajectories of the system or through
analytical"@pproachés after making certain approximations [37]. Both procedures were
employed to analyse the model. Before presenting the results of our analysis, we describe
the ingredients/of our analytical calculations.

The analytical results are based on two standard approximations [20,37]: the single-
site approximation and mean-field approximation (sometimes they both are called just
a mean-field approximation [19]). The single-site approximation neglects dynamical
correlations, i.e. P (0;,{o;(t)}) = (1 —p;) Hle m(o;(t)) , where 7(0;(t) = 1) = p; and
7(o;(t) =0)=1-p;.

The homogeneous mean-field approximation assumes that the probability of a node
being infected does not depend on the node, i.e. p; = p for all i. Despite the fact
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that this approximation neglects fluctuations completely, it is reasonable because, in
the thermodynamic limit, random k-regular graphs do not contain loops andvin finite
networks the number of such loops is exponentially small [8]. Combining thesentwo
approximations, the rate function (see Eq. (3)) becomes:

R(pi,{0;(t)}) = R(p) = —pp + (1 = p)a(p) , (7)
where

s (fj) Aup(1 = p)*" ~ (3)

n=1
is the rate at which a susceptible individual gets infected by itsiinfeeted neighbours.
A closed form can be found for ¢(p) for both I- andéS-synergy in the c-time limit:

akp [(1—p)e’ + p] e , for Sisynergy
akp [1 —-p+ peﬁ} e , for I-synergy

= (9)

Note that the heuristic expression ¢(p) = favkpe® =Pk proposed in [21] for d-time
S-synergy differs from the expressions derived hére more rigorously for both c- and
d-time dynamics. The expression given m [21] coineides with those given here for non-
synergistic spread (f = 0) and captures the\keytrends when 5 # 0. For instance, it is
a monotonically increasing functionvwef.p for any o,k > 0. Strictly speaking, however,
one should use Eq. (8) in order to describe accurately the synergistic effects of any
transmission rate within the single-site mean-field approximation.

4. Results

The behaviour of the progess irhhe long-time limit ¢ — oo is of special interest because
it determines if the network is vulnerable to the infection spread or not. We will analyse
the effect of synergistic transmission in this limit in which the SIS process reaches a
stationary (quasi-stationary in finite systems) regime such that R(p;, {o;(t)}) = 0.

Due to the non-linear nature of the rate function, the number of its fixed points
can vary when the parameters of the model change and different stationary regimes can
emerge in the parameter space. For c-time dynamics and given node degree, stationary
states can be fully parametrised with two parameters, & = a/u and § since R(p)
is linearfin' A\, (this is clear from Eq. (3) and expression A, = n\, for c-time). In
contrast, the stationary states for d-time processes depend on «, $ and u. This is an
important difference compared to the stationary states for non-synergistic SIS processes
that depend on & for c-time and & and p for d-time dynamics.

Different stationary regimes are separated in the parameter space by bifurcations
at which the number of stationary points (roots of R(p)) changes [44]. The results
presented below involve bifurcations of three different types:

(i) Transcritical (TC) bifurcation. This is a codimension-one bifurcation point and
it corresponds to double root at py = 0 with condition, R(0) = R'(0) = 0. The
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infection probability p changes continuously when a TC bifurcation is créssed in
the parameter space.

(ii) Saddle-node (SN) bifurcation. This is a codimension-one bifurcationgpoint and-it
corresponds to double root at finite density, p., with conditions, R(p.= R'(p.) = 0,
for p. € (0,1). The stationary density changes discontinuously when.a SN point is
crossed.

(iii) Saddle-node-transcritical (SNT) crossing bifurcation. This is'a codimension-two
bifurcation point and it corresponds to triple root at zero densitywith conditions,
R(0) = R'(0) = R"(0) = 0. The stationary density near zeros€hanges continuously
when an SN'T point is crossed.

4.1. S-synerqgy

The location of the bifurcation points in (3, &) parameter spaceyi.e. bifurcation diagram,
for SIS process exhibiting S-synergy in transmission‘on random k-regular graph is shown
in Fig. 1(a) for a typical set of parameters. The dafa presented by lines were obtained
withing the single-site mean-field approximation ‘while the open symbols correspond
to results of MC simulations (see Sec. 5 formmore detail). There are three different
regimes: regime I (non-active), regime II (active)iand regime III (bi-stable). A general
analysis of stability of all fixed points*found in the paper is given in Appendix A. In
regime I, the synergistic SIS process is eharacterised by a single fixed point located at
po = 0 which is globally asymptetically stable in the feasible interval with p € (0, 1] (see
Corollary Appendix A.1.2). The solid line in Fig. 1(c) shows an example of the rate
function R(p) which only has a root atyp = py = 0. In regime II, there are two fixed
points located at py = 0 andspp> 0 (See the dot-dashed R(p) curve in Fig. 1(c)). The
fixed point at pg is unstable and processes in this regime evolve towards the active regime
with fixed point at p; whichfs globally asymptotically stable in the feasible interval (see
Corollary Appendix A.1:3). Regime III is characterised by three fixed points, two locally
stable at po = 0 and py,> Orand one unstable at p; € (pg, p2) (see the dashed curve in
Fig. 1(c) and Corollary Appendix A.1.4). Note that the bifurcation (phase) diagram of
the model is gualitatively similar to that presented in [21] but there are quantitative
differences due to different treatment of the function ¢(p).

The different regimes are separated by lines of bifurcations. The solid line in
Fig. 1(a), & = agc(f), represents the TC bifurcations separating active and non-active
regimes on the right (5 > fsnr) to the SNT crossing bifurcation (solid square) at
(BsnT, asng ), and active and bi-stable regimes on the left (5 < Ssnt) to the SNT point,
respectively, The broken style lines with & = agn(f) correspond to the SN bifurcations
between'non-active and bi-stable regimes.

For relatively large fixed values of > (snt, the SIS process is in non-active regime
I for @ < apc and in active regime II for & > apc. In this case, the probability p for a
node to be infected or equivalently the concentration of infected nodes is a single-valued
function of & and f (see the dashed and dot-dashed curves in Fig. 1(b)). Within the
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Figure 1. (a) Bifurcation diagrampfor,SIS processes with S-synergy on a random k-
regular graph with & = 10 following c- and d-time dynamics. The solid line represents
the line of TC biburcations giveniby mean-field (m-f) Eq. (10). The dashed and
dot-dashed lines show SN bifurcations for d-time dynamics with ¢ = 0.1 and c-time
dynamics (see Eq.A13)), respectively. The circles (TC biburcations) and squares (SN
bifurcations) represent the data obtained numerically for random 10-regular graphs of
size N = 10° for SISsprocesses following the rules of d-time dynamics with p = 0.1.
The error bars forMC data are lees than the symbols size. The solid square shows the
SNT crossing bifurcation with coordinates given by Eqs. (11)-(12) for c-time dynamics.
(b) Dependence ofithe concentration of infected nodes p in quasi-equilibrium state
for SIS proegss with S-synergy on random 10-regular graph (N = 10°) vs relative
tranSmissionyprobability & for d-time dynamics with g = 0.1 and different values of
thessynergy parameter 5 shown in the legend. In the bi-stable regime for 5 = —0.4, the
thick and thin solid lines correspond to finite-density stable and unstable stationary
states of the synergistic SIS process, respectively. Squares (unstable equilibrium) and
circles (stable equilibrium) show numerical results for d-time dynamics with g = 0.1
and, 8= —0.4. (c) Dependence of the rate function, R(p), calculated within the single-
site mean-field approximation on the concentration of infected nodes, p, for d-time SIS
process with = 0.1, 8 = —0.4 and different values of & = «/u as indicated in the
legend. (d) Dependence of the TC bifurcation point, érc(8; k) given by Eq. (10), on
the node degree k for random k-regular graphs.
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Figure 2. (a) Bifurcation diagram for SIS processes with'S-synergy on a random
3-regular graph. The same values of parameters and line and symbol styles as in
Fig. 1(a) are used. (b) Dependence of the con€entration of infected nodes p in quasi-
equilibrium state for an SIS process with S-synergy oma random 3-regular graph wvs
relative transmission probability & for d-time dynamics with 5 = —1.5. The mean-
field (m-f) and MC simulations data afe shown by lines and symbols, respectively.
The values of other parameters used in the simulatigns are the same as those for data
shown in Fig. 1(b).

single-site mean-field approximation, the funetionalform for the TC bifurcation line and
coordinates of the SNT crossing bifurcation,can be found analytically both for d- and
c-time dynamics. Indeed, the TC bifurcation line where R'(0) = 0 satisfies

1

arc(f) = %e_ﬁ(k_” : (10)

for both d- and c-time dynamies. This line is independent of ¢ and reduces to the well-
known threshold condition@ra()=1/k for non-synergistic epidemics with 5 = 0 [2,37].

The coordinates of the SNT €rossing bifurcation point (solid square in Fig. 1(a)),
where R(0) = R'(0)e=(R"(0);.are/given by the following expressions,

( ol 5 k—1
—=|1- R , for d-time
. k| p kE—1
QSNT. — (11)
v/ &\
\ E (m) s for c-time
( k 2
—In [— <1 — — k—u1>] , for d-time
Bent = a (12)
E—1 :
In (T) , for c-time.

Note that the coordinates of the SNT crossing bifurcation for c-time dynamics are
obtained by the limit for ¢ — 0 in the expressions for d-time dynamics.

For sufficiently negative fixed values of 5 < fsnt (to the left of the SNT crossing
bifurcation point in Fig. 1(a)), the behaviour of the synergistic SIS processes changes
drastically. In particular, p becomes a multivalued function of & in the interval

Page 10 of 23
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(asnt (), @rc) where the SIS process is in bi-stable regime III (see the multi-valued
function p(a) shown by the solid line in Fig. 1(b)). In the bi-stable regime, the
equilibrium concentration of infected nodes depends on initial concentration of infected
nodes, p(0). Within mean-field, the SIS process is non-active if p(0) < p;, where p; i§
the middle root of R(p). In contrast, it is active if p; < p(0), i.e. itlreaches a finite
concentration p = py > 0, where p, is the largest root of R(p).

The expression for agy () corresponding to the line of SN bifureations ¢an be found
analytically only for c-time dynamics (the result for d-time dynamiesicanibe obtained
numerically). Indeed, using the condition R(p.) = R'(p.) = 0 and Eﬁ (9) for c-time
S-synergy, one obtains

i NS ,

alt) = (1) (1-) (13
which is valid for g < fBsnt. For d-time dynamics, the shapewof the SN bifurcation line
depends on the value of p and tends to the SN bifurcation line for c-time dynamics (the
dot-dashed line in Fig. 1(a)) when p — 0. I

We analysed above the behaviour of SIS proeesses in a representative case of random
k-regular graphs with £ = 10. However, all the qualitative findings hold for other values
of k as well. As an example, in Fig. 2, we show the bifurcation diagram and dependence
of concentration of infected nodesson the reduced transmission rate, &, for 3-regular
graph. As seen from comparison of Fig. 2"with Fig. 1, qualitatively the behaviour of
the synergistic SIS process is the same in'both 3- and 10-regular graphs. However, the
quality of the single-site mean-field approximation in description of the synergistic SIS
processes studied numerically/becomes noticeably better with increasing k. This is a
known effect according to which the states of two neighbouring nodes are less likely to
depend on the state of eagh other ifthey are connected to many other neighbours which
are more likely to influence the pair of neighbours [19,20].

The effect of the node degree on different regimes exhibited by the model can
be readily analysedsusingithe,analytical expressions for bifurcations. We restrict our
analysis to k > 2 to ensure a giant connected component in the network. The region
corresponding to regime I in the (5, &) space increases with k, i.e. bi-stable behaviour
is overall more likely when increasing the connectivity of the network. Indeed, for
f < Bsnt, the rélative inherent transmission rate agy(/5; k) exhibits a mild increase with
k that ig'counteracted by a faster increase of &rc(f; k). This results in an enlargement
of the region for bi-stable behaviour with increasing k.

The dependence of arc(f; k) on k is more interesting. Depending on the value of
B,lone can‘distinguish three cases (see Fig. 1(d)).

(i) /< B« = In(2/3): One can prove (bearing in mind that arc(fik = 2) =
ampc (B k = 3); see the stars in Fig. 1(d)) that arc(f; k) increases monotonically
with £ > 2 . This behaviour can be intuitively understood in terms of a higher
opposition of susceptible neighbours to transmission for large k.
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(ii) B« < B < 0: This is a more counter-intuitive regime since arc(f5; k) has a minimum
at k = [e®(1 — €)71], where [-] is the ceiling function (see the squares and
diamonds in Fig. 1(d)). This means that there is a value of k for which the system
is particularly vulnerable to leaving the non-active regime.

(iii) B > 0: The intrinsic rate arc(f) decreases monotonically with 5 (see the circles in
Fig. 1(d)) . This behaviour is again intuitively expected since suséeptible neighbours
encourage transmission from infected nodes and this makes the invasion more likely
(ie. occurs for smaller values of a) if connectivity is large #Transitions in this case
are always between regimes I and II.

4.2. I-synerqy

Fig. 3(a) shows a typical phase diagram for SIS processesiexhibiting I-synergy in
transmission and spreading on random k-regular graphs with'k = 10. As in the case of
S-synergy, there are three different regimes: regimerh(non-active), regime II (active) and
regime III (bi-stable). As follows from this figure, only constructive I-synergy affects the
SIS processes making them more invasive,as compared to the synergy-free case. Indeed,
if > PBsnt then even for relatively small imherent infection rates, i.e. @ < arc (but
& > agn) the network becomes vulnerable for invasion and the concentration of infected
nodes can increase abruptly from/Zzere,to a finite value (see the curves in Fig. 3(b)
for 6 > Bsnt =~ 0.11096). The location,of bifurcation points can be found within the
single-site mean-field approximation following similar steps as above for S-synergy. A
TC bifurcation occurs at an inherent rate given by

arc(B) = % . N (14)
which is not affected by synergy-(does not depend on [3; see the horizontal line in
Fig. 3(a)) and coincides with that for the synergy-free case [2,37]. This is because it
is determined by transmission events with a single attacker only. Despite not affecting
arc(B), constructive lsynergy can affect the SIS processes so that they become bi-
stable (see Fig.,3(a)) in @ similar way to the SIS processes with S-synergy. A single
SNT crossing bifurcation'is present in the bifurcation diagram and its coordinates can
be obtained/analytically for both c- and d-time dynamics:

1

ASNT = o for both ¢- and d-time (15)
In [E (1 —4/1— %)] , for d-time
Psnt = a (16)
In L for c-time
E—1)

The expressions for both the value of the elementary rate, asn(3), and concentration
of infected nodes, psn(f), can be obtained analytically for c-time dynamics at the SN

Page 12 of 23
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Figure 3. (a) Bifurcation diagram for SIS progesses with Issynergy on random k-
regular graphs with k£ = 10 following c- and d-time dynamics: The solid line represents
the line of TC biburcations given by Eq. (14). “The dashed and dot-dashed lines
show SN bifurcations for d-time dynamicséwith 4 =021 and c-time dynamics (see
Eq. (17)), respectively. The circles (TC biburcations) and squares (SN bifurcations)
represent the data obtained numerically for randemglO-regular graphs of size N = 10°
for SIS processes following the rules of d4time|dynamics with g = 0.1. The solid
square shows the SNT crossing bifurcation with coordinates given by Egs. (15)-(16)
for c-time dynamics. (b) Dependenee of the concentration of infected nodes p in
quasi-equilibrium state for SIS process with I-synergy on random 10-regular graph
(N = 10%) vs relative tpamsmission probability & for d-time dynamics with p = 0.1
and different values of the'synergy parameter 5 shown in the legend. In bi-stable
regime for 8 = —0.4, the thick and thin solid lines correspond to finite-density stable
and unstable stationary states of ‘the synergistic SIS process, respectively. Squares

(unstable stationary_state) show numerical results for d-time dynamics g = 0.1 and
B =-04.

N
bifurcation separating non-active and bi-stable regimes for 5 > fsnr:

aon(F)E (%) (8 1) et (17

psn(B) =1+ m : (18)

In case of d-time dynamics, these quantities can be calculated numerically.

4.8. Invaston threshold

The existence of a well-defined threshold separating non-active and active regimes is
an/appealing idea in mathematical epidemiology which is often expressed in terms of
the basic reproduction number Ry [25,37]. A well-defined threshold exists under quite
general‘@onditions [15] and corresponds to a TC bifurcation separating regimes I and 1T
with,.2y = 1 at the threshold. Here, we show that synergistic effects restrict the regime
of validity of the concept of a threshold defined by condition Rq = 1. Similar deviations
from the normal threshold criterion were found in previous works studying the effect of
non-linear incidence rates on invasions [23,29].
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For the models studied here, one can define a basic reproduction number as

Ry = E)\l . (19)
1
This formula can be intuitively interpreted as the average number of nodés thatibeconie
infected at the initial stages of the epidemic by the transmission of infection with rate
A1 from an infected node during its infectious period which is of the'order ofil /.

By using A\; = ae®*~1 for S-synergy and condition (10) for the TC bifurcation,
one can express the reproductive number as Ry = o/apc. Therefore, ghescondition for
the TC bifurcation along the line apc () is clearly equivalent to. the common threshold
condition Ry = 1. The threshold concept defined by Ry = 1 is; however; only meaningful
for 8 > Bsnr. Indeed, for § < PBsnt, the active regime is alreadyistable in regime III
where a € (asn(B), arc(f)). This implies that, depending,on the initial conditions,
synergistic invasions are possible for Ry > asn(8)/atc(5); de. they are possible even if
Ry < 1.

The reproduction number in case of I[-synergy. cam be similarly expressed as
Ry = a/arc but with arc = p/k (cf. Eq. (14)). Following a similar reasoning as
for S-synergy it is easy to demonstrate that.the definition of the threshold by condition
Ry = 1 is only meaningfull for 5 < Sgnt. For B> [snt, invasions are again possible in
regime IIT where Ry < 1.

4.4. A minimal model

In the presence of synergy, the rate function R(p) given by Eq. (8) is a polynomial of
order k. However, we have only found regimes with at most three roots for R(p). This
suggests the existence of a sim{Lliﬁed normal form for the model which can capture all
the three dynamical regimes déscribed above. Indeed, a cubic normal form, R, for the
rate function,

Rut(p)'="ap+ bp” — cp’ , (20)

is sufficient to qualitatively capture all the regimes predicted by the full model for any
k. A similar normal form was proposed in [42] to describe the interaction of TC and
SN bifurcations in an extended Lotka-Volterra model.

The normal form is obtained through an expansion of R(p) given by Eq. (8) up to
and incliding terms oc O(p?) around p = 0 which gives the following expressions for
coefficients in Eq. (20):

a :—/L—i‘kAl, (21)
20 = k(k — 1)Ay — 2K°A, | (22)
6c= — k(k—1)[(k —2)As — 3(k — 1)Ay + 3kA,] . (23)

Since R(1) < 0, a necessary condition for the normal form Ry¢(p) to capture this
behaviour is that ¢ > 0, so that Ry(p = ;6 = b = 0) < 0. If ¢ > 0 and the
parameters a and b vary, the shape of Ry¢(p) evolves in a similar way to that of R(p)

Page 14 of 23
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Figure 4. (a) Comparison of the normal form Ry¢(p) (boldlines, Eq. (20)) and mean-
field rate function R(p) (thin lines) for k = 3, p =0, 8 = -1 < Bsnt =~ —0.43 and
several values of « as indicated in the legend. (b) Bifureation diagram for the minimal
model based on the normal form for the rate function, Ry¢(p).

when parameters o and 3 vary. This is illustrated by Fige#(b) which shows an example
in which both R(p) and Ry¢(q) (cf. thin and bold lines) exhibit the expected shapes for
B < Bsn, i.e. in regime III.

If the condition ¢ > 0 is satisfied, the fixed points of the minimal model (i.e. the
zeros of Ry) reproduce the three/dynamical regimes observed for the full model (see
Fig. 4(a)). Regime I (non-active) is bounded from above by a line a = 0 (for b < 0)
of TC bifurcations and by a Parabolic line'@ = —b?/4c (for b < 0) of SN bifurcations.
Regime IT (active) is observed forany a > 0, i.e. above the TC line which exists for any
value of b. Regime III (bi-stable) is bounded by the TC bifurcation line from above and
by the SN bifurcation line frombelow (i.e. it exists provided a < 0 and b > 2y/—ca). All
the three regimes meet at the/co-dimension two SN'T' crossing bifurcation point located
at a=0=0.

In fact, the minimal. model with ¢ > 0 exhibits all three regimes on the plane («, 5)
corresponding to the full model. In order to prove this, it is necessary to show that the
domain in the (a3 /) parameter space where ¢ > 0 (with ¢ given by Eq. (23)) covers
a finite neighbourhood of the SN'T crossing bifurcation point where the three regimes
meet. In Appendix Appendix B, we prove this for c-time dynamics. A rigorous proof
for d-time.dymamics'is more challenging but numerical analyses suggest that this also
holds for d-time dynamics on random regular graphs with any k.

The minimal model leads to several interesting conclusions. First, it shows that
the' co-dimension of the SN'T crossing bifurcation is 2. Second, it demonstrates that
considering synergistic effects associated with up to 3 neighbours is sufficient to observe
three regimes for synergistic invasions on random regular graphs with any degree k. This
follows_from the fact that the coefficients a, b and ¢ depend only on the transmission
rates Ay, Ay and A3. Synergistic effects associated with more than 3 neighbours may
play a role on the details of invasions but do not affect their qualitative behaviour.
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Figure 5. The dependence of the rate function, R(p), ealéulated numerically on
concentration of infected nodes, p, for d-time SIS process exhibiting S-synergy in
transmission on random 10-regular graphs (N _= 10%)with = 0.1, 3 = —0.4 and
different values of & = a/p as indicated in the legends.“The panel (a) shows R(p)
for non-active (solid line, p(0) = 1), bi-stable (dashed, p(0) = 0.307) and active (dot-
dashed, p(0) = 1073) regimes. The panel«(b) displays R(p), for values of & near the
SN bifurcation (p(0) =1 for all the curwes). S

5. Numerical simulations

The above analysis performed within_the" single-site mean-field approximation is
inherently inexact and thus needs to be validated by exact numerical simulations. For
bifurcation analysis, it appeazs convenientito calculate numerically the rate function
R(p) entering Eq. (2) and investigate the behaviour of its roots with variation of
parameters of the model. The advamtage in analysing numerically the rate function
rather than just calculating t\he time series for concentration of infected nodes is
the following. It gives umambiguous criteria for location of (i) the SN bifurcations,
i.e. discontinuous transitions in concentration of infected nodes, and (ii) unstable
equilibrium points (ef..]9, 36,47]). The rate function can be used for location of the
TC bifurcations aswell although the procedure for finding critical points for continuous
transitions is well established [16,18].

The shape.of the rate function calculated numerically follows that predicted by
single-site mean-field amalysis (cf. the curves shown in Fig. 1(c) and Fig. 5(a) shown
for SIS processes exhibiting S-synergy). As follows from Fig. 5(a), the roots of the rate
function(and thusthe concentration of infected nodes in stable and unstable equilibrium
states) ‘ean be identified. This is particularly important for the roots corresponding to
unstable equilibria (see the middle root at p; ~ 0.33 for the dashed curve in Fig. 5(a)).
The range of p for which the rate function in bi-stable regime is available numerically
significantly depends on initial conditions, i.e. on p(0). If p(0) ~ py, then the SIS process
gan _either go to extinction or invasion and R(p) becomes available for practically the
whole Tange of concentration of infected nodes. In particular, the dashed curve shown
in Fig. 5(a) is calculated for p(0) = 0.307 averaged over 10* network configurations
resulting in p; ~ 0.339 £ 0.007.

Page 16 of 23
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The location of the SN bifurcation can be estimated by finding the values of the
rate function at the maximum for different values of & and extrapolating them to zero.
An example of evolution of R(p) near the SN bifurcation is shown in Fig. 5(b) leading
to an estimate for agy ~ 1.3595 =+ 0.0005.

Overall, we found that numerical analysis supports qualitatively all the main
findings within a simple single-site mean-field approximation. AS expected, the
quantitative agreement between MC and mean-field data are not perfect. Indeed,
comparing Figs. 1(c) and Fig. 5(a), we can see that the evolution ofithe shape of the
rate function with & is similar for both mean-field and MC dafa buf'the values of R(p)
for the same & are quite different in both panels (cf. e.g.<solid lings for & = 0.95).
Consequently, the open symbols representing MC data in Figs 1(a) and 3(a) deviate
from the continuous bifurcation lines obtained analytically.nThe disagreement between
MC and mean-field data are sufficiently significant in#he loeation of SN bifurcations for
very negative values of 3 in the case of S-synergy (ef. location of squares for MC data
and dashed lines for mean-field in Fig. 1(a) and; especially, in Fig. 2(a) for 3-regular
graph). y

This is not surprising because the sifigle-site mean-field approximation completely
ignores the dynamical correlations which cam,be quite important for synergistic SIS
processes. However, the main qualitative featuresysuch as existence of three different
regimes are well reproduced by single-sitesmean-field analysis.

Several approaches have been develeped for dealing with dynamical correlations
in synergy-free spreading proeesses [5,10, 11,17, 20, 31,34]. The synergy effects bring
new features in the dynamics which,do not permit to use straightforwardly the results
obtained for synergy-free cases. A possible way forward could consist in using a two-site
approximation for P(C,,) in"Equ(4) which we hope to address in future analysis.

6. Conclusions

To conclude, we présented the single-site mean-field analysis for synergistic SIS processes
spreading on random k-regular graphs. The synergy effects investigated account for
possible non-linear eooperative effects in transmission of infection between nodes in
a network. [In particular, two cases were investigated in which the individual rate
of transmission from an infected node to a susceptible one depends on number of
neighbours of susceptible node being either in susceptible (S-synergy) or infected (I-
synergy)astates. The synergistic transmission is parameterised by introducing two
parameters, the inherent transmission rate (i.e. the rate in the synergy-free limit)
and \the strength of synergy, in such a way that the synergistic transmission rates are
continuous functions of both of these parameters and also of discrete number of infected
neighbours affecting the transmission. The latter property distinguishes the synergy
model from the popular threshold models. Moreover, the continuity of the synergistic
rates in all variables makes possible to analyse phase diagrams in two-parameter space
and reveal quite a rich picture even in the simplest topological case of k-regular graphs.
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In particular, the phase diagrams for synergistic SIS process on k-regular graphs (with
k > 2) exhibit three regions found both numerically and analytically: non-active, active
and bi-stable. These regions are separated by lines of transcritical and, saddle-nede
bifurcations which cross (interact) at the saddle-node-transcritical bifurcation. The
latter bifurcation point, to our knowledge, has not been observed within the threshold
models.

Also, we developed a numerical procedure based on analysis [of the rate function
for detection of the saddle-node bifurcations, transcritical bifurcationsiat the boundary
between stable and active regimes and unstable equilibria in bi—stable\regime. In these
cases, the standard analysis of the time-series for concentration of infe¢ted nodes is not
very helpful. In contrast, analysis of the rate of change in coneentration of infected
nodes appears to be sufficiently revealing.

The synergy model is general and can be applied tewwarious spreading processes
(e.g. SI, SIS, SIR, contact, catalytic reaction-diffusion and’others) on networks of
different topology. Our preliminary analysis of synergistic processes on other networks
(Erdos-Rényi, binary and scale-free) shows evenmoré comp?ex bifurcation diagrams with
possibility of appearance of several SNT/SN, TC and cusp bifurcations. Currently, the
synergy effects are analysed only for transmission rates but they can be straightforwardly
incorporated for recovery rates as well. Amnalytically, the main challenge remains in
accurate description of the dynamical ¢orrelations for synergistic processes, which we
hope to address in the future.
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Appendix A. Stability of fixed points

In this section, wesstudy the stability of fixed points of the solutions of the proposed
models in the single-site mean-field approximation which obey Eq. (2) with the rate
function R(p) given'by Eq. (7). Stability of fixed points can be qualitatively understood
from the graphical representation of R(p) but here we present a more rigorous analysis
based on the Lyapunov function method [1,4].

Before dealing with the synergistic epidemic model, consider a generic time-
invariantidynamical system described by a variable x € R which obeys d-time dynamics
given by the'difference equation,

x(t +0t) = x(t) + f(x(t))dt . (A.1)
Assume that the real-valued function f(z) satisfies
>0 for = € (a,z")
flz)=2 =0 for x = z* (A.2)
<0 for x € (*,b) ,

Page 18 of 23



Page 19 of 23

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-110893.R2

Bifurcations in synergistic epidemics 19

in some interval (a,b) of x, where a and b are real parameters, a < b.

Theorem Appendix A.1 The point x = x* is an asymptotically stable fixed point in
the interval (a,b).

Proof. The function

Vi) = [ 1wy (A3)

is positive definite for any value of x € (a,b) except at x = x* where it\is V(z*) = 0.
In addition, the variation of V' (x) with time along any trajectory z(¢) of the system,
oV V(x(t+4dt) —V(x) 1 /””(t)”‘s(t)

x(t)

5 5 ~5 fw)dy, (A4)

is negative everywhere in (a, b) except at x = z*.
Indeed, for z € (z*,b), f(x) < 0 and one obtains

z(t)+|f (2(t))|ot
v —- | FWldy <07 % (A5
z(t)
Similarly, for x € (a,x*), f(x) > 0 afid one obtains
z(t)
sv—- | /() dihs 0% (A)
z(t)—|f (=(t))|6t

This proves that V(z) is a Lyapunov function and x = x* is an asymptotically
stable fixed point in the interyal (a,b). OJ

Corollary Appendix A.1.1 I the c-time limit (i.e. for infinitesimal 5t — dt), the
system (A.1) has a fized point at x =% which is asymptotically stable in (a,b).

Proof. In the c-time dimit, thexdifference equation (A.1) reduces to dz/dt = f(z)
and the variation of V'(z) with respect to time along a trajectory x(t) of the system is
av
L T (A7)
for any x € (a,b)(— {2*}s Therefore, V(z) is a Lyapunov function and this proves the
corollary. [
We now dise these results to analyse the stability of fixed points for the concentration
of infected nodes, p(t), given by Eq. (2) with R(q) given by Eq. (7). The results apply
in general to both-S- and I-synergy models with both d- and c-time dynamics.

Corollary Appendix A.1.2 (Stability in regime I) Consider regime I which is
characterised by a single fixed point at p = py = 0. This fixed point is globally
asymptotically stable in the feasible interval of p € (0, 1].

Proof. Since py = 0 is the only fixed point and the infection rate satisfies R(0) =0
and ‘R(1) < 0, it is clear that R(p) < 0 for any p € (0,1]. For c-time dynamics, this
system is equivalent to the system given by Eq. (A.1) with € (2*,b). Accordingly,
po = 0 is globally asymptotically stable in (0, 1] by Theorem Appendix A.1. Similarly,
stability in the d-time case follows from corollary Appendix A.1.1. [J
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Corollary Appendix A.1.3 (Stability in regime II) In regime II, there fare the
non-active (p = p; > 0) and active (p = py = 0) fized points. The active fiwed point,
p1 > 0, is globally asymptotically stable in the feasible interval (0, 1] and the non-active
fized point py = 0 is unstable.

Proof. Let us first consider the fixed point for the active regime. The conditions
R(0) = 0 and R(1) < 0 imply that R(p) > 0 for p € (0,p;) and R(p) < 0 for pre (py, 1].
Therefore, the problem reduces to that of the system A.1 with a =.0,2* = p; and b = 1.
By Theorem Appendix A.1 and Corollary Appendix A.1.1 it is ¢lear that the fixed point
at p = p; is globally asymptotically stable in the feasible interval™(0, 1] for both d- and
c-time dynamics. The fixed point at pg = 0 corresponding to the non-active regime is
therefore unstable. [

Corollary Appendix A.1.4 (Stability in regime IIT) Wn regime 11, there are three
fized points: the non-active fixed point at p = py = 0, the actwve fixed point at p = py > 0
and a fized point with intermediate p = p1 € (Po, Pa)- .Szfabilz'ty of these points is as
follows for both d- and c-time dynamics:

(i) The fized point at p = py = 0 is locallyrasymptotically stable in the interval (0,py).
(ii) The fized point at p = p; is unstable.
(11i) The fized point at p = py is locallypasymptotically stable in the interval (pq,1].

Proof. Local stability of p = py = 0and p = p, follows from Theorem Appendix
A.1 and Corollary Appendix A:lul using the conditions R(0) = 0 and R(1) < 0 which
imply the following behaviourdor R(p):

< Qg for p € (0,p1)
R(p)=q 20 & forp€ (p1,p2) (A.8)
<0 for p € (p2, 1] .
Since the basins of attraction of the fixed points p = pg = 0 and p = p, cover the whole

feasible interval (0, 1] exeept for the point p = p;, we conclude that the fixed point at
p = pp is unstable.

Appendix B. Validity of the minimal model

In this appendix, we show for c-time that the condition ¢ > 0 (see Eq. (23)) defines a
regiongin the (@, 5) parameter space which contains the SNT crossing bifurcation for
both S- and [-synergy if £ > 2.

The transmission rate for c-time dynamics reduces to A,, = n\,, and this allows the
condition ¢ > 0 to be expressed as follows:

Page 20 of 23
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This condition is satisfied for any value of a and g € B, where

(—ln (%) ,O> for S-synergy
B= (B2)

k
<O, In (ﬁ)) for I-synergy

From Egs. (12) and (16) it is clear that the SN'T crossing bifurcation point belongs to
B for both S- and I-synergy.
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