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Abstract. Task delegation is essential to many applications, ranging from outsourcing of work to the design of routing protocols.
Much research in computational trust has been devoted to the generation of policies to determine which agent should the task be
delegated to, given the agent’s past behaviour. Such work, however, does not consider the possibility of the agent delegating the
task onwards, inducing a chain of delegation events before the task is finally executed. In this paper, we consider the process of
delegation chain formation, introducing a new algorithm based on quitting games to cater for recursive scenarios. We evaluate
our proposal under various network topologies, consistently demonstrating its superiority with respect to recursive adaptations
of existing multi-armed bandit algorithms.
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1. Introduction

In pursuing a goal, agents may delegate some tasks
to others, as the delegator may believe that the delega-
tee is more capable of successfully executing the task.
While existing work typically assumes that the delega-
tee would perform the task, this may not always be the
case. Instead, the delegatee may act as an intermediary,
delegating the task onwards to others who are better
suited to executing it. This type of recursive delegation
has — to our knowledge — rarely been considered in
the multi-agent systems community, though it captures
a common situation where, for example, projects are
repeatedly contracted and subcontracted within or be-
tween organisations.

Existing approaches to trust are poorly suited to op-
erating in domains where recursive delegation is pos-
sible, as 1) agents within such a system must decide
whether to execute a task or delegate it further (as op-
posed to simply executing a task delegated to them); 2)
delegators must learn about the competencies of their
neighbours with respect to both delegation and execu-
tion (as opposed to learning about competency of ex-
ecution only), while accounting for the learning pro-
cess that their neighbours simultaneously undertake;
and 3) the topology of the network of possible interac-
tions may change (while most existing approaches fo-

*Corresponding author. E-mail: r01jca16@abdn.ac.uk.

cus on delegating only to the most competent neigh-
bouring executor). In these scenarios, the likelihood of
a task being successfully executed can change rapidly,
meaning that delegation decisions in such domains are
difficult to make.

In this work, we propose an algorithm that explic-
itly considers recursive delegation by building on quit-
ting games [1]. We then compare the performance of
this algorithm to several existing techniques, empir-
ically demonstrating its improved behaviour. In this
work, we do not consider reputation, but only direct
trust observations. Therefore, evaluating our algorithm
against many existing trust and reputation-based ap-
proaches [2] is inappropriate. Instead, our evaluation
employs partner-selection procedures modelled after
multi-armed bandits; namely ε-greedy [3], UCB1 [4],
Thompson Sampling [5], and a numerical implementa-
tion of the Gittins Index [6].

The remainder of the paper is structured as follows.
We describe our benchmarks in Section 2. In Section
3, we present our new quitting-game based algorithm
alongside the general framework for adapting the ban-
dit approaches to the delegation domain —via Brezzi
and Lai’s numerical approximation to the Gittins In-
dex. We then evaluate the different approaches in Sec-
tion 4. We discuss our results and situate them within
existing work in Section 5, before concluding in Sec-
tion 6.
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2. Background

The problem of task delegation among partners
with unknown competencies can be viewed as an ex-
ploitation/exploration problem. A delegator must de-
cide whether to delegate a task to a known partner (ex-
ploitation), or risk delegating to an unknown partner in
the hope of a better outcome (exploration). A common
framework for modelling precisely this class of prob-
lem is offered by multi-armed bandit (MAB) models,
which we describe next.

2.1. Multi-Armed Bandits

A multi-armed bandit problem represents a situa-
tion where a single agent must repeatedly select from
among several courses of action, and then obtains a re-
ward. The repeated execution of an action can affect
the rewards it yields, an effect modelled by a random
variable which — whenever the action is performed —
can cause a change to occur in the reward state under-
pinning the action. In the MAB model, each potential
action is referred to as an arm, while choosing the ac-
tion is referred to as pulling an arm.

Definition 1 (Multi-Armed Bandits — Arms). An
arm A is a tuple 〈X, r, h, f 〉 where X is an ordered list
of possible states of the arm, and r is a probability dis-
tribution over possible rewards, parameterised by X.

The history of the arm, h, is a set of pairs (xh, lh)
where lh ∈ Z is the number of times the arm was pulled
while in the state indexed by xh. The current state of the
arm is the state associated with the largest index of the
arm’s history with a non-zero lh.

Denoting the set of all possible histories as H, and
the index of the current state of the arm as x, f is a
probability distribution over the states [xh, xh+1] pa-
rameterised over H.

Definition 2 (Multi-Armed Bandits — Pulling an
arm). Pulling an arm with current state xi and history
h = [(x1, l1), . . . , (xi, li), (xi+1, 0), . . . (xn, 0)] will up-
date the arm’s history to h′ as follows:

h′ =
{
[(x1, l1), . . . , (xi, li + 1), (xi+1, 0), . . . (xn, 0)] if f (h) = x
[(x1, l1), . . . , (xi, li), (xi+1, 1), . . . (xn, 0)] otherwise

A multi-armed bandit is a setA of arms. The number
of times each arm was pulled starts at zero. Pulling an
arm updates the arm as described above, and — given
the arm is in state x — yields a reward R with likeli-
hood r(x, R).

A policy specifies which arm should be pulled next.
More formally, a policy is a function S : [a1, . . . , an]×
[r1, . . . , rn] → A, which takes in a sequence of arm-
pulls and the rewards obtained so far, and returns the
arm to pull. The main problem considered in the MAB
literature involves identifying a policy which is in some
sense optimal, e.g., which maximises rewards, or min-
imises regret. It has been long established that if the
states of a MAB and the probability distribution of its
rewards are known, the Gittins Index can be used to
identify the optimal arm to pull [6].

Formally, the Gittins Index for arm i in state xi, with
a discount factor for future rewards of β, is defined as
follows:

G(xi) = supσ>0
E[
∑σ−1

t=0 βtr(xi)|(x0, 0)]

E[
∑σ−1

t=0 βt|(x0, 0)]

The Gittins Index computes the expected reward of
pulling arm xi against the cost of not pulling it, and thus
identifies the arm with the highest expected reward
as the one that should be pulled. Calculating the Git-
tins Index is computationally expensive [6], and vari-
ous numerical approximations have therefore been pro-
posed in the literature [7, 8].

More importantly, in practice, the probability distri-
bution of the rewards and the states of each arm may
not be known. In this case, the Gittins Index may be
used as a heuristic based on beliefs about rewards and
arm states, which means that different ways of calcu-
lating these beliefs will result in different procedures
with very distinct properties. We now describe several
such heuristics addressing the MAB problem, namely
UCB1 [4], ε-greedy [3], and Thompson Sampling [5].
We will compare the performance of our approach to
these heuristics in Section 4.

2.2. MAB Heuristics

We begin this section by briefly describing several
well-known MAB heuristics. In Section 3 we detail
how these heuristics must be modified to deal with re-
cursive delegation.

UCB1. Rather than simply maximising rewards, up-
per confidence bound (UCB) algorithms, exemplified
by UCB1 [4] which we consider in this paper, attempt
to minimise decision-theoretic regret — the difference
between the expected reward obtained had the opti-
mal arm been pulled, and the expected reward of some
other arm-pulling policy, where the optimal reward is
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the result of the operation of a MAB under complete
and perfect information. In turn, the rewards obtained
by following the (theoretically) optimal strategy is re-
ferred to as the oracle’s prediction.

UCB1 is simple to implement and works well in
practice, achieving logarithmic growth of regret in the
number of arm-pulls. For an arm j, UCB1 tracks the
average reward obtained from that arm (µ j), and the
number of times the arm has been pulled (n j), as well
as the total number of times an arm-pull has occurred
(n). It then picks arm j, so as to maximise an upper
bound on the mean expected reward given by the fol-
lowing equation [4]:

µ j +

√
2 ln n

n j

This choice guarantees that the probability of de-
viating from the population mean decays exponen-
tially through time, in accordance with the Chernoff-
Hoeffding inequality [9]. Once the arm has been
pulled, µ j, n j and n are updated to identify the next
choice.

Thompson Sampling. This is another simple approach
to selecting an arm, which does so by sampling an ex-
pected reward based on the arm’s history, before select-
ing the arm whose sample reward is maximal. To per-
form such sampling, a probability distribution over the
arms is required [10]. In this work we consider binary
rewards, and we therefore perform our sampling using
Beta distributions, whose parameters record the num-
ber of times the arm returned a reward, and the number
of times it did not. Thompson samples each arm using
this probability distribution, and then selects the arm
that delivers the highest expected sampled reward.

ε-Greedy. This heuristic selects the arm that yields
the highest expected reward with likelihood 1 − ε [3],
and picks a random arm otherwise. It is important to
note that this heuristic differs from Thompson Sam-
pling in that no sampling over the arms takes place,
meaning that the best arm (with regards to their ex-
pected rewards) is always selected, unless a random
arm is chosen (with likelihood ε).

All of the heuristics described above seek to balance
exploitation — selecting the arm most likely to give a
high reward — with exploration — the contemporane-
ous learning of an arm’s likelihood to deliver the high-
est expected reward. If the distribution governing the
reward an arm provides is stationary, then these heuris-
tics work well and give well-understood convergence
guarantees. However, in the case of recursive delega-

a

c

b

f g

h

Fig. 1. A network of agents illustrating possible delegation links.
Dotted lines indicate links to dummy agents which, when delegated
to, execute the task. Red indicates a single delegation chain from a
to h.

tion, agents at each level learn simultaneously, imply-
ing the violation of the stationarity assumption — at
least until the learning stage ends. It is for this rea-
son that these heuristics function poorly when applied
to recursive delegation. In order to apply them to the
domain of recursive delegation we must — in some
sense — unify the delegation/execution decision. We
describe one simple approach to doing so next.

2.3. Applying MAB Heuristics to Recursive
Delegation

Agents able to delegate to others must make two
choices when tasked with an action, namely whether to
execute the action themselves, or delegate it onwards
(and in the latter case, must also decide who to delegate
to). Each agent has a list of delegatees to which they
can delegate a task. By equating the delegatee agents to
neighbours of the delegator, we obtain a directed graph
over which a path represents a sequence of delegations.

We unify the execution/delegation decision by as-
sociating a dummy agent with every (nominal) agent
in the system. Such an agent acts as the de facto del-
egatee, but has no delegatees of its own. This means
that any task reaching the dummy agent must be exe-
cuted, and we treat this execution as having been per-
formed by the associated nominal agent (which del-
egated the task to the dummy agent). Figure 1 illus-
trates a sample delegation network consisting of 6
agents {a, b, c, f , g, h}, together with their correspond-
ing dummy counterparts as solid nodes. Given this rep-
resentation, one possible sequence of delegations, or
delegation chain, is 〈a, f , g, h〉 in red.

To use the heuristics described above in a recur-
sive context, agents make a local delegation decision,
choosing whom to pass the task to based only on
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their neighbours’ potential to become delegatees. If a
dummy agent receives the task, then it is executed,
and feedback on success or failure is provided to every
agent along the delegation chain. From thereon, each
agent updates the statistics relevant to its delegation
decision with respect to its neighbours, and the pro-
cess repeats. Clearly, this approach prevents an agent
from considering how others within the chain make de-
cisions, and we claim that this affects the effectiveness
of MAB heuristics in scenarios of recursive delegation.

2.4. Quitting Games

In the next section, we will formulate an alternative
approach to delegation which explicitly considers the
actions available to agents through a game-theoretic
mechanism based on quitting games [1]. Quitting
games are multi-player stochastic games where players
are faced with two choices, namely to continue (c) or to
quit (q). The game ends and the players obtain rewards
in two situations: whenever a quit action occurs, or the
game reaches some terminal time. If the game does not
end after the players have selected their moves, i.e.,
they both simultaneously select continue actions, an-
other iteration occurs where players act again, repeat-
ing this process until termination. Figure 2 illustrates
a generic two-player quitting game between agents a
and b.

The first entry in each terminal node appearing in
Figure 2 corresponds to the reward accrued to a, the
other denotes b’s reward. Whenever (ca, qb) is played,
a receives rca and b obtains rqb , whereas (ca, cb) leads
to yet unrealised rewards denoted by “	". Agents a
and b plan future moves by formulating strategies
based on the anticipation of potential ε− equilibria.

Definition 3 (Quitting Game — Strategies). At every
iteration t within a time horizon T , each player i is
provided with a set of actions Ai = {ci, qi}. A strategy
is a probability measure xi

t : T → [0, 1] denoting the
likelihood of playing ci at iteration t.

Definition 4 (Quitting Game — ε-equilibrium). A
profile or vector of strategies xt, produces a stream of
rewards rS t , contributed by those players S t who have
chosen not to quit the game, giving rise to an expected
reward vi

t(xt) := Ex[rS t ]. A solution concept states the
criteria for playing a particular profile. ε-equilibrium
is the solution concept employed when solving a quit-
ting game. A profile xt is an ε-equilibrium if the ex-
pected reward it yields plus an overhead εt > 0, is at

a

qa

b

qb

a

qa ca

cb

ca

rqa , rqb

rca , rqb

rqa , rcb 	

Fig. 2. Quitting Game in Extensive Form

least that of any other strategy yi
t for every player i:

vi
t(xt) > vi

t(x−i
t , yi

t)− εt.

Note that if εt = 0, the above expression produces
a Nash equilibrium. ε-equilibria can be further qual-
ified as cyclic if there exists a point in time τ ∈ T
when xi

t = xi
t+τ, or stationary if xi

t = xi
0 for each

t ∈ T . For instance, given rqa > 0, rca < rqb , rqa < rca ,
and rcb > rqb , the stationary profile (xa, cb), xa

t � 1
is an ε-equilibrium of the game in Figure 2. More
generally, every quitting game where players prefer
unilateral termination to indefinite continuation, has a
cyclic subgame perfect ε-equilibrium [1], while every
two and three-player quitting game has a stationary ε-
equilibrium [11].

In the next section, we describe how such quitting
games and their associated solution concepts can be
used to underpin an algorithm for recursive delegation.

3. Approach

As indicated in Section 2.1, the problem of task dele-
gation can be seen as an exploitation/exploration prob-
lem in the spirit of MABs, where delegators choose be-
tween delegating the task to competent partners (ex-
ploitation) or delegating the task to unknown partners
(exploration). In this section we present an algorithm
for recursive delegation based on quitting games. After
this, we describe how the Gittins Index can be adapted
to the recursive delegation domain, allowing us to per-
form an evaluation of the differing approaches in Sec-
tion 4.
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a

ea

b

eb db

da,b

c

ec

m

em dm

dc,m

n

en dn,·

dc,n

da,c

ra

rb, ra,b ra, 0 rc, ra,c

rm, ra,c, rc,m ra,c, rc,m rn, ra,c, rc,n 	

Fig. 3. Delegation Game in Extensive Form

3.1. Delegation as a Quitting Game

Quitting games are readily adaptable to recursive
delegation, as they represent the occurrence of self-
embedded instances of strategic interaction, resem-
bling the replication of delegation requests along a del-
egation chain. That is, if a delegator (a) and a potential
delegatee (b) were to play a quitting game to determine
whether to delegate a task or not, the profile (ca, cb)
would take them both to a new iteration of the same
delegation request. Unlike a standard quitting game,
however, a delegation process requires distinct strate-
gic scenarios, where, e.g., b becomes a delegator facing
a new delegatee. For this reason we have adjusted quit-
ting games to capture this type of interaction, referring
to such a situation as a delegation game.

The players of a delegation game have a delegate
(d) action and an execute (e) action, and their re-
wards depend on future delegate actions. Every pair of
agents populating each instance of the game consists of
one former delegatee acting as delegator, and one new
agent serving as potential delegatee. Delegation games
can only be prolonged by joint actions (di, d j) for every
delegator i and delegatee j — provided there are avail-
able delegatees — and are brought to an end whenever
an execute action occurs, or the terminal time T giving
a time horizon to delegation, is reached. Future actions
are formulated in terms of strategies and the pursuit of
ε− equilibria.

Definition 5 (Delegation Game). A delegation game is
a tuple 〈N, (Ai, ui, ri)i∈N〉. All n ≡ |N| agents, or play-
ers, pair up with each other in accordance with a par-
ticular topology of interaction. A player generating a
delegation request will be referred to as the delegator,
while a player at the receiving end of the delegation
request will be termed a delegatee. Potential delega-
tees within the reach of a delegator are said to be the
latter’s neighbours.

Every iteration of the game comprises several in-
stances of strategic interaction. There are as many in-

stances in a single iteration as there are available del-
egatees. At every iteration t within a time horizon T ,
each player i is provided with a set of actions Ai =
{di, ei}.

Definition 6 (Delegation Game — Strategies). A strat-
egy is a probability measure xi

t : R → [0, 1] indicat-
ing the likelihood of playing di at iteration t. Vectors of
strategies xt are termed profiles.

Definition 7 (Delegation Game — Expected Rewards).
The reward obtained from a delegation by player i at
iteration t to a set of delegatees Dt is represented by
the random variable ri

Dt
.

ui
t : xt−1 × R → ∆(Ai) is a measurable set-valued

function that updates each player’s strategies once an
action e j occurs or a terminal node is reached based
on the rewards obtained. Profiles induce a probability
distribution which permits the computation of the ex-
pected rewards vi

t(xt) = Ex[rDt ].

Figure 3 depicts one iteration of a (deterministic)
delegation game. Agents a, b, c, m and n are arranged
in a tree-like structure, where b and c are a’s neigh-
bours, m and n are c’s neighbours. b and m have no
neighbours, and n is linked to another unspecified tree
which allows delegation to continue. a has to decide
between choosing a delegatee from {b, c} or executing
the task itself i.e., it has to decide whether to play da,b,
da,c or ea. Also note, first, that dummy agents appear
here as the solid unlabeled nodes where execute ac-
tions terminate; and second, that the rewarding scheme
is treated as exogenous to delegation.

Within the game encoded in Figure 3, a can play ea

and perform the task itself. It can also delegate the task
to b, in which case b might accept the task by playing
eb, or not by playing db, thus returning the task to a
and forcing the occurrence of ea. In each case, a and
b receive (ra, 0), (ra,b, rb) and (ra, 0), respectively. Al-
ternatively, a could delegate to c. If n decides to play
en, it receives rn, while c and a obtain rc,n and ra,c. The
rewards of any agent in the delegation chain emanat-
ing from n’s neighbour, will not be realised until some
agent plays an execute action, the delegation process
reaches a terminal node like b, or the time horizon T
is exhausted. Finally, observe that m, being a terminal
node like b, can either accept and execute the task by
playing em, or reject it by invoking dm as no further
delegation can be effected.

When rewards are subject to stochastic processes,
the selection of an action has to be expressed in terms
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of strategic profiles (xt), as in Definition 6. The proba-
bility distribution that these profiles induce is then used
to calculate the expected rewards (vi

t). By maximising
expected rewards in the manner of an ε-equilibrium,
delegators and delegatees select a particular strategy,
which once played causes the respective information
states to update (ui

t). This process is formalised in Al-
gorithm 1.

The input to Algorithm 1 is the set of neighbours
adi ⊂ V to every agent ai ∈ V , along with the re-
spective individual rewards obtained from the interac-
tions. These rewards are values of the random variable
attached to the probabilities of successful execution
which describe an agent’s capabilities in Algorithm 2
and, thus, guarantee a common (stochastic) ground for
comparison. The resulting initial state allows the com-
putation of individual mixed strategies i.e., the prob-
abilities of delegating, whenever pairs of agents and
neighbours engage in a delegation request (line 4).
Thus the strategy xi, j would designate the probability
of successful delegation that agent ai imputes to agent
a j, giving rise to the profile {xi, j} j∈adi ≡ xi ≡ [xt]i in
line 5.

The notation from Figure 3 is preserved except for
r·,1 and r·,0, denoting the rewards of executing the task
given a delegatee’s willingness to further delegate or
not. As long as there are neighbours who have not re-
ceived such a request, despite holding a positive prob-
ability of delegating, the selection of the one with the
highest expected pay-off will take place (lines 6 and 7),
seeking a Nash equilibrium. A random state of nature,
0 < 1 − δ < 1 gives a stochastic choice as to whether
or not the strategy, denoting the probability of playing
d, would be realised (line 8). If capable of executing
the task, as given by a favourable state of nature i.e.,
xi, j > 1 − δ, the chosen agent will have to weigh up
the possibility of passing the task down the delegation
chain or attempting its completion, thereby triggering
a learning process (lines 9-13).

3.2. Delegation as Nested MABs

We now present an adaptation of MABs to recursive
delegation, where each agent makes a local decision
regarding how to delegate based on an approximation
of the Gittins Index. This heuristic, described in Algo-
rithm 2, exemplifies the general structure of the other
bandit algorithms introduced in Section 2.1 later used
as benchmarks in Section 4.

Algorithm 2 is initialised in the same manner as
Algorithm 1. It implements the Gittins Index through

Algorithm 1 Delegation Game (DIG)

Input: Pi := 〈ai, adi〉: Tuple of agents and their
neighbours, r: Array of sampled rewards per tuple.

Output: S i: Sequence of agents receiving a delegation
request originated in agent ai, xi: Agent ai’s array
of mixed strategies.

1: function DIG(Pi, ri)
2: S i ← ∅, xi ← ∅
3: for a j ∈ adi do
4: xi, j =

ri,1−ri,0

ri, j−r j

5: xi ← xi ∪ {xi, j}
6: while ∃ j[(xi, j 6= 0 ∧ ad j 6= ∅)] do
7: m← argmax j∈adi(ri, j)
8: if (1− δ < xi,m) then
9: if am ∈ S i then

10: Update ri,m, xi,m

11: else
12: S i ← S i ∪ {am}
13: return LEARN(Pm, rm; xi)
14: else
15: ai executes the task
16: return (S i, xi)

1: function LEARN(P j, r j; xk)
2: if r j,0 6 r j,1 then
3: a j executes the task
4: Update xk, j, rk, j

5: xk ← {xk,l}l∈adk

6: return (S k, xk)
7: else
8: return DIG(P j, r j)

a beta reputation mechanism captured in lines 15-18,
which feeds the numerical approximation to the index
as specified in lines 7-9. The reputation mechanism is
a counter of successful delegation events, acting as a
wrapper of the index over recursive calls. This mecha-
nism enables delegators to incorporate information on
the chosen delegatees’ capabilities to execute the task,
as given by their corresponding probability of success-
ful execution s(·) (line 15). By comparing s(·) against
the state of nature 1 − δ, delegators induce a series of
binary outcomes resembling line 8 of Algorithm 1.

The main procedure in Algorithm 2 (line 8) is Brezzi
and Lai’s proposal for computing an optimal MAB pol-
icy [7]. More specifically, given a large number of tri-
als, and a time-discounting rate c ∈ [0.8, 1], sampled
from a uniform distribution between 0.8 and 1 before
entering Algorithm 2, the following closed-form func-
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tion approximates the Gittins Index:

G(T) ≈ µ+

√
µ(1− µ)

T + 1
ψ

(
1

(T + 1)c

)
Here, µ is the mean of the compound distribution of

the random variable indicating a successful delegation,
and ψ(t) identifies the set of iterations for which it
is sub-optimal to continue the exploration of potential
delegatees. This latter function is defined as follows:

ψ(t) =



√
t/2 t 6 0.2

0.49− (0.11t)−1/2 t ∈ (0.2, 1]

0.63− (0.26t)−1/2 t ∈ (1, 5]

0.77− (0.58t)−1/2 t ∈ (5, 15]√
2 log(t)− log log(t)− log(16π) otherwise

ψ : R → R+
0 is a non-negative function whose be-

haviour through time approximates b(s) = (21/2 +
o(1))s as s→ 0 where s is the sample variance. b(·) is
a function that bounds the region where the expected
value of the aggregated sampled rewards attains the
supremum. It is in this sense that ψ(·) is said to provide
an estimate of the optimal stopping boundary [7].

3.3. The Computational Complexity of DIG and DID

As stated in Section 3.1, Algorithm 1 is driven by the
stochastic process dictating the successful completion
of the task. Upon receiving inputs in the form of sam-
pled expected rewards, the algorithm generates a prob-
ability associated with the random variable describing
the corresponding strategy. Strategies are then selected
by performing the calculations in lines 4–5.

The loop containing these, runs in polynomial time
in the number of neighbours |ad j| for every j ∈ N,
but the time complexity of neighbour sampling is
O(nlog(n/δ)).

Lemma 1. Under ε-equilibria, Algorithm 1 displays a
neighbour sample complexity of O(nlog( n

δ
)), given a

state of nature 1− δ for 0 < δ� 1.

Proof. Let us denote the mean optimal reward by r∗,
i.e., the oracle’s prediction, and let v ≡ s−1

∑
t∈s vi(xt) >

r∗ − ε be the mean reward obtained under an ε-
equilibrium. Then we are interested in finding an up-
per bound on the probability of v differing from the
expected value of r∗, i.e., from v∗ = Ex[r∗D].

P(v > v∗) 6 P(v > Ex(rD) + ε/2 ∨ v∗ < r∗ − ε/2)

6 P(v > Ex(rD) + ε/2) + P(v∗ < r∗ − ε/2)

6 2exp(−sε2/2)

Algorithm 2 Dynamically Indexed Delegation (DID)

Input: Pi := 〈ai, adi〉: Tuples of agents and their
neighbours, s: Array of probabilities of successful
execution per tuple, c: Array of time-discounting
parameter per tuple.

Output: S i: Sequence of agents receiving a delegation
request originated in agent ai, νi: Agent ai’s array
of probabilities of successful delegation.

1: function DID(Pi, si; ci)
2: S i ← ∅, νi ← ∅
3: for a j ∈ adi do
4: α j ← 0, β j ← 0
5: µ j ← 0

6: for a j ∈ adi do
7: µ j ← 1

(1+β j/α j))

8: Gi, j ← µ j+
( µ j(1−µ j)
α j+β j+1

)1/2
ψ
(
1/(α j + β j + 1)log(c−1

i )
)

9: m← argmaxk∈adi(Gi,k)
10: if am 6= ai then
11: S i ← S i ∪ {am}, νi ← νi ∪ {µm}
12: return DID(Pm, sm; cm)
13: else
14: Self-execute
15: if sm > 1− δ then
16: αm ← αm + 1
17: else
18: βm ← βm + 1

19: return (S i, νi)

The first two lines follow by construction, the third is a
direct application of the Hoeffding inequality. Choos-
ing a sample size s ≡ 2/ε2ln(2n/δ), the probability of
the sampled expected reward to deviate from the or-
acle’s is bounded by the ratio between the probabil-
ity designating the current state of nature and the to-
tal number of agents i.e., P(v > v∗) 6 δ

n . Given the
loop in lines 6-16 of Algorithm 1 the total time com-
plexity of its sampling procedure is of the order of
O(nlog( n

δ
)). �

Algorithm 2 is subject to the same stochastic process
governing the successful completion of the task. It di-
rectly inputs the counters of successful instances into
a closed-form representation of the Gittins Index, from
which a ranking is obtained and delegatees are chosen.
Like DIG, this process also implies the computation
of a maximal value running in polynomial time in the
number of neighbours |ad j| for each agent a j ∈ V .

The time complexity of neighbour sampling is
bounded above by the ratio between the deviations
from the oracle’s prediction and the sample variance:
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Lemma 2. Algorithm 2 displays a neighbour sample
complexity of O(nlog(logp/q( n

δ
))) given p ≡ (αη +

σ2)/(η2 +σ2) and q ≡ σ2/(η2 +σ2). η > 0 is a mea-
sure of convergence for deviations of the Gittins Index
as appears in line 8 of Algorithm 2, σ2 > 0 is the sam-
ple variance, and 1 − δ for 0 < δ � 1 describes the
state of nature .

Proof. By construction |Gt − Gt−1| 6 η for every
t ∈ {1, . . . , T} and the sequence {Gt,Fk}T

k=1 can be
considered a Doob Martingale [12]. In this new nota-
tion the indexing of agents used in line 8 of Algorithm
2 is replaced with a time index, as our attention is now
centered on the likelihood of approaching the oracle’s
prediction through time. Likewise, {Fk}T

k=1 is a filtra-
tion, or sequence of sub-σ-algebras, defined over the
values the Gittins Index takes on.

Given these observations, motivated by the violation
of the stationarity assumption, we are interested in the
values of the moment-generating function of Gt, con-
ditional on past events. In particular, its expected value
and variance E[(Gt −Gt−1)2|Ft−1] 6 σ2.

Our objective consists in finding an upper bound
on the probability of the expected value of the index
G ≡ E[Gτ|Fτ−1] deviating from the oracle’s prediction
G∗ ≡ E[G∗τ |FT ] —as measured in fractions 0 < α� 1
of sample size units s—, for every τ ∈ {1, . . . , T}:

P(|G − G∗| > αs) 6 exp(−αsh)E[exp(h
T∑

t=1

|Gτ − G∗
τ |)], ∀h > 0

6

(
σ2exp((η− α)h) + exp(−(σ2 + αη)h/η2)

(η2 + σ2)/σ2

)s

6 exp

(
−sD

(
ηα+ σ2

η2 + σ2
,
(η+ σ2)σ2)

(η2 + σ2)2

))

The first line is a direct application of the Chernoff
bound to Doob Martingales. The next one follows from
a refinement of Bennet’s inequality [13], leading in the
limit (h→∞), i.e., when the tightest bound is sought,
to the last line. D(·) is the Kullback-Leiber distance be-
tween the distributions of its two main arguments [14].
With p ≡ (αη+σ2)/(η2 +σ2) and q ≡ σ2/(η2 +σ2),
the rationale applied in Lemma 1 indicates that a sam-
ple size s ∝ p−1 ln(2n/δ)

ln(p/q) = p−1logp/q(n/δ) ensures
P(|G − G∗| > αs) 6 δ

n . The rest of the statement in
Lemma 2 is similarly obtained. �

The shared state of nature summarised in the prob-
ability δ, introduces a common ground for comparing
the two algorithms. DIG displaying higher complexity
than DID would require the following to hold.

ln(n/δ) > logp/q(n/δ) =
ln(n/δ)
ln(p/q)

⇒ p/q > e

⇔ αη > σ2;

This is contradictory for small rates of convergence of
the Gittins Index η � 1. In consequence, our adver-
sarial approach offers theoretical guarantees that, un-
der non-stationarity, potential delegatees can be sam-
pled using less computational resources compared to
the best performing benchmark i.e., the numerical ap-
proximation to the Gittins Index. We leave further in-
vestigation of the effects of different values for these
parameters on the behaviour of the algorithms, for fu-
ture work.

4. Evaluation

Having presented our MAB and quitting-game based
heuristics, we now turn to evaluating their effective-
ness. We begin this section by detailing our experimen-
tal setup, following which we describe the experiments
and their results.

4.1. Experimental Setup

Our evaluation consisted of running the various
heuristics over 1000 trials, i.e., the time horizon was
set to T = 1000 , employing 5 different network con-
figurations assuming 100 different initial states, i.e.,
100 different parameter values for the distributions
specified throughout this section. These networks were
mounted on a graph G = (V, E) whose vertices cor-
respond to a set V of agents organised in m groups
{K0, . . . , Km−1}, resulting in graphs of n ≡ |V| =
|×m−1

i=0 Ki| nodes; a number which, as will be explained
shortly, was set to n = 156.

The groups are also termed levels, across which an
agent a interacts with its neighbours subject to the cri-
teria dictating the formation of the set of edges E, the
topology of the graph and ultimately the structure of
the network. As a general convention, the agent who
makes the first delegation request is termed the root.
We considered the following network topologies:

Directed Trees (DT): Agents are arranged in a parent-
child relation of precedence, spanning over 4
levels of size 5 . A directed tree is a tuple 〈G,�〉,
where m = 4, |Kl| = 5l and a ' b for every
a, b ∈ Kl and l ∈ {0, 1, 2, 3}. a � b iff i < j for
a ∈ Ki and b ∈ K j, in which case a and b are
treated as delegator and delegatee, respectively.
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Random Networks (RN): Agents are allowed to ran-
domly form their own neighbourhoods. A ran-
dom network is a tuple 〈G, P〉, where P ∈
∆(A(·)) is the probability distribution induced
by the set of strategic profiles stipulated in Defi-
nition 6 and Algorithm 1. In the case of the MAB
benchmarks P ∼ Beta(α, β), as stated in Section
3.2. Both probabilities indicate the likelihood of
choosing a neighbour from the set of agents pop-
ulating remote levels i.e., those agents not yet
chosen as delegatees. The simulations start off
with the root agent and 155 potential delega-
tees, each choosing their neighbours from sam-
pled subsets of size 5.

Regular Lattices (RL): Agents are arranged in regu-
lar tilings delineating their corresponding neigh-
bourhoods. A regular lattice is a tuple 〈G, C〉.
Each agent is assigned a label indicating its
location with respect to the root, e.g. a →
(a0, . . . , am−1) such that 0 6 ai < |Ki| for
every 0 6 i < m. C establishes a relation
of connectivity between pairs of agents. z →
(a0, . . . , ai + 1, . . . , an−1) is connected to a, or
zCa, if ai 6 Ki − 1. Likewise a is connected
to b → (a0, . . . , ai − 1, . . . , am−1), or aCb, if
ai > 0. For the purpose of the simulations m = 4
and |Kl| = 39.

Periodic Lattice (PL): Agents are arranged over lat-
tices with identified edges in the shape of a torus.
A periodic lattice is a tuple 〈G, T 〉 functioning
with the same mapping of coordinates. The con-
nectivity relation T , however, is characterised
by "wraparound" edges connecting every node
to 2m neighbours, i.e., the representative agent a
is connected to nodes z → (a0, . . . , i, . . . , am−1)
and b → (a0, . . . , j, . . . , am−1), where i ≡
(ai−1)mod|Ki| and j ≡ (ai+1)mod|Ki|. For the
purpose of the simulations m = 4 and |Kl| = 39.

Scale-Free Networks (SF): Agents interact on a pre-
defined structure where neighbours have been
added to the network with probability propor-
tional to the in-degree of already existing agents.
A scale-free network is a tuple 〈G, D, k, γ〉,
where the degree of a node is defined as da ≡
deg(a) for every a ∈ σ(V). That is, da counts
the number of potential delegatees in a’s neigh-
bourhood for some permutation σ(V). D =
{d1, . . . , dn} denotes the increasing degree se-
quence of the graph, satisfying a power law re-
lationship of the form idγi = k for k, γ > 0 and
0 6 i 6 n − 1 [15]. For the purpose of the

simulations n = 156, γ ∼ U(0.41, 0.65) and
k ∼ U(0.21, 0.45) [16].

Directed Trees offer a structured environment for ac-
commodating agents who establish a relation of prece-
dence upon delegating. Delegators appear as parent
nodes of delegatees whose neighbours cannot be di-
rectly reached by the former. In this sense, Directed
Trees describe hierarchical arrangements of agents suf-
fering from myopic planning — the product of incom-
plete information about the network structure.

Regular Lattices designate alternative neighbouring
patterns with higher degree of connectivity. The result-
ing mesh-like arrangements of agents preclude the oc-
currence of circuits and cycles only when the root is
placed along the edges of the lattice. A behaviour that
cannot be prevented in Periodic Lattices, on account
of their toroidal topology achieved through the identi-
fication of the opposite edges of the underlying Regu-
lar Lattice. Periodic Lattices are suitable for modelling
delegation under imperfect and incomplete informa-
tion — instances where future and past delegatees can-
not be known and where their objectives are unclear.

When delegation is inscribed in Scale-Free Net-
works, agents enjoy greater connectivity accentuating
their potential to either perform or delegate a task. The
process of growing Scale-Free Networks while pre-
serving the original power law distribution, induces
scale-invariant interactions highlighting individual pat-
terns of delegation. It is worth emphasising that in our
context this organising principle is presupposed rather
than obtained through interaction.

Spontaneous neighbouring is achieved through Ran-
dom Networks. The root triggers the formation of the
network by sampling subsets from V of size equal to
the prespecified branching factor. The probability of
delegating arising form each algorithm is also used as
the probability of spanning an edge from a delegator to
a delegatee. To this extent Random Networks are dis-
covered as agents delegate — they are formed a poste-
riori.

We experimented with different parameters for each
of the heuristics. For ε-greedy, ε takes on values be-
tween 0.05 and 0.1 [3]. Thompson Sampling was re-
covered from a Bayesian variation of the same algo-
rithm with no exploration. The discount factor in DID
ranged within [0.8, 1] so as to remain consistent with
the closed-form approximation to the Gittins Index [6]

The initial probabilities of delegation were sam-
pled from an uninformative Beta distribution. For each
heuristic, we measured the probability that a delega-
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tion would be successful after the nth iteration (aver-
aged over the 100 runs), as well as the regret value
for the action. The probabilities of successful execu-
tion, employed in Algorithm 2, correspond to the den-
sity function induced by random variables describing
an agent’s capabilities. Once normalised to avoid divi-
sions by zero and negative values, these random vari-
ables are used to obtain the mixed strategies in Algo-
rithm 1. Regret is computed as the difference between
the probability that a task would be successfully exe-
cuted, under complete and perfect information, and the
final likelihood of successful execution provided by the
root’s strategies or its MAB delegation criterion.

4.2. Results

Figure 4a shows the performance of the various
heuristics over Directed Trees. We observe that the
DIG heuristic significantly increases the chance of suc-
cessful delegation when compared to other approaches.
Thompson Sampling appears to outperform the re-
maining approaches, but takes longer to converge than
other techniques.

With regards to regret we observe (Figures 4b and
4c) that DIG minimises regret by maximising the like-
lihood of successful delegation, and that this relation-
ship holds for the remaining algorithms. The disper-
sion of regret per time unit (Table 11), indicates that
UCB1’s and DID’s deviations from the oracle’s predic-
tion cause greater accumulation of regret as the experi-
ments go past trial 250. It is as though further instances
of delegation would prevent these two procedures from
keeping up with DIG. However, none of the algorithms
obtain levels of regret greater than UCB1’s theoretical
upper regret bound (Figure 4b and Table 1).

Turning to Random Networks, Figure 5a demon-
strates that DIG and DID outperform all other ap-
proaches. The rate of convergence for UCB1 signif-
icantly lags behind the other approaches. The levels
of regret also mirror this behaviour (Figure 5b), with
UCB1 approaching its theoretical upper bound.

On account of the difference in the number of neigh-
bours, and the presence of cycles, the variance of
marginal regret is less uneven within the correspond-
ing interquartile ranges, but larger on average in the
random graph case (Figure 5b). There are more pro-

1 The mean rate of convergence was approximated by the error of
deviating from a probability of delegating equal to 1 (et), over the

first 175 trials i.e., q ≈ log(et+1/et)
log(et/et−1)

, t ∈ {1, . . . , 175}. The cut-off

point was obtained through the Welch method [17]

nounced differences in the levels of regret as new
agents are discovered every trial.

Directed Trees and Random Networks represent,
perhaps, the most illustrative network configurations
encountered while traversing the delegational domain.
Trees provide an a priori framework — a predefined
environment which every algorithm in our pool of
heuristics explores at length, securing somewhat sim-
ilar levels of regret. Random Networks, on the other
hand, offer an unstructured setting for delegators to
form their own neighbourhoods, thus evidencing the
capacity of each procedure to forge delegation chains
in ad-hoc environments. These conditions, we conjec-
ture, account for the behaviour reported earlier in this
section.

Lattices, tori and Scale-Free networks belong to the
same kind of structures as Directed Trees. They are
all graphs with predefined edges, obeying different
connectivity rules. Our results indicate that the de-
gree of connectivity dictates a pattern of differentiation
among the heuristics (Figures 5a-8a), which progres-
sively separates them into two groups: DIG, DID and
UCB1 with the highest probabilities of successful del-
egation and the lowest levels of regret, and Greedy and
Thompson at the other extreme.

Agents within Regular Lattices become more suc-
cessful delegators when using DIG. Not only is the
task more likely to be successfully executed, but the
agreement with the oracle’s choice of delegatee is im-
proved. Thompson sampling and the Greedy approach
converge to a relatively low probability of successful
delegation, whereas DID and UCB1 attain better re-
sults, akin to those displayed by DIG.

Figure 9 is indicative of DID’s and, most notably,
UCB1’s progressions towards higher probabilities of
successful execution within narrower intervals. To cor-
roborate this claim, we tested for homoscedasticity
within three different groups: 1) High, composed of
DIG, DID and UCB1; 2) Medium, gathering DID and
UCB1; and 3) Low, comprising Greedy and Thomp-
son Sampling. Levene’s statistic was used to assess the
equality of the intra-group variances.

Table 2 reports the values of Levene’s statistic
alongside the corresponding p-values for each net-
work structure under consideration. It indicates that
with a significance level of 5%, the null hypothe-
sis cannot be rejected in the following circumstances:
1) whenever members of High are implemented over
Scale-Free Networks; 2) for several members of the
Medium group, namely Directed Trees, Regular Lat-
tices, and Scale-Free Network topologies; and 3)
whenever agents use ε-greedy or Thompson Sampling
in Regular Lattices or Scale-Free Networks.
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Algorithm Network
Structure

Probability of
Successful
Delegation

Mean
Marginal

Regret

Mean Rate
of

Convergence

DIG DT 0.975 0.113 0.642
RL 0.969 0.069 0.539
RN 0.985 0.031 0.648
SF 0.954 0.340 0.137
PL 0.959 0.273 0.366

DID DT 0.958 0.167 0.101
RL 0.927 0.209 0.030
RN 0.974 0.133 0.161
SF 0.954 0.457 0.078
PL 0.937 0.492 0.106

ε-Greedy DT 0.927 0.480 0.237
RL 0.866 0.815 0.131
RN 0.931 0.437 0.226
SF 0.818 0.719 0.172
PL 0.863 0.728 0.149

Thompson
Sampling

DT 0.947 0.278 0.284
RL 0.886 0.617 0.002
RN 0.906 0.686 0.163
SF 0.831 0.590 0.003
PL 0.811 1.24 0.223

UCB1 DT 0.948 0.260 0.069
RL 0.933 0.150 0.060
RN 0.858 1.173 0.010
SF 0.966 0.228 0.025
PL 0.943 0.434 0.089

Table 1 Relative Performance over Multiple Network Structure

Group Network
Structure

Levene’s
Statistic P-Value

High

DT 36.69 1.82e-16
RL 44.95 5.80e-20
RN 8.82 1.51e-4
SF 0.86 0.42
PL 5.06 6.43e-3

Medium

DT 1.50e-3 0.97
RL 9.15e-5 0.98
RN 10.79 1.04e-3
SF 1.883 0.17
PL 3.146 0.08

Low

DT 4.22 0.04
RL 25.07 0.065
RN 69.50 3.33e-16
SF 1.71 0.19
PL 65.19 1.05e-14

Table 2 Analysis of Variance between Upper and Lower Groups of Al-
gorithms
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Equivalently, there is statistically significant evi-
dence supporting our conjecture on the formation of
two groups of heuristics, but accompanied by a third
group arising from the transitioning of UCB1 and DID
to High in environments which follow power-law rules.

Our findings on the probabilities of successful del-
egation are also mirrored by the distribution of regret
over our selection of topologies (Figures 6c, 7c, and
8c. The distribution of regret changes considerably be-
tween topologies. It should be noted that for Directed
Trees (an a priori network with regard to agent struc-
ture), the dispersion of regret when agents use UCB1
or DID become highly skewed in the manner of Ran-
dom Networks, i.e., a posteriori networks.

We find considerable concentrations of regret above
the median across lattices, tori, and Scale-Free Net-
works (Figures 6c, 7c, and 8c). Nonetheless all their
interquartile ranges are narrow — there is little vari-
ability within the central 50% of the data. UCB1, DID,
and the rest of MAB benchmarks abandon the distribu-
tion patterns displayed over Directed Trees (Figure 4c)
in favour of the right-skewed distribution characteristic
of DIG implementations.

5. Discussion and Future Work

Our results demonstrate that the DIG algorithm out-
performs other approaches when dealing with recur-
sive delegation problems. As future work, we intend
to investigate the theoretical properties of the heuristic
to further understand its salient features and the condi-
tions behind its performance.

Stationarity offers a common ground for gaining
a better insight into the functioning of DIG and the
MAB benchmarks. A first step in this direction is made
apparent by the similarities our DID heuristic shares
with generalised versions of the Gittins Index under
weaker forms of stationarity. Evolutionary algorithms
have been used to tackle related problems [18], and in-
vestigating their performance in the delegation domain
offers a potential avenue for future work.

Stationarity — or rather the lack of it — also
raises analytical questions of great relevance in their
own right. From a MAB perspective, non-stationarity
springs from the nesting of bandits within one an-
other and the ensuing processes of contemporaneous
learning. Section 3.2 reveals that new delegation prob-
lems lie embedded in the constraints restricting every
agent’s objectives, in turn, dependent on future out-
comes. That is, the general delegation problem is, in

essence, a multilevel (stochastic) optimisation program
with recursive objective functions [19, 20].

From an adversarial point of view, recursive delega-
tion is a type of quitting game — a delegation game. It
comprises a series of nested two-person non-zero-sum
games, i.e., bimatrix games, subject to non-stationary
stochastic perturbations. The delegation game may,
in consequence, be similarly reinterpreted as a multi-
level (stochastic) bilinear program [21]. This coinci-
dence motivates further investigation into the potential
of MAB and game-theoretical approaches to outline
solutions to the general multilevel stochastic problem,
while prompting the exploration of alternative heuris-
tics based on evolutionary hierarchical genetic algo-
rithms [20] on hierarchical reinforcement learning in
non-stationary environments [22, 23].

In this work we have only considered the rewards
gained through successful delegation. In the future, we
intend to investigate the effects of resource constraints,
explicit rewarding schemes, and potential costs to
the delegation problem, by borrowing ideas from the
principal-agent theory literature [24], and results from
coalitional game theory [25].

To our knowledge, the only existing work on trust
in the context of recursive delegation within the multi-
agents community are [26] and [27]. In the former, the
authors consider a supply chain problem and model it
via recursive MABs, but focus on budget constraints
for each arm, solving local bandit problems in paral-
lel to identify trustworthy suppliers. [27] also consider
the problem of recursive delegation, and evaluate how
simple algorithms assigning responsibility for task del-
egation failure along delegation chains, affect the per-
formance of the system.

6. Conclusions

In this paper we described the recursive delegation
problem, and empirically demonstrated that a heuristic
based on quitting games outperforms different multi-
armed bandit based techniques — namely UCB1, ε-
greedy, Thompson Sampling, and Brezzi and Lai’s nu-
merical approximation to the Gittins Index. Our heuris-
tic outperforms these approaches both with regards
to regret, and the probability of successful delegation
over different graph topologies.

The ability to perform recursive delegation can be
directly applied to electronic marketplaces, and has po-
tential applications in areas such as logistics, routing
and scheduling. Ultimately, this work serves as a start-
ing point for investigating algorithms for recursive del-
egation, and a variety of open questions remain.
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