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PERFECT ISOMETRIES BETWEEN BLOCKS OF COMPLEX
REFLECTION GROUPS

OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

ABsTrACT. In this paper, we prove that, given any integers d, e, r and 7/,
and a prime p not dividing de, any two blocks of the complex reflection groups
G(de,e,r) and G(de,e,r’) with the same p-weight are perfectly isometric.

1. INTRODUCTION

In the last 30 years, a lot of research in modular representation theory of fi-
nite groups has been fuelled by Broué’s Abelian Defect Conjecture. This predicts
that any p-block B of a finite group G which has abelian defect group P should
be derived equivalent to its Brauer correspondent b in Ng(P) (see [1]). Several
refinements of this conjecture have been formulated, which involve deep structural
correspondences, such as splendid equivalences or Rickard equivalences. At the level
of complex irreducible characters, all of these conjectures predict the existence of a
perfect isometry between B and b.

The first step towards proving Broué’s Abelian Defect Conjecture for the sym-
metric group was proved by Enguehard in [3]. He showed that, if B and B’ are
p-blocks of the symmetric groups &,, and &,, respectively, and B and B’ have the
same p-weight, then B and B’ are perfectly isometric. In this paper, we generalize
Enguehard’s result to the infinite family of complex reflection groups. More pre-
cisely, we show that, given any integers d, e, r and r’, and a prime p not dividing
de, any two blocks of the complex reflection groups G(de, e, r) and G(de, e, r’) with
the same p-weight are perfectly isometric (see Theorem 4.12).

The paper is organised as follows. In Section 2, we introduce some combinatorial
tools we will need throughout the paper. We then present the already existing
parametrizations, due to James and Kerber (§2.3) and to Marin and Michel (§2.4),
of the irreducible representations of the wreath products G(d,1,r), as well as a
new parametrization which is more convenient for our purposes (§2.5). In Section
3, we construct the irreducible G(de, e, r)-modules (§3.1), and obtain some useful
formulee for the values of certain characters of G(de, e, r) (§3.2). The results of this
part are of independent interest; in particular, the character table of G(de,e,r) is
completely determined (see Theorem 3.7, Theorem 3.13 and Equality (18)). Note
that we do not follow the same approach as that of [10].

Section 4 is devoted to perfect isometries and our main result, Theorem 4.12. In
§4.1, §4.2 and §4.3, we describe the irreducible characters and p-blocks of G(de, e, 1),
as well as bijections between p-blocks with the same p-weight. Finally, in §4.4, we
introduce perfect isometries and prove our main theorem.
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2. IRREDUCIBLE REPRESENTATIONS OF G(d,1,7)

Let d and r be positive integers. Let Uy be the group of complex dth roots of
unity. Define G = G(d,1,r) = Uy 1 S, = U] x &,. The elements of G are denoted
by (z;0), or simply zo, with z € U] and ¢ € &,. In particular, &, and U are
viewed as subgroups of G using the injections ¢ € &, — (1;0) and z € U] — (2;1),
respectively. For any (z1,...,2,) € U] and 0 € &,, recall that

(1) o Nz, 2)0 = (Zo(1)s -+ Zo(r))-

Let ¢ be a generator of Uy. Write t = ((,1,...,1) eUj and s; = (1 i+ 1) € &,
for 1 <4 <r—1. In particular, G = (¢, $1, ..., Sp—1).

2.1. Tableaux. Let A be a partition of r and let T" be a tableau of shape A whose
entries are distinct integers. For (u,v) € Z2, denote by E(T, (u,v)) the entry of
T in the box in row u and column v. Furthermore, we write E(T) for the set of
integers occurring in 7. Set r = |A| and assume that E(T) = {t1, ..., t,} with
t; < -+- < t.. Denote by ST(A;t1,...,t,.) the set of standard tableaux of shape
A with respect to {t1, ..., t.}, that is, tableaux T of shape X filled by the set of
integers {t1, ..., t,} in such a way that the entries in T are increasing across the
rows and the columns of 7.

Now, for each T' € ST(A;ty,...,t,), define the tableau 8(T') of shape A to be
such that

E(T,(u,v)) =t; <= E@(T),(u,v))=j.

Write ST(X) := ST(X;1,...,r) for the set of usual standard tableaux of shape .
Then

Lemma 2.1. The map 0 induces a bijection between ST(\;t1,...,t.) and ST(N).

2.2. Coset representatives for Young subgroups. Let r be a positive integer.
A composition of r of length d is a d-tuple (co,...,cq—1) of non-negative integers
such that Zfz_ol ¢i =r. Let c = (co,...,cq—1) be a composition of r. Write I for the
set of integers 0 < ¢ < d—1 such that ¢; # 0. Weset Cop =0and C; = co+---+¢;—1
forany i € I, and F; = {C;+1,...,C;+¢;}. Now, we can associate to ¢ the Young
subgroup &. = G, X --- X &, of &,, where [, = {ig,...,is}. Furthermore, for
any ¢ € I., we denote by p; : &5, — &, the group isomorphism induced by the
bijection Ez — {1, .. .,Ci}, CZ +] — ]

Let B ={1,...,r}. For any composition ¢ = (cg,...,cq—1) of r, define

d—1
(2) XC:{(XO,...,Xd1)| | | xi=E, |XZ-:CZ}.

=0

Lemma 2.2. Letc = (cp,...,cq—1) be a composition of r. For X = (Xo,...,X4-1) €
X., define tx € &, by setting, for alli € I. and 1 < j < ¢,

(3) tx(Ci+j) = v 5,

where X; ={xi1,...,Tie; } With ;1 < -+ < T,
Let o € &,.. Fori € I, define X;(0) = {o(x) |z € E;} = {xi1,...,Tic,} with
Tig < -+ < Ty, and write X = (Xo(0),...,Xq-1(0)) € X.. Then

o=1tx0o0 " 04-1,
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where 0; € &g, is defined as follows. If i ¢ I., then o; = 1. Otherwise, for any
x € E;, there is a unique my € {1,...,¢;} such that o(z) = i m,, and we set
oi(x) =Ci+my. Forx ¢ E;, we set o;(x) = x. In particular, T. = {tx | X € X.}
is a complete set of representatives for &, /6.

Proof. Let 1 < 2 < r. Since X € X,, there is i € I. such that € X;(0), and
Git1 - 04—1(x) = z. Furthermore, c;(x) = C; + m, € X;(0), and it follows that
o1 0i—1(Ci +my) = C; +my. Finally, tx(C; +my) = xim, = o(x), as required.

By construction, tx and oy,...,04_1 are uniquely determined from o, hence 7. is
a complete set of representatives for &, /.. 0
For any composition ¢ = (¢, ...,cq—1) of r, we set
G.=Uj x6,.

Write 7, : G — &, for the natural projection with kernel Uj. Note that G, =
771(&,), and that 7(G.) = &, hence G/G. is in bijection with &,/&.. The
bijection is given by tG. — 7(t)S,. Identifying &,. to a subgroup of G as above, we
can take 7. for a set of representatives for G/G.. Furthermore, using Lemma 2.2
and Relation (1), we deduce that, if g = zo € G with z = (21,...,2,) € U] and
o € G, then

(4) 9=1x (Ztx (1) Ztx(r))00 " " Od—1,
cG.
where X = (Xo(0),...,X4-1(0)) and 09, ...,04—1 are as in Lemma 2.2.

2.3. The James-Kerber parametrization. For any partition A\ of r, there is a
corresponding irreducible Specht module V) of &,. Write ¢ : 6, — GL(V)) for
the corresponding irreducible representation of &,. Recall that V) has a C-basis
vy = {var|T € ST(A)} such that

(5) '(/}/\<si)(v>\,T) = " ! UAT T (1 + ))UA)TiHi+1’

1
(t,i+1) a(i,i+1
where a(i,7+ 1) denotes the distance between the diagonals of T" where i and ¢ + 1
occur, and Tj.,;41 is the standard tableau of shape A obtained by exchanging the
integers ¢ and ¢+ 1 in T
Let a denote the identity of U;. We can write Irr(Uy) = {a’|0 < i < d —
1}. A d-multipartition A = (A XB)X@=1D) of p is a d-tuple of partitions
such that Z?:_ol IND| = r. We write this as A IFg 7, and denote by MP, 4 the
set of d-multipartitions of r. Recall that, up to G-isomorphism, the irreducible
representations of G are parametrized by MP,. 4 as follows.
For any A = (A, XD A@=D) write ¢; = [A®)| for 0 < i < d — 1, and

¢=(co,...,c4—1). Now, consider the irreducible character of U
d—1
(6) 0=Qa e ed,

whose inertial subgroup in G is G.. Extend a. to G by setting a.(z0) = a.(z) for
all z € U} and 0 € &, and denote by Cw,. the corresponding representation space.
Now, for any ¢ € I., the space Vyu) has a structure of Gg,-module given by the
homomorphism ¥yu o p; : &g, = GL(Vy» ). Hence, V) = Vi) ® -+ @ Vyw-1) is
an irreducible &.-module, which gives an irreducible representation of G, through
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m.. Furthermore, to simplify the notation, we identify Cw. ® V) with V), by setting
20 = ae(2)v for all z € U] and v € V). Now, by Clifford theory, the G-module
(7) Wy = Indg, (Va)

is irreducible, and {Wy | A € MP, 4} is a complete set of non-isomorphic irreducible
G-modules. For any A € MP, 4, write ¥, : G. — GL(V,) and py : G — GL(W,)
for the corresponding representation of G. and G, respectively.

By definition of the induction representation, the set

by = {tX D Vy0 7y ® - ® Uyt gy, | X € Xey Ty € STAD) for 0 < i < d— 1}

is a C-basis of W). Furthermore, for z = (21,...,2,) € U}, 0 € &,, and tx € T,
there are tx, € T. and g € Sy, ..., 04—1 € S4_1 such that
(8) zotx =tx, (ZtXa(l)’ Ceey th(,(r))EO 01 €6,

(see Relation (4) applied to g = zotx € G). Therefore, if v =tx @ vyo) 7, ® - @
Ux@-1) 7, 5 then

(9) pa(20)(v) = cl2ix, (1)s -+ -5 2tx, (1) EX, @T0(VA@ 1)) @+ ®Ta—1(Vr@-1 1, )5

where o;(vy@ 7,) = Y@ 0 pi(0i)(va@ 7,) forall 0 <i <d — 1.

2.4. The Marin-Michel parametrization. In [5, §2.3], Marin and Michel give
the following model for Irr(G). Let A = (A, ... A4=D) € MP, 4. Define T())
to be the set of standard multi-tableaux of shape A, that is, the set of tuples of
tableaux T = (Tp, ..., T4—1) where
e For all 0 <i < d— 1, the tableau T} is of shape A,
e The tableaux Ty, ..., T;—1 are filled by the set of integers {1,...,7} in such
a way that each integer appears exactly once in one of the tableaux, and,
for each i, the integers appearing in T; are increasing across the rows and
columns of Tj.

Now, the C-vector space W} with basis 7(A) can be given a G-module struc-
ture so that {W{|A € MP, 4} is a complete set of non-isomorphic irreducible
G-modules. Write p : G — GL(WY) for the corresponding irreducible representa-
tion of G. a

Denote by T'(1) the index of the tableau of T containing the integer 1, and for
1 <i<r—1,write T, ;. € T(A) for the multi-tableau obtained from T' by
exchanging the integers ¢ and ¢ + 1 in 7.

With this notation, we have (see [5, §2.3]) p}(t)(T) = ¢TMT. Furthermore,
for 1 < i <r—1,if ¢ and i + 1 do not belong to the same tableau of T, then
PA(s)(D) = Ty Otherwise,

1

1
10 )= ——— T+ (14— )T
(10) Palsi)T a(i,i+1)= ( a(i,i—i—l))_“_”H

Proposition 2.3. Let A = (A0, ... \d-D) ¢ MP,. q. Then the linear map
o Wi — Wy defined on the basis {L|T € T(A)} of W} by setting, for every
T= (T07 R Td—l) € T(A))

IA(To,s -, Ta1) = tx @ VA g(1) @ @ Vx@-1) (1, _,)s
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where X = (E(Ty), ..., E(Ty—1)) and 0 is the map constructed before Lemma 2.1,
is an isomorphism of G-modules.

Proof. First, we remark that f) sends a basis to a basis, whence is a bijective linear
map. To prove the result, it suffices to show that py(g) o fx = fao p’A(g) for all

gE{t, 81, oy Sp1} _
Let T = (To, ..., Ty_1) € T(A). Write ¢; = |A\()| for all 0 < i < d — 1, and
set ¢ = (co, ..., Cq—1). Define ¢ = (1,...,1,¢, 1,...,1), where ¢ lies in position

t% (1). Then Relation (4) gives ttx = txt'. Furthermore, 1 € E(Tr(1)), thus
tx (1) € Epy. It follows from the linearity of fy, and from Relations (6) and (9),
that

PA)(A(T) = pA(D)(tx @ vy (1) @+ @ Va1 o(T,_1))
= (' )tx @ vy o(15) ® * © Vrw-1 (1, 1)
= oL (O)tx @ vr© pmy) ® @ Va1 o(7y_y)
— CZ(l)fA(I)
— fA(CI(l)I)
= fAPA(B)(D)).

Now, let 1 < i <r —1. Assume ¢ and i + 1 do not lie in the same tableau of T,
say i € E(T}) and i+ 1 € E(T;). Then s5,Tx = Tx,.,,,,, where X411 € X, is
obtained from X by exchanging ¢ and 7 + 1. It follows from Relation (9) that

PA(3) (FA(D)) = tX101101 OVA© 0(10) @+ ®VUNa—1) (1, 1) = Fa(Ticir1) = fa(ph(s:) (D))

Assume now that 7 and i + 1 lie in the same tableau of T, say i, ¢ + 1 € E(Ty) =
{t1,...,tm} with t; < --- < t,. Let 1 <14 < m be such that i = t;;. Necessarily,
we have t; 11 =1+ 1, and s;tx = txsc,+. Thus, Relations (9) and (5) give
pa(si)(fa(D)) = tx® VAO) g(Tp) @ @ NG (Si’)’UA(k),e(Tk) Q- @U@= 9(Ty_y)
1 1
= ——AH(T 1+ ———— Tiivint)
SO+ (14 iy ) BTe)

Let (u,v) and (u/,v") be such that E(Ty, (u,v)) = i and E(Tg, (u/,v")) = i + 1.
Then by construction, we have E(6(T}), (u,v)) =14 and E(0(T}), (v/,v")) =4 + 1.
In particular, a(z,7 + 1) = a(¢,i + 1) and we deduce from the linearity of f) and
Relation (10) that

@) = b (Tt (14 ) T

1 (As)@)

as required. 0

2.5. Other descriptions in some special cases. In this section, we assume
that there are integers ¢, 7’ and d’ such that d = qd’ and r = gr’, and we consider
multi-partitions A € MP, 4 of the form

(1) A=A, A@=D \O @D O A0y = (),

—_——

q times
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where p = A )\(d”l)) € MP,s gr. Write c = (co,...,cq—1) and Eg, ..., Eq_1
as above, and ¢ = (¢g,...,Cqr—1).
Let 0<i<q—1 Weset L; =6p, x - x&p,_, , Ki=Uj x L,
d -1

E; = |_| Eit,
k=0

and H; = U} x &p. Note that the character al, = o' @ -+ ®@ o' € Trr(U])
extends to H;. Recall that V), is an L;-module. We endow V), with a structure of
K;-module where the action of Ugl < K is given by ozf:i ® a, and we denote by
Vyu,i the resulting Kj;-module. Now set W), ; = Ind%(Vu,i), and define Xy, to be

the subset of elements Y = (Yp, -+, Yy_1) € X, such that for all 0 < j < ¢g—1 and
0<k<d-—1,if j #1, then Vg1 = {jr'+Cr+1,..., jr’ + Ciy1}. In particular,
Yiar+x| = cx and |y Yiarpr = {ir" + 1, ..., (i + 1)r'}. Therefore, {tv, |V € X}

is a system of coset representatives of H;/K,;. We also consider the set 7" of tuples
T = (To,...,Ty—y1) with T; € ST(AD) for 0 < j < d — 1. For T" € T, write
v = Uz 1, @ @ Uy@-1) ,, - In particular, {vr |T" € T'} is a basis of V, ;.
Hence, {ty, @ vr/ | Y; € X,,i, T] € T'} is a basis of W), ;.

Now, set
(12) H=Hyx- - xHg_1.
Consider the H-module
(13) Uy =Wy @Wu1®- @ Wyg-1,
and define

WY = Ind§ (U,).
We write pg G — GL(W&’ ) for the corresponding representation of G.
Proposition 2.4. The G-module W} has basis
bY = {tx' @ (ty, ®vgy) ® -+ ® (ty,_, ®vry_ )| X € Xy, ), Vi € Xpui, T € T'}
For X € X, define [(X) = (Xg, ..., X;_1) € X ... ), where

d'—1
X! = |_| Xiarin, forall 0<i<gq-—1.
k=0
Write Xj = {x} 1, ..., @} ., } withx}; <--- <}, and, for all0 < i < q—1

and 0 < k < d — 1, consider the element YV;(X) € Xpi such that Yir(X) =
{id" +j |z} ; € Xiarsi}. Then the linear map fy defined by
fé(tX ® UT(; K- th;—l) = tl(X) ® (tyo(x) ® UT(;) K- ® (th,l(X) ® vTé—l)
is an isomorphism of G-modules between W and Wi’
Proof. Note that
(14) Ge=Kox - x K,_1,
and, viewed as a G-representation with respect to the direct product (14), we have

VA = VH’O R ® V&q_l.
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By Lemma 2.2, {tx/|X' € X,/ ,} is a system of coset representatives of
G/H, and {ty, ---ty,_ , |Y; € X, ;} is a system of coset representatives for H/G..

Then there is an isomorphism of G-modules &1 : Indg(lndgc(VA)) — Indgc (V)
given on any basis {v} of V) by
Iil(tX/ X tyo .. ‘tyq_l ® ’l)) = tX/th .. 'th_l ® v,

where X’ € X,y and Yy € Xﬁ,i. Furthermore, we have

.....

Idff (Vy) = Ind% 5 (Vo @+ @ Vig1)

Ind ({5 (Vy0) © - @ Indge! ) (Vi gen).
The last isomorphism of H-modules is for example given by

ty, by, @upy ®@ - --opr_ = by, @upy) @ -+ @ (ty,, ®vpy_ )

1%

for all Y; € X, ; and 7] € T'. We thus obtain an isomorphism of G-modules
Ko : Indg(lndgc(VA)) — nd%(U,) given by

Kg(txr X f,yo e -ty[rl ® ory X - "UTé,l) =tx' ® (tyo ®UT6) R R (th71 ® ’UT,;,l)'
Now, note that the map
(15) KXo = X, oy X Xpo X oo X Xpygo1, X = (I(X),Yo(X),..., Y1 (X))

is bijective and that
Ix =t ty(x) ty,_1(x)-

It follows that fé =Ko o0 mfl has the required property. (]

Remark 2.5. Note that Hy = G(d,1,7’) and that W), o is the irreducible represen-
tation of Hy labeled by (s, 0,...,0). In the same way, for every 0 < i < ¢ — 1, the
group H; can be viewed as a complex reflexion group G(d, 1, ") with support E;.
The irreducible representation W), ; of H; is then labeled by (0,...,0,4,0,...,0),
where p lies in ith-coordinate. In the following, we will identify H; with Hy as well
as Ww_with W0 as follows. Let 0 <¢ < ¢ — 1. Write

i+ 1 G+ D) = {1, i e

Then 7; induces a group isomorphism between H; and Hy. Furthermore, for Y €
X,.i, define Y% € X by setting Y2 = 7;(Vigryx) for all 0 < k < d’ — 1. Then the

H;-module Wﬁ,i and the Hyp-module af:i ® Wﬁ are isomorphic. An isomorphism f;
is given on the basis {ty ® vy} by

(16) ty @ vpr = tr vy @ v,
forall Y e X,; and T" € T".

3. CHARACTER FORMULA FOR THE IRREDUCIBLE REPRESENTATIONS OF
G(de,e,r)

Let e, d and r be positive integers, and write G = G(de, 1,7).
Let ¢ = (0,---,0,(r),0,--- ,0) € MP, 4e, where the non-empty part of ¢ lies in
position de —1—d. Then € = p, is a linear character of G of order e, and we denote
by N = G(de,e,r) its kernel. In particular, if 2 = (21,...,2,) € U], and 0 € &,,
then zo lies in N if and only if e(z) = 1, that is z; - - - 2, € Uy.
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3.1. Representations of G(de,e,r). Let A = (A, ... Ade=D) ¢ MP, ;.. Note
that, by construction, Resﬁ; (e)=a?®- - ®ad elr(U,). It follows from Equa-
tion (7) that ‘

e®py =c®IndG (¥)) = Indf_ (¢ ® V) = Indg_(F.n)) = pe(n),

where e(A) = (XD \@+D _A(detd)): note that, here, the indices are taken mod-
ulo de.
Let a be a divisor of e such that £%(\) = A\. Then A(4+%) = X\(¥) for any k, and

da—1

(17) r=1Een Y G
k=0

The set C\ = {&7 |/ ® pp = pp} is a subgroup of the cyclic group (¢), hence
there is a divisor by of e such that C) = (¢%2). Furthermore, by Clifford theory,
Res$ (py) is the sum of |Cy| non isomorphic irreducible N-modules. Following [5,
§2.4], they can be described as follows. By Schur’s Lemma and the fact that C is
algebraically closed, we can choose a bijective linear map M, € Homg(py, 8b4®pi )
such that M, has order |Cy|. On the other hand, M) is diagonalisable and has
exactly |Cy| eigenspaces with eigenvalues in U, |. Denote by W) j the eigenspace
attached to the eigenvalue (2%, where Uy = () (so that Ujc,| = (¢(®2?)). Then
{Wyx]0 < k < |Cy| — 1} is the set of irreducible N-modules appearing in the
decomposition of W) into simple N-modules.

For 0 < k < |Cy| — 1, denote by xxx the character of the N-module W) ; and
by

Axi(g) = Te(Mf o pa(g)) forall g € N.
Then we have (see [5])

1 [Cal—1
(18) Xak =4 > (TMANA
=G = -
=
Now, using the first orthogonality relation, we deduce that, for 0 < k < |Cy| — 1,

[Cal—1

(19) Aye= Y ™My, ;.

Jj=0

Proposition 3.1. Let A = (A0 ... Alde=1)) ¢ MP,ge and ¢ = (co, ..., Cde—1)
be such that c; = |\?| for all 0 < i < de — 1. Let by be a divisor of e such that
Cy = (e®). Define my : X, — X, by setting, for any X = (Xo, ..., Xge—1) € X,

m(X) = (Xay, - -+ > Xdby+de—1),

where indices are taken modulo de. Then the linear map My € Homeg(py, e ® p))
as above can be described on the basis by of Wy as follows.

MA(tX®'U>\<U),TO®' . '®/U)\(de—1)’TdE_1) = th(X)@)U)\(dbA)’TdbA@' . '®U)\(dbA+de—1)7TdbA+de_l,

where X € X, and T; € ST(AD).
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Proof. In [5, §2.4], a bijective linear map Mj € Homg(p), gba ®p)y) of order |Cy | is
described on the basis T(A) of W} as follows. For every T'= (T, ..., Tie—1) € T(A),

we set
(20) Mi(T) = (Tapys -+ Tapy+de—1)-
Now, using Proposition 2.3, we check that
My o fy = froMj.
The result follows. O

Let ' be a divisor of |[Cy|. Then ¢ = Ii%l = 3. 1is the order of MY and

gbat’ (A) = A. Hence, Relation (17) applied to a = byb’ gives that ¢ divides r. Let
r’ € N be such that r = ¢r'.

Proposition 3.2. We keep the notation as above. Write ji = (A A(dbab'=1)y
so that A = (, ..., ) as in Relation (11). Define mg F Xy = Xy bY
mA (X0, - Xg1) = (X1, X, X0),
and, for all u = tx' @ (ty, @ vyy) ®@ -+ @ (ty,_, @ qu/_l) with X' € X, 4y,
Vi€ X, and T € T', we set
Mé’(u) = tmx(xl) ® (tyl ® UTé) - ® (th_l ® UT[LQ) ® (tYo ® UT471)'
Then
Mo fy = fio M.

Proof. We remark that for all X € AX., one has l(mg,(X)) = my(I{(X)), where

l:Xe— X, ) is the map defined in Proposition 2.4. Let k : X — Xy ) ¥

X0 X -+ % Xy, g1 be the bijection defined in Relation (15). Then for all X € A,
romy (X) = (m3(1(X)), Yi(X),..., Yg-1(X), Yo(X)).

The result then follows from Proposition 2.4. O

3.2. Values of A, ;.

Lemma 3.3. Let A € MP, 4. be such that C\ = (e*2) for some divisor by of
e. Let b be a divisor of |Cy|, ¢ = |CA|/V and v € N be such r = gqr'. Write
W= (A(O),...,)\(db@/’l)) so that A = (i,...,p). For g € G and X € X 1y,
define Xy € Xy, pr) and g € H; for0 < i < q—1 such that gtx = thgg( . --gf_l.

Then
q—1
dbyb'i _ _
Mwle)= > (H ™ (9?)) Xu (@0 T,

X [mf (Xg)=X \i=0
where x,, denotes the character of the irreducible representation of Irr(Hy) labeled
by (H,wf...,(z)) and g* € Hy is the image of giX by the isomorphism H; — Hy
induced by the bijection ; given in Remark 2.5.

Proof. By Propositions 2.4 and 3.2, we have py(g) = f1 ' o p¥(g) o f4 and Mf\’/ =
171 o M} o f}. Hence - - - -

Axw(g) = Tr(M} o px(g)) = Tr(f5" o MY 0 pi(g) o f3) = Te(MJ o p(g)).
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Let u=tx ® (ty, ®vpy) ® -+ @ (ty,_, ® vy ) € bY. We have

q—1
dbyb'i
e oo = (T80 ) ey (@ (o 90r).
=0

where the indices are taken modulo ¢. To simplify the notation, we denote the basis
{tvo @ vy | Yo € Xp0, Ty € T'} of W, by e = {eq, ..., es}, and the basis of W, ; is
then equal to f; ! (¢) by (16). Then, by Remark 2.5, for all 0 < i < ¢ — 1, the matrix
of g - (ty, ®vry_ ) (where the indices are taken modulo ¢) with respect to the basis
f(e) is the same as that of p,(g;) with respect to the basis ¢. For h € Hy, we
denote by A, (k) = (a;;(h));; the matrix of p,(h) with respect to the basis e. In
particular, for i, ...,i,_1, if we decompose g;* - €;, @ - ~®g5(_1 Y W ®gi - ei, with
respect to the basis {e;, ® --- ®e;,_, }, then its coefficient in the e;, ® --- ®¢e;,_,-
coordinate is
Qigiy (E{() Qg i (g()l(—l) Ay (gg()

Write My o pi(g)(u) = Evebq ayv. Thus, if a, # 0, then m{(Xy) = X and, in

this case, one has

qg—1
dbyb'i _ _ _
Ay = (H O‘r’A Z(gLX)> Qigiy (g{() C Qg _pigq (g;(—l) Qig_1ip (gOX)

i=0
Furthermore, note that >-, ;  aigi, (@) @iy iy (T 1) @iy_1io (G0 ) is the co-
efficient (ig,%0) of the matrix

A, @) - Au (G- )Au(G5) = Au(@1 - 752170 )s

because p,, is a representation of Hy. It follows that

> i () @iyaig (T) 1) iy i (T0) =Y i (G TaaT0 )
10, yig—1 10
= xu(@ 700
= Xu(G5 - Tp1)-
The result follows. O

Lemma 3.4. We keep the notation of Lemma 8.5. Let g = (z;0) with z € U],
and o € S,.. Write 0 = o1 ---0, the cycle decomposition with disjoint support of
o. Assume that o; has length £;, and that, for 1 < j <s,

(21) oj = (Lj +1 .- L -‘rfj),

where Ly = 0 and Ly = {1 + -+ 0j_1. Let X = (Xo,..., Xq-1) € X 11y,
and, for 0 <i<q—1, write

X, = {xi,l, ey a:w/} with T <o < T

Ifmg(Xg) = X, then {; is divisible by q for all 1 < i <s. Let 1 < j <s. Write
l; = ql;- and L; = qL}. Then there is 0 < ig < q¢ — 1 such that x;,1 = L; + 1, and,
foralllgkgﬁg and 0 <1 < q—1, we have

Tig—t,1,+k = Lj + (k= L)g+1+1,

where 19 — | is taken modulo q.
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Proof. Assume that m%(X,) = X. We have X, = (¢(Xp),...,0(X4—1)). Thus, for
all i > 0, one has B

o(Xiy1) = X5,
where the indices are taken modulo ¢g. Let 1 < j <'s. Assume L; + 1 € X, for
some 0 < iy < ¢ — 1. Now, we prove by induction on [ that
(22) Lj +1le Xip—i41-
Indeed, it is true for [ = 1 and, if we assume it holds for some [ > 1, then one has
Li+l+1=0(L;+1) € o(Xip—141) = Xip—i,

as required. In particular, L; +/; € X;, ¢, y1. However, o(L;+¢;) = L; +1, hence
Xig—t; = 0(Xig—e;41) = Xi, and ig — £; = 9 mod g, that is ¢ divides £;. The
result now follows from Relation (22). O

Remark 3.5. In fact, for all 1 < j < s, the position of L;+1 completely determines
the integer Ty L) 4k for0<i:<qg—1land 1 <k < K}. Since there are ¢ choices
for the place of L; + 1, we deduce that the number of X € X{,. _,/) such that
mi(Xy) = X is ¢°.

,,,,,

Recall that the conjugacy classes of G are labeled by MPg. , as follows. Let
g = (2;0) € G be with z = (z1,...,2,) € U], and 0 € &, with disjoint cycle
decomposition oy ---0s. For 1 < j < s, write 0; = (z(j);aj) where z(;)r = 2k
if k& lies in the support of o;, and z(;y, = 1 otherwise. The cycle product ¢(c;)
of 7; is then defined to be [], z;yx. Now, we associate to g the multi-partition
N = (M0, Nde—1) € MPrge, called the cyclic structure ¢(g) of g, in such a way
that, for all 1 < j <'s, i, has a part of length |o;| if and only if ¢(5;) = ¢*, where
¢ is a generator of Uy.. Then two elements g and ¢’ of G are conjugate if and only
if ¢(g) = c(g').

Convention 3.6. Now, for any n = (no,..., Nge—1) € MPrae, we choose as
representative for the class of G labeled by n the element g, = (z;0), where the
cycles of o are as in (21), and, if o; = (L, +1- --Lj+1{;) is a cycle of o such that
C(gj) = Cu, then 2k = 1 ka 7é Lj -+ 1, and 2y Li+1 = Cu

For 7 € N, we denote by P, the set of partitions of r, and we let P = [,y Pr-
For any m = (71,...,m) € P and any positive integer ¢, we let

(23) g*xm=(qmy,...,qm) €P.

Furthermore, we write ¢(7) = t, and, for n = (10,...,Mde—1) € MPyqc, We set
£(n) = >_4(nu). Note that, if g = (2;0) with o0 = o1 --- 0, has cyclic structure 7,
then s = £(n).

Theorem 3.7. We keep the notation as in Lemma 3.3. Let n = (o, ..., Nde—1) €
MP, ge and g, = (z;0) with z = (z1,...,2,) €U, and 0 =01 ---0, € &, be as in
Convention 3.6. For any 1 < j < s, write £ = ¢(5;).
(i) If there is 1 < u < de — 1 such that n, ¢ q* P, or if there is 1 < j < s such
that &; ¢ udbAb’ then, Aéyb'(gﬁ) = 0.
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(ii) Assume n, = g1, for all 0 <u < de—1 and & € Uap,p for all 1 < j < s.
Then

A (9n) = 4"V xulg));

where g, € Ho has cyclic structure (15, ..., Ng,_1) and p € MP s ge/q is as
in Lemma 3.3.

Proof. If there is 1 < u < de — 1 such that ¢ does not divide |7, |, then ¢ has a cycle
of length not divisible by ¢q. By Lemma 3.4, there are no X € X, /) such that
my(Xg,) = X, thus Ay y(g,) = 0 by Lemma 2.1, proving the first part of (i).

Denote by X the set of X € A, such that m{(X, ) = X. Set Q =
{0,...,¢g—1} and, fori = (iy,...,is) € QS, define X; to be the set of (Xo, . .. , Xg_1) €
X such that, for all 1 < j < s, the integer L; + 1 lies in Xj,.

Let X € X. Then there is a unique ¢ € @° such that X € X;. For 1 < j <5,
write qé for the length of o;. Then o;tx = tX O’ , where

(24) aj:(cij+L;+£;Cij+L;+£;— - Gy + LS +1).

Furthermore, Relation (8) gives 2(j)tx,, = tx,, 2, where 2/ = (21,...,2;,) € U], is
such that 2¢, AL = z(J)L tpandz, =1 othervvlse So, if we set 7, X = 1if k # 4,
and o Uij = z” %, where 2" = (27,...,2])) € Uy, is such that ZL’+1 = zg, L

and z)/ =1 othervvlse, then

~' X

~ ~' X
(25) ojtx =1tx, 0g Og—1>

where & ak € Hj. Note that c( X) = ¢(5). Now, Lemma 3.4 implies that tx, =

tx -tx,., so that applying Relatlon (25) iteratively to the cycles of gn, we obtain

a1
X X
Intx =1x,90 " 9q-1,
where

g = H &;Xer. forall 0 <k <q-—1.
{1<j<s|i;=k}

By Relation (24), the cycles 5;»X have disjoint support, and
oy = (L + 0 - L+ 1).

Hence, the element g, = TR @2(71 € Hy has cyclic structure n" = (g, ..., 7._1)
and does not depend on X € X. Therefore, Lemma 3.3 implies
db b’
(26) INVATAESACHDS H 2 (97)
X€EX i=0

Let 1 <j<sandtake X € X. For 0 < k < q— 1, write th € H;, such that
0' gty = tX A We denote by X; the set of X € X(,/ ) such that

L;+1€X;. If X € X;, then gif = hy¥ for k # i and g;* = ~;»th(, by Lemma 3.4
and Relation (24), and it follows that

q—1 —1

q
dbxb'k db b db bk dbyb'i db bk
[L " (o) = 0" Ha PR =g [T e ).

k=0 k=0
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Note that J = > vcx. TTizo L dbkbk(hkx) does not depend on i € Q. Hence, we
obtain

Zﬁaf/lgb’k(g’?» _ qz Z ]j db,\bk X
€Xy;

XeX k=0 k=0

g _
B Z Z dbab'i; H dbxbk
€xy, k=0

q—1 , q—1 f

dbyb'i; dbab'i,, x
§ gj § I | . (hy)
;=0

XG%ij k=0
q—1 ..
_ J Z é_dbéb 25 )
J
i5=0
NOW, if fj ¢ udbAbH then
q—1 dbxb'q
3 dosv'i; & -1 0
f]' T ndbyb 1 ]
i5=0 fj h

since dbyb'q = de and &; € Uge. This concludes the proof of (i). If, on the other

hand, &; € Ugpy,p for all 1 < j < s, then adbkb Z(gf{) = 1 for all 7. Equation (26) now
gives Ay v (9y) = xu(gy)|X], and (11) follows from Remark 3.5 since s = £(n). O

Remark 3.8. Let A = (y,...,u) € MP; 4, where p € MP,s go/q is as in Lemma
3.3. Let n = (n0,...,Mae—1) € MPr4c and g, = (2;0) be as in Convention 3.6.
Set 0 = 01---05 and §; = ¢(7;). Assume that ¢ divides njorall<j<de—1
and that §; € Ugesq for all 1 < j < s. Since & € Ugeyq for all 1 < j < s, we
deduce that 7, # 0 only if ¢ divides u. Let g, be the element of G(de,1,r") with
cyclic structure (70, . . ., 1., ) described in Convention 3.6, where 7; = qn;, and let
(q) € G(de/q,1,7") be the element with cyclic structure (1, 77,75, - - -) described
in Conventlon 3.6.
Denote by X, the irreducible character of G(de/q, 1,7’) labeled by . Following
§2.3, note that the representation space of Hy labeled by (1, 0,...,0) and that of H
labeled by p have the same basis b. Furthermore, using the fact that Irr(Uye/q) =

{a’ Luy,,,1 0 < i <"}, we deduce from (8) and (9) that the actions of gy and g(q)

on b are the same. In particular, we have Xﬁ(g;) Xu(gg,q)) and

(27) Ao (9n) = 0 Fu92).

Example 3.9. Consider G = G(6,1,6) and N = G(6,3,6). Letn = (0,0,0,(6),0,0).
Then the representative for the conjugacy class of G' labeled by n described in Con-
vention 3.6 is g, = (¢3,1,1,1,1,1;0), where 0 = (1 23 45 6). Let (Ao, \1) €
MPso. Write A= (A0s A1, Ao, A1, Ao, A1) € MPg . We will compute Ay 1(gy). To
this end, consider the set X as in the proof of Theorem 3.7. Then Lemma 3.4 gives
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X = {le Xo, X3} where X1 = ({134}3 {376}7 {275})’ Xo = ({275}7 {1’4}’ {376})
and X3 = ({3,6}, {2,5}, {1,4}). Furthermore,

gntx, =tx,90 91 g =tx, (€% 1,1,1,1,1;(1 2)),1,1)

Intxs =tx.00 2912052 = tx, (1,(1,1,¢°,1,1,1;(3 4)),1)

gﬂtX3 = thgg(ggf(ggg(% = th (17 1a (15 17 17 17 CS7 17 (5 6))) .
Note that

90010 =000 0 =091 9" = (¢*,1,1,1,1,15(1 2)) € Ho,

and can be identifed with the element ((3,1;(1 2)) € G(2,1,2). We have

AAJ(QE) = 355()@)\1)((37 1; (1 2))a

where X (x,,7,) 18 the irreducible character of G(2,1,2) labeled by (Xo, A1).

Theorem 3.10. With the notation as above, if 0 <k < [Cy| — 1, then Ay x(g,) =
Axp(gn), where 1 <V < |Cy| is such that the order of MAk is |Cy|/b'.

Proof. Write ¢ = |Cy|/b. First, we remark that the matrix MY has order ¢ if
and only if M )7\“ is a generator of the cyclic group <M§/>. In particular, there is an
integer 1 <t < ¢ coprime to ¢ such that Mf = Mflt. Now, using Proposition 3.2,
we deduce that M{* o f{ = f} o M¥. Let g = (;, o) € G(de,1,r) be such that
o0 =0y 0s. Write ) for the set of Y € X, such that mit(Y,) =Y. Now, if
gty = ty, gy - géﬁl, then we derive from the proof of Lemma 3.3 that

.....

qg—1
dbab’j _ _
(28) M) =D | T aw™7(a)) | xu(@ - Tqn)s
Yey \j=0

where the indices are taken modulo ¢. Furthermore, using the fact that x, is a
trace, we obtain x,(g) -+ Gyq-1) = Xu(90 - Fy-1)-

Define f: X — Y, (Xo,...,Xq-1) = (Xo, Xt, ..., X(g—1)¢) where the indices are
taken modulo q. The map f is well defined because ¢ is coprime to g, whence j — jt
is a bijection of Z/qZ, and, if X € X, then, for all 0 < j < ¢ —1,

my' (0(Xj1)) = 0(X(jp1ye) = o(f(Xj11)) = f(0(Xj41)) = (X)) = Xju.

Furthermore, f is bijective since t is coprime to q. Let X € X and 1 < j < s.
Write Y = f(X). Then L; +1 € X;; if and only if L; +1 € Y;;. In particular,
{50", ..., 1} is a permutation of {55%,...,5/%,} (for the notation, we refer to
the proof of Theorem 3.7). Hence, gj - - @321 and g - -53;71 have the same cyclic
structure, that does not depend on X and Y. We can now conclude as in the end

of the proof of Theorem 3.7. (I

Example 3.11. We continue with Example 3.9. We will now compute AA’Q(gﬂ),
We consider Y and f : X — Y as in the proof of Theorem 3.10.
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Then Y = {Y1, Yo, Y3} where Y1 = f(X1) = ({1,4}, {2,5}, {3,6}), Yo =
f(X2) = ({2,5}, {3,6}, {1,4}) and Y3 = f(X3) = ({3,6}, {1,4}, {2,5}). We have
gntvi = tvig0 91 95" = tv, ((¢*1,1,1,1,1;(1 2)),1,1)
gntys = tv,90°91°95% = by, (1,1,(1,1,1,1,¢%,1; (5 6)))
Intys = tva 00 01 205° = ty, (1,(1,1,¢%,1,1,1;(3 4)),1) .
We again have, for all 1 <, j <3
gé/lg}/lg%/l =90°91°92" = (C3> 17 1’ 17 la 1; (1 2)) € H07
and

Ax (i) = 3X o (¢, 151 2)),

as required.

Proposition 3.12. Let 0 < k < |Cy| — 1. For any g € G(de,1,7) and x €
G(de,e,r), we have

Ay p(Px) = "2 (g) Ay k().
Proof. Recall that MApAM)Tl = &2 ® py, so that MgpAM;k =Pk © py. Thus
AA7]€(9.73) = Tr

whence

(29) Ayi(x) = e (g) Ay k().

Let g € G(de,1,7) be an element of order e such that
G(de,1,7) = G(de,e,r) x (g).
Suppose that £(g) = w = ¢¢. For any divisor q of e and r, define

P’r‘,ed,q = {(7707 (Z)a ey (2)7 Ure ®7 ey ®7 ceosNde—q> (Z)a ceey (Z)) | (,’707"7(]7 e 777d€7q) € qpr/q,de/q}'

Furthermore, for any 0 < j < ¢ —1 and 1 € Py cq 4, Write

Theorem 3.13. The set
| {905 11 € Pradeqs 0<j<q—1}

qle

is a system of representatives for the conjugacy classes of G(de,e,r).
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Proof. Write € for a system of representatives of the (g)-orbits of P, 4.. By Clifford
theory from G(de, 1,r) to G(de, e,r), the elements of

P={Ak)[Ae& 0<k<|Cyl -1}

label Irr(G(de, e, r)). For any divisor ¢ of e, write B, = {(A, k) € B | |Cy| =¢}. In
particular,
P = I_lfﬂpq‘
qle

Note that (A, k) € B, if and only if A = (u,...,p), where u € Pp/q 4e/q is repeated
q times. Let ¢ be a divisor of e. For any p = (uo, - . ., ftae/q—1) € Pr/q,de/q: We define
filp) = (py oo 1) € Prage and fo(u) = (Mo, .., Ade—1) € Pr.de,q Where Ag; = qpu;
for 0 < j < de/q—1 and A\, = 0 otherwise. The maps f; and fy are bijective.
Let n, and n, be two distinct elements of P, 4c 4. Then for all 0 < 71, jo < g —1,
the elements In, i and Yn,.j» are not conjugate in G(de,e,r) since they are not
conjugate in G(de,1,7). Let n € Py geq. Write ' = f31(n). There exists a
character Y, of G(de/q,1,7/q) such that Y,(g,) # 0 (We can take for example o
such that X; is the trivial character of G(de/q,1,7/¢)). Then by Proposition 3.12,
for0<j S@— 1, we have

Agwa(gns) = (@) A, ()1 (99)
= wajAfl (&),1(%)
= (WY A gy (w1 (9n)-

Furthermore, Ay, (,),1(9,) # 0 by Remark 3.8 and Theorem 3.7, and Ay, (,),1(9n,j1) #
Ay, (E)yl(gﬁdé) for all j; # ja since w®/? is a primitive gth-root of unity. Now, using
that Ay, (,),1 is a class function of G(de, e, r), we conclude that the elements n,j for
0 < j < g—1 are not conjugate in G(de, e, r). Finally, the result follows from the fact
that fy0 f, ' induces a bijection between the sets {gﬂyj |1 € Prdeq, 0<j<q—1}

and {x27 | (1) € Pa}. -

Example 3.14. Let e be a prime number and r be a positive integer. By Theo-
rem 3.13, the elements g, ; where n = (n,0,...,0) withn € P, and 0 < j <e—1
form a system of representatives for the split classes of G(e,e,er). For A € Py,
set A= (MA, ..., A) € Pere. By Theorem 3.7, Remark 3.8, Theorem 3.10 and
Proposition 8.12, for 1 <k <e—1, we have

Axk(gn.g) = e xa(n),

where xx(n) is the value of the irreducible character of &, labeled by \ on a element
with cyclic structure 1. Now, using Equality (18), we obtain

? (xalg)) — xa(m) ey

e

Xk (Gn,5) = )
* (xalgg) + e~ D Da(m)) i k=5,

In particular, for e = 2, we recover with our method the result of [9, Thm.5.1].
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4. PERFECT ISOMETRIES

Throughout this section, we consider G = G(de, 1,r) and its normal subgroup
N = G(de,e,r), and we use the notation of Section 3.1.

4.1. Characters of N. In order to describe Irr(N), we will apply Clifford theory
from G to N. We therefore consider the orbits of Irr(G) under the action of G/N =
(e), or, equivalently, the (e)-orbits of the parametrizing set MP, 4.. For any
A € MP; 4, we denote by [A] the (e )-orbit of A. Hence p € [A] if and only if there

exists s € N such that p = £%()). In particular, for any p € [A], we have by = b,
and |Cy| = |C}|. Furthermore, we see that |[A]| = |i =b,.

- A
Lemma 4.1. If A\, i € MP, 4. are such that [A] = [p], then, with the notation of
Section 3.1, Xx,i = Xp,i for all 0 <1 < |Cy].

Proof. We have [A] = [p], so there exists s € N such that py = ¢® ® py,, and W) =

W, = W. In particular, there exist endomorphisms My and M, of W such that

MApA = expaM)y and M,p, = ,pu M), where, furthermore, ) = ghr = ghu

‘We therefore have

w
Ep-

e*Mxpy = Mye®pu = Mypx = expaMy = e°expp My,

so that Myp,, = expuMy = €,pu M) (since ey = EM)

Now, since €,p, M, = M, pu,_we also have M, 5upu puM , so that Myp,, =
euppMy yields M, 1M)\pu =M, 5uPuM>\ = puM LM Hence M, M, € Endg(pu),
and Schur’s Lemma shows that My = &M, for some & € C.

We will show that & = 1. First note that, since M » and M, both have order
|Cy| = |C,|, we must have &2l = 1. Now fix any order on the elements of the
bases by and b, of W. By Proposition 3.1, we have, for any tx @ vy r € by,

My(tx ® vAT) = toosx) ® Vo (n) cta iy = tebax) @ Vpetaqry € Ba

(since, by definition, e®2(\) = )). Hence Mat(My,by) is a permutation matrix.
Similarly, Mat(M,, b,,) is a permutation matrix. o

Now, since p = £*()), there is a bijection o: by — b,,, given by o(tx ® vy 1) =
tes(x) @ Vyes(r)) for all tx @ vy 7 € by. The corresponding change of basis matrix
P, from by to b, is therefore also a permutation matrix.

By construction, we have

Mat(My, b)) = P, " Mat(My, b,) P, = £P; " Mat(M,,,b,) P,

(since My = &{M,,). Since all of these matrices have entries in N, we deduce that
€ =1, and thus that My = M,.
In particular, with the notation of Section 3. 1, the eigenspaces Wy ; and W# i
coincide for all 0 < ¢ < |Cy|, and x»; = Xy, for all 0 <i < [C,].
O

Corollary 4.2. If A\, pp € MP, 4o are such that [A] = [p], then Ay ; = A&i for all
0<1< |CA|

Proof. This follows immediately from Lemma 4.1 and (19) (since by = b, and
Cal = 1Cu))-
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O

Remark 4.3. Suppose y € MP,. 4. is such that |Cﬂ| is even, and take § € {£1}.
Then M,, and 6M,, have the same eigenspaces, and the same set Uc,| = (w) of

eigenvalues, where w = ( bud  For any w’ € U, |, we set
Xpg.om, = Tr(pu | Eui),

where FE,; is the eigenspace of §M,, corresponding to the eigenvalue w’/. We also
set, for any 0 <1i < |C,,],

Aﬂ,i,éMi = Tr(((SMg)ipg | Wg)-

In particular, we have A, ; sar, = JiAW.
We also have, as in Section 3.1,

[Cul—1 1 [Cul—1
Ayism, = § W Xpgom, and  Xpjem, = oAl w Ay ism, -
j=0 BLi=0

4.2. Blocks of G and N. We now take any prime p not dividing de. The p-blocks
of G can be described as follows (see [8, Theorem 1]). Two irreducible characters x,,
and Y, of G, corresponding to = (@, ... pde=Dyand v = (v, ... v(@=D) in
MP, ge lie in the same p-block B of G if and only if, for every 0 < i < de — 1, the
partitions () and v have the same p-core (1)) = (¥V),) = ¥ and same
p-weight w,(u()) = w,(v)) = w;. The de-tuple w = (wo, ..., wqe—1) (respectively
v = (7, ... 44=1)) is called the p-weight of B (respectively the p-core of B).
Note that B has p-defect 0 if and only if w = (0,...,0). We denote by &, .,
the set of de-multipartitions p = (u®, ..., ulde=1) such that (1) =~ and
wy(p®) = w;.

We can now describe the p-blocks of N using Clifford theory. If B is a p-
block of G of defect 0, then, since (p,e) = 1, B only covers p-blocks of defect
0 of N. Conversely, a p-block of N of defect 0 can only been covered by p-
blocks of G of defect 0. Hence suppose B is a p-block of G of positive defect,
and take k dividing e minimal such that B is e*-stable (i.e. € ® B = B). Then B
has p-core y = (70, 41 4kd=1) ~N0) Nkd=1) 40 (kA1) and p-
weight w :_(wo,wl, e Whd—15 W0y« e vy Whd—Ty -+« s WO,y « -+ Wrd—1), Where wg+- - -+
wiq—1 # 0. Without loss of generality, we can furthermore suppose that wy # 0.
Now consider any A € MP, 4. given by

A= AO O Ak O N N Rd=D O @) kA=)

where
o for 1 <i<kd—1, (A\9),) =+ and w,(A\V) = w;,
° ()‘(0))(17) = (M(O))(p) = 4O X0 and p© have p-quotients Q,(A(?) =
((wo),0,...,0) and Qp(ﬂ(o)) =(0,...,0,(wp)) (so that A =+ 'u(o)),
e and, for 1 <j <k —1,
)\(jd) _ M(O) if Wjq = Wo and 7(]'61) — ,Y(O)
any g with () = YUD and w, (1) = wjq  if wig # wo or YUD £ 40

(so that \UD £ \(0)),
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Then )¢,y = 7 and wp(A) = w, so that Yy € B. And AGD £ \O) for all
0 < j <e,sothat €/(A) # A, and Y, is not e’-stable for any 0 < j < e.

This shows that any p-block B of G of positive defect contains an irreducible
character which is not e/-stable for any 0 < j < e. By Clifford theory, such a
character must restrict irreducibly to N, and its restriction to N is therefore G-
stable. By [7, Corollary (9.3)], this implies that B covers a unique p-block b of
N.

4.3. Bijections and isometries between blocks. We now fix the positive in-
tegers d and e, a prime p not dividing de, and consider two positive integers r
and 7. We let G = G(de,1,r), N = G(de,e,r), G' = G(de,1,r') and N’ =
G(de,e,r"). Suppose b is a p-block of N, covered by the p-block B of G of p-core
v = (y©,..., =D} and p-weight w = (wo, ..., wge_1), and ¥’ is a p-block of
N, covered by the p-block B’ of G’ of p-core ' = (/) ... 4/(4=1)) and p-weight
w' = w. Suppose furthermore that wy + - - - + Wge—_1 = 0. Then there is a bijection
1 between the subsets &, , and &,/ of MP; 4. and MP, g. (which parametrize
the irreducible characters in B and B’ respectively) described as follows. For any
A=A, Ay e g L we have (A) = (TAD), ... T(A@eD)) where,
for each 0 < i < de — 1, ¥(A") is the partition defined by U(A("),) = ') and
Qp(‘IJ(/\(i))) = Qp()‘(i))-

With the notation of Section 3.1, we see that, for any A € &, ., we have [Cyx)| =
|Cx| and by() = by. Furthermore, for any A, € &, ., we have, with the notation
of Section 4.1, [A] = [y] if and only if [1/(A)] = [)(x)]. In particular, ¢ also induces
a bijection between Irr(b) and Irr(b'). B

Before our next definition, we need a few more pieces of notation. If s and ¢ are
positive integers, and if n € N, then, for any a« € MP; ., we set ta = («, ..., ) €
MPysin. If B = ta, then we write a = /1.

Finally, for any k > 0 and any k-multipartition A = (A, A AF=1) we set
5p(A) = 6,(AO)5,(AD) . 5, (AF=D) | where, for each 0 < i < k, 6,(A(?)) is the
p-sign of A (see [6, §2]).

Definition 4.4. With the notation above, we define an isometry I: CIrr(b) —
Clrr(b') by letting, for any A € &y, and any 0 <7 < |Cy[,

I(xai) = { Op(A)Ip(Y(A)) Xap(r) i if |Cy| is odd,
4 Gp(A)Sp(V(A))Xyp(A)ioanryny U |Cal is even,

where 0y = 6,(A/|Cx|)dp(V(A)/[Cypryl)-

Remark 4.5. Note that I is well-defined. Indeed, if [A] = [u], then [¢p(A)] = [¢ ()],
so that 6,(A) = d,(p) and 6,(v(A)) = 0p(¢(1)). Also, by Lemma 4.1, XA = )a”
for all 0 < < |Cy|. Furthermore, by the proof of Lemma 4.1, My ) = My, and
thus 0y Myx) = 6, My, (since 6y = d,,). Finally, by Remark 4.3 and Lemma 4.1,

X (A) i My(ay = Xtb(12),is6, My 0T all 0 <i < [Cy].

4.4. Perfect isometries. We keep the notation as in the previous section. Our aim
is now to show that the isometry I described in Definition 4.4 is actually a perfect
isometry between b and b, thereby generalizing to complex reflection groups the
results known about the symmetric groups (see [3, Theorem 11]), wreath products
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(see [2, Theorem 5.4]) and Weyl groups of type B and D (see [2, Corollary 5.6 and
Theorem 5.8]). We start by recalling the definition of perfect isometry.

Definition 4.6. (See [1] and [2, §2.5]) Let H and H' be finite groups, p be a prime,
and (K, R, k) a splitting p-modular system for H and H'. Let B and B’ be unions
of p-blocks of H and H' respectively, and J: CIrr(B) — CIrr(B’) an isometry
such that J(ZIrr(B)) = ZIrr(B'). Let (e1,...,ey) be any C-basis for Clrr(B) and
(eY,...,ey) its dual with respect to the usual hermitian product { , ) on CIrr(H),

and let J = ZJ ® J(g;). Then J is a perfect isometry between B and B’ if the

i=1
following hold:

(1) For every (z,a') € H x H', J(x,2') € |Cr(2)]pR N |Cr (2[R

~

(2) If J(z,2") # 0, then x and &’ are both p-regular or both p-singular.

Remark 4.7. Note that, in Definition 4.6, J does not in fact depend on the choice
of basis for CIrr(B) (see [2, §2.3]).

{xris A € [Eyw] and 0 < i < [Cy|} is a (self-dual) C-basis for CIrr(b). By
(19), {Axi, A € [E,] and 0 < i < |Cy|} is also a C-basis for CTrr(b), and this is
the basis we will use to prove that I is a perfect isometry between b and b'.

From (19), we see that, for any A\, p € [€,,,], 0 <@ < [Cy] and 0 < j < |C], we
have

If we let [€, ] be a set of representatives for the (e)-orbits of &, ., then

|Cxl—1 |Cul=1
dby ik db,jt
Ao Bugdn = () ™k Y " e
k=0 =0
|Cal-11Cu]~1
dby ik ~dbp gl
= Y ¢RI b X N
k=0 =0
|CAl=11Cu[—1
dbyik—db,, j¢
= ) > ¢k duitsy bk
k=0 (=0
|Cx]—1

= Gy Y AR

k=0
= O udij|Cal

This shows that, for any A € [£,,,,] and 0 < i < |C)|, we have

1
NS

30 AV =
( ) At ‘CA| A,
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Furthermore, from (19) and Definition 4.4, we see that, for any A € &, ., and
0 <i < |Cy|, we have
[Cal—1

I(Ax:) = Y ¢™9T(xa,)
j=0

[Cal-1
Sp(N)Sp(p(A) D ¢y if |Cy| is odd,

Jj=0
[Cal—1

3p(A)op(1(A)) Z Cdbﬂjxw(é),jyglew if |Cy| is even.
Jj=0

Now, since |Cy| = |Cy(n)| and by = byy), we have that, if [Cy| is odd, then

|Cxl—1 [Cyl-1
Yo M= Y g0 = Ay
Jj=0 7=0
(by (19)), and, if |C}| is even, then
ICxl—1 [Cyyl-1
D I = DL SO NG a6 M) = Buidaiyn)
§=0 j=0

(by Remark 4.3). And, also by Remark 4.3, we have Ay(n),i6aMyny = &Aw(gm'
This shows that, for any A € £, ,, and 0 < i <[Cj,|, we have

_f 6p(Q)p((A)Apny I [Cy] is odd,
oy (B2 = { 52(3)52(1/}(3))5&12;(5)@ if |Cy| is even.

When we compute T , we will regroup characters Ay ; in “slices” according to the
order modulo e of the integer byi. First note that, as an additive group, we have

Z/eZ:H{kEZ/eZ|ord(k):q}:H{<§s) |0<s<qand (s,q):l}.

qle qle

. € .
Since, whenever 0 < s < ¢, we have 0 < —s < e, we actually obtain

{O,...,el}H{Zs|0§s<qand(s,q)1}.

qle

Our “slices” are described by the following.

Proposition 4.8. For any 0 <k <e—1, we let
Pl,w,k ={(\i)| A€ SZM , 0 <i<|Cy| and byi = k}.

Let g be the order of k modulo e. Then the maps a: Pywr — & /qw/q and

3: Sl/q@/q —> Py w,k given by a((A, 1)) = A/q and B(p) = (qu, k‘/bﬁ) are mutually
inverse bijections.

Remark 4.9. Recall that &, /, /4 is exactly the set of multipartitions labelling the

irreducible characters which belong to the p-block of G/(de/q, 1,7/q) with p-core v/q
and p-weight w/q.
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Proof. We start by showing that « and /3 are indeed defined.

If (A, ) € Py sk, then byi = k. Since k = —s for some 0 < s < ¢ with (s, ¢) = 1,
L = q

we have byi = 5. Hence qi = Sbi = s|Cy|. Since (s,q) = 1, this shows that
A p N Py

q divides |Cy|. Hence )\/q is indeed defined, and so are v/q and w/q, and \/q
certainly has p-core v/q and p-weight w/q. Thus the map a: P wk = Ey/quw/q
is defined. - N

If, on the other hand, pu € &, /4w /¢, then qu certainly is defined, and qu € &, 4.

Furthermore, by definition, b, = |ecﬂ7 so that b, divides e/q, and also (e/q)s = k,
22 3 22
whence k;/bE is an integer. Moreover, we have |Cqﬂ| = q.|C’E\, and, since 0 < k < e,

we have

k e e/q
0<~ <« &89 _ 1o, =0,
_bﬁ<bﬁ qbﬁ Q|;_| ‘qg|
Finally, since b, = ¢/q = ¢ - _° _ b we have b ﬁ = k, whence
v L7000 T 41C] T 1Cl Wh,

(qp, k/by,) is defined, and (qp, k/b.) € Py w k-
It only remains to show that o and 3 are mutual inverses. For any p € &, /q.w/qs
we have (Oé o ﬁ)(ﬂ) = 05((qH7 k/bﬂ)) = qﬁ/q = p. And, for any (A, ’L) S ,PZ»MJW we

have
k k

(Boa)(A 1) = B(Na) = (M, %) G WLy W

(since, as we've seen above, by, = by). Finally, since (A,i) € P, uk, We have

o

k
b= i, whence (8o a)((A,i)) = (A, 4). This concludes the proof.
A

O

Remark 4.10. Note that, with the notation of Proposition 4.8, if (),7) € Py w.k
and k = byi has order ¢ modulo e (written ord.(k) = ¢), then i has order ¢
modulo e/by = |Cy| (written ord|c,|(i) = ¢). Hence there exists s such that
(s,q) = 1 and i = s|Cy|/q. Suppose furthermore that |Cy| is even. If g is even,
then (s,q) = 1 implies that s is odd, so that |Cy|/¢ and ¢ = s|C4|/q have the same
parity. If, on the other hand, ¢ is odd, then, since |C,| is even, |Cy|/q is even,
and so is i = s|Cy|/¢q. This shows that, whenever |C)| is even, |C\|/¢q and i have
the same parity. Now we have A\/q = (|C\|/q) - A/|Cx|. Taking p-signs, we have
6p(Aa) = 6((ICal/a) - A/ICA]) = 6,(A/ICA])!“)/9. And, since |Cy|/q and i have
the same parity, we obtain

(32) 5p(A/|CA])" = 0,()\/q) whenever (),i) € Pyw,k and orde (k) = g.
From this, we easily deduce the following.

Lemma 4.11. If I is the map described in Definition 4.4 and (A7) € Py k, where
k = bxi has order g modulo e, then I(Ay ;) = 0,(A/q)0p(V(A) /@) Apr),i-

Proof. By (31), we know that

p(A)0p(Y(A)) Ap(r).i if |Cy| is odd,
5p(A)dp(¥(A))03 Ay n),i  if [Cyf is even.



If |Cy] = [Cy()| is odd, then ¢ must be odd (since ¢ divides |Cy|), so that d,()\) =
op(q- M) = 0p(A/0)? = 0p(A/q) and 5,(¥(Q)) = dp(q-P(X)/q) = 5p(7/J(A)/Q)q S

0p(¥(A)/q). Hence, in this case, 6,(2)0,(4(A)) = 6,(A/q)0p(¥(X)/q).
If, on the other hand, [Cy| = |Cyy)| is even, then 6,(A) = 0,(|Cx| - A/|CAl)

5 VICA) N = 1 and 8,02)) = 5,(1Cs] - wQVICal) = 8, BR)/ICa) A = 1
And, by (32) (and since (1()),4) € 731/&716)7

03 = 0p(A/ICAD 0 (¥ (A) /Iy ) = 8p(2/0)0p(¥(2) /).
Hence, in this case, 5p(A)5p(1/J(A))5i = 0p(A/@)0p(¥(A)/q)- -

We can now state and prove our main result.

Theorem 4.12. Take any positive integers d, e, r and ', and a prime p not
dividing de. Let G = G(de,1,7), N = G(de,e,r), G' = G(de,1,7") and N' =
G(de,e,r"). Suppose b is a p-block of N, covered by the p-block B of G of p-core
and p-weight w, and b is a p-block of N’, covered by the p-block B' of G of p-core
v and p-weight w' = w. Then there is a perfect isometry between b and V.

Proof. First note that, if w = (0,...0), then both b and b are p-blocks of de-
fect 0, so that b = {x} and & = {x’} for some irreducible characters y and

X' (of N and N’ respectively) which vanish on p-singular elements. If we de-
ﬁne I:Clrr(b ) — (CIrr(b’) by I(x) = X/, then, with the notation of Definition
4.6, we have 1= X ® x’. Since x and X’ vanish on p-singular elements, we have
f(;v, ') = x(z)x'(2') # 0 only if  and 2’ are both p-regular, so that property (2) of
Definition 4.6 holds. Furthermore, since b = {x} and v/ = {x’}, x and x’ are actu-
ally projective indecomposable characters (of N and N’ respectively). Hence, by [7,

/
Lemma (2.21)], for all (z,2') € N x N’, _xl@) € R and X&) € R. Prop-
|CN( )|p |CN’( )|p
erty (1) of Definition 4.6 immediately follows. This shows that, if w = (0,...0),

then b and b’ are perfectly isometric.

We therefore now suppose that w # (0,...0). Let I: Clrr(b) — Chrr(d)
be the map described in Definition 4.4. We will decompose T using the C-basis
{Axi, A € [&w) and 0 < ¢ < |Cy|} for CIrr(b). We have, by Definition 4.6,

|Cxl—1
el =e Z Z A ; ®I(Ayi), so that, by (30),
AE[Ey w] =0

|Ca]—1
—A i QI(Ay;
SPOD ST
[Ey,w] =0
Since |[A]] = by and by|Cy| = e, Corollary 4.2 gives
1 [Cal-1 1 |CAl-1
el= Y - > WAN@@I(AN): Ari ®I(Ay)
AEE, ., A im0 T2 AEEyw =0

Using our “slices”, we obtain
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e—1
ef = Z Z E@I(A&J)

k=0 (A»i)epl,m,k

= > > > ALeI(Ay)

0<k<e ) g
e odetmea APk

=3 Y Y BL@60/0000) /)M,

0<k<e i
q|e orde (k)=q (7771)6,P17H7k

(by Lemma 4.11).

Now take any (x,2") € NxN'. Write z = 9g, and 2’ = g/gn/, where n € MP, 4,
0 € MPr g, gy € N and g,y € N’ are as in Convention 3.6, g € G and ¢’ € G'.
Take any 0 < k < e — 1, and (),i) € Pywr. We have ef = b2 (since (),4) €
P..w,k). Hence, Proposition 3.12 gives N

(33) Axi(x) =" (9)Axi(gy)-
Similarly, since (¢(A), i) € Py k, We have
(34) Ayn.i(a) = (9" Apry.ilgy)-
Now, if ord.(k) = g, then, for all ()\,7) € Py,w,k> we have, by Theorem 3.10,
(35) Aé,i(gg) = AA,\CA'/‘I(gﬂ)'

Furthermore, still supposing ord.(k) = ¢, Proposition 4.8 (applied twice) shows
that

(36) 0: { Pyrwk = Pywe/q

] =+ is a bijection.

Qi) — G/ J
Similarly, for all (A, ) € P ,w,k, we have, by Theorem 3.10,

(37) Ap).i(gn) = By eal/aldn)

and, by Proposition 4.8,

- -+ is a bijection.

(¥(A), ) — ((A),|Cal/q)
Note also that, by Proposition 4.8,

(38) Q' { Pywk  — Py w,e/q

P — &
39 S 1’Q7€/q 1/‘17Q/q and
R { (A IC/g) — Mg .

(A), |CA|/Q) — (A)/q=v(N\q) are bijections.

Write g, = (2;0) witho =01 -0, € &, and g,y = (¢/;0') with o’ =07 --- 0., €
S, as in Convention 3.6. By Theorem 3.7, we see that, if there is 1 < u < de — 1
such that ¢ does not divide |n,|, or if there is 1 < j < s such that §; & Uy, (in
which case we say that g, is g-bad), then, for all A € &, ., we have Ay ¢, /4(95) = 0.
If, on the other hand, ¢ divides [ny| for all 1 < u < de—1 and & € Z/{de/q_for all

S’ { Py aw.e/q — Ey' Jgw/q
(¥
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1 < j < s (in which case we say that gn 1s g-good), then, with the notation of
Remark 3.8, for all A € &, 4, we have (by (27))

(40) AA,ICAI/q(gg) = qsyé/q(géq)).

Similarly, if g, is ¢-bad, then, for all A € £, ,,, we have Ayy) 1Cx1/q(gy) = 0, while,
if gy is g-good, then, with the notation of Remark 3.8, for all \ € 51 we have

(by (27))
(41) Ay ieal/aGn) = 6" o alon’).

Recall that el = Z Z Z TN ® 0p(A/@)0p(V(A) /@) Ay(r),i-

> 0<k<e P )
dle OEtSe, QDEP wk

Writing 65 for 3p(A/9)d,(¥(X)/q) whenever ¢le, we therefore have

eIx x Z Z Z 5)"qAAz( )Aw (A),i (@ )

0<k<e (J, w,
‘ orde (k)=gq ( i GP’Y k

By (33) and (34), this gives

eI (x,2") Z Z Z 5%’qAA7i(gg)Aw(A),i(glg)'

ale or?f?i)iq (A,i)Gpl,w,k
st

By (35), (36), (37) and (38)) we obtain

ellwa) =Y Y ) > 85 Ayl /a(Gn) D). Cal/a(0):
gl osk<e mcg/q)erl,y,e/q

Using (40) and (41)), we get
Yoo N et > 5314 X /a (94" )a" X3y /(95

> 0<k<
s ol (A ICAl/4)EPy e/
g-good

and, by (39), this finally gives
Yooae Y Ft ) D ()Rl K (957)-

qle 0<k<e cE
90,1 ordy (F)—=q KECy/qw/q
g-good

We can rewrite this as

(42) eI (z,2") z ¢ Z ek (g)e” (9/)Jq11 2(97(7(1)797(7(1))7
qle 0<k<e
9n>9,/ orde (k)=q
g-good

where, for any ¢ dividing e (and such that v/q, 7'/q and w/q are defined), Jy ' .w
is the perfect isometry described in [2, Theorem 5.4] between the p-block S of
G(de/q,1,r/q) with p-core v/q and p-weight w/q and the p-block 3’ of G(de/q,1,7'/q)
with p-core 7//q and (same) p-weight w/q.

We now turn to Properties (1) and (2) of Definition 4.6.

Take any gle such that g, and g, are g-good. Then 1 = (1o, ..., Nde—1) € MPy ge,
and 7, # 0 only if ¢ divides u. Furthermore, if g, = (z;0) € G(de, 1,7), then

9y = (2950/q) € G(de/q,1,7/q) has cycle type (10/d1g/qs - - -+ Nde/q—1)a/1) =
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(00,01,...,04c/q—1) (so that 0; = 14;/q). Note that, since gle and (p,e) = 1, p does
not divide q.

Since (p,de) = 1, we have that g, is p-singular if and only if o € &, is p-singular,
i.e. if and only if o has at least one cycle of length divisible by p. Since p does not

divide g, this is equivalent to o /¢ having at least one cycle of length divisible by p.

Hence we obtain that g, is p-singular if and only g(Q)

(q) ;

is p-singular. Similarly, g, is

p-singular if and only Gy is p-singular.

By (42), if I(x a’) # 0, then there exists ¢ dividing e such that gn and gy are

g-good, and Jqﬂm w(gf7 ),977 ) # 0. Since Jg 4w is a perfect isometry (by |[2,

Theorem 5.4]), this implies that g(q) and g(Q) are both p-regular or both p-singular,
which, by the above, shows that g, and g,/, and thus z and 2’, are both p-regular
or both p-singular. Hence Property (2) of Definition 4.6 holds.
It remains to show that Property (1) holds. First note that, since |G|/|N| = e
is coprime to p, we have |Cn(z)|, = [Ca(z)|, = [Ca(gy)|p. Similarly, we have
[Cn (2')]p = |CG’(QQ’)|p'
— th nt" ik . .
Now |Ca(ge,1,r) (gﬂ)\ = Hni ! (kde)™ , where ;" is the number of k-cycles in
ik

7; (see [4, Lemma 4.2.10]). Since all the cycles in any 7; have length divisible by g,
and since 7, # 0 only if ¢ divides u, this can be rewritten as

dak
Ceaenm (gn)l = [ [ nid*! (ghde)a".
ik

q)

However, by definition of the cycle type (6o, 01,...,04c/q—1) of gf(, , we have nﬁqk

(1gi/0)" = 0% for all i and k. Thus we obtain

Bk
Caaenn(gn)l = [0 (ghde)”
i,k
Hk
= [0 (¢%kde/q)"

ik
= 2T T 6 hde /)
ik
= ¢*|Cctae/g1r/a)(9y")]  (where 0 =01 0y)

In particular, since (p,q) = 1, we obtain

|CN(m)|P |CG delr)(gn | |CG de/qlr/q)( (Q))| .

Similarly, we have |CN’ (.T,'I)‘p = ‘CG(dc,l,r’)(gﬂ’” |CG de/q 1 ’r’//q) (g,f]q))|p
From these, and from (42), we obtain

/ jq,%v7 (ggq)7g(q))
e|C Z e’ Y g (g) o
w( 0<k<e |OG(de/q,1,r/q)(gQ )|p
97/9 ’ orde (k)=gq
q—good

Since, for all ¢ dividing e, Jg 5 4/w is a perfect isometry (by [2, Theorem 5.4]),

we have @7l7lr7w(géq),gg ) € |C’G(de/q’1yr/q)(g,7 )|pR. Furthermore, the ring R
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contains the integers ¢°¢* , and the roots of unity e* (g)z—:kl (¢'). Hence ef(ac,x’) €

~

|Cn(z)|p,R. Finally, since (p,e) = 1, we obtain I(z,z’) € |Cn(2)|,R, as claimed.

~

A similar argument shows that I(x,z’) € |Cn/(2')|,R, whence Property (1) of
Definition 4.6 holds. This concludes the proof.
O
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