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ABSTRACT 11 

 12 

Loessite present in a borehole into the Smith Bank Formation (SBF, early Triassic age, Central 13 

North Sea) differentiates five coeval source terranes for aerosol dust, three long distance 14 

sources and two local sources. All were active immediately following the end Permian mass 15 

extinction. Long distance sources are sedimentary, basic magmatic and acid-intermediate 16 

volcanic. Although predominantly silt-sized and dominated by quartz with subordinate 17 

feldspars, muscovite and illite, evidence of basic and acid-intermedaite magmatic/volcanic 18 

sources are pervasive. Baddeleyite is diagnostic of basic magmatism, an origin supported by 19 

enrichment of plagioclase relative to potassium feldspar. Deduction of acid-intermediate 20 

volcanism comes from the collective occurrence of irregular geometry quartz, volcanic shards, 21 

Ti-mineralisation, euhedral biotite, sanidine, the co-occurrence of apatite and zircon, and the 22 

common occurrence of a tosuditic clay mineral. The tosuditic phase occurs as an unusual 23 

diagenetic dioctahedral chlorite/smectite formed at low temperature (<45°C), during very 24 

shallow burial by the decomposition of unstable rhyo-dacitic and andesitic grains in alkaline 25 

pore water from an adjacent lake that yielded pore fluids with a high Al:Si ratio. The Siberian 26 

Traps LIP is the likely source terrane for the magmatic and volcanic silt. Locally sourced clay 27 

pellets and kaolinite booklets formed from aeolian erosion of an adjacent, periodically 28 
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desiccated lake-floor and a kaolinitic regolith, respectively. Inference of a prolonged harsh, 29 

arid climate leaves no evidence of any periods of sustained humidity or climatic fluctuation, 30 

such as pedogenesis. The association between the end Permian mass extinction, emplacement 31 

and aeolian erosion of the Siberian Traps LIP, and location of the SBF in a large lacustrine 32 

endorheic basin, combine to preserve a record of prolonged harsh climate in the early Triassic. 33 

(267 words) 34 
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INTRODUCTION 37 

 38 

Earlier work (Wilkins et al., 2017) made the first conclusive identification of loessite in a 39 

borehole section and derived diagnostic characteristics to differentiate it from associated fine-40 

grained (silt-sized) lithologies. When viewed bedding parallel, randomly orientated granular 41 

texture, proved to be diagnostic of loessite, and was first characterised in the Smith Bank 42 

Formation (SBF) (Wilkins et al., 2017). The mineralogy of the SBF loessite from core in well 43 

20/25-1 (UK) is unusual, possibly unique, and differentiates it from other similarly-aged, 44 

younger and older strata in the North Permian Basin of the North Sea (Wilkins et al., 2015; 45 

Wilkins, 2016; Wilkins et al., 2017). Clay mineralogy is particularly distinctive including 46 

significant quantities of tosuditic clay mineral, dioctahedral regularly interstratified chlorite-47 

smectite (Shimoda, 1978), which is unusual in sedimentary rock (Wilson, 2013), and kaolinite, 48 

which is unusual in the fine-grained strata in the Permo-Triassic of North Permian Basin of the 49 

Central North Sea (Ziegler, 2006). Worthy of note, is the occurrence of baddeleyite (ZrO2), the 50 

first known occurrence of this mineral in sedimentary rock (Wilkins et al., 2015). 51 

 52 

Mineralogy, and specifically clay mineralogy, is used to identify and characterise the source 53 

terrane of the aerosol dust that formed the loessite.  Source terrane beyond the drainage basin 54 

catchment in which they deposited is congruent with modern-day aerosol dust, some of which 55 

transports 1,000’s of km from source (Nettleton & Chadwick, 1996; Mahowald et al., 2003; 56 

Koren et al., 2006). Such long-distance transport, largely following global wind circulation 57 

patterns, presents opportunity for distinguishing multiple dust-sources operating 58 

simultaneously and ultimately combining to form loessite. During the early Triassic, the 59 

geological record north of 20ºN indicates a predominantly arid palaeo-climate with physical 60 
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weathering prevailing (Roscher et al., 2011; Benton & Newell, 2013) and during which dust 61 

would be widely available. 62 

 63 

A significant volcanic contribution to the SBF was suggested by Jeans (2006) and our work 64 

looks for detailed evidence of volcanogenic mineralisation along with a more exacting 65 

characterisation of the unusual mineralogy documented earlier (Wilkins et al., 2015; Wilkins 66 

et al., 2017). Limited mineralogical characterisation of loessite is previously reported with the 67 

exception of provenance studies using U/Pb dating of zircon (M. Soreghan et al., 2002; M. 68 

Soreghan et al., 2014), and very limited clay mineral analysis.  Thus, little analogue data exist 69 

for our study. To counter the deficiency, we compare our data with studies on bentonite and 70 

tonstein that, although not aerosol dust per se, are air-fall deposits directly associated with 71 

volcanism. 72 

 73 

GEOLOGICAL SETTING 74 

 75 

Deposition of the SBF in the North Permian Basin, records a period of Earth history that 76 

immediately followed the most severe known period of global mass extinction at the end 77 

Permian (Sahney & Benton, 2008). Emplacement of the Siberian Traps large igneous province 78 

(LIP) into coal and other carbonaceous sediments in Eastern Siberia, is inextricably associated 79 

with the extinction event (Wignall, 2005; Svensen et al., 2009; Jerram et al., 2016). The ensuing 80 

huge volume of carbon gases, including CO2, and possible halocarbons released (Svensen et 81 

al., 2004; Retallack & Krull, 2006; Beerling et al., 2007; Payne & Kump, 2007) caused global 82 

climate change during a less than 2 Ma period of magmatism that extended over an area of 5 83 

million km2 (Reichow et al., 2009). Siberian LIP activity continued into the early Triassic 84 

(Reichow et al., 2009) and environmental stress and global warming similar to that experienced 85 
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at the end Permian extended 4-5 Ma into the Triassic (Payne et al., 2004) during which 86 

deposition of the SBF occurred. 87 

 88 

Although interpreted as a record of early Triassic recovery, the poor preservation of a very 89 

sparse fauna and flora confounds meaningful biostratigraphy (Goldsmith et al., 2003) and 90 

records pervasive aridity. Within this ca. 5.8 Ma of very poorly constrained time the SBF 91 

loessite deposited and the core in well 20/25-1 represents at least 60 kyrs of harsh arid climate 92 

(Wilkins et al., 2017). Location of borehole 20/25-1 is unusual on the western rift margin of 93 

the Central North Sea where the total Triassic interval is typically between 1500 m and less 94 

than 2000 m thick (Goldsmith et al., 2003, fig. 9.3). Later Mesozoic strata are absent or thin, 95 

and the area formed a stable platform high during the Upper Jurassic (Fraser et al., 2003) with 96 

<200 m of early Cretaceous calcareous mudstone-prone facies that thins westward. 97 

 98 

In a local sedimentary and palaeo-environmental context, borehole 20/25-1 is located near the 99 

northwestern margin of the large endorheic lake that occupied most of the North Permian Basin 100 

during the early Triassic (Goldsmith et al., 2003). There is no evidence of lacustrine processes 101 

in the 20/25-1 core, nor is there evidence for the activity of lake-marginal, ephemeral fluvial 102 

systems that fed the basin from the northwest (McKie & Williams, 2009). The physiographic 103 

isolation of the area adjacent to borehole 20/25-1 was a location where aerosol dust could 104 

accumulate with the only erosion and re-working restricted to minor autogenic pluvial episodes 105 

(Wilkins et al., 2017). Proving the presence of loessite defined an additional sedimentary facies 106 

to those summarised by Goldsmith et al. (2003) and led to several significant modifications to 107 

the early Triassic palaeo-environment in the North Permian Basin (Wilkins et al. 2017) that are 108 

entirely consistent with location in a subtropical climate zone (Roscher et al., 2011; Benton & 109 

Newell, 2013). 110 
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 111 

MATERIALS  112 

 113 

Samples were taken from continuous core from UK well 20/25-1 (Fig. 1A), located in Quad 114 

20 in the UK sector of the Central North Sea (CBS), which was drilled to a depth of 1662 m 115 

(5453 ft). This well contains ~11 m of loessite comprising predominantly unstratified siltstone 116 

with 0.6 m to 1.4 m bed thickness with occasional thin interlamination of stratified claystone, 117 

mudstone and siltstone that occur near the base and top of the cored interval (Wilkins et al., 118 

2017). The interlaminae are compositionally similar to the unstratified strata and consist of 119 

reworked loessite. For exact locations of core samples, see Fig. 1B. 120 

 121 

METHODS 122 

 123 

Optical microscopy characterized general mineralogy and fabric, X-ray powder diffraction 124 

(XRPD) quantified the mineralogy of both bulk grain samples and clay fractions. Scanning 125 

Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) characterized the 126 

morphology and qualitative chemistry of the fine-grained phases present. Both bulk and clay 127 

(<2µm) fractions were analysed by XRD, the results of the latter being used to identify and 128 

refine the analysis of the bulk material. Wilkins (2016) and Wilkins et al. (2017) describe the 129 

procedures in detail. 130 

 131 

Scanning electron microscopy (SEM) used a Hitachi SU70 analytical high-resolution electron 132 

microscope equipped with an Oxford Instruments Aztec 3.3 energy-dispersive spectra (EDS) 133 

microanalysis system (G.J. Russell laboratory, Durham University). Two sample preparation 134 

methods were utilised. The first used a standard resin block with a diamond 1µm polishing 135 

finish. A Cressington 108 carbon-sputtering unit provided a 25nm carbon coating to all 136 



7 
 

samples. Images were then obtained and investigated using 15Kev BSE (back-scattered 137 

electrons) for phase and chemical contrast imaging. The second sample preparation method 138 

involved careful cleaning of rock fragments that were then mounted using carbon cement 139 

followed by 30nm Au/Pd coating (Cressington 108Auto RF sputtering system). Secondary 140 

electron (SE) imaging at 8KeV was utilised for the purpose of depth of focus, topographical 141 

and natural state morphology of samples. 142 

 143 

RESULTS 144 

 145 

X-ray diffraction 146 

Illite, chlorite, tosudite and kaolinite are present in the bulk samples (Table 1). Because tosudite 147 

is an unusual mineral in sedimentary rock (Wilson 2013), it requires further comment. The first 148 

description of tosudite (Shimoda, 1969) emphasized its aluminous composition and 149 

dioctahedral structure. According to the definition of Bailey (1982), tosudite is only 150 

dioctahedral “on average” and the chlorite component involved can be dioctahedral aluminous 151 

2:1 layers with a hydroxide sheet of a trioctahedral brucitic (Mg(OH)2) nature. A Mg-rich 152 

tosudite was described by Shimoda (1978). The mineral here termed tosudite (Table 2) is more 153 

appropriately described as a “tosuditic clay” or a “tosuditic phase” as the number of basal 154 

reflections indicating a completely regular chlorite-smectite structure is limited, and show only 155 

a tendency to regularity. However, its resistance to HCl treatment (Figure 3) confirms its 156 

predominantly aluminous nature. For the sake of brevity, we continue to use the term tosudite, 157 

but bearing in mind the caveat indicated above. The four clay minerals are persistent, 158 

irrespective of whether the strata are stratified or not, although tosudite is undetected in two 159 

samples. On average, the total percentage of clay minerals in the bulk rock is 35%, but varies 160 

from as little as 23% within a stratified mudstone (SB10), to as much as 41% within the loessite 161 



8 
 

(SB05). Illite is the dominant clay mineral followed by tosudite > kaolinite > chlorite. However, 162 

detrital mica, mainly muscovite but also biotite, have the same (10Å) basal spacing as illite so 163 

the full pattern fit of the XRD trace does not effectively differentiate between them. Detrital 164 

mica and chlorite may therefore account for a portion of the clay fraction, possibly a large 165 

portion, of the values shown in Table 1. Samples with high dolomite cement have 166 

correspondingly low clay mineral content, a dilution effect caused by the pore-filling habit of 167 

dolomite. 168 

 169 

The clay (<2 µm) fraction (Fig. 2 and Table 2) indicates the presence of the four clay minerals 170 

shown in Table 1 and in addition identifies the presence of a mixed-layer phase, which responds 171 

to ethylene glycol and is interpreted as ordered illite/smectite (I/S) with a high proportion of 172 

illite layers. We note that the relative proportions of clay minerals as assessed by analyses of 173 

bulk material and clay fractions are rather different, particularly with regard to the amount of 174 

illite and, the relative amounts of tosudite, kaolinite and chlorite. Illite forms a greater 175 

proportion of the bulk material than in the clay fraction, sometimes more than double, which 176 

confirms that there are significant amounts of micaceous material present in the non-clay 177 

fraction. Petrographic studies, which show the frequent presence of muscovite flakes up to 150 178 

µm in length in siltstone samples, corroborate this. Kaolinite is approximately twice as 179 

abundant in the clay fraction as in the bulk material (compare Tables 1 and 2), from which one 180 

may infer that during extraction of the <2 µm fraction, disaggregation of large fragile kaolinite 181 

particles occurred. It follows that tosudite and chlorite, which show no significant increase in 182 

abundance between the bulk and clay fractions, do not have coarser grained progenitors prone 183 

to disaggregation. 184 

 185 
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Criteria by which illite, chlorite and kaolinite were identified are well known and do not require 186 

repetition here, but this is not true of tosudite. In the air-dried state, tosudite has a peak at about 187 

14Å with a broad shoulder developed at around 28Å (Fig. 3). These features represent the 002 188 

and 001 basal reflections, respectively; higher order basal reflections are present. Ethylene 189 

glycol treatment causes expansion of both first and second order basal reflections to about 32Å 190 

and (more clearly) to 16Å, respectively, while heating at 300°C causes contraction of the 14Å 191 

peak to about 12Å. At this point, there is little difference in XRD characteristics between 192 

tosudite and corrensite, the most likely mineral to be confused with tosudite. However, tosudite 193 

is a dioctahedral Al-rich mineral (Shimoda, 1990), which is resistant to treatment with 6M HCl 194 

for 30 minutes at 95°C (the procedure of Hayashi & Oinuma, 1964), whereas corrensite, which 195 

is trioctahedral and Mg-rich, is not. It is clear that our samples resist this treatment and are 196 

therefore dioctahedral and highly aluminous, a point confirmed by EDS analysis, which 197 

characterise tosudite. 198 

 199 

Thin section microscopy with BSEM 200 

Unstratified loessite has a random fabric shown by the disposition of muscovite and biotite 201 

flakes (Fig. 4A). This appearance contrasts markedly with the stratified loessite in which a 202 

linear fabric is very clear, particularly where defined by the common orientation of muscovite 203 

flakes (Fig. 4B). Higher magnification images show clearly that both fabrics contain clay 204 

pellets or partly disaggregated clay pellets, which tend to be ellipsoidal (Fig. 4C). Some small 205 

areas of pore-filling pellets have similar appearance to the clay within pellets and are fragments 206 

of disaggregated pellets. 207 

 208 

Subhedral to euhedral biotite-like mica has selectively foliated kaolinitisation (Fig. 4D) and 209 

exfoliated intercalation of kaolinite (Fig. 4E). Chlorite occurs in detrital lath-like grains or as 210 
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laminar intercalations of micaceous particles (Fig. 4F). The chlorite has Mg-rich composition 211 

(Fig. 5A) and is associated with the chloritization of mica. There is no conclusive evidence that 212 

chlorite in the loessite formed diagenetically, although intercalation of chlorite between the 213 

exfoliated layers of mica could be interpreted as such. Quartz often has very irregular geometry 214 

with ragged margins, some of which is attributable to small quartz overgrowths (Fig. 6A). 215 

Jigsaw contacts occur between some grains (Fig. 6B) that are indicative of micro-fractures 216 

formed during mechanical compaction. Some micro-fractures in the largest quartz grains 217 

present have µm-scale inclusions, which sometimes form trails of fluid inclusions up to ~2 µm 218 

across (Fig. 6A). 219 

 220 

 SEM of rock fragments 221 

The samples used for BSEM and petrographic analyses (Fig. 4) were sub-sampled for SEM 222 

examination (Wilkins et al., 2017). SEM images of individual rock fragments show the 223 

essential similarity with regard to the morphology of clay minerals, and in many cases indicate 224 

unequivocal diagenetic origin. Widespread clay coatings cover and conceal detrital silt-size 225 

grains both in unstratified and stratified loessite. 226 

 227 

Pore-filling clay in both stratified and unstratified facies has a pseudo-honeycomb appearance 228 

(Fig. 7A), a characteristic feature of smectitic clays when in a dried down state (Wilson, 2013 229 

and references therein). In many instances, clay coatings are observed and EDS analysis reveals 230 

the co-occurrence of kaolinite and tosudite (Fig. 7B). All loessite samples have pervasive clay-231 

coatings but locally have diagenetic minerals with euhedral crystal form. These include 232 

pyramidal crystals of quartz (Figs 8A and B), rhombohedral dolomite (Fig. 8A), and kaolinite 233 

(Fig. 8C). Localisation of euhedral quartz overgrowth reflects the availability of open pores 234 

into which quartz could grow, and the presence of quartz substrate below the clay coatings 235 
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where quartz could nucleate. The association between diagenetic quartz and tosudite shows 236 

that quartz overgrowth post-dates tosudite genesis (Fig. 8B). 237 

 238 

Kaolinite booklets (Fig. 8A) have platelet dimensions approximately x5 larger than the 239 

irregularly-packed vermicular kaolinite in which a large (>7 µm) micro-pore is present (Fig. 240 

8C). A smooth clay coating is present on the vermicular kaolinite that may be the carapace of 241 

a clay pellet. There is no evidence that chlorite occurs in intersecting blade-like forms coating 242 

mineral grains (Welton, 1984) such as are commonly found in Permo-Triassic North Sea 243 

sandstone (Ziegler, 2006). 244 

 245 

Other clearly diagenetic minerals include apatite, K-feldspar and albite. Apatite occurs as 246 

euhedral crystals, sometimes elongate in form, yielding strong Ca and P peaks (Figs 9A and 247 

B). The feldspar minerals occur as small euhedral crystals showing a predominantly Al, Si 248 

composition containing Na (Figs 9C and D) and K (Figs 9A and B) for albite and K-feldspar, 249 

respectively. Euhedral cubic crystals of halite, yielding strong Na and Cl peals are observed 250 

(Figs 9 e and F), confirming their detection by XRPD. These are most likely diagenetic as the 251 

sample was from a fragment within the core rather than toward its edge.  252 

 253 

DISCUSSION 254 

 255 

Located high on the rift margin of the Viking Graben, borehole 20/25-1 preserves a record of 256 

loessite sedimentation (Wilkins et al., 2017) followed by shallow burial relative to boreholes 257 

in the nearby Viking Graben. A maximum burial temperature of ~45ºC, estimated from basin 258 

modelling (supplementary data), is significantly lower than the threshold for the onset of 259 

silicate and quartz diagenesis (~60°C, Nadeau, 2011). Preservation of minerals and textures 260 
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related to aerosol deposition are thus likely, even with diagenetic mineralisation, closely related 261 

to the original dust composition and unlikely related to thermally driven reactions during burial. 262 

Mineralogical data are fundamental to the understanding of the provenance of fine-grained 263 

strata, and mineralogy has precedence over geochemical data except when individual grains 264 

can be isolated in sufficient quantity, and are large enough, to allow micro-beam analysis 265 

(Hurst & Morton, 2014; Taylor & Macquaker, 2014). In silt and finer grade strata, such 266 

circumstances are unusual. 267 

 268 

Mineralogical evidence exists for at least three long distance dust sources (sensu Yaalon, 269 

1987), along with two local sources (Table 3). Quartz silt is the predominant mineral in the 270 

SBF loessite, and together with plagioclase, K-feldspar and muscovite form the bulk of the 271 

mineralogy (Table 1). This mineral assemblage is non-specific with respect to source terrane 272 

and assumed to record erosion of silt dust from weathered sedimentary strata, which were 273 

present over a large continental area to the north and northeast of the North Permian Basin 274 

(Figure 13A). An exception to this is the anomalous enrichment of plagioclase feldspar 275 

relative to K-feldspar, the latter usually more common in Permo-Triassic northern European 276 

strata (Ali and Turner, 1982; Burley, 1984; Reeves et al., 2006). Of more terrane-specific 277 

value, are occurrences of baddeleyite (Wilkins et al., 2015) with associated plagioclase, and 278 

the relative abundance of several exotic grains/minerals and tosudite (Wilkins et al., 2017). 279 

 280 

Long distance dust provenance 281 

Baddeleyite and plagioclase 282 

Discovery of scarce, tiny baddeleyite (ZrO2) grains (Fig. 10A) from the SBF loessite were the 283 

first ever record of this rare mineral in sedimentary rock (Wilkins et al., 2015). Typically, 284 

baddeleyite is associated with flood basalt terrane in large igneous provinces (LIP’s) and its 285 
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utility for U/Pb dating (Heaman and Le Cheminant, 1993). Mineral size and scarcity in the SBF 286 

preclude mineral separation obviating its utility for U/Pb radiometric dating (Brander et al., 287 

2011). Given its rarity and limited range of parageneses (Heaman and Le Cheminant, 1993; 288 

Cabella et al., 1997), occurrence of baddeleyite is a strong diagnostic of provenance. 289 

Plagioclase feldspar is often associated with baddeleyite inclusions (Siivola, 1977; Scoates and 290 

Chamberlain, 1995), specifically associated with Si-poor basic magmatism (Heaman and Le 291 

Cheminant, 1993). Together the baddeleyite and anomalously high plagioclase content relative 292 

to K-feldspar (Table 1) support aerosol dust derivation from basic magmatic terrane (Fig. 12). 293 

 294 

Two baddeleyite-bearing LIP’s are candidate source terranes for the SBF loessite, the 295 

Neoproterozoic Volyn LIP and the late Permian to early Triassic Siberian Traps (Fig. 13A). In 296 

the early Triassic the Neoproterozoic Volyn LIP (Shumlyanskyy et al., 2016) was located ~600 297 

km ENE of the North Permian Basin. If exposed during the early Triassic, it is likely that 298 

lithification of the Volyn LIP made it an unlikely source of baddeleyite-bearing aerosol dust. 299 

By contrast, the Siberian Traps LIP is lithologically, temporally and spatially attractive as a 300 

source terrane. Magmatism and volcanism associated with its emplacement produced at least 301 

2.5 x 106 km2 of flood basalt (Fedorenko et al., 1996). For ~6 Ma (Reichow et al., 2009) prior 302 

to and during deposition of the SBF loessite, Siberian Traps flood basalts were exposed sub-303 

aerially, subjected to weathering and erosion and located proximal to the track of Polar high 304 

pressure wind (Fig. 13A). Transport of aerosol is likely associated with this wind and the 305 

transport distance inferred for the baddeleyite-bearing dust is ~4500 km. The Siberian Traps 306 

erupted huge volumes of CH4 and CO2 into the high atmosphere and made a major contribution 307 

to the end-Permian environmental crisis (Svensen et al., 2009; Jerram et al., 2016). An 308 

associated stream of aerosol dust would contribute to the harshness to the palaeo-climate. 309 

 310 
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Volcanic dust and tosudite 311 

A collective body of evidence supports our contention that some of the loessite mineralogy is 312 

of volcanic origin and similar mineralogically to tonstein and bentonite. Presence of shards 313 

(Fig. 10B), although uncommon, is strong evidence of volcanic input (Fisher and Schmincke, 314 

1984), and the associated Ti-mineralisation is similar to that encountered in the non-marine 315 

sub-aqueous tuff deposits of tonstein (Spears, 2012). Reasons for Ti-enrichment of minerals in 316 

tonstein remain unexplained (Zhao et al., 2015; Hong et al, 2016). Quartz grains with highly 317 

irregular geometry (Figs 6 and 10B) are unlikely to form or preserve during sediment transport, 318 

being susceptible to breakage and abrasion. Inference of a more exotic provenance is the 319 

association with high-temperature or explosive volcanism, as preserved in tonstein of Permian 320 

(Dai et al., 2007) and Jurassic (Arbuzov et al., 2016) age. Neither of these analogues have 321 

comparable high-resolution data to this study. 322 

 323 

Less diagnostic, but still significant is the occurrence of euhedral biotite, sanidine and, the co-324 

occurrence of apatite and zircon. Large flakes of biotite are common in the SBF loessite, some 325 

with partial alteration to kaolinite (Figs 4 D and E). Biotite occurs in both bentonite and tonstein 326 

(Diessel, 1985; Huff and Morgan, 1990; Dai et al., 2007) and euhedral form in sedimentary 327 

strata is characteristic of volcanic origin (Spears, 2012). Generally, biotite is uncommon in 328 

sedimentary rock, specifically relative to muscovite. Sanidine is identified by XRD and by 329 

SEM, forming euhedral, tabular crystals of low symmetry with smooth pinacoid and prism 330 

faces and without etch marks. These observations are morphologically consistent with sanidine 331 

rather than orthoclase feldspar (Fig. 9 A), although the observation is indicative rather than 332 

diagnostic. Apatite in the SBF loessite forms acicular, diagenetic crystals (Figs 9A and B) and 333 

zircon is of detrital origin (Wilkins, 2016). In bentonite and tonstein the apatite + zircon 334 

assemblage is considered diagnostic of rhyolitic/dacitic origin (Spears, 2012). However, both 335 
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minerals are common heavy minerals in sedimentary rock and, particularly in the case of ultra-336 

stable zircon, have a wide range of paragenesis coupled with ultra-stability in physical and 337 

chemical weathering (Hurst and Morton, 2014). Apatite is notoriously susceptible to 338 

dissolution in weathering environments but frequently reappears during burial diagenesis 339 

(Morton, 2012), as observed in the SBF loessite. 340 

 341 

Tosudite is unusual in sedimentary rock (Kulke, 1969; Wilson, 1971; Garvie, 1992; Hillier et 342 

al., 2006), mistakenly described as dioctahedral corrensite (Morrison & Parry, 1986; 343 

corrensite is trioctahedral), and typically abundant only in hydrothermally altered rock 344 

(Wilson, 2013 and references therein). Remarkably, in the SBF tosudite is volumetrically 345 

significant, an average of 6.7% of the bulk volume in the shallowest seven samples (Table 1), 346 

and up to 21% of the clay fraction (Table 2). If tosudite was detrital, it would require erosion 347 

of source terrane with a significant enrichment of tosudite being reworked into aerosol dust 348 

for a period of at least 60 kyrs (Wilkins et al., 2017). Given the unusual occurrence of 349 

tosudite this is unlikely. Discussion of evidence for the diagenetic derivation of tosudite from 350 

precursor volcanic dust follows. 351 

 352 

Although we draw mineralogical comparison between the SBF loessite, bentonite and tonstein, 353 

they have important differences. Bentonite and tonstein form from geologically instantaneous 354 

deposits associated with volcanism (Haynes, 1994; Martin and Parris, 2007) whereas the 355 

aerosol dust that formed the SBF loessite accumulated gradually during a period of at least 60 356 

kyrs (Wilkins et al., 2017). Bentonite and tonstein form sub-aqueously whereas loessite forms 357 

sub-aerially; in the SBF loessite, sub-aerial deposition in an arid climate likely delayed the 358 

onset of diagenesis. Because loessite forms from a sub-aerial deposit, any volcanogenic grains 359 

present could not readily form smectite as in bentonite, which forms in subaqueous conditions 360 
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(Grim & Güven, 1978; Moore & Reynolds, 1997). Evidence of pervasive oxidation 361 

characterises the loessite and we assume that it became water saturated only when fluctuations 362 

in the adjacent lake level to the southeast (Goldsmith et al., 2003) periodically caused 363 

inundation of groundwater into the loessite pore system. In loessite, the content of volcanic 364 

grains present is minor relative to grains derived from sedimentary source terrane whereas 365 

volcanic grains were the predominant (or sole) progenitors of bentonite and tonstein.  Despite 366 

loessite having a “dilute” volcanic content, it shares mineralogical similarities with bentonite 367 

and tonstein, which support the presence of volcanic components. Quantification of the 368 

proportions of minerals from sedimentary, basic and acid to intermediate volcanic, terrane is 369 

not possible, mainly because most minerals have several possible origins (Fig. 11). 370 

 371 

No known spatially proximal acid-intermediate volcanic source terrane occurs in the late 372 

Permian and early Triassic along the trajectory of the Polar high-pressure wind. However, the 373 

major and trace element geochemistry of claystone interbeds (tonstein) in coal from the 374 

Songzao Coalfield identify a probable contemporaneous rhyo-dacitic/andesitic volcanic terrane 375 

(Zhao et al, 2015). Perhaps of greater relevance to the SBF loessite are pyroclastic deposits 376 

associated with the Siberian traps LIP that occupy an area to the south of the basaltic flows 377 

(Jerram et al., 2016, fig. 1). These were a source of ejecta into the high atmosphere although 378 

their timing, composition and distribution are poorly understood (Kamo et al., 2006). If the 379 

volcanic ash contribution to the SBF loessite had a rhyo-dacitic/andesitic composition, its 380 

decomposition during early diagenesis may have formed diagenetic tosudite (Moore and 381 

Reynolds, 1997; Dai et al, 2014). Although acid-intermediate volcanism associated with the 382 

Siberian Traps is undocumented, occurrence of syenite in the Taymyr Peninsula (pers. com, D. 383 

Jerram, 2017) records contemporaneous acid-intermediate magmatism. Associated silicic 384 

explosive eruptive centres are feasible but in LIP’s these are typically poorly preserved and a 385 
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specific origin for an acid-intermediate volcanic source terrane remains speculative. Record of 386 

non-basaltic components in redboles interbedded with Deccan floodbasalts are independent 387 

confirmation of acid-intermediate volcanism and airfall associated with LIP flood basalt 388 

(Ghosh et al. 2006; Schoene et al. 2019). A further possibility is that the SBF loessite records 389 

acid-volcanism not previously recognised in either the Siberian Traps, or elsewhere, along the 390 

aerosol route. 391 

 392 

Local dust provenance 393 

Silt-sized clay pellets 394 

Well-rounded, ellipsoidal clay pellets are common in the SBF loessite, 15% to >50% 395 

(Wilkins et al., 2017). The clay pellets are largely silt to very fine sand grade, are 396 

anomalously rounded relative to the angular framework grains, and form among the largest 397 

particles present (Fig. 4C and D) ranging from approximately 50 µm to >100 µm in length 398 

(coarse silt to ~ the very-fine to fine sand boundary). Location of the SBF loessite is 399 

windward of the prevailing SE to NW wind direction known from the southern margin of the 400 

North Permian Basin (Uličný, 2004), almost perpendicular to the Polar high pressure wind 401 

stream (Fig. 13A).  402 

 403 

Morphologically similar pellets are important components of floodplains in both modern and 404 

ancient dryland fluvial systems in which they are associated with pedogenic processes (Rust 405 

and Nanson, 1989; Talbot et al., 1994; Wright and Marriot, 2007) or, from the clay dunes 406 

associated with saline lakes (Price, 1963; Bowler, 1973). Given the proximity to a major 407 

lacustrine system in which arid to hyper-arid climate prevailed (Goldsmith et al., 2003; 408 

Bourquin et al., 2011; Fig. 17A), pellets associated with clay dunes are more likely. There is 409 

little evidence of significant pedogenesis in the SBF loessite or the SBF in general (Wilkins, 410 
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2017). The balance of evidence supports that persistent aeolian erosion of an adjacent 411 

exposed lake-floor that underwent periodic desiccation and efflorescence (cf. Bowler, 1973) 412 

is the source of the pellets (Wilkins et al., 2017). Laminar concentrations of clay pellets are 413 

present in the SBF loessite whereas they are absent elsewhere (Fig. 4). Modern clay dunes 414 

have similar lamination although quartzose grains in them are not associated with aerosol 415 

dust deposition (fig. 9, Bowler, 1973 and references therein). Lamination on a similar mm to 416 

cm scale (cf. Bowler, 1973) is not apparent in the SBF loessite. 417 

 418 

Kaolinite 419 

Kaolinite occurs as part of the clay mineral groundmass, as books and vermicules (Figs 8A and 420 

C) and accounts for 10 to 20% of the clay mineral fraction (Table 2). Some kaolinite booklets 421 

are coarse silt size and larger than the framework grains and pores (Fig. 8A). Large size alone 422 

makes the kaolinite booklets unlikely diagenetic products in the loessite. Differences in 423 

kaolinite grain size and texture (Fig. 12) are strongly indicative of their different origins. 424 

Kaolinite with ragged booklet morphology are well known in kaolin and re-worked kaolin 425 

deposits (Keller, 1978) in which booklets become more ragged and finer-grained with 426 

reworking. Ragged kaolinite booklets similar in size to framework grains were associated with 427 

the reworking of a deeply weathered kaolinitic regolith (Bjørkum, et al., 1990). Occurrence of 428 

occasional coarse-silt kaolinite in the SBF loessite probably requires a source terrane other than 429 

an adjacent desiccated lake floor. Most likely is erosion of kaolinite-rich source terrane, which 430 

given the aridity of the Permo-Triassic in the study is likely to be pre-Permian. 431 

 432 

A deeply weathered kaolinitised regolith of Upper Devonian age identified in northern Norway 433 

(Sturt et al., 1979), and similar kaolinitic deposits developed in Scotland (Monro et al., 1983) 434 

support the contention that widespread kaolinitic terrane was present prior to deposition of the 435 
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SBF. Kaolins in southern Scandinavia (Gry, 1969; Norling, 1970), where they can be up to 60 436 

m thick (Lidmar-Bergstrom, 1993), were inferred to be part of the same regolith that stretched 437 

over more than 14º latitude (Hurst, 1985). If correct, the southern Scandinavian kaolins are 438 

located along the trajectory of locally persistent, low-level wind from the southeast, and an 439 

attractive source of aeolian kaolinite to the windward of the North Permian Basin (Fig. 13B). 440 

Recent work on the southern Scandinavian kaolins (Lidmar-Bergström, 1993; Riber et al., 441 

2015; Tan et al., 2016: Fredin et al., 2017) favours a Mesozoic (late Triassic to early Jurassic) 442 

age, which if correct excludes them as SBF source terrane. 443 

 444 

Hydrothermally generated kaolin deposits are typically associated with granitoid intrusions 445 

(Wilson, 2013 and references therein), and less voluminous kaolin may form in vein deposits. 446 

Although not known as yet from the vast area of the Siberian Traps LIP (Svensen et al., 2009; 447 

Jerram et al., 2016) hydrothermal kaolinite would not be anomalous, and is spatially convenient 448 

to become incorporated in an aerosol dust stream. This is a much more speculative hypothesis 449 

than erosion of a kaolinitic regolith. 450 

 451 

Provenance summary 452 

Framework grains and illite comprise most of the SBF loessite, a mineralogy that is non-453 

specific of a source terrane although probably largely reworked sedimentary rock. If the Polar 454 

high pressure (PHP) wind stream persisted and eroded the continental landmass north of the 455 

North Permian Basin it would be a significant conveyor of aerosol dust, some of which 456 

formed the SBF loessite (Fig. 13A). To deposit aerosol dust in the North Permian Basin, the 457 

trajectory of the PHP wind would on occasion need to deviate southward or, be deviated 458 

southward during interaction with the opposing Westerlies (Fig. 13). Long distance sourcing 459 

deposited minor quantities of unusual but diagnostic grains that form an assemblage 460 
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associated with acid-intermediate volcanism and baddeleyite associated with basic 461 

magmatism (Fig. 11). Erosion of the Siberian Traps LIP, ~4,500 km to the north, is 462 

associated with baddeleyite. Combined with long distance sourcing, local sourcing derived 463 

clay pellets from the periodically desiccated adjacent lake and kaolinite silt from a source to 464 

the southeast (Fig. 13B). 465 

 466 

Diagenesis 467 

During burial of the SBF loessite, low temperature (supplementary data) combined with a 468 

paucity of aqueous pore fluid for at least 60 kyrs (Wilkins et al., 2017), removes two of the 469 

most significant drivers of diagenetic reactions in siliciclastic strata (Nadeau, 2011). A further 470 

difference of note in the SBF loessite is the absence of fine-grained organic matter, which is 471 

common in many fine-grained strata and often an associated as a factor in silicate diagenesis 472 

(Surdam et al., 1989). Prior to their discovery in the SBF loessite, the tosudite + kaolinite 473 

assemblage was unknown in sedimentary rock. At this low temperature, the assemblage of 474 

diagenetic minerals in siltstone is previously unrecorded although similar to assemblages 475 

developed in siltstone at higher temperature (Taylor and Macquaker, 2014). Clearly defined 476 

relationships between diagenetic minerals are visible only in large pores, thus definition of 477 

the sequence of diagenesis is challenging. Co-occurrence of diagenetic and detrital kaolinite 478 

further complicates these relationships.  479 

 480 

Tosudite 481 

Determining the origin of tosudite is fundamental to understanding the relationship between 482 

the detrital composition of the loessite and diagenesis. Strong evidence for diagenetic origin 483 

is the pseudo-honeycomb texture (Figs 7A and 8B), which is virtually identical to that of 484 

diagenetic smectite in bentonite (Wilson, 2013). As a regularly interstratified 485 
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chlorite/smectite mineral, tosudite may contain up to 50% smectitic layers, thus the 486 

honeycomb fabric is consistent with tosudite. Regular mixed-layer illite/smectite (identified 487 

by XRD) with a R3 stacking sequence and a low smectite content of between 8 and 21% 488 

(Moore & Reynolds, 1997) is, from a chemical perspective (EDS analysis), an alternative 489 

interpretation for the pseudo-honeycomb mineral. R3 mixed-layer illite/smectite however, 490 

does not form a honeycomb texture (Keller et al., 1986). In the loessite, quartz overgrows 491 

tosudite (Figs 8A and B) but tosudite coats kaolinite (Fig. 7B). Interestingly, the size (>10µm 492 

across) of the kaolinite platelet coated by tosudite is similar to the irregular blocky kaolinite 493 

of detrital origin (Fig. 12) rather than a pre-tosudite diagenetic phase. Although tosudite with 494 

a pseudo-honeycomb texture is indiscernible in the matrix clay, this does not preclude a 495 

diagenetic origin for the matrix. 496 

 497 

The high temperature required to synthesise tosudite (360°C, Matsuda & Henmi, 1983; 498 

450°C, Ichikawa & Shimoda, 1976) and its natural occurrence in hydrothermal systems 499 

(Wilson, 2013 are references therein) are incompatible with the maximum burial temperature 500 

of ~45°C estimated for the SBF loessite (supplementary data). Occurrence of volcanic grains 501 

(Fig. 11) combined with very limited pore fluid (from precipitation) and extreme oxidation 502 

(Bourquin et al., 2011; Wilkins et al., 2017), together with the ~45°C thermal maximum, 503 

constrain tosudite paragenesis. Shallow subsurface ingress of lacustrine water during periods 504 

of lake-level fluctuation first introduced pervasive pore fluid to the loessite. Timing cannot be 505 

constrained but the prevailing aridity during the early Triassic in the North Permian Basin 506 

(Feist-Burkhardt et al., 2008; Roscher et al., 2011) and very slow rate of deposition (Wilkins 507 

et al., 2017) mean that it could occur immediately after the 60 kyr period of deposition or 508 

significantly later. 509 

 510 
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Tosudite is an aluminous clay mineral (Na0.5Al,Mg)6[(Si,Al)8O18](OH)12 . 5(H2O)) that to 511 

precipitate requires pore fluid with a high Al:Si ratio. Progenitor minerals for tosudite would 512 

initially be aluminous, and we infer these to be an aerosol dust of rhyo-dacitic/andesitic 513 

volcanic origin. Leaching during the ingress of alkaline lacustrine pore fluid from the 514 

adjacent lake (Bourquin et al., 2011), would decompose the glassy material present and 515 

tosudite formed.  Preferential leaching of silica from the volcanic dust was sufficient to form 516 

diagenetic quartz, which is common in the SBF loessite and post-dates tosudite diagenesis 517 

(Figs 8A and B). In this context, it is noteworthy that the detrital feldspar in the loessite has 518 

very limited evidence for etching, thus unlikely to contribute significantly to the formation of 519 

tosudite. Tosudite in SBF loessite is highly aluminous but also contains significant Mg (Fig. 520 

7C), concentration of which is typically associated with trioctahedral structure. Tosudite is 521 

however, only dioctahedral “on average” and can accommodate Mg elsewhere in its structure 522 

(Shimoda, 1978; Bailey, 1982). The limited data available on tosudite, and in particular from 523 

sedimentary rock, limits comparison between occurrences although significantly a 524 

volcanogenic association in sandstone is previously documented (Wilson, 1971; Garvie, 525 

1992). 526 

 527 

Kaolinite 528 

Forming <5% of the bulk rock mineralogy (Table 1), some kaolinite occurs as part of the clay 529 

mineral groundmass as booklets and vermicules (Figs 8A and C), which conventionally are 530 

indicative of diagenetic origin (Welton, 1984). In the loessite however, most of the coarse 531 

booklets and vermicules (Fig. 12A and B) are detrital. This interpretation is sustained by the 532 

combination of large size relative to pores and to other minerals present, possible inclusion 533 

within clay pellets (Fig. 8C), replacement by diagenetic quartz (Fig. 12A), textural similarity 534 

kaolinite reworked from weathering profiles (Keller, 1978; Bjørkum et al., 1990), and coating 535 
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by diagenetic tosudite that otherwise appears to be the first formed diagenetic phase. In 536 

addition, the pervasively arid, oxidising environment during deposition and early burial is 537 

untypical for kaolinite formation (Singer, 1984; Hong et al., 2007). If the kaolinite is part of 538 

the same diagenetic paragenesis, it formed with no observed contemporaneous dissolution of 539 

plagioclase or potassium feldspar. 540 

 541 

With the possible exception of apatite, other diagenetic minerals present are similar to those 542 

recorded from organic-rich siltstone (Taylor and Macquaker, 2014). Both K-feldspar and 543 

plagioclase feldspar (albite) occur as fine silt-sized (<10 µm), euhedral, tabular crystals without 544 

etch marks (Figs 9A and B). Earlier discussion described the relationship between apatite and 545 

acid-intermediate volcanic provenance (Spears, 2012), and its possible diagenetic reappearance 546 

is consistent with that observed in sandstone diagenesis (Morton, 2012; Hurst and Morton, 547 

2014). 548 

 549 

Loess and loessite 550 

Identification of loessite proved that large volumes of aeolian dust accumulated and preserved 551 

in ancient sedimentary basins (Johnson, 1989). Johnson speculated that loessite was likely 552 

present in similar northwest European basins, a speculation validated by Wilkins et al. (2017). 553 

No loessite (Soreghan, 1992; Chan, 1999; Soreghan et al., 2002, 2007; Wilkins et al., 2017) is 554 

associated with derivation of dust from glacial terrane, and the SBF loessite is the only one 555 

associated with a lacustrine environment (Wilkins et al., 2017). Independent of its provenance, 556 

latitude or altitude, loess is diverse in grain size, internal structure and mineralogy. Varying 557 

amounts of interbedding with coarser sediment, abundant evidence of alluvial and pluvial 558 

reworking, soil/palaeosol formation and generally regular variations in humidity are common 559 

(Gylesjö and Arnold, 2006; Iriondo and Kröhling, 2007; Stevens et al., 2013; Vandenberghe, 560 
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2013; Milodowski et al. 2015; Wang et al., 2015; Bird et al., 2015). By comparison, the SBF 561 

loessite is extremely homogenous with grain size variations only visible on a micro-scale, for 562 

example the presence of clay pellets, no evidence of palaeosols and cm-scale or less intervals 563 

of reworked loessite (Wilkins et al., 2017). 564 

 565 

Clay mineralogical studies of loess focus mainly on identifying relationships between climate 566 

cyclicity and change, and clay mineral assemblages (Gylesjö and Arnold, 2006; Won et al., 567 

2018). Largely these studies assume that detrital clay minerals record palaeoclimatic 568 

information from source terrane (Singer, 1984). Typical inferences are that kaolinite is 569 

generated during prolonged chemical weathering, Fe-rich chlorite disappears rapidly during 570 

chemical weathering, illite is a typical detrital component and that (pedogenic) smectite and 571 

illite/smectite are generated during moderate chemical weathering in poorly drained terrane, or 572 

in dry low latitudes. In loess sections from the Chinese Loess Plateau (CLP) there are 573 

statistically robust relationships between clay mineral assemblages and independent measures 574 

of climate variation (Won et al., 2018). This impressive study does not address how long-575 

distance souring and local sourcing interact, nor does it consider the possible role of eroding 576 

clay mineral rich source terrane. Of course, these may not be significant issues on the CLP but 577 

they are demonstrably so in the SBF loessite. 578 

 579 

The paucity of similar mineralogical data from other loessite, with the possible exception of 580 

Milodowski et al. 2015), compromises evaluation of whether the SBF loessite mineralogy is 581 

unusual or, for the time being, unique. Mineralogical studies of loess present similar 582 

comparative challenges, largely because clay mineral assemblages may be proxies for 583 

differentiation of climate change (Won et al., 2018). Monsoon-driven provenance changes 584 

identified in loessite (G. Soreghan et al., 2007; M. Soreghan et al., 2014) give a similar 585 
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perspective, but using detrital zircon U/Pb dating. Similar detrital zircon U/Pb dating is applied 586 

to CLP loess provenance (Sun, 2002; Che and Li, 2013; Stevens et al., 2013; Sun et al., 2018). 587 

None of these studies resolves variation in mineralogy at the scale examined in the SBF loessite 588 

and all differ because they successfully identify evidence for significant climatic change. 589 

 590 

So why is the SBF loessite so different? The unusual mineralogy of the SBF loessite is a 591 

consequence of several globally significant geological factors: deposition following the end 592 

Permian mass extinction, unusual mineralogy caused by long distance sourcing associated with 593 

the Siberian Traps LIP, insufficient rainfall to trigger significant pedogensis, no evidence of 594 

significant erosion and, location on the leeward margin of a large endorheic lacustrine basin. 595 

Unlike any of the Cenozoic loess, deposition of the SBF loessite followed a global mass 596 

extinction. A major contributory factor to the mass extinction is the prolonged atmospheric 597 

pollution attributable to Siberian Traps LIP magmatic and volcanic activity (Wignall, 2005; 598 

Svensen et al., 2009; Jerram et al., 2016). Magmatic and volcanic activity continued into the 599 

early Triassic and contributed to the global slow recovery of biodiversity during and beyond 600 

the period of SBF deposition (Dickins, 1993; Meyer et al., 2011). Presence of baddeleytite and 601 

acid-intermediate volcanic dust progenitors to tosudite, together with other mineralogical 602 

factors (Fig. 11) link SBF loessite to Siberian Traps source terrane (Fig. 11). Similar 603 

mineralogical evidence is unknown in North American loessite of similar age; most North 604 

American loessite predates the end Permian mass extinction (Johnson, 1989; Soreghan, 1992; 605 

Evans and Read, 2007; Soreghan et al., 2007). Unlike Cenozoic CLP loess or other loessite, 606 

the SBF loessite has no evidence of prolonged periods of pedogenesis during which wet, 607 

intensified monsoonal conditions prevailed (M. Soreghan et al., 2014; Sun et al., 2016). It is 608 

reasonable to infer that the North Permian Basin received little direct rainfall in the ~60 kyrs 609 

preserved in the loessite, also a period during which it was exempt from significant monsoonal 610 
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influence. Finally, the SBF loessite is distinctive by its location in an endorheic basin, adjacent 611 

to large alkaline lake (Goldsmith et al., 2003; Bourquin et al., 2011). 612 

 613 

CONCLUSIONS 614 

 615 

The Smith Bank Formation (SBF) loessite preserves evidence of five terranes that sourced 616 

aerosol dust throughout most of a ca. 60 kyr period in the early Triassic. Similar multiple dust 617 

sources in loessite or loess are previously unidentified. Sedimentary terrane was the 618 

predominant long-distance source, with evidence of subordinate basic volcanic/magmatic and 619 

acid to intermediate volcanic terranes, also representing long-distance sources. Clay pellets and 620 

reworking of a kaolinitic regolith constitute locally sourced dust. 621 

 622 

Magmatism and volcanism associated with the emplacement of the Siberian Traps LIP is the 623 

likely basic and acid-intermediate magmatic source terrane, approximately 4500 km distant 624 

from the SBF loessite. Baddeleyite (ZrO2), only twice identified in sedimentary rock, is 625 

diagnostic of basic volcanic/magmatic terrane, along with enrichment of plagioclase relative 626 

to K-feldspar. Grains indicative of acid to intermediate volcanic terrane include irregular 627 

geometry quartz, volcanic shards, Ti-mineralisation, euhedral biotite, sanidine, the co-628 

occurrence of apatite and zircon, and occurrence of tosudite. Aerosol dust was carried south 629 

and southeast by Polar high-pressure wind, and is the first record of ancient global aerosol dust 630 

transportation and first direct evidence volcanic detritus in the Triassic of the North Sea. 631 

 632 

Local aeolian sourcing of pervasive clay pellets and ragged kaolinite booklets from the 633 

southeast add complexity to the mineralogy and texture of the loessite. Clay pellets derived 634 

from erosion of an adjacent periodically dry lake floor are the coarsest grains present and are 635 

locally concentrated. Erosion of kaolinitised regolith, probably exposed to the immediate 636 
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southeast of the North Permian Basin, is the inferred source terrane for the ragged kaolinite 637 

booklets. We are unaware of previous records of similar clasts in loessite. 638 

 639 

Tosudite is volumetrically significant in the loessite and associated with low temperature (< 640 

ca. 45°C), shallow burial decomposition of acid-intermediate volcanic aerosol dust when 641 

inundated by alkaline, lacustrine pore water. Low temperature formation of tosudite is 642 

previously unrecorded but has a similar paragenetic environment to tonstein and bentonite 643 

mineralisation. Occurrence of tosudite, and some earlier work where it has been misidentified, 644 

lead us to suggest that it may be more common in sedimentary strata than is hitherto assumed. 645 

 646 

Comparison with other loessite and loess shows that the SBF loessite lacks evidence of 647 

pedogenesis or other indicators of possible climatic fluctuation; only faint possible traces of 648 

life are present in the SBF loessite (Wilkins et al., 2017). In contrast, it records sustained aridity 649 

and oxidation caused by the association between the emplacement and aeolian erosion of the 650 

Siberian Traps LIP, the Polar high-pressure wind dust-conveyor, and location of the SBF in a 651 

large lacustrine endorheic basin. 652 
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 depth 
(m) 

quartz plagioclase K’spar dolomite halite hematite illite kaolinite tosudite chlorite 

SB01 1649.7 46.9 7.2 6.5 1.8 1.5 2.3 20.2 4.0 6.8 2.5 
SB02 1650.9 44.1 7.0 6.0 11.6 0.9 1.9 17.2 3.9 4.7 2.4 
SB03 1654.5 35.7 7.4 5.8 8.9 0.5 2.6 25.9 2.6 7.0 3.3 
SB04 1656.7 39.5 7.3 5.8 11.8 0.5 1.8 23.1 1.6 5.1 3.2 
SB05 1657.4 34.9 7.0 5.9 7.8 0.5 2.5 27.6 3.4 7.7 2.4 
SB06 1660.8 38.7 6.8 6.2 7.4 0.4 0.4 27.4 3.0 6.9 2.5 
SB07 1663.0 35.6 5.4 5.8 3.0 1.1 2.6 30.8 3.6 8.4 3.3 
SB08 1652.5 41.7 7.5 5.2 9.8 0.5 1.6 23.5 3.6 0.0 6.6 
SB09 1661.8 42.7 7.1 6.4 3.8 0.6 1.3 26.5 3.3 3.0 5.4 
SB10 1662.8 35.6 6.0 5.0 29.5 0.4 0.3 15.2 2.9 0.0 5.0 

 1067 

Table 1. Bulk analyses of mineralogy samples from well 20/25-1 determined by XRD; K’spar 1068 

= potassium feldspars. 1069 

 1070 

 1071 

 depth (m) illite kaolinite tosudite chlorite I/S 

SB01 1649.7 37 21 21 13 8 

SB02 1650.9 28 22 16 11 23 

SB03 1654.5 44 17 10 15 16 

SB04 1656.7 48 9 12 13 18 

SB05 1657.4 43 14 12 15 17 

SB06 1660.8 43 12 12 13 20 

SB07 1663.0 44 19 10 16 11 

SB08 1652.5 36 17 14 13 21 

SB09 1661.8 38 20 10 15 18 

SB10 1662.8 32 23 13 18 14 

 1072 

Table 2. Clay mineralogy of clay fractions (<2.0 µm) in samples from well 20/25-1. I/S = 1073 
mixed layer illite/smectite. 1074 

 1075 

 1076 

 1077 

 1078 

 1079 
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quartz angular silt irregular 
geometry 

 

illite/mica clay-sized illite randomly 
oriented 
muscovite 

euhedral biotite 

feldspar 
plagioclase (P) 
orthoclase (K) 

angular silt P > K  

tosudite amorphous 
groundmass 

diagenetic 
crystals in pores 

 

baddeleyite tiny euhedral 
grains 

  

shards silt sized Ti mineralised  
    
clay pellets coarse silt-sized 

particles 
  

kaolinite vermicules in 
clay pellets 

coarse silt-sized 
booklets 

 

 1080 

Table 3. Mineralogical and petrographic characteristics relevant to the differentiation of 1081 
aerosol dust source terrane. Light grey background indicates likely long distance sourcing. 1082 
Darker grey background indicates local sourcing. 1083 

 1084 

  1085 
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Figure captions 1086 

 1087 

Fig. 1. (A) Location of well 20/25-1 in the UK Central North Sea with an outline of the possible 1088 

lacustrine area coeval with loessite deposition. (B) Location of samples and the sedimentary 1089 

log of the cored interval (after Wilkins et al., 2017). 1090 

 1091 

Fig. 2. XRD traces of the clay fractions from well 20/25-1. (A) Sample SB01, planar grain 1092 

fabric; (B) sample SB07, planar grain fabric; (C) sample SB05, random grain fabric. Air-dried 1093 

(black), ethylene glycol treated (blue) and heated at 300ºC (red). Tos = tosudite, Ch = chlorite, 1094 

K = kaolinite, I = illite, I/S = mixed-layer illite/smectite. All samples using Co Kα radiation. 1095 

 1096 
Fig. 3. XRD traces of the clay fraction of SB01 to demonstrate the identification of tosudite 1097 
following air-drying (black), ethylene glycol (blue) heating at 300°C (red) and HCl treatment 1098 
(green). Note the persistence of the high spacing peak after HCl treatment. Tos = tosudite, I = 1099 
illite, I/S = mixed-layer illite/smectite, and K = kaolinite. 1100 
 1101 
Fig. 4. BSEM images: (A) unstratified loessite with random fabric as seen by the disposition 1102 
of muscovite and biotite flakes; (B) stratified loessite with planar fabric emphasized by the 1103 
common orientation of muscovite flakes; (C) fabric showing entire or partly disaggregated clay 1104 
pellets; (D) kaolinitized biotite mica; (E) intercalated kaolinite in exfoliated mica; (F) 1105 
occurrence of chlorite (c) as thin dark layers, intercalated within muscovite. 1106 
 1107 
Fig. 5. EDS spectra showing the compositions of: (A) chlorite with Mg-rich composition; (B) 1108 
biotite mica with peaks for K, Fe and Mg. 1109 
 1110 
Fig. 6. BSEM images of quartz: (A) irregular, embayed (elongate grain with fluid inclusions) 1111 
and ragged margins (middle and lower left) and trails of fluid inclusions (arrows); (B) jigsaw 1112 
contacts (j) indicative of micro-fractures formed by mechanical breakage during compaction. 1113 
 1114 
Fig. 7. SEM images of a rock fragment showing tosudite occurring as: (A) a pseudo-1115 
honeycomb fabric similar to that of dried down smectitic clays; (B) a coating of tosudite on a 1116 
hexagonal kaolinite crystal. (C) EDS spectrum of tosudite in (A) showing a strong Al peak and 1117 
a significant Mg peak.   1118 
 1119 
Fig. 8. SEM images of rock fragments showing: (A) euhedral pyramidal crystals of quartz (q) 1120 
growing through a matrix of tosudite (t), rhombohedral diagenetic crystal of dolomite (d) and 1121 
irregular book-like stack of kaolinite (k); (B) diagenetic quartz penetrating pseudo-honeycomb 1122 
fabric of tosudite; (C) a vermicular aggregate of kaolinite within which a 5µm diameter pore 1123 
(p) occurs. 1124 
 1125 
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Fig. 9. SEM images and selected EDS spectra from rock fragments: (A) euhedral crystals of 1126 
apatite and K-feldspar; (B) EDS spectrum of apatite showing strong Ca and P peaks; (C) 1127 
euhedral diagenetic albite; (D) EDS spectrum of albite crystal showing peaks for Si, Al and 1128 
Na; (E) euhedral halite crystals (h) in a matrix of small kaolinite aggregates; (F) EDS spectrum 1129 
of halite showing strong Na and Cl peaks. 1130 
 1131 
Fig. 10. BSEM of thin sections: (A) two examples of well-shaped baddeleyite crystals (ZrO2), 1132 
dark holes in the baddeleyite are caused by the EDS beam (after Wilkins et al., 2015, scale bar 1133 
is 4µm); (B) a silt-sized grain with µm-scale, bright (high electron density) Ti mineralisation, 1134 
highly irregular geometry quartz grains (in the lower part of the image) and twisted mica flakes 1135 
(upper centre of image). 1136 
 1137 
Fig. 11. Mineral provenance depicted in three source-terrane domains, sedimentary, basic 1138 
magmatic and acid-intermediate magmatic demonstrating individual minerals that are 1139 
important diagnostically and often typical only of a specific terrane (bold) with other non-1140 
terrane-specific minerals. Apt = apatite, Bdlt = baddeleyite, Biot = biotite, Chlt = chorite, Illt 1141 
= illite, Kaol – kaolinite, Ksp = K-feldspar, Musc = muscovite, Plag = plagioclase feldspar, 1142 
Qtz = quartz, Qtz2 = quartz with irregular geometry, San = sanidine feldspar, Tos = tosudite, 1143 
Zrc = zircon. Information is relevant to SBF in this study and may not have global relevance. 1144 
 1145 
Fig. 12. Grain size and textural charactersitics of different forms of kaolinite in SEM images: 1146 
(A) an irregular book-like stack of kaolinite intercalated with quartz (q); (B) vermicular 1147 
kaolinite with a large (~5µm) open pore space; (C) matrix of small irregular kaolinite 1148 
aggregates. The same scale applies to all images. 1149 
 1150 
Fig. 13. (A) Palaeo-geography during the Early Triassic showing the location of the study area 1151 
(ellipse), prevailing winds, a possible southerly air flow near the confluence of the Polar High 1152 
Pressure and Westerlies (open arrow), and location of the Siberian Traps (ST). (B) 1153 
Reconstruction of the lacustrine area of the North Permian Basin during the Early Triassic 1154 
showing the location of well 20/25-1, the likely direction of aerosol dust input to the basin, the 1155 
prevailing south-easterly winds recorded in aeolian dunes. A hypothetical location of pre-1156 
Triassic kaolinitic regolith (dotted area) that extended eastward at least into southern Sweden 1157 
and the western area of the present-day Baltic Sea. 1158 
 1159 
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