
1 

 

Multiscale Surrogate-based Framework for Reliability Analysis of Unidirectional FRP 

Composites 

Sadik L. Omaireya*, Peter D. Dunninga, and Srinivas Sriramulaab 

a School of Engineering, University of Aberdeen, AB24 3UE, United Kingdom 

b Lloyd's Register Foundation (LRF) Centre for Safety & Reliability Engineering, University of Aberdeen, 

Aberdeen, AB24 3UE, United Kingdom 

* Corresponding author: s.omairey@abdn.ac.uk, https://www.abdn.ac.uk/engineering/people/profiles/s.omairey 

Abstract. In this paper, a Finite Element-based surrogate model is developed to efficiently estimate stiffness 

properties of unidirectional composite laminas, while accounting for geometric and material property 

uncertainties at micro, meso and laminate scale, all within a probabilistic framework. In the multi-scale build-up 

nature of composites, uncertainties occur in material properties and geometric characteristics. These 

uncertainties present a challenge in estimating composite material properties. The currently available property 

estimation/homogenisation tools are mainly divided into two categories: analytical methods constrained by 

configuration assumptions, and numerical homogenisation using Finite Element Analysis (FEA). The latter is 

more flexible and accurate, but computationally expensive. Hence, this paper develops a surrogate model based 

on a limited number of experimental FEA data points. Additionally, a transition phase is developed between 

micro and laminate scales that enables modelling of spatially varying uncertainties. As a result, this framework 

significantly decreases analysis duration compared with FEA techniques, and, because it is derived from FEA 

data points, can accurately represent a wide range of uncertainties. 
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 Introduction 

Composite materials are being widely used in many industries for the improved stiffness-to-weight ratio 

compared with alloys. However, the multi-phase structure and the manufacturing process of composites allows 

many material and geometrical uncertainties to occur [1-8]. As a result, composites are often designed 

deterministically using high factors of safety to avoid failure, which is considered conservative and restricts the 

use of the composites [9-11]. To avoid imposing such high factors of safety, it is important to account for system 

uncertainties by propagating their effect between the component’s scales. Thus, a clear understanding of the 

overall composite properties under all uncertainties can be obtained. Clarifying this could lead to safer designs 

and more efficient use of composites, which can be achieved using a probabilistic design approach [10, 12-14]. 

Such an approach requires a reliable and accurate analysis method that can analyse the effect of various 

uncertainties on design performance. Monte Carlo simulation (MCS) is one method to find the solution of 

stochastic problems for its simple and direct implementation [8, 15]. It generates uncertainties in the form of 

random properties based on their statistical properties. To estimate composite properties and propagate the effect 

of these uncertainties, they are substituted in a homogenisation model, which is a common approach to designing 

parts with composite materials, as it provides an estimate for the effective elastic properties at different scales. 

Homogenisation methods are mainly divided into two categories: 1) Analytical methods, i.e. Rule of Mixtures 

[16] and Mori–Tanaka [17], and 2) Numerical homogenisation using Finite Element Analysis (FEA). The latter 

is more flexible and allows analysing a wide range of composite configurations, compared with the analytical 

methods that are constrained by assumptions and material property limitations [14, 18, 19].  

The use of FEA-based homogenisation involves identifying a Representative Volume Element (RVE); one 

of its first definitions states that it should contain a sufficient number of inclusions and be typical of the mixture 

on average [20]. The balance between an RVE’s computational efficiency and the range of uncertainties it can 

model is a key challenge in composites design. Some researchers used a small RVE, i.e. modelling only one or 

two fibres surrounded by a matrix phase. However, other studies, which investigated failure, or assessed the effect 

of defects, used larger RVEs with many fibres, to be able to capture more information [4, 21-25]. However, these 

studies did not require analysing a large number of RVEs, whereas many analyses are required to probabilistically 

estimate properties and reliability using MCS. Therefore, to reduce the computational cost, efficient surrogate 

models are used to transform FEA into analytical approximations, without a significant loss of accuracy [19, 26, 

27]. 

For instance, Sobey et al. [28] used a surrogate modelling technique to estimate RVE properties under the 

effect of uncertain constituent material properties. Surrogates were constructed using FEA sample points while 
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each RVE contained a single fibre surrounded by matrix phase. In another uncertainty quantification and 

propagation study by Bostanabad et al. [29], the computationally expensive meso and micro scale homogenisation 

FEA, as part of a multiscale simulation method, were replaced by a metamodel generated and trained using data 

samples, enabling prediction of the stiffness matrix with less than 1% error compared with FEA results. The 

sources of uncertainty in this study were yarn angle, fibre volume ratio (Vf), and fibre misalignment angles. 

Another recent study by Wu et al. [30] analysed a wide range of SEM images to create a micro-structure generator 

that provided virtual micro-samples for numerical analyses. Thus, the study focused on fibre randomness, while 

considering deterministic constituent material properties. Wu et al. used a multi-level computational 

homogenisation method to extract the meso-scale response of larger RVEs in an efficient way using 2D 

interpolation of material properties within a two-step computational homogenisation framework. The study also 

examined the effect of different boundary conditions, and it concluded that periodic boundary conditions are an 

accurate choice for their multi-level computational homogenisation approach. Additionally, previous work by the 

authors [14] used FEA RVE homogenisation to develop an efficient polynomial-based surrogate model that is 

capable of accounting for micro-scale geometric and material uncertainties at the micro-scale (see Fig. 1(b)), while 

minimising the use of expensive FEA RVE homogenisation, making it feasible to use within a MCS-based 

probabilistic study. This was achieved using two-fibre RVEs containing a randomly stacked fibre at the centre, 

and periodicity was maintained at the RVE surfaces. Data points were generated for a limited number of RVEs 

allowing the construction of regression fit surrogate models. These were used to estimate stiffness properties and 

reliability using MCS. 

The novel contributions of this study are: 1) creating a computationally efficient framework that is capable 

of capturing more uncertainties between the micro and laminate scale, compared with the available frameworks 

and techniques. 2) producing a new inclusive material representation by developing a transition meso-scale as 

seen in Fig. 1(c). 3) associating random RVEs by means of several spatial correlation criteria to form a larger 

RVE that captures a wider frame of the material uncertainties. This is achieved by developing another level of 

efficient surrogate model using low fidelity FEA, making it suitable for reliability calculations using MCS. 

The structure of this paper starts with the methodology in Section 2. Then, Sections 3 and 4 validate and 

discuss the results using the developed method, compared with FEA results and the previous framework. Section 

5 highlights the key findings and draws conclusions from the validation and application examples. 

 Methodology 

Our previous framework computed the homogenised stiffness properties of randomly generated RVEs using 

FEA data points obtained using an in-house periodic RVE homogenisation tool - EasyPBC [31]. Each RVE only 

contained two fibres. The framework uses the FEA data points to create polynomial-based surrogate models that 

relate uncertainties to their effect on stiffness properties. For a given sample of the uncertain parameters, the 

surrogate model is used to efficiently compute the homogenised stiffness properties, which are then applied to a 

single lamina ply, as can be seen in Fig. 1(b). However, this framework is limited because it assumes no spatial 

variation in uncertain parameters within a single lamina ply. 

In order to simulate realistic spatial variation of uncertainties, a second scale of RVEs is introduced, which is 

a Larger RVE (LRVE) constructed using several micro-scale RVEs. Therefore, the proposed LRVE can be used 

as a meso-scale RVE that allows spatial variation in uncertainties, resulting in a more realistic representation of 

the higher scale, compared with the use of conventional micro-scale RVEs (See Fig. 1(c)). 
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Fig. 1. The current and previous micro-meso upscaling approaches. 

The overall algorithm of the developed framework starts with identifying uncertainties and their statistical 

properties, generating micro-scale RVEs, then the LRVE, assigning stiffness properties to laminate plies and 

finally including laminate-scale uncertainties, such as ply thickness and orientation. Each element is explained in 

the following sections. 

 Uncertainties 

In this study, E-glass fibre-epoxy composite is selected to investigate the developed framework. Uncertainties 

for this example are presented within two categories: the first is the micro and meso scale, this includes material 

properties along with fibre stacking, represented by radial displacement (𝑟 and 𝜃, where the distance 𝑟 is measured 

as a fraction of the RVE edge length, as shown in Fig. 3), and fibre volume ratio (Vf) in the form of uncertain fibre 

cross-sectional areas. The second category is within the laminate scale, it includes thickness, ply orientation and 

loading uncertainties. The assumed statistical properties of all the uncertainties are provided in Table 1, and are 

similar to values used and assumed in the literature [32-35]. 

Table 1. Material properties and uncertainties. 

Property/ 

uncertainty 

Fibre (E-glass) 

 

Matrix (Epoxy) 

 
Fibre-volume 

ratio Vf 
 

Fibre 

stacking 

(𝑟 and 𝜃) 

 
Lamina ply 

thickness  
𝑡 

 

Lamina ply 

orientation  
𝜃𝑝 

  

𝐸𝑚 

(GPa) 

𝑣𝑚 

(ratio) 

𝐸𝑓 

(GPa) 

𝑣𝑓 

(ratio) 

 **Pressure load 

L 

(MPa) 

Mean/ lower 

limit 
72.45 0.25  4.0 0.3  0.52  

RVE 

centre, 0o 
 

0.5 mm, 

 
**0.53 mm 

and 0.44 mm 

 

[0o/90 o]S, 

 
**[75o/45o]S 

 0.05 

Distribution Normal Normal  Normal Normal  Normal  Uniform  Normal  Normal  Normal 

CoV/ limits 5% 5%  5% 5%  5%  
𝑟: 0-0.08* 

𝜃: 0o-360o 
 5%  5 o  5% 

Categories Micro and Meso scales 
 

Laminate scale 

*Fraction of the RVE edge length. ** For the numerical example. 
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 Micro-scale RVE 

RVEs with nominal hexagonal fibre packing are used in this study, each containing two fibres in total (full 

fibre and four quarters, as shown in Fig. 1(a)). Additionally, it is assumed that the fibres and the matrix are fully-

bonded and there are no voids. Each RVE is subjected to micro-scale uncertainties, as summarised in Table 1, 

with some specific correlations and assumptions, which are explained below in Section 2.3. To estimate the 

effective properties of the composite within a probabilistic analysis, it is necessary to homogenise a significant 

number of randomly generated RVEs. 

In this study, an open-source ABAQUS plugin, developed by the authors [31], is used for FEA RVE 

homogenisation. This method is widely used to predict the effective elastic properties of composite materials for 

its clear mechanical conception and simplicity [18, 19]. Additionally, the estimated properties using this tool are 

verified against other available established experimental data and commercial homogenisation software [31]. The 

plugin estimates these properties by applying node-to-node periodic conditions, at which deformed boundary 

surfaces can distort and no longer remain plane under applied displacements. These periodicity conditions are 

achieved by linking nodal degrees of freedom (DoF) as illustrated in Appendix A. 

The RVE homogenisation is computationally expensive. Thus, the surrogate model is created to minimise 

their use. This model is mainly constructed by polynomial regression fits to identify the relationship between 

uncertainties and their effect on stiffness properties, using data points obtained by FEA. This approach was 

developed earlier [14], and is explained and assessed in Sections 2.4.1 and 2.4.2, respectively. 

 Meso-scale LRVE 

Many studies that have investigated the effect of uncertainties on reliability use MCS to generate independent 

random uncertain RVEs for each sample. This approach is valid if spatial correlation is not considered and the 

estimated properties at the end of each MCS output represent the properties of a single point/region in the higher 

scale model. However, this is not the case in the proposed LRVE approach, as each MCS sample aims to 

accurately capture a larger portion of the material at the meso-scale by gathering several neighbouring micro-scale 

RVEs, as seen Fig. 1(c). Therefore, the following criteria and assumptions are implemented to achieve a spatial 

correlation between the random RVEs used to generate a specific LRVE. 

 Fibre properties and arrangement 

As stated earlier, the micro-scale RVE contains two fibres in total. The randomness in material properties of 

neighbouring fibres within each RVE is uncorrelated, as they are independent. However, when it comes to 

modelling an RVE within a LRVE, corner fibre quarters meet up with neighbouring RVE corners. As a result, 

assuming a random property value for each adjacent fibre quarter is not an accurate representation. Thus, the 

proposed LRVE framework accounts for this by assigning the same fibre material property values to all adjacent 

corner fibre sections, creating a type of relationship between individual RVEs and their surroundings. This can be 

seen in the colour mapping in Fig. 2 and Fig. 1(c). 

On the other hand, the framework divides fibres into two categories: fixed fibres represented by the RVEs’ 

four fibre corner quarters; geometrically speaking, these quarters remain in place and have the same diameter to 

preserve continuity with its neighbours. The second category is the central non-fixed fibres, which can shift and 

experience geometric change within the RVE to allow modelling of stacking (𝑟 and 𝜃) and Vf ratio uncertainties, 

without violating continuity, as can be seen in  Fig. 2. 
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Fig. 2. Assuming fixed and non-fixed fibres to maintain periodic RVEs’ boundaries while including geometric 

and constituent material properties uncertainties. 

The generation of the non-fixed fibre location and size (or Vf ratio) is controlled to ensure that no RVE will 

have overlapping fibre sections (which is unrealistic). This is achieved by checking and adjusting the values of 

both the random stacking radius and the non-fixed fibre radius as explained in Fig. 3. 

 

Fig. 3. The algorithm used to generate RVEs’ central fibre uncertainties: Vf, 𝑟 and 𝜃. 



6 

 

 Matrix property normalisation 

The matrix material surrounding fibre filaments is a continuous media, so it is unrealistic to have sharp jumps 

in its property values, as any change in its properties should be smooth and gradual. Therefore, assuming random 

values for neighbouring RVEs is not a realistic representation. In the proposed framework, matrix material 

property randomness is smoothed out using an image processing concept as can be seen in Fig. 4. A smoothing 

blur kernel (see Eq. 1) is multiplied by matrix uncertainties within a shifting 3×3 RVE frame to estimate each 

RVEs’ normalised matrix stiffness properties. In order to cover the entire desired LRVE area, there is a need to 

generate random variables for LRVE edges. It is important to note that this averaging technique will not 

significantly affect the overall statistical distribution of the matrix material property, as can be seen in the mean 

values shown in Fig. 4. 

The normalisation region size (3×3 RVEs) for the proposed method is not backed by experimental data. 

However, if such data are available, then the developed framework can alternatively use a larger frame size, 

weighted kernels, or other correlation methods. 

𝐵𝑙𝑢𝑟 𝐾𝑒𝑟𝑛𝑒𝑙 =
1

9
[
1 1 1
1 1 1
1 1 1

]                                                                                                                                                (1) 

 

Fig. 4. Smoothing the random matrix property values using the blur kernel.  

 Surrogate models 

In this study, a series of surrogate models are used to develop an efficient FEA-based stiffness reliability 

framework. These models are divided into two types: 1) Polynomial regression fits to estimate the effect of 

uncertainties on properties. 2) Accumulation of independent effects to estimate the overall effective elastic 

properties of the RVE and LRVE. These surrogate models approximate the influence of uncertain input material 

property values on output homogenised properties and are explained as follows: 

 Micro-scale RVE surrogate models 

Polynomial regression fits are created to form the relationship between uncertainties and their effect on elastic 

properties, using data points obtained by the FEA RVE homogenisation (data points are explained in Section 3.2). 

Due to the fact that most uncertainties are largely dependent on Vf, their surrogate models are 3D surface fits of 

the uncertainty, Vf, and the effect on stiffness. Whereas corner fibre uncertainties are found to be almost 

independent of Vf and their effects on stiffness are interpolated using 2D fits, as can be seen in Fig. 5. 



7 

 

 

Fig. 5. Micro-scale surrogate models for material and geometrical uncertainties. 

These Polynomial regression fit surrogate models output the estimated effect of individual uncertainties. The 

effects are accumulated using Eq. 2 to estimate the homogenised properties of each random RVE. 

𝐸𝑖
𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝑙

= 𝐸𝑖
𝐷𝑒𝑡 + ∑ 𝑓𝑗

𝑖(𝑥𝑗)

𝑁

𝑗=1

                                                                                                                                               (2)  

Where 𝐸𝑖
𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝑙

 is one of the approximated elastic properties, 𝑖, for RVE 𝑙, 𝐸𝑖
𝐷𝑒𝑡  is the deterministic value of 

the elastic property 𝑖, N is the number of uncertain parameters (xj ) and 𝑓𝑗
𝑖(𝑥𝑗) is a polynomial that links the value 

of uncertain parameter j with a change in the elastic property i (relative to deterministic value). An example on 

the generation of the polynomial regression fit using the data points is shown in Fig. 6 (for matrix Em, and Vf 

uncertainties). In this figure, the selected set of data points is referred to as DPS 3 (explained Section 3.2), which 

uses FEA homogenisation data at the mean (𝜇), and eight more points offset around the mean by three standard 

deviations (3𝜎). 
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Fig. 6. The use of data points to interpolate the polynomial regression fit surface. In this case for the effect of 

matrix stiffness uncertainty (Em,) and Vf,. 

 Meso-scale LRVE surrogate models 

The estimated properties of the micro-scale RVEs go through two proposed techniques to estimate the 

properties of the LRVE. The first technique is a combination of polynomial regression fits and effect 

accumulation. In the polynomial regression fit stage, the surrogate model is constructed using low fidelity LRVE 

FEA data points. These LRVE data points contain a property-altering RVE surrounded by RVEs with 

deterministic properties. Once constructed, the homogenised properties of all individual random RVEs (computed 

using the surrogate model from Section 2.4.1) are substituted in a generated 2D surrogate model to estimate the 

corresponding dependent effect on the LRVE. In the second stage, the corresponding effects are accumulated to 

estimate the elastic properties of the LRVE as explained in Eq. 3 and Fig. 7. 

𝐸𝑖
𝐿𝑅𝑉𝐸 = 𝐸𝑖

𝐷𝑒𝑡 𝐿𝑅𝑉𝐸 + ∑ 𝑓𝑠
𝑖(𝐸𝑖

𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝑙
)

𝐿

𝑙=1

                                                                                                                              (3)  

Where 𝐸𝑖
𝐿𝑅𝑉𝐸 is one of the approximated elastic properties of the LRVE, 𝑓𝑠

𝑖(𝐸𝑖
𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝑙

) is a polynomial that 

links the value of a single 𝑅𝑉𝐸̅̅ ̅̅ ̅̅
𝑙  property with the effect on the LRVE, L is the total number RVEs within an 

LRVE, and 𝐸𝑖
𝐷𝑒𝑡 𝐿𝑅𝑉𝐸 is the deterministic value of elastic property i (𝐸𝑖

𝐷𝑒𝑡 𝐿𝑅𝑉𝐸 = 𝐸𝑖
𝐷𝑒𝑡). Although RVEs 

generated and arranged within the LRVE are spatially correlated, as explained in Section 2.3, this approach 

accumulates RVE’s effects regardless of their location within the LRVE. 

Therefore, a second technique is proposed that accounts for RVE location by using a multi-stage 

homogenisation process. The idea is to homogenise 2×2 configurations of neighbouring RVEs, which then form 

the homogenised properties for the following stage. This process continues in multiple stages until reaching the 

desired LRVE size. To account for RVE location, the polynomial-based surrogate model includes extra terms for: 

horizontal (𝑓ℎ), vertical (𝑓𝑣), and diagonal effects (𝑓𝑑). These surrogate models are again generated using low 

fidelity FEA data points, and their effects are summed similar to the first technique, as shown in Eq. 4, 5 and Fig. 

7. The efficiency of both techniques is assessed in Section 3.3 to select and use the most suitable technique within 

the overall probabilistic framework. 

𝐸𝑖
𝑆𝑡𝑔.1𝐶

= 𝐸𝑖
𝐷𝑒𝑡 𝐿𝑅𝑉𝐸 + ∑ 𝑓𝑠

𝑖(𝐸𝑖
𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝐴,𝐵,𝐶,𝐷

) + ∑ 𝑓ℎ
𝑖(𝐸𝑖

𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝐴−𝐵,𝐶−𝐷
) + ∑ 𝑓𝑣

𝑖(𝐸𝑖
𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝐴−𝐷,𝐵−𝐶

)

+ ∑ 𝑓𝑑
𝑖(𝐸𝑖

𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝐴−𝐶,𝐵−𝐷
)                                                                                                                        (4) 

𝐸𝑖
𝑆𝑡𝑔.2 = 𝐸𝑖

𝐿𝑅𝑉𝐸 = 𝐸𝑖
𝐷𝑒𝑡 𝐿𝑅𝑉𝐸 + ∑ 𝑓𝑠

𝑖(𝐸𝑖
𝑆𝑡𝑔.1𝐴,𝐵,𝐶,𝐷

) + ∑ 𝑓ℎ
𝑖(𝐸𝑖

𝑆𝑡𝑔.1𝐴−𝐵,𝐶−𝐷
) + ∑ 𝑓𝑣

𝑖(𝐸𝑖
𝑆𝑡𝑔.1𝐴−𝐷,𝐵−𝐶

)

+ ∑ 𝑓𝑑
𝑖(𝐸𝑖

𝑆𝑡𝑔.1𝐴−𝐶,𝐵−𝐷
)                                                                                                                       (5) 
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Where 𝐸𝑖
𝑆𝑡𝑔.1𝐶

 is one of the approximated elastic properties of the 1st stage of the LRVE multi-stage 

homogenisation, whereas 𝐸𝑖
𝑆𝑡𝑔.2 represents the approximated properties of the second stage. 𝑓𝑠,ℎ,𝑣,𝑑

𝑖 (𝐸𝑖
𝑅𝑉𝐸̅̅ ̅̅ ̅̅ 𝐴,𝐵,𝐶,𝐷

) 

are the polynomials that link the property’s value of single (𝑓𝑠) and the spatial effect of horizontal (𝑓ℎ), vertical 

(𝑓𝑣), and diagonal (𝑓𝑑) of four RVEs (A,B,C,D following the order in Eq. 4 and 5), to estimate the properties of 

the 2nd stage regions (Fig. 7). If an 8×8 LRVE is used then a third stage is required; similarly, a fourth stage for a 

16×16 LRVE, and so on. 

 

Fig. 7. Accumulative and multi-stage meso-scale surrogate modelling techniques. 

 Framework validation 

The developed framework aims to evaluate composites stiffness reliability in an efficient and accurate manner 

by constructing LRVEs and using FEA-based surrogate models. Before carrying out the reliability study, several 

aspects of the developed technique are examined. 
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 FEA discretisation study 

To estimate the amount of error associated with using the developed surrogate models, it is important to 

account for the numerical error associated with the finite element discretization. To estimate this for the micro-

scale, deterministic RVEs were modelled using four different mesh sizes to compute the effective stiffness 

properties. A trend line is used to estimate the true elastic properties by extrapolating to a mesh size of zero. The 

estimated true values are then used as a reference point to calculate an estimated error for each mesh size, as 

shown in Fig. 8 for Young’s modulus in the 1-direction (E11), and listed in Table 3 for the other stiffness properties. 

Based on this study, a maximum mesh size of 0.02 (fraction of the RVE’s edge length using linear wedge 

elements) is used for RVE discretisation, as it provides an acceptable balance between accuracy and computational 

time. 

 

Fig. 8. Four-point mesh convergence line with the estimated error plotted against mesh size for E11. 

In addition to the above micro-scale FEA error estimation, the use of low fidelity FEA to create the surrogate 

model for the LRVEs’ meso-scale (Section 2.4.2) is examined by generating a random LRVE, as shown in Fig. 

9, and estimating its stiffness properties using: 1) a high fidelity FE model that explicitly meshes all details with 

the same mesh size as the individual RVEs, and 2) a low fidelity model that does not explicitly model all detail, 

but instead simply assigns regions of elements with properties derived from the micro-scale surrogate models 

(Section 2.4.1). The average absolute error between the effective properties is observed to be 0.2%. Similar error 

magnitudes are observed in other randomly generated high and low fidelity LRVEs. Thus, it was concluded that 

using the low fidelity model was accurate enough to generate data points for the LRVE surrogate models. 

 

Fig. 9. A randomly generated 4×4 LRVE modelled and analysed with a low and high fidelity FEA. 
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 Data points 

To examine the effect of the number and distribution of FEA data points on the accuracy of the surrogate 

models, three different sets of points are used (DPS1, DPS2, DPS3), which are defined by the number of standard 

deviations (𝜎) from the mean for constituent material property uncertainties, or percentage of mean for geometric 

uncertainties and homogenised properties used in the LRVE, as seen in Table 2. 

Table 2. Space of FEA data points. 

Data points set 

3rd Data points set (DPS3) 

 
2nd Data points set (DPS2) 

 
 1st Data points set (DPS1)  

Material property uncertainties 𝑀𝑒𝑎𝑛 − 𝜎 𝑀𝑒𝑎𝑛 − 2𝜎 𝑀𝑒𝑎𝑛 − 3𝜎 𝑀𝑒𝑎𝑛 𝑀𝑒𝑎𝑛 + 3𝜎 𝑀𝑒𝑎𝑛 + 2𝜎 𝑀𝑒𝑎𝑛 + 𝜎 

Geometrical uncertainties 𝑀𝑒𝑎𝑛 ∗ 0.9 𝑀𝑒𝑎𝑛 ∗ 0.8 𝑀𝑒𝑎𝑛 ∗ 0.7 𝑀𝑒𝑎𝑛 𝑀𝑒𝑎𝑛 ∗ 1.3 𝑀𝑒𝑎𝑛 ∗ 1.2 𝑀𝑒𝑎𝑛 ∗ 1.1 

LRVE properties 𝑀𝑒𝑎𝑛 ∗ 0.9 𝑀𝑒𝑎𝑛 ∗ 0.8 𝑀𝑒𝑎𝑛 ∗ 0.7 𝑀𝑒𝑎𝑛 𝑀𝑒𝑎𝑛 ∗ 1.3 𝑀𝑒𝑎𝑛 ∗ 1.2 𝑀𝑒𝑎𝑛 ∗ 1.1 

 

All three sets of data points are analysed using the RVE homogenisation method; then the micro-scale 

surrogate models are generated. The error accompanying the use of the generated surrogate model sets in 

estimating the properties of 64 random RVEs (simulating a set of RVEs required for an 8×8 LRVE) is predictable 

by comparison with the FEA homogenisation of each of the 64 RVEs. Table 3 illustrates this in the form of error 

mean (μ) and standard deviation (𝜎) for each stiffness property, and the total number of data points and 

approximate duration required to generate the data using a 1 CPU. 

Table 3. Error percentages associated with the use of different data points set sizes. 

Data points set 

DPS3 

Estimated FEA numerical 

discretization error % 
 

(for a mesh size of 0.02 as 

shown in Fig. 8) 

DPS2 
 

DPS1  

Number of data points used 53 97 141 

Approx. data points off-line processing time ~ 5 hours ~ 9 hours ~ 13 hours 

Error % mean (𝜇) and standard deviation (𝜎) 

compared with 64 random FEA RVEs 
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

E11 0.00 0.00 0.00 0.00 0.00 0.00 0.07 

E22 0.62 0.27 0.05 0.05 0.03 0.04 0.01 

E33 0.61 0.30 0.05 0.04 0.03 0.04 0.02 
G12 0.59 0.26 0.06 0.05 0.04 0.04 0.01 

G13 0.57 0.32 0.05 0.05 0.04 0.04 0.02 

G23 0.13 0.10 0.04 0.04 0.04 0.03 0.07 

𝑣12 0.06 0.05 0.06 0.05 0.06 0.05 0.01 

𝑣13 0.05 0.05 0.05 0.05 0.05 0.05 0.01 

𝑣23 0.24 0.13 0.03 0.02 0.02 0.02 0.13 

 

It is clear that error values are very small using surrogate models constructed by DPS3 (which includes both 

DPS1 and DPS2). For this reason, DPS3 is selected to create the homogenising micro-scale RVEs surrogate model 

(section 2.4.1) to output the properties of the meso-scale LRVE. It is important to note that this set will be 

constructed once as an offline process for each type of material and selected uncertain values. 

 Meso-scale surrogate models and LRVE size 

In order to assess the effectiveness of the two proposed meso-scale LRVE surrogate modelling techniques 

and select the most suitable, random sets of LRVEs are generated with uncertain properties derived using DPS3. 

The results of using each meso-scale surrogate modelling technique (accumulative and multi-stage) are compared 

with low fidelity FEA of the same randomly generated LRVEs. In this process, three sizes of LRVEs are 

investigated: 2×2, 4×4 and 8×8 RVEs, and for each size 100 random LRVEs are generated. The comparison is 

presented in the form of mean error for each stiffness property, as shown in Fig. 10. 
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Fig. 10. The statistical performance of multi-stage and accumulative technique for three LRVE sizes. 

To quantitatively compare the performance of multi-stage and accumulative techniques, the probability that 

the error of the multi-stage technique (𝛿𝑀𝑠 ~ 𝑁(𝜇𝑀𝑠, 𝜎𝑀𝑠
2 )) is less than the accumulative technique error 

(𝛿𝐴𝑐  ~ 𝑁(𝜇𝐴𝑐 , 𝜎𝐴𝑐
2 )) is estimated using the relations shown in Eq. 6 below: 

𝑃(𝛿𝑀𝑠 < 𝛿𝐴𝑐)  =  𝑃(𝛿𝑀𝑠 − 𝛿𝐴𝑐 < 0) 

If 𝑄 = 𝛿𝑀𝑠 − 𝛿𝐴𝑐, then 𝑄 ~ 𝑁(𝜇𝑀𝑠 −  𝜇𝐴𝑐 , 𝜎𝑀𝑠
2 + 𝜎𝐴𝑐

2 ) and:                                  (6)         

𝑃(𝑄 < 0) =  ɸ (
0 − 𝜇𝑄

𝜎𝑄

 ) 

It is important to note that the relations in Eq. 6 are valid for normal distributions (𝑁 and ɸ). Therefore, the 

distributions of errors are checked for their normality using a Q-Q test [36]. It is observed that a majority of them 

follow a normal distribution, except several sets for 2×2 LRVE, due to having a fewer number of RVE elements 

compared with 4×4 and 8×8 LRVEs. Nevertheless, the errors in these sets are seen to follow a normal distribution 

at slightly lower levels of significance, which is considered acceptable for the purposes of this study. Based on 

the probabilities 𝑃(𝑄 < 0) for examined LRVE size shown in Fig. 11, it is concluded that the multi-stage 

technique performs better across most properties except Poisson's ratios 𝑣12 and 𝑣13, as they appear to be 

insensitive to the diagonal effect. Thus, within the overall framework, only these properties will be estimated 

using the accumulative technique, the rest of the properties will be evaluated using the multi-stage technique. 
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Fig. 11. The probabilities of the multi-stage technique mean error values being smaller than of the accumulative. 

It is important to note that the selection of LRVE size for composite representation requires considerations 

of lamina thickness in parallel with the selected boundary conditions. In this particular study, it is assumed that 

even the 8×8 LRVE is considerably smaller than the lamina thickness. Thus, it is suitable to apply periodic 

boundary conditions. 

 Framework overview and application 

 Framework overview 

The proposed framework that efficiently estimates stiffness properties of unidirectional composite laminas, 

while accounting for spatial geometric and material property uncertainties at micro, meso and laminate scale is 

demonstrated by assessing the stiffness reliability of composite laminates. Based on the results of the validation 

section, the final algorithm and implementation of the developed framework is illustrated in Fig. 12. 

 

Fig. 12. Proposed framework flowchart for evaluating laminate probabilistic stiffness performance. 



14 

 

 Application examples 

Analytical and numerical-based examples are used to assess the developed framework. The first example is 

a set of four specially orthotropic 0.5 𝑚𝑚 thick laminas, symmetrically arranged about the laminate mid-surface 

(see Fig. 13), presented to assess buckling stiffness reliability. The properties of each plie are derived from a 

random meso-scale LRVE. Thus, for each MCS sample, there are four lamina stiffness properties derived from 

four different LRVEs, which are then used with classical laminate theory. On the other hand, in addition to micro 

and meso-scale randomness, lamina ply thickness (𝑡) and ply orientation (𝜃𝑝) are introduced as uncertainties and 

their statistical properties are provided in Table 1. These uncertainties are introduced at the ply level rather than 

laminate, with no-correlation with Vf ratio. It should be noted that the introduction of ply orientation uncertainty 

will contradict the specially orthotropic orientation concept. However, it is observed that buckling response for 

all randomly generated laminates can be accurately estimated using the same expression for orthotropic laminates, 

as they satisfy the relations shown in Eq. 7 [10]. 

𝐷16

√𝐷11
3 𝐷22

4
< 0.2,    and        

𝐷26

√𝐷22
3 𝐷11

4
< 0.2                                                                                                                       (7) 

Where 𝐷𝑖𝑗  represent laminate bending stiffnesses components, as presented in Appendix B. 

For this particular laminate configuration, the required stiffness components are only D11, D12, D22 and D66; 

hence, simplifying limit state function (LSF) calculations. MCS is used to randomly generate uncertainties, X, for 

all scales, and substitute them in the developed surrogate models to compute stiffness properties (Sections 2.4.1 

and 2.4.2). These are then used with classical laminate theory [37, 38] to calculate the Dij stiffness terms along 

with the effect of laminate-scale uncertainties. The LSF is evaluated for each randomly generated laminate, as 

detailed in Eq. 8 [39], to estimate the probability of failure by assuming that failure occurs once serviceability 

limits are reached: 𝑃𝑓 = 𝑃[𝑔(𝑋) ≤ 0]. 

 

Fig. 13. Symmetrically specially orthotropic laminate subjected to buckling loading conditions. 

𝑔𝑏(𝑋) = 𝑁 − 𝑁𝐿𝑆 = 𝜋2 [𝐷11 [
𝑚

𝑎
]

2

+ 2(𝐷12 + 2𝐷66) [
𝑛

𝑏
]

2

+ 𝐷22 [
𝑛

𝑏
]

4

[
𝑎

𝑚
]

2

] − 𝑁𝐿𝑆                                 (8)  

The above applies for a simply supported symmetrical specially orthotropic laminate, where: 

𝑁𝐿𝑆: Applied load per laminate width (155 𝑁/𝑚𝑚 when 

all uncertainties are considered, and 189 𝑁/𝑚𝑚 

when lamina level uncertainties are ignored). 

m, n: The number of half wavelengths at 0° and 90°-

direction respectively, m=2 and n=1 for 

buckling. 

Dij: Laminate stiffness components, calculated using 

random variables, X through surrogate models and 

[ABD] matrix stiffness calculations as presented in 

Appendix B. 

a, b: Laminate length (100 𝑚𝑚), and width 

(50 𝑚𝑚) respectively. 
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For the numerical example, the framework is used to assess the stiffness reliability of an optimised skewed 

propeller blade made of two symmetrical (four in total) laminas [75o/45o]S, with the properties and uncertainties 

shown in Table 1. Additionally, this example includes a pressure load uncertainty. The stiffness LSF is defined is 

the maximum allowable deformation in the Z-direction (𝑈𝐿𝑆), which the blades’ trailing edge will experience by 

the pressure load, thus, 𝑃𝑓 = 𝑃[(𝑈𝑒𝑑𝑔𝑒 − 𝑈𝐿𝑆) ≤ 0]. The position of the selected trailing edge node 𝑈𝑒𝑑𝑔𝑒  can be 

seen Fig. 14; 𝑈𝐿𝑆 value is 5.2 𝑚𝑚 when all uncertainties are considered, and 4.75 𝑚𝑚 when lamina level 

uncertainties are ignored. For the purpose of this example, a multivariate nearest-neighbour Python interpolation 

module [40] with 2,000 FEA data points are used to estimate the probabilistic stiffness response of the blade to 

extract 𝑈𝑒𝑑𝑔𝑒  values. The total number of uncertain variables is 33: 4×6 laminate stiffness properties, 4 ply 

thicknesses, 4 ply orientations and 1 loading input. 

 

Fig. 14. Blade formed made of symmetric laminate subjected to pressure load. 

Employing the developed framework, four meso-scale configurations are used to compute the stiffness 

reliability of the selected composite laminate examples, which are: 1×1 single RVE (Fig. 1(a)), 2×2, 4×4, and 8×8 

LRVEs. The total number of MCS samples required (𝑆) is estimated using the relation shown in Eq. 9 [41], 

targeting an initial probability of failure 𝑃𝑓
′ =10-3, 10% maximum allowable error (𝛿𝑃𝑓

), and 80% confidence level 

(𝛼). 

𝑆 =
𝑃𝑓

′(1 − 𝑃𝑓
′)

𝛿𝑃𝑓

2 𝑍(1+𝛼)/2
2 =

10−3(1 − 10−3)

(1 ∗ 10−4)2
(1.28)2 ≈ 160,000                                                                                (9) 

As the probability of failure is a binomial distribution and 𝑛𝑃𝑓 > 5, it is adequate to use 𝑍 to calculate the 

inverse of the standard normal cumulative distribution for the value (1 + 𝛼)/2. 

Stiffness reliability results are presented in Fig. 15, showing that for both examples, the probability of failure 

reduces as the size of the LRVE increases and that all sizes of LRVEs compute a lower 𝑃𝑓 value, compared with 

using a single RVE (i.e. no meso-scale transition). This result can be explained because increasing the size of the 

representative unit leads to less variability of homogenised properties at the lamina-scale, thus reducing the 

chances of assigning extremely low stiffness values to the whole lamina that causes failure. This can be seen in 

Fig. 16 that plots the distribution of homogenised properties for the examined sizes along with their fitted normal 

distribution curve. Furthermore, if laminate uncertainties are not considered (similar if reduced), then the variation 

in 𝑃𝑓 between different sizes of LRVEs and the single RVE is more noticeable, as can be seen in Fig. 17, which 

again is the case for both the analytical and numerical examples. 
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Fig. 15. Probabilities of failure for laminates under micro, meso, and laminate scale uncertainties assessed using 

various sizes of LRVEs. 

 

Fig. 16. Distribution of the homogenised LRVEs properties and their fitted normal distribution curve. 
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Fig. 17. Probabilities of failure for laminates under micro and meso scale uncertainties assessed using various 

sizes of LRVEs. 

To summarise, as the LRVEs provide a more realistic representation of the material, the computed probability 

of failure provides a better understanding of the composite components capacity, compared with the use of a more 

conservative single RVE representation (see Fig. 1). 

In terms of computational efficiency, the generation and analysis of the 160,000 MCS samples of the LRVEs, 

shown in Fig. 15, took less than 10 minutes, while the generation of the FEA homogenisation data points required 

to interpolate the surrogate models took approximately 20 hours, analysed using a conventional computer with a 

single core (no parallel computation). It is important to emphasise that the generation of the one-off FEA data 

points is only required once, for a certain composite material, and they can be used for various applications and 

reliability analyses (including alterations to the statistical properties of uncertainties). This reduces the reliability 

analysis time to less than 10 minutes, which is the case for both application examples used in this study. In contrast, 

the time required to analyse a single deterministic 8×8 high fidelity FEA LRVE using the same machine took 

approximately 26 hours. Thus, using high-fidelity FEA is not feasible for probabilistic analysis. 

 Conclusions and future work 

This study develops a computationally efficient FEA-based surrogate modelling framework capable of 

capturing various multi-scale uncertainties for continuous fibre reinforced composites. The first step in developing 

this framework is to use a representative unit that can model spatial variation of uncertainties, compared with a 

single RVE containing only one or two fibres. This was achieved by constructing an LRVE formed by correlating 

smaller RVEs in terms of material properties and geometric uncertainties. The second step is to create a series of 

surrogate models and techniques using a limited number of FEA data points, which propagate between micro and 

meso-scale, making it feasible to use the LRVE for stiffness reliability calculations using MCS. 

The estimated stiffness properties using the developed surrogate modelling technique are validated against 

FEA samples and the average error is observed to be 0.035% at the micro-scale and 0.22% at the meso-scale. The 

effect of using LRVEs, compared with the conventional use of a single RVE, in each MCS sample is investigated 

by computing the reliability of a composite laminate using three different sizes of LRVEs (2×2, 4×4 and 8×8 

RVEs) and the established single RVEs (1×1). It is concluded that the use of the LRVE results in a better 

representation of the uncertainty within the composite and leads to reducing the probability of failure. On the 

other hand, the proposed framework is efficient for use within a probabilistic method, as an alternative to 

computationally expensive non-homogenised FEA models and complex analytical methods. Thus, this framework 

can be used to conduct further probabilistic studies, such as multi-scale reliability-based design optimisation 

(RBDO) with the possibility of including fibre-matrix interface uncertainty.  
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Appendixes 

Appendix A 

Displacement relations require linking nodal degrees of freedom (DoF) for periodicity boundary conditions [31]: 

 

For elastic modulus, i.e. E11: 

𝑈𝐹𝑟𝑜𝑛𝑡
𝑥 −  𝑈𝐵𝑎𝑐𝑘

𝑥 = 𝑈𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑  

𝑈𝑇𝑜𝑝,   𝐿𝑒𝑓𝑡
𝑥 −  𝑈𝐵𝑜𝑡𝑡𝑜𝑚,   𝑅𝑖𝑔ℎ𝑡

𝑥 = 0 

𝑈𝑇𝑜𝑝,   𝐹𝑟𝑜𝑛𝑡,   𝐿𝑒𝑓𝑡
𝑦

− 𝑈𝐵𝑜𝑡𝑡𝑜𝑚,   𝐵𝑎𝑐𝑘,   𝑅𝑖𝑔ℎ𝑡
𝑦

= 0 

𝑈𝐹𝑟𝑜𝑛𝑡,   𝑇𝑜𝑝,   𝐿𝑒𝑓𝑡
𝑧 − 𝑈𝐵𝑎𝑐𝑘,   𝐵𝑜𝑡𝑡𝑜𝑚,   𝑅𝑖𝑔ℎ𝑡

𝑧 = 0 

For shear modulus, i.e. G12: 

𝑈𝐹𝑟𝑜𝑛𝑡,   𝐿𝑒𝑓𝑡
𝑥 −  𝑈𝐵𝑎𝑐𝑘,   𝑅𝑖𝑔ℎ𝑡

𝑥 = 0 

𝑈𝐹𝑟𝑜𝑛𝑡
𝑦

−  𝑈𝐵𝑎𝑐𝑘
𝑦

= 𝑈𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑  

𝑈𝑇𝑜𝑝
𝑥 − 𝑈𝐵𝑜𝑡𝑡𝑜𝑚

𝑥 = 𝑈𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑  

𝑈𝑇𝑜𝑝,   𝐿𝑒𝑓𝑡
𝑦

− 𝑈𝐵𝑜𝑡𝑡𝑜𝑚,   𝑅𝑖𝑔ℎ𝑡
𝑦

= 0 

𝑈𝐹𝑟𝑜𝑛𝑡,   𝑇𝑜𝑝,   𝐿𝑒𝑓𝑡
𝑧 − 𝑈𝐵𝑎𝑐𝑘,   𝐵𝑜𝑡𝑡𝑜𝑚,   𝑅𝑖𝑔ℎ𝑡

𝑦
= 0 

Where 𝑈𝑥, 𝑈𝑦, and 𝑈𝑧 are the displacement components along X, Y, and Z direction respectively, 𝑈𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

is the prescribed displacement value for the required modulus. 

Appendix B 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = [

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

Ƙ𝑥

Ƙ𝑦

Ƙ𝑥𝑦

] 

Where 𝑀 is the moment per unit width, Ƙ is the middle-surface curvature, and 𝐷𝑖𝑗  are the bending stiffnesses 

components: 

𝐷ij =
1

3
∑ 𝑄̅𝑖𝑗

𝑘 (𝑡𝑘
3𝑛

𝑘=1 − 𝑡𝑘−1
3 )  

Where 𝑡𝑘 is the directed distance of the 𝑘-th ply, and 𝑄̅𝑖𝑗
𝑘  is The 𝑘-th layer transformed stiffness coefficients:  

𝑄̅11
𝑘 = 𝑄11 cos4 𝜃𝑘 + 2(𝑄12 + 2𝑄66) sin2 𝜃𝑘 cos2 𝜃𝑘 + 𝑄22 sin4 𝜃𝑘 

𝑄̅12
𝑘 = (𝑄11 + 𝑄22 − 4𝑄66) sin2 𝜃𝑘 cos2 𝜃𝑘 + 𝑄12(sin4 𝜃𝑘 + cos4 𝜃𝑘) 

𝑄̅22
𝑘 = 𝑄11 sin4 𝜃𝑘 + 2(𝑄12 + 2𝑄66) sin2 𝜃𝑘 cos2 𝜃𝑘 + 𝑄22 cos4 𝜃𝑘 

𝑄̅16
𝑘 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑖𝑛𝜃𝑘 cos3 𝜃𝑘 + (𝑄12 − 𝑄22 + 2𝑄66)𝑠𝑖𝑛𝜃𝑘 cos3 𝜃𝑘 

𝑄̅26
𝑘 = (𝑄11 − 𝑄12 − 2𝑄66) sin3 𝜃𝑘𝑐𝑜𝑠𝜃𝑘 + (𝑄12 − 𝑄22 + 2𝑄66)𝑠𝑖𝑛𝜃𝑘 cos3 𝜃𝑘 

𝑄̅66
𝑘 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) sin2 𝜃𝑘 cos2 𝜃𝑘 + 𝑄66(sin4 𝜃𝑘 + cos4 𝜃𝑘) 

Where 𝜃𝑘 represents the 𝑘-th ply orientation angle, and 𝑄ij are the reduced stiffnesses components: 

𝑄11 =
𝐸11

1−𝜈12𝜈21
 , 𝑄12 =

𝜈12𝐸22

1−𝜈12𝜈21
, 𝑄22 =

𝐸22

1−𝜈12𝜈21
, 𝑄66 = 𝐺12 
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