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Abstract

There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable
on the basis of their genetic structure. Examples include populations which are geographically separated, case–control
studies and quality control (when participants in a study have been genotyped at different laboratories). This latter
application is of particular importance in the era of large scale genome wide association studies, when collections of
individuals genotyped at different locations are being merged to provide increased power. The traditional method for
detecting structure within a population is some form of exploratory technique such as principal components analysis. Such
methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed
unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available. In this
paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic
differences between populations. We apply two such methods, (neural networks and support vector machines) to the
classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these
methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a
recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish
between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results
that a supervised learning approach should be the method of choice when classifying individuals into pre-defined
populations, particularly in quality control for large scale genome wide association studies.

Citation: Bridges M, Heron EA, O’Dushlaine C, Segurado R, The International Schizophrenia Consortium (ISC), et al. (2011) Genetic Classification of Populations
Using Supervised Learning. PLoS ONE 6(5): e14802. doi:10.1371/journal.pone.0014802

Editor: Daniel J. Kliebenstein, University of California, United States of America

Received April 13, 2010; Accepted December 1, 2010; Published May 12, 2011

Copyright: � 2011 Bridges et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project has not been directly funded by any agency. The authors employed on research contracts are supported by the Wellcome Trust (http://
www.wellcome.ac.uk), Science Foundation Ireland (http://www.sfi.ie), and the UK Science and Technology Research Council (http://www.stfc.ac.uk). The funders
had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: capinto@tcd.ie

" Membership of the International Schizophrenia Consortium is provided in the Acknowledgments.

Introduction

The advent of the new large-scale genotyping and sequencing

technologies has resulted in unprecedented quantities of data

becoming available to the genetics community. Geneticists are

now confronted with new and challenging problems in data

analysis and interpretation, and novel approaches and techniques

will be required to fully exploit these new resources. In view of the

fact that other scientific fields have already gone through a similar

process of development, it is likely that cross-disciplinary

collaborations in data analysis will yield fruitful results in genetics.

This paper represents such a collaboration.

We apply machine learning techniques previously used in

cosmology to the problem of genetic classification. Such

techniques involve the use of automated algorithms to mimic the

learning capabilities of animal brains. They have proved extremely

useful in the analysis of complex data in many scientific disciplines.

There are two basic approaches – supervised learning, where the

data is pre-classified according to some hypothesis and unsupervised

learning where the data is unclassified (usually, but not always,

because the potential classes are a priori unknown). Genetics has, to

date, relied mainly on unsupervised methods, such as principal

components analysis (PCA), to classify individuals on the basis of

their genetic data.

PCA is a standard tool in population genetics, and has been

used, for example in a study of 23 European populations [1] and

more recently of 25 Indian populations [2]. It is also commonly

used in quality control in genetic studies. For example, a dataset

destined for a disease association study may be pre-screened using

PCA in order to detect and remove population structure so as to

minimise noise in the final study. In many of the large scale

collaborations now being undertaken it is of interest to determine

whether genetic differences exist between groups of controls

ascertained from different geographic locations, or genotyped at

different laboratories. If the differences are sufficiently small, these

groups can be merged to achieve greater power. The aim of this

work is to demonstrate and quanmtify the superiority of supervised

learning techniques when applied to this problem.

We have adapted two supervised learning algorithms, artificial

neural networks (ANN) and support vector machines (SVM) for
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this purpose. We use sets of control samples genotyped by the

International Schizophrenia Consortium (ISC) [3] as our test

data. For comparison we also conduct a conventional PCA

analysis.

The paper is organised as follows. In the Methods section we

briefly discuss the PCA methodology that we use and give a short

introduction to ANNs and SVMs. We also include a description

of the data used for the analysis. The first part of the Results

section presents the PCA analysis and results. The second and

third sections describe the ANN and SVM analyses respectively.

Finally, the Discussion section contains our interpretation of the

analyses and some suggestions for potential applications of the

methods.

Methods

We examine three approaches to the problem of genetic

classification, given pre–existing candidate populations. More

precisely, we wish to determine the confidence with which the

individuals in these populations can be distinguished on the basis

of their genetic structure. We first consider PCA, the most

commonly used unsupervised method. Next, we investigate a

sophisticated non–linear supervised classifier, a probabilistic ANN.

Lastly we consider a simpler but more limited linear supervised

classifier, an SVM.

We would expect the supervised methods to perform better

than PCA, since they utilise more information. The aim is to

quantify this difference. We therefore adopt a sliding window

approach, using genetic windows of different sizes in order to to

assess the perfomance of the classifiers given different amounts of

genetic data.

According to a recent hypothesis, discussed below, unsuper-

vised methods cannot distinguish between two populations if the

amount of data available falls below a certain threshold value. It

is therefore of interest to determine whether supervised methods

can classify below this limit, and we investigate this question

also.

Principal Components Analysis
The PCA technique is well known and commonly used in

genetics and we do not describe it in detail here. Briefly, the aim is

to determine the direction of maximum variance in the space of

data points. The first principal component points in the direction

of maximum variance, the second component maximises the

remaining variance and so on. Any systematic difference between

groups of individuals will manifest itself as a differential clustering

when the data points are projected on to these principal

components.

We use the smartpca component of the eigensoft (v3.0) software

package [4] for our analysis. In addition to the principal

components, smartpca produces a biased but asymptotically

consistent estimate of Wright’s FST parameter [5]. We use this

estimator as our measure of effect size.

The authors of SMARTPCA use a result obtained by [6] and

[7], to conjecture the existence of a phase transition (the Baik, Ben

Arous, Péché or BBP transition) below which population structure

will be undetectable by PCA [4]. They further conjecture that this

threshold represents an absolute limit for any (presumably

unsupervised) classification method. For two populations of equal

size, the critical FST threshold is given by:

FST (crit)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NSNPS
p

where NSNP is the number of single nucleotide polymorphisms

(SNPS) and S is the total number of individuals in the dataset.

A measure of statistical significance between any pair of

populations is also produced by SMARTPCA. This is obtained

by computing the ANOVA F -statistics for the difference in mean

values along each principal component. A global statistic is

calculated by summing over all components; this statistic follows a

x2 distribution. We use the associated p-value as our measure of

statistical significance.

It is important to point out that we are using the p-value as a

quantitative measure. This quantity is more usually used in a

hypothesis testing framework, where the decision to accept or

reject is made on the basis of some pre-determined threshold. We

do not set such a threshold; rather, we use the p-value to detect the

onset of the BBP phase transition, when its value drops by many

orders of magnitude.

We determine the effectiveness or otherwise of PCA by

comparing the estimated value of FST with the critical value in

a sliding window across the chromosome.

Artificial Neural Networks
ANNs are relatively uncommon in genetics and may be

unfamiliar to many geneticists. Furthermore the network we

employ possesses some novel features particularly relevant to

genetic analysis. We therefore give a somewhat more detailed

overview in this section.

ANNs are a methodology for computing, based on massive

parallelism and redundancy, features also found in animal brains.

They consist of a number of interconnected processors each of

which processes information and passes it to other processors in

the network. Well-designed networks are able to ‘learn’ from a set

of training data and to make predictions when presented with new,

possibly incomplete, data. For an introduction to the science of

neural networks the reader is directed to [8].

The basic building block of an ANN is the neuron. Information is

passed as inputs to the neuron, which processes them and

produces an output. The output is typically a simple mathematical

function of the inputs. The power of the ANN comes from

assembling many neurons into a network. The network is able to

model very complex behaviour from input to output. We use a

three-layer network consisting of a layer of input neurons, a layer

of ‘‘hidden’’ neurons and a layer of output neurons. In such an

arrangement each neuron is referred to as a node. Figure 1 shows

a schematic design for this network with 7 input nodes, 3 hidden

nodes and 5 output nodes.

The outputs of the hidden layer and the output layer are related

to their inputs as follows:

hidden layer : hj~g 1ð Þ f
(1)

j

� �
; f

1ð Þ
j ~

X
l

w
1ð Þ

jl xlzb
1ð Þ

j , ð1Þ

output layer : yi~g 2ð Þ f
2ð Þ

i

� �
; f

2ð Þ
i ~

X
j

w
2ð Þ

ij hjzb
2ð Þ

i , ð2Þ

where the output of the hidden layer h and output layer y are

given for each hidden node j and each output node i. The index l

runs over all input nodes. The functions g(1) and g(2) are called

activation functions. The non-linear nature of g(1) is a key

ingredient in constructing a viable and practically useful network.

This non-linear function must be bounded, smooth and mono-

tonic; we use g(1)~ tanh x. For g(2) we simply use g(2)(x)~x. The
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layout and number of nodes are collectively termed the architecture

of the network.

The weights w and biases b effectively define the network and

are the quantities we wish to determine by some training algorithm.

We denote w and b collectively by a. As these parameters vary

during training, a very wide range of non-linear mappings

between inputs and outputs is possible. In fact, according to a

ùniversal approximation theorem’ [9], a standard three-layer feed-

forward network can approximate any continuous function to any

degree of accuracy with appropriately chosen activation functions.

However a network with a more complex architecture could well

train more efficiently.

The use of ANNs in genetics to date has been limited. A

comprehensive review is given in [10]. Previous work has focused

mainly on investigating the optimum network architecture for

specific applications, using a small number of genetic markers. A

case-control scenario was considered in [11]. Their networks

typically consisted of four input nodes, representing four markers,

with two hidden layers incorporating up to three hidden nodes

each. The output was the case or control status of the individual.

The authors explored a variety of different architectures and

assessed the performance of each. In common with other authors

such as [12], they noted that the performance of the network was

strongly dependent on the choice of architecture. Nevertheless,

many authors such as [13] and [14] have successfully used ANNs

with pragmatic choice of architecture based on trial and error

searching.

A more serious problem is the size of networks that it is possible

to train when using traditional back-propagation or quasi-

newtonian gradient descent methods. Most such methods are

very inefficient in navigating the weight space of a network and

can therefore handle only relatively small genetic datasets.

Both these problems are addressed in the MEMSYS package [15]

which we use to perform the network training. This package uses a

non–deterministic algorithm which allows us to make statistical

decisions on the appropriate classification. This makes possible the

fast efficient training of relatively large network structures on large

data sets. Moreover the MemSys package computes a statistic

termed the Bayesian evidence (see for example [16] for a review).

The evidence provides a mechanism for selecting the optimum

number of nodes in the hidden layer of our three–layer network.

We apply this ANN to our genetic classification problem by

associating each input node with the value of a genetic marker

from an individual and the output nodes with the probabilities of

the individual’s membership of each class. As in the case of the

PCA analysis we perform the classification in a sliding window

across the chromosome.

Support Vector Machines
The ANN described in the previous section is a sophisticated

classifier, able to amplify weak signals and to detect non–linear

relationships in the data. This feature is potentially of great

significance in genetic analysis, since non–linearity is likely to arise

due to long-range interactions between genes at different physical

locations. It is also of interest to investigate the performance of a more

conventional linear supervised classifier on the genetic classification

problem. We therefore conduct a parallel analysis with an SVM.

The principle of an SVM is intuitively very simple. The space of

data points is partitioned by finding a hyperplane that places as

many of the points as possible into their pre-defined class. The

SVM algorithm iterates through trial planes, computing the

shortest combined distance from the plane to the closest of the

data points in each class while simultaneously ensuring all data

points of each class remain in the same partition. An example of a

two-dimensional feature space partitioned in three different ways is

shown in Figure 2.

In the example pictured the plane p3 does not partition the

space correctly. The plane p2 produces an adequate classification

with all of the data points appropriately divided. However two

data points lie very close to the plane and leave little margin for

future generalisation to unseen examples. The plane p1 is an

Figure 1. An example of a 3-layer neural network with 7 input
nodes, 3 nodes in the hidden layer and 5 output nodes. Each
line represents one weight.
doi:10.1371/journal.pone.0014802.g001

Figure 2. An example of a two-dimensional feature space x{y
for data of known class divided by three hyperplanes p1, p2
and p3. Clearly p1 divides most efficiently.
doi:10.1371/journal.pone.0014802.g002

Genetic Classification

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e14802



optimum partitioning, maximising the combined distance d1 + d2.

The function of an SVM is to attempt to identify this optimum

partition. In this work we make use of the LIBSVM library of

SVM routines [17].

The SVM has the advantage of being simpler to use in practice,

but has certain limitations compared with our ANN. Firstly it is a

linear classifier and cannot allow for non–linear relationships in

the data. Secondly it is deterministic, providing a unique solution

for each problem. It is therefore impossible to develop an estimate

of the accuracy of the solution–that is, to place confidence limits

on the classification. Our ANN, on the other hand, is probabilistic,

producing a slightly different solution on each iteration. This

allows us to assess the stability of the solution. Thirdly, the

classification is binary–an individual either does, or does not,

belong to a particular class. The ANN, in contrast, provides

probabilities of class membership for each class.

Data
Our test populations are a subset of the data obtained by the

International Schizophrenia Consortium (ISC). The consortium

collected genome-wide case–control data from seven sample

collection sites across Europe. The final post quality controlled

(QC) dataset contained 3322 cases and 3587 controls. The

controls from three sites were used for the purposes of this study:
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Figure 3. Estimated FST values for a 50 SNP sliding window for P1:P1 (top), P1:P2 (middle), P1:P3 (bottom). The FST is essentially zero
everywhere except for a small region approximately halfway along the chromosome. The horizontal dotted line is the value of FST (crit).
doi:10.1371/journal.pone.0014802.g003
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N Aberdeen Site (P1) A set of 702 controls, consisting of

volunteers recruited from general practices in Scotland. These

were genotyped on an Affymetrix 5.0 genotyping array.

N Edinburgh Site (P2) A set of 287 controls recruited through

the South of Scotland Blood Transfusion Service, typed on an

Affymetrix 6.0 array.

N Cardiff Site (P3) A set of 611 controls recruited from several

sources in the two largest cities in Bulgaria, typed on an

Affymetrix 6.0 array.

Quality control was performed by the ISC [18]. In addition to

the usual genotype and sample QC procedures, attempts were

made to resolve technical differences arising from the different

genotyping arrays used by the various ISC sites. A multi-

dimensional scaling analysis was also performed to detect

population stratification and remove outliers from each popula-

tion.

We start with the cleaned ISC data comprising 739,995 SNPs,

all samples having a call rate w0:95 and all SNPs having minor

allele frequencies w0:01, with population outlier identifiers

removed [18]. For the purposes of this study we examine a

linkage-disequilibrium (LD) pruned set of 5739 SNPs (r2
v0:2) on

chromosome 1, selecting only those that were common to both the

Affy 5.0 and Affy 6.0 platforms. PLINK v1.06 [19] software was

used for this data reduction. The parameters of the three test

populations are given in Table S1.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Estimated FST values for a 100 SNP sliding window for P1:P1 (top), P1:P2 (middle), P1:P3 (bottom). The horizontal dotted line
is the value of FST (crit). Note that although FST is always non-negative, the estimator may become negative for small values of FST .
doi:10.1371/journal.pone.0014802.g004
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Results

We first perform a principal components analysis (PCA) on the

three populations to determine whether the populations can be

distinguished using an unsupervised learning approach. We then

carry out both ANN and SVM supervised learning classifications

on the same three populations.

PCA Classification
We first test for structure within each of our three populations. In

each case the population is divided into two disjoint subsets. For

P1 and P3 each subset consists of 200 samples. In the case of P2,

only 287 samples are available in total, so we divide these into two

subsets of 140 samples each. We do not remove any residual (post

QC) outliers, in order to maximise any signal.

In all three cases we find that the estimated FST values are

vanishingly small, less than 0.0001 even when all 5739 SNPs are

used. In no case do the estimated levels of FST exceed FST (crit).
By comparison a recent study [20] found values ranging as high as

0.023 across Europe. The ANOVA p-values for the three

populations P1, P2, and P3 are 0.050, 0.559 and 0.022

respectively. Although two of these p-values fall at or below the

conventional threshold of 0.05 this does not in itself imply the

ability to detect structure in the absence of a reasonable effect size.

The PCA plot for the most significant case (p = 0.022) shows that

the populations do not separate ( Figure S1). We conclude that

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Estimated FST values for a 500 SNP sliding window for P1:P1 (top), P1:P2 (middle) and P1:P3 (bottom). The horizontal dotted
line is the value of FST (crit).
doi:10.1371/journal.pone.0014802.g005
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PCA fails to detect structure between the subsets tested in each of

our three populations; that is, each population is essentially

homogeneous.

We next test for differences between our three populations. We

perform a sliding window PCA analysis with non–overlapping

windows of length 50, 100 and 500 SNPs. The estimated FST

values are plotted in Figures 3, 4 and 5 with the corresponding

critical value shown for comparison.

The estimated FST is negligible at the 50 SNP level, except for

one window about halfway along the chromosome, and even here

it does not approach FST (crit). Some signals are visible for the

P1:P3 comparison at the 100 SNP level, but FST (crit) is exceeded

in only one window. At the 500 SNP level the PCA analysis can

distinguish between the P1 and P3 populations, with the estimated

FST exceeding FST (crit) everywhere along the chromosome but

the P1:P2 comparison still shows negligible signal. The full results

from this analysis are given in Table S2. Sample PCA plots

showing the BBP transition given in Figures S2–S4 and S5–S7.

We may summarise the results of our PCA analysis as follows.

As expected, no internal structure is detectable within any of the

three populations. Moreover, PCA is unable to distinguish the two

Scottish populations even when using the full input set of 5739

SNPs. The two Scottish populations can, however, be distin-

guished from the Bulgarian population, given an input data set of

around 500 SNPs, anywhere along the chromosome.

ANN Classification
We next attempt to classify the same data using the ANN. The

pre-classified data available is divided into a training set used to train

the network and a hold-out set used to assess the accuracy of the

network after training. Since we merely wish to determine whether

the ANN is able to classify or not, it is desirable to to maximise the

size of the training set while retaining a large enough testing set to

ensure statistically meaningful results. In practice we find that a

ratio of 80% : 20% to be satisfactory and all the results presented

here use this ratio.

As with the PCA analysis we use samples of 200 from each

population, except in the P2:P2 case, where we use 140 for each

sub-population. We perform multiple repetitions of the network

training, drawing a different random starting point (of the weights

and biases) on each occasion. In this way we are able to obtain an

ensemble of trained classifiers from which we can draw a standard

1s error on the network classification. For all of the results below

we use w20 repetitions. We present all of our results in terms of %
accuracy of classification on the hold-out set, where 100% defines

a perfect classifier and 50% is no better than random.

To explore the variation of classification across the chromosome

we use an input set of non-overlapping windows each containing

50 SNPs. Figures 6–8 show the classification rate along the

chromosome for each population combination. In addition each

figure illustrates a reference null classification of two sub-samples

Figure 6. Classification with windows of 50 contiguous, non-overlapping SNPs for P1 against P2 (solid lines) with classification
results for a sample of P1 against P1 (dotted lines) shown for comparison. The regions enclosed between the lines illustrate 1s confidence
intervals.
doi:10.1371/journal.pone.0014802.g006

Figure 7. Top panel shows classification with windows of 50 contiguous, non-overlapping SNPs for P1 against P3 (solid lines) with
classification results for a sample of P3 against P3 (dotted lines) shown for comparison. The regions enclosed between the lines illustrate
1s confidence intervals.
doi:10.1371/journal.pone.0014802.g007
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from each of the three populations to demonstrate the internal

homogeneity of each population.

It is notable that a classification rate of w80% is achieved across

the majority of the chromosome for both populations P1:P2 and

P1:P3. This demonstrates that the network can successfully

amplify a much weaker, intra-Scottish population signal to roughly

the same level as that obtained for the Scotland-Bulgaria

comparison.

We next investigate the variation in performance as the window

size is varied. Figure 9 shows results for the classification of P1:P2

with window sizes of 20, 50 and 100 SNPs.

For a window size of 20, one sees considerable structure along

the chromosome, with some regions classifying well, and others

poorly. As the window size increases, with each window now

containing both ‘‘good’’ and ‘‘bad’’ regions, we find that the

classification rate converges to the best, rather than the worst rate.

This shows that even when the network is presented with a large

window that contains a small proportion of informative SNPs it

can successfully filter out the extraneous inputs and produce a

classifier with the same level of accuracy as would have been

obtained with a reduced set of informative inputs. This feature has

many important implications within genetics where data is often

noisy or incomplete.

It is common in signal processing to represent the efficiency of a

classifier graphically, using a receiver operating characteristic

(ROC) curve which plots the true positive rate (TPR) versus the

false positive rate (FPR) for increments of the classifier’s

discrimination threshold. The default threshold is normally 0:5,

but variation of this criterion allows classifiers to be tuned to

minimise the FPR while simultaneously maximising the TPR. An

ideal classifier has a ROC curve that resembles a step-function

with a TPR of 1:0 for all values of the threshold, while the ROC

curve for a random classifier is a line with slope of unity from a

TPR of 0 to 1. Figures 10 and 11 illustrate the ROC curves for the

network classifier in two different regimes along the chromosome

spectrum. Figure 10 shows the ROC curve of the classifier trained

Figure 8. Top panel shows classification with windows of 50 contiguous, non-overlapping SNPs for P2 against P3 (solid lines) with
classification results for a sample of P2 against P2 (dotted lines) shown for comparison. The regions enclosed between the lines illustrate
1s confidence intervals.
doi:10.1371/journal.pone.0014802.g008

Figure 9. Classification with windows of 100 (dot-dashed), 50 (dashed) and 20 (solid) contiguous, non-overlapping SNPs for P1
against P2. Note that as the window size increases, the accuracy converges to the most accurate classification, indicating that the ANN is
successfully discarding irrelevant information. For clarity we have added an offset to each spectrum and omitted the ordinate axis, the horizontal lines
represent 100% classification in each case.
doi:10.1371/journal.pone.0014802.g009
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using the first 50 SNPs. As is evident from Figures 6–8 this region

produces a classifier that is capable of distinguishing the two

population groups at the 90% level. The quality of this classifier is

then clearly discernible by a ROC curve that approaches a step-

function. For comparison we performed the same test on a part of

the chromosome spectrum where the classifier was relatively poor,

at a SNP window of 1950{2000. This ROC curve, shown in

Figure 11 appears very close to the random classifier line, as would

be expected. Along with multiple network realisations computed

for each classifier these tests provide a useful way to confirm the

stability of the classifiers.

The architecture of our three layer network is determined

entirely by the number of nodes in the hidden layer. This number

in turn can be estimated from the Bayesian evidence. We find that

our results are insensitive to the number of hidden nodes. In fact,

reducing the number of hidden nodes from 20 to zero results in

negligible degradation in performance, indicating that the signal

we detect is essentially linear. It is of course possible to identify

such a linear signal using PCA for example, given a signal of

sufficient strength, as was demonstrated in the earlier part of this

paper. The reason for the increased sensitivity of our ANN here is

its utilisation of our prior knowledge of class membership and its

efficiency in exploring the space of all possible linear (and non-

linear) mappings and identifying the choice that maximises the

classifier’s sensitivity automatically.

In summary, we find that the ANN exhibits considerably

greater sensitivity than PCA. In particular, while PCA cannot

distinguish between the two Scottish populations, the ANN can do

so given fewer than 100 SNPs. Moreover, the ANN can classify on

a dataset well below the BBP limit. Furthermore, as we have seen,

the ANN can also efficiently eliminate noise. Our results indicate

that the signal the ANN is identifying is linear, but nevertheless too

weak for PCA to detect.

SVM Classification
In view of the fact that the dominating signal in the data is

linear, we would expect the SVM to perform equivalently. We do

not repeat the entire analysis here, but simply show the sliding

window analysis for the population combination P1 and P2 in

Figure 12 (with the equivalent ANN results for comparison in

Figure 13). Since the SVM for a given dataset is entirely

deterministic it is not possible to generate multiple realisations of

the classifier and thus build up 1s confidence intervals. However it

is clear that SVM performs comparably with the ANN on this

dataset, locating strikingly similar features in the classification

spectrum across the chromosome. It is also of interest to compare

the speed of each method. The SVM takes roughly 10 seconds to

build a classifier on a 50 SNP window, using a currently standard

desktop computer. A single iteration of the ANN takes a roughly

equal amount of time, with 1s limits being generated in a niterations

multiple of this time.

Discussion

We demonstrate in this paper that supervised learning

classification is to be preferred to unsupervised learning in

genetics, when we have an a priori definition of class membership

from some non-genetic source. The classification then serves to

determine whether or not the pre-defined populations are genetically

distinguishable.

Both the techniques investigated in this paper (SVMs and

ANNs) significantly outperform PCA on the data presented here.

It is noteworthy that the sensitivity of these methods exceeds the

conjectured BBP limit on the sensitivity of supervised approaches.

Although ANNs have been previously discussed in the context

of genetics, they have yet to come into common use in this field.

This is probably due, in part, to the limited number of input nodes

that it was possible to handle, and in part to the difficulty of

determining the optimal network architecture. Our ANN allows us

to handle very large numbers of inputs, an essential feature in

many applications in genetics. The problem of deciding on the

Figure 10. Receiver Operating Characteristic (ROC) curve, that
is a plot of true positive rate (TPR) against false positive rate
(FPR) of the neural network classifier trained using the first 50
SNPs using P1:P2 (solid curve). A random classifier (dotted curve) is
shown for comparison.
doi:10.1371/journal.pone.0014802.g010

Figure 11. Receiver Operating Characteristic (ROC) curve of the
neural network classifier trained using 50 SNPs form 1950 to
2000 also for P1:P2 (solid curve). A random classifier (dotted curve)
is shown for comparison.
doi:10.1371/journal.pone.0014802.g011
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optimal network architecture, much discussed by previous authors,

reduces, in the case of a 3-layer network, to deciding on the

number of hidden nodes; the MemSys package provides a rigorous

method of determining this number.

In the event, we observe a predominantly linear signal on this

dataset, easily detectable by both SVM and ANN but too weak to

be detected by PCA. In a sense, this is be expected, since the SVM

and ANN utilise our prior knowledge of class membership to find

the optimal linear mapping for classifying the data. In the absence

of such prior information, PCA finds the linear mapping that

maximises the variance; this is not necessarily the optimal

mapping. However the sensitivity of the supervised methods and

the small number of SNPs that they need in order to classify

efficiently is noteworthy. A further important consequence of this

fact is that the SVM and ANN can localise the sources of genetic

difference along the chromosome and indeed the results of both

methods are consistent with each other in this respect.

The linearity of the signal means that the SVM and ANN

perform comparably. (The main novelty here is the large number

of inputs that our ANN can accept). This linearity is not altogether

surprising, since non–linear effects would arise as a result of long–

range correlation between loci. The relatively small size of our

SNP windows greatly reduces the probability of seeing such

correlations. (Short range correlations, which arise from linkage

disequilibrium, carry no useful information and were eliminated

by LD pruning our data).

When a linear signal is present, both the ANN and the SVM

can classify with equal efficiency and we recommend that both be

considered for use in genetic classification. The ANN, however,

possesses three advantages over the SVM. Firstly the stochastic

nature of the classification means that we can place confidence

limits on our results. Secondly, the ANN supplies explicit

probabilities for the classification of each individual. This provides

the potential to ‘‘clean’’ our datasets by removing those individuals

who classify with very high (or very low) probability. Thirdly, the

ANN is capable of being applied to more general datasets where

non–linear signals are significant.

It is noteworthy that the supervised learning methods are able to

classify individuals from two populations within Scotland. One

would expect sufficient gene flow to occur within this region to

homogenise the populations. The differences detected are not

necessarily due to ancestry, but may be a consequence of the fact

that the two population samples were drawn from different

datasets, genotyped on different platforms, at different sites. These

differences, whatever their origin, are nevertheless too small to

detect using PCA, but in many applications the presence of such

differences may be of critical importance.

The behaviour of our ANN in the presence of significant non–

linear effects remains to be investigated; one possible target is the

common disease common variant (CDCV) model of complex

diseases. These are associated with many common genetic

variants, each of individually small effect. Interactions between

Figure 12. SVM classification with windows of 50 contiguous, non-overlapping SNPs for P1 against P2 (solid lines) with
classification results for a sample of P1 against P1 (dotted lines) shown for comparison.
doi:10.1371/journal.pone.0014802.g012

Figure 13. ANN classification with windows of 50 contiguous, non-overlapping SNPs for P1 against P2 (solid lines) with
classification results for a sample of P1 against P1 (dotted lines) shown for comparison.
doi:10.1371/journal.pone.0014802.g013
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these variants are likely to result in non–linear effects suitable for

study with ANNs.

We suggest, on the basis of the evidence presented in this paper,

that supervised learning methods have a useful role to play in

genetic applications where we are interested in differences between

pre–defined groups of individuals. Possible applications include

population genetics, case–control studies and quality control for

genetic data gathered at different sites or on different platforms.

Additional Information
Software. The LIBSVM library of SVM routines is publicly

available [17]. The MEMSYS algorithms can be made available for

academic use. We have developed an interface to both the

MEMSYS and LIBSVM packages for our specific genetic

application and are currently developing it for more general

applications. We would be happy to collaborate with interested

parties to facilitate this development process.

Supporting Information

Figure S1. Intra- population projection of the P3 population

(5739 SNPs, p = 0.022), along the two most significant axes. It is

clear that despite the nominally significant p-value, the two sub-

populations fail to separate along these axes.

Found at: doi:10.1371/journal.pone.0014802.s001 (0.02 MB EPS)

Figure S2. Inter-population projection of the P1 and P2

population along the first most significant set of axes for each

value of N. FST(crit) is never exceeded and the populations do not

separate.

Found at: doi:10.1371/journal.pone.0014802.s002 (0.02 MB EPS)

Figure S3. Inter-population projection of the P1 and P2

population along the second most significant set of axes for each

value of N. FST(crit) is never exceeded and the populations do not

separate.

Found at: doi:10.1371/journal.pone.0014802.s003 (0.02 MB EPS)

Figure S4. Inter-population projection of the P1 and P2

population along the third most significant set of axes for each

value of N. FST(crit) is never exceeded and the populations do not

separate.

Found at: doi:10.1371/journal.pone.0014802.s004 (0.02 MB EPS)

Figure S5. Inter-population projection of the P1 and P3

population along the first most significant set of axes for each

value of $N$. The populations separate as FST(crit) is exceeded.

Found at: doi:10.1371/journal.pone.0014802.s005 (0.02 MB EPS)

Figure S6. Inter-population projection of the P1 and P3

population along the second most significant set of axes for each

value of N. The populations separate as FST(crit) is exceeded.

Found at: doi:10.1371/journal.pone.0014802.s006 (0.02 MB EPS)

Figure S7. Inter-population projection of the P1 and P3

population along the third most significant set of axes for each

value of N. The populations separate as FST(crit) is exceeded.

Found at: doi:10.1371/journal.pone.0014802.s007 (0.02 MB EPS)

Table S1. Parameters of the reduced dataset used for analysis.

Found at: doi:10.1371/journal.pone.0014802.s008 (0.00 MB

TXT)

Table S2. PCA results for inter-population tests. PR and PC are

the reference and comparison datasets, MR and MC the respective

sample sizes and N the number of SNPs used. FST(crit) is the value

of FST at which the phase transition is expected. \hat{F}ST is the

estimate of the FST and SE is its standard error. Pval is the

ANOVA p-value. The 50 SNP and 500 SNP sets were a

contiguous set starting from the 1000th data point along the

chromosome. Note the sharp drop in p-value at the BBP transition

when \hat{F}ST exceeds FST(crit).

Found at: doi:10.1371/journal.pone.0014802.s009 (0.00 MB

TXT)
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