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Abstract 5 

Coal has been playing an important role as a valuable source of energy for many years. In turn, gas 6 

production from coal reservoirs is a modern development and coal bed methane (CBM), also known 7 

as coal seam gas (CSG), is attracting global attention due to its wide occurrence and benefits for the 8 

environment as opposed to the conventional energy sources. Developing coal bed methane reservoirs 9 

requires better understanding of the flow behaviours of gas and liquids in cleats and analysis of 10 

possible contribution of pores to the flow. This paper describes the implementation of micro 11 

computed tomography (micro-CT) and scan electron microscopy (SEM) techniques for analysis of coal 12 

samples. Intermediate rank coal samples used in this study were collected from Southern Qinshui 13 

Basin (China). In the course of the described research, coal samples were scanned, processed and 14 

segmented to study the cleat spacing and permeability. Due to the partial volume effect, the 15 

resolution of cleats needed improvement which was achieved by subvoxel processing using a novel 16 

algorithm as explained in detail in the paper. Permeability was obtained through simulation of one 17 

phase flow using Lattice Boltzmann method (LBM). The results show that the simulated permeability 18 

is comparable to the analytical approximation. The subvoxel processing has proved an effective 19 

method of overcoming the partial volume effect for the low resolution micro-CT images.  20 

 21 

Key words 22 

Coal bed methane; Micro-CT; SEM; Subvoxel algorithm; Permeability; Lattice Botzmann method 23 

1. Introduction 24 

Coal seam gas (CSG), also known as coal bed methane (CBM), is a form of unconventional natural gas 25 

extracted from coal reservoirs. Unconventional resources are those hydrocarbon reservoirs whose 26 

permeability/viscosity ratio requires use of technology to alter either the rock permeability or the fluid 27 

viscosity, or both, in order to produce them at commercially competitive rates. Unlike conventional 28 

clastic deposits, coal seams contain a high proportion of mostly localised organic matters in addition 29 



to inorganic material. This results in dual-pore system where pores in organic matter are often too 30 

small to be efficient flow paths, whereas much larger fractures (known as cleats) are believed to be 31 

main conducts from which gas in organic matters can flow out (Clarkson and Bustin, 1996; Moore, 32 

2012; Puri et al., 1991). Developing coal bed methane reservoirs demands better understanding of the 33 

flow behaviour of gases and liquids in pores and fractures. This may require the use of sub-micron 34 

resolution data for calculation of reservoir petrophysical properties and simulation of gas/water flow 35 

behaviour. In turn, the latter demands thorough comprehension of the pore space structure of rocks. 36 

Micro-computed tomography and scanning electron microscopy provide an effective source of 37 

information on the internal structure of coal porous space. 38 

The evolution of modern micro-CT imaging techniques is based on three-dimensional reconstructions 39 

from a series of two-dimensional projections taken at different angles: the sample is rotated and the 40 

absorption of X-rays in different directions is recorded and used to produce a three-dimensional 41 

representation of the rocks and fluids (Blunt et al., 2013). The main advantage of X –ray micro-42 

computed tomography is that it yields high-resolution three-dimensional images of solid opaque 43 

objects quickly and non-destructively (Carlson et al., 2003). It is similar to medical CT scanning, but 44 

carried out on a smaller scale and with greatly increased resolution (down to less than 1 micron is 45 

possible) (Golab et al., 2013). Implementation of such imaging is of value in a variety of applications, 46 

including examination of clastic (Golab et al., 2010; Knackstedt et al., 2010), fractured basement 47 

(Knackstedt et al., 2013) and carbonate (Arns et al., 2005) reservoir rocks , as well as three-dimensional 48 

studies of coal (Mazumder et al., 2006), paper (Roberts et al., 2003), biomaterials (Knackstedt et al., 49 

2006), bones (Zezabe et al., 2005), volcanic ash (Ersoy et al., 2010), materials for palaeontology (Long 50 

et al., 2006), soil science, meteorites, and geotechnics (Ketcham and Carlson, 2001). 51 

In synchrotrons, which were exploited for first micro-CT images of rocks, a bright monochromatic 52 

beam of X-ray is shone through a small rock sample (Flannery et al., 1987). The now-standard 53 

approach for scanning the pore space of rocks is to use a laboratory instrument, a micro-CT scanner, 54 

which houses its own source of X-rays (Arns et al., 2007). The X-rays are polychromatic, and the beam 55 

is not collimated – the image resolution is determined primarily by the proximity of the rock samples 56 

to the source (Blunt et al., 2013). The intensity recorded for the pixels (2D) and results from 57 

reconstruction for the voxels (3D) obtained in micro-CT analysis represents the relative radio density, 58 

or relative attenuation of X-rays through individual segments of the imaged material (Novelline, 1997). 59 

Within the tomogram, the X-ray opacity of the material in each individual segment determines its 60 

brightness, allowing a three-dimensional image to be reconstructed from sections viewed at different 61 

angles (Golab et al., 2013). Voids are usually represented as black in micro-CT images due to their low 62 



X-ray opacity, minerals are usually light grey (or white) to medium grey due to intermediate X-ray 63 

opacity (Golab et al., 2013). 64 

Many researchers have exploited computed tomography for quantitative characterisation of fractures 65 

in coal (e.g. Mazumder et al., 2006; Van Geet and Swennen, 2001 etc.). Other researchers used micro-66 

CT techniques to investigate gas adsorption and desorption in coal (e.g. Karachan and Okandan, 2001), 67 

as well as to investigate the heterogeneity and spatial distribution of pores (Giffin et al., 2013), 68 

fractures (Yao et al., 2009) and distribution of organic and mineral matter (e.g. Verhelst et al., 1996; 69 

Simons et al., 1997) in coals of different rank. The behaviour of fluids in pore space of rocks was 70 

extensively examined, but those research studies mostly concentrated on sandstones (Berea 71 

sandstone etc.) and carbonates (for example, Estaillades carbonate) (Blunt et al., 2013), with only a 72 

few focusing on simulation of gas flow in porous space of coal (e.g. Jing et al., 2016). 73 

In addition to 3D imaging methods, there are other methods, well established in two dimensions, for 74 

producing very fine images of rock samples. Amongst them the most widely applied is SEM (scanning 75 

electron microscopy) which produces images down to resolution of 10s nm (Blunt et al., 2013). SEM 76 

is a technology which generates ultra-high resolution two-dimensional images of thin rock samples 77 

(Lemmens et al., 2010). As opposed to micro-CT, this method is destructive, but its advantage is that 78 

it allows revealing details of small pores which are beyond the resolution of micro-CT images. SEM 79 

images are often used to:  provide details which are beyond the resolution of micro-CT images (Golab 80 

et al, 2013; Ramandi et al., 2016); calibrate micro-CT images (Mostaghimi et al., 2015); generate 81 

synthetic 3D structures from two dimensional thin sections (Wu et al., 2006). 82 

For the purpose of the research described in this paper, micro-CT techniques were used in conjunction 83 

with electron microscopy to obtain sufficiently detailed images of intermediate rank coal sample and 84 

to segment the cleats of those images. The studied samples are characterised by irregular cleat system 85 

which contains mainly thin, poorly resolved fractures due to the partial volume effect. The subvoxel 86 

processing algorithm was applied in order to overcome that effect and to improve the quality of the 87 

images. The subvoxelled images were then segmented and used for simulating of single-phase flow 88 

through the pore space of coal samples. The idea of the subvoxel algorithm was taken from the 89 

medical study of trabecular bones (Hwang and Wehrli, 2002) but the algorithm was written for coal 90 

and it has never previously been used for rock sample micro-CT images. The study described in this 91 

paper concentrated on mm-scale effects. Upscaling of these results to the larger scales was the 92 

objective of a follow-up study. 93 



2. Samples and samples preparation 94 

Samples of intermediate rank coal from Panlong mine in Southern Qinshui coal bed methane basin 95 

(China) were obtained and examined, the samples are buried in a range of 600-750 meters subsurface 96 

and in this work one sample (Figure 1) was chosen in order to analyse cleat porosity and permeability.  97 

The main characteristics of the analysed coal sample acquired from coal proximate analysis are listed 98 

in Table 1. 99 

 100 
Figure 1. Coal core sample in a sample holder used in this study. 101 

 102 

Table 1. Coal sample characteristics. 103 

Sample ID 

Sample (%) Organic matter (%) Vitrinite 

Reflectanceo ran 

(%) 
Organic matter Pyrite Others Vitrinite Inertinite Liptinite 

PL3#-2 79.87 0.17 19.97 77.52 22.48 0.00 1.68 

 104 

Previous studies (e.g. Wang et al., 2016; Cai et al., 2011) show that the coal from this basin contain 105 

0.59 – 3.54% moisture, 3.5 – 15.54% ash yield, 73.62 – 88.92% fixed carbon and 2.14 – 4.04% 106 

hydrogen, with C/H ratios in the range of 19.96 – 36.25. The vitrinite reflectance ranges from 1.95 to 107 

3.49%, with 18.5 – 97.4% vitrinite and 2.4 – 81.4% inertinite. The gas in-place concentration is in the 108 

range from 0.72 to 2.88x108 m3/km2, with an average of 1.21x108 m3/km2. 109 

Samples were not dried or saturated with any high contrast fluid to preserve samples integrity. For 110 

SEM analysis, the sample surface was polished in three different directions and carbon-coated (see 111 

Figure 2). 112 



 113 
Figure 2. Coal core sample polished and carbon-coated for SEM analysis. 114 

3. Methodology 115 

X-ray micro-computed tomography was conducted using the laboratory-based ZEISS VersaXRM-410 116 

3D microscope (Figure 3), which delivers non-destructive 3D imaging with submicron resolution, for 117 

in situ scanning, and provides high-resolution micro-CT images for the widest range of sample sizes. 118 

This machine uses patented detectors which convert X-rays into visible light and then uses a 119 

microscope turret of objectives for easy and accurate zooming. VersaXRM-410 achieves 0.9 μm true 120 

spatial resolution with minimum achievable voxel size of 100 nm. Advanced absorption and phase 121 

contrast (for soft or low-Z materials) provide greater versatility in overcoming the limitations of 122 

traditional computed tomography (CT). 123 

 124 
Figure 3. ZEISS XRadia 410 Versa microscope (Kartal et al., 2017). 125 

 126 

The first scan was done at the resolution of 25 microns to understand the internal structure of coal. 127 

This scan was run at an X-ray beam energy of 80 kV and a power of 10 W. The distance between the 128 

specimen and X-ray source was 57.024 mm while there was 97.76 mm between the specimen and 129 

detector. An optical magnification of 0.4X was used to achieve high resolution. This gave a 25-micron 130 

pixel size and exposure time was set to 1.2 s in order to get intensity values for the best signal-to-noise 131 

ratio for each projection (radiograph). The next scan was done to achieve the resolution of 10 micron 132 

to focus on the most vitrinite half of the sample. The scan parameters for all samples are summarised 133 



in the Table 2. Having analysed 25- and 10-micron slides, the areas of interest were chosen, and four 134 

2.5-micron slides were chosen with the most representative volume for porosity analysis and flow 135 

simulation. 136 

Table 2. Micro-CT scanning parameters. 137 

Sample Resolution, 

micron 

Voltage, 

kV 

Power, 

W 

Distance to 

source, mm 

Distance to 

detector, mm 

Optical 

magnification 

Exposure 

time, s 

PL3#-2 25 80 10 57.0 97.8 0.4 1.2 

PL3#-2 10 80 10 60.0 326.2 0.4 10 

PL3#-2 2.5 120 10 65.0 110.0 4 15 

PL3#-2 2.5 120 10 65.0 110.0 4 15 

PL3#-2 2.5 120 10 65.0 110.0 4 15 

PL3#-2 2.5 120 10 65.0 110.0 4 16 

 138 

Scanning electron microscopy technique was also exploited during the research but only of the upper 139 

surface of each sample at this stage. These SEM images were initially used for visual analysis of the 140 

width, integrity and mineralisation of the fractures to understand which parts of the sample should 141 

be targeted for scanning. Later, the samples were cut, and a few thin sections were prepared for 142 

further SEM analysis. Because the thin sections were extracted from different parts of the samples 143 

(not only from the surface) there will be an opportunity to calibrate micro-CT images with SEM data. 144 

The SEM images were obtained with magnification 22, 27 or 29, 100, 150, 250, 300 and 350 depending 145 

on the samples and the size of the features to be evaluated. 146 

 147 

4. Results 148 

Grid independence test 149 

Prior to calculating permeability of coal samples a grid independence test was carried out to validate 150 

the simulation method, and to find the best resolution for a sufficiently accurate numerical simulation. 151 

The test compared measured flow through a single fracture with constant width (defined by the 152 

average fracture width in the studied sample determined from 2.5-micron scanned and 2.5-micron 153 

subvoxelled images) to the analytical solution. The fracture width was 25 microns, and the simulations 154 

were run for the following resolutions of the numerical grid: 2, 5, 10, 25 and 50 cells per fracture width 155 

(i.e. 12.5, 5, 2.5, 1 and 0.5 micron cell size, respectively). The comparison of the velocity profiles across 156 

the fracture with analytical solution is shown in Figure 4. It was observed that for resolutions coarser 157 

than 10 cells per fracture width, there was a big discrepancy between analytical and numerical 158 



solutions. At the same time, the most accurate resolution was 50 cells per fracture width, as expected 159 

(Figure 4). Resolutions 25 and 10 cells per fracture width show 15% and 18% discrepancy respectively, 160 

which was considered sufficiently accurate for the purpose of the study.  161 

 162 
Figure 4. Velocity profile across the fracture width: analytical solution (continuous black line) and 163 

numerical solution for different grid resolution (coloured symbols): blue – 2 cells per fracture width; 164 

yellow – 5 cells per fracture width; grey – 10 cells per fracture width; dark blue – 25 cells per fracture 165 

width; green – 50 cells per fracture width. 166 

 167 

Subvoxel processing and segmentation 168 

After micro-CT scans were obtained, images were processed and analysed versus SEM data, and it was 169 

found that the resolution of cleats is quite poor due to the partial volume effect, and the width of the 170 

cleats is overestimated for 25-, 10- and 5-micron scans compared to the width obtained from SEM 171 

images (25 microns determined from SEM and 100 microns determined from 10-micron micro-CT 172 

scans). On the other hand, the discrepancy between the widths of the cleats obtained from SEM and 173 

2.5-micron micro-CT scans is about 1-2 micron. After couple unsuccessful attempts to improve the 174 

resolution of cleats by application of different segmentation methods, the subvoxel processing 175 

algorithm was written and implemented in Matlab to overcome the partial volume effect. After 176 

analysis of SEM data and performing the grid dependence tests, we concluded that 2.5-micron 177 

resolution appears to be the best solution for the studied samples. The problem of scanning samples 178 

at 2.5-micron resolution is that the volume of investigation in case of this resolution is reduced to 179 

2.5mm*2.5mm*2.5mm which was not sufficiently large to be representative. Collecting series of 180 

separate volumes at 2.5-micron could have been a solution but it was difficult due to the scanning 181 

time and expenses. Thus, it was decided to take 10-micron images and improve the resolution of these 182 

images by subvoxel processing. 183 

The idea to use subvoxel processing was taken from medicine (Hwang and Wehrli, 2002) and is 184 

supposed to be applicable to volumes of interest containing materials or phases with two discrete 185 



signal intensities (coal matrix and cleats in the case of current research). The principal strategy consists 186 

of subdividing voxels and assigning voxel intensities to each subvoxel on the basis of local 187 

neighbourhood criteria. 188 

However, the approach to subvoxel processing was adapted and the algorithm was written to be 189 

applicable for coal samples gray-scale images. Thus, the starting point of the algorithm for trabecular 190 

bones images was the partitioning of each voxel into eight subvoxels by strictly enforcing conservation 191 

of bone mass (Hwang and Wehrli, 2002). In order to ensure bone mass conservation, Hwang and 192 

Wehrli (1999) generated bone volume fraction to determine the spatial distribution of trabecular 193 

bone. In the current research, the subvoxel processing was performed directly on the gray-scale 194 

images (where each voxel has a value from 0 to 255) and the restrictions to the algorithm were as 195 

follows: 1) the average sum of eight subvoxels values should be equal to the value of the original voxel, 196 

and 2) each subvoxel value could not exceed 255. Also, for trabecular bones images, each 197 

neighbouring pixel had the same contribution but if the resulting subvoxel was next to the voxels with 198 

zero BVF, this subvoxel was zeroed.  With  the current research, the following scheme was used: each 199 

voxel was partitioned into eight voxels (1, 2, 3, … 8 in Figure 5) and the resulting subvoxels were 200 

assigned the gray-scale intensity values based on the intensity values of neighbouring voxels, 201 

considering the proximity of each neighbour. Each subvoxel has 7 neighbours (for instance green, 202 

yellow and red voxels shown in Figure 5 are the neighbours of the subvoxel 1): with 3 of them (green 203 

in Figure 5) it has face-face connection, with 3 of them (yellow in Figure 5) – edge-edge connection 204 

and with 1 of them (red in Figure 5) – point-point connection. The weight of each neighbouring voxel 205 

is calculated based on the proximity to the subvoxel of interest: the weight of neighbouring voxels 206 

with face-face connection is 25%, with edge-edge connection – 8% and with point-point connection – 207 

1%. Subvoxel processing is an empirical algorithm rather than one derived from mathematical theory 208 

(Hwang and Wehrli, 2002), so the optimal weighed contribution of each neighbouring voxel was 209 

determined by trying different configurations and comparing the subvoxelled images to the images 210 

scanned with higher resolution. 211 

 212 
Figure 5. Subvoxel partitioning scheme in 3D. 213 



For the purpose of this research, the same volume of coal sample was scanned with different 214 

resolutions – 10-, 5- and 2.5-microns. Then, subvoxel processing was performed on 10-micron images 215 

a couple of times with different weighed contribution of neighbouring pixels (starting from equal 216 

weight of all neighbours and continuing towards an increase of contribution of face-face neighbours) 217 

and after each iteration, the results were compared to the scanned 5-micron images, and when the 218 

optimal result was achieved, subvoxel processing was repeated on subvoxelled images to achieve 2.5-219 

resolution. Then, the resulting 2.5-subvoxelled images were compared to scanned 2.5-micron images 220 

for quality control. Images were compared in the following manner: the same features (similar 221 

intervals of cleats) were chosen on 5- and 2.5-micron scanned image and the width of cleats was 222 

determined by comparison with  the one determined from SEM images. This calibrated width was 223 

then compared to the width of the same features obtained from 5- and 2.5-micron subvoxelled 224 

images. The results of subvoxel processing was accepted as optimal when the discrepancy between 225 

the width of analysed cleats was about 1-2 micron (less than 10% of the width). As a result of 226 

application of this method, the resolution of cleats was improved (Figure 6) but the volume of 227 

investigation of new 2.5-micron subvoxelled images is 64 times bigger than that of 2.5-micron scanned 228 

images. 229 

 230 
Figure 6. An example of subvoxel processing results: A) 2.5-micron scanned image; B) 10-micron 231 

image before processing; C) 10-micron image after processing to 2.5-micron subvoxelled image. 232 

 233 

The next step of micro-CT scans analysis was image segmentation. Based on the experience of 234 

previous researchers, the Ramandi et al., 2016 watershed method was chosen for image 235 

segmentation. This approach was successfully applied by Ramandi et al. for Australian coal samples, 236 

but used a combination of dry and wet coal images for better contrast between fractures and coal 237 

matrix. In the course of the current research coal was not saturated with any contrast fluid, and as a 238 

result of this, some unwanted noise appeared on segmented images which had to be removed by 239 

different filters. The most effective filter for the studies samples was median filter (Figure 7). 240 



 241 
Figure 7. The results of watershed- method segmentation in 2D and 3D – black is coal matrix, light 242 

colour – cleat: A) before noise removal; B) after noise removal. 243 

 244 

Permeability simulation using LBM 245 

Permeability of coal samples was determined from numerical simulations of steady state single-phase 246 

flow through the samples. Simulations were performed using Palabos, which is an open-source 247 

computational fluid dynamics (CFD) solver based on the Lattice Boltzmann method. The Lattice 248 

Boltzmann method (LBM) is one of a number of particle-based CFD methods, where particles 249 

representing packets of fluid are tracked through the computational domain (Blunt et al., 2013). 250 

 251 

Figure 8. An example of flow domain (2.5-micron scanned set) – the size of the sides is 2.5*2.5 mm. 252 

 253 

Permeability simulation was performed on three different sets of images: 10-micron scanned, 2.5-254 

micron scanned and 2.5-micron subvoxelled (Figure 8) to compare the results and estimate the 255 

sensitivity of permeability simulation to scanning resolution. For the simulation the following 256 

parameters were used: the D3Q19 lattice, bounce-back boundary conditions at the solid boundaries 257 

(walls), and a fixed pressure difference between the inlet and the outlet. A simulation starts with fluid 258 

having zero velocity, and with a constant pressure gradient in the x-direction (i.e. the principal flow 259 

direction). The permeability was computed by applying Darcy’s law to the simulated velocity data， 260 



dxk U
dp

µ=   (1) 261 

here U is average velocity in x-direction in the cleat, µ is the fluid viscosity and 
dp
dx is the pressure 262 

gradient along the principal flow direction (i.e. between the inlet and outlet).  263 

Since reconstruction of 3D geometry can produce slightly different results depending on the value of 264 

threshold applied in the segmentation process, for each set of images listed above, permeability 265 

simulation was performed several times. Table 3 summarises simulated permeability results according 266 

to the different thresholds used in segmentation process: in the course of each image set 267 

segmentation, three different points on each intensity histogram were chosen for watershed 268 

segmentation, and the resulted images were used for simulation. To sum all, the following results 269 

were obtained: permeability was determined in the range 75-125mD for 2.5-micron subvoxelled 270 

images, in the range 125-205mD for 2.5-micron scanned images, in the range 2400-3000mD for 10-271 

micron scanned images. 272 

Table 3. Simulated permeability results depending on segmentation thresholds. 273 

 Image set 
Threshold point on histogram 2.5 scanned 2.5 subvoxelled 10 scanned 

25% 125 mD 75 mD 2400 mD 
50% 152 mD 88 mD 2670 mD 
75% 205 mD 125 mD 3000 mD 

 274 

For the purpose of analytical solution, the fractures are assumed to have constant aperture d, to be 275 

parallel to the principal flow direction and to be at equal distances s, such that porosity of this system 276 

φ, is equal to the ratio d / s. Based on the analytical solution for Poiselle flow between parallel plates 277 

the permeability of such system is: 278 

𝑘𝑘 = 𝜙𝜙𝑑𝑑2

12
          (2) 279 

Previous researchers (e.g. Oron and Berkowitz, 1998) claimed that fracture aperture should be 280 

measured as an average over a certain length. Analysis of SEM and micro-CT images of the samples 281 

used in this research showed that coal fractures of studied samples are quite constant and consistent 282 

in width (see Figure 8), so it was decided to use average fracture aperture measured perpendicular to 283 

the main axis of fractures. Thus, analytical solution for the average fracture width (determined from 284 

2.5-micron scanned and 2.5-micron subvoxelled images) gave the value of 82.5mD which is 285 

comparable with numerical simulation results. 286 



 287 

Figure 8. SEM image (A) and micro-CT image (B) demonstrate that the fracture width is quite 288 

constant 289 

5. Discussion, conclusion and future challenges 290 

The research described in this paper focuses on implementation of micro-CT and SEM technologies 291 

for analysis of coal including improvement of image resolution, and the sample from Southern Qinshui 292 

Basin (China) was exploited for the research. It was observed that this coal was characterised by 293 

irregular cleat system which contained mainly thin fractures. This had two consequences: 1) poor 294 

resolution of those fractures due to the partial volume effect at lower resolutions (10- and 25-micron); 295 

2) at higher resolution the scanned volume was too small to be representative of cleat system of those 296 

samples. Taking into account these two considerations, it was decided to use subvoxel processing 297 

algorithm to increase the resolution of 10-micron images to 2.5-micron but keeping volume of 298 

investigation of 10-micron images. This method was proven on 10-micron images but also later tested 299 

on different images with resolution from 25 to 2 microns. The idea for this approach was taken from 300 

medicine, but the approach was adapted to the area of the research and the algorithm was written 301 

based on the studied coal samples. The method was proved to overcome the partial volume effect, as 302 

long as cleat width is larger than the pixel size of a scan. It was also observed that there is no value in 303 

subvoxel processing below 2-micron resolution as it doesn’t improve much the resolution of cleats. 304 

The establishing of subvoxel algorithm was utterly important for the current research as this algorithm 305 

allowed the authors to analyse coal thin features but significantly reduced the scanning time due to 306 

bigger volume of investigation of each scan.  307 

The problem of optimal resolution required for permeability simulation, which provides a good 308 

balance between accuracy and efficiency, was also investigated in the course of this research. It was 309 

found that the resolution that provides the most accurate permeability simulation (1.5% discrepancy 310 

with analytical solution) is 50 cells per fracture, which equates to 0.5-micron resolution. The minimal 311 

resolution for reasonably accurate simulation is 10 cells per fracture or 2.5 micron (18% discrepancy 312 



with analytical solution). In the future, 2.5-micron resolution will be used as a standard to work with 313 

these samples. 314 

In the course of this research, the permeability simulation was also performed on different images 315 

(with different resolution) and compared with analytical solution for Poiseulle flow in a single crack. 316 

Permeability simulation was performed for two reasons: 1) it was required for validation of the results 317 

of image subvoxelling and segmentation, and 2) the results obtained on mm-scale will further be used 318 

to upscale permeability to cm-scale. Numerical simulation demonstrated that the permeability 319 

simulated on 2.5-micron scanned images is in accordance with the permeability obtained for 2.5-320 

micron subvoxelled images (125-205mD and 75-125mD correspondingly), while 10-micron scanned 321 

images gave the permeability in the range 2400-3000mD. Considering that the analytical solution for 322 

an average fracture width gives permeability 82.5mD, it was concluded that simulation for 10-micron 323 

scans greatly overestimated permeability. The latter supports the observation that the width of cleats 324 

determined from 10-micron scanned images was also overestimated compared to the one obtained 325 

from SEM data. However, the permeability obtained from the simulation is greater than the expected 326 

from the analysis of coal samples from the studied coal basin. This was probably due to the scale 327 

effect, i.e. to the fact that only a limited volume of coal was used for simulation. Moreover, this volume 328 

contained a couple of fractures with considerable width, which increased the porosity of the sample 329 

up to 4%. Analysis of the whole sample shows that the cleat porosity of the sample was lower (about 330 

1.8%). Laboratory measurements of permeability of studied coal samples are in progress at the 331 

moment but available data from the studied basin show that coal permeability is in the range 0.01-332 

0.37mD (Li et al., 2016). 333 

The research described in this paper was performed at mm-scale and the problem of upscaling 334 

permeability data to get permeability for the whole sample, as well as the validation of upscaling, is 335 

not discussed in this paper. One possible way of addressing this challenge is to identify the key features 336 

from rock images, e.g., self-similar behaviour (Wu, et al., 2019), which control the flow behaviour at 337 

different scale and then apply the feature based approach (Singh and Cai, 2018a; 2018b) to estimate 338 

the permeability at different scale. Finally, it must be noted that the research described in this paper 339 

considered only cleat porosity and permeability. Pore matrix porosity will be investigated at the next 340 

stage of the research. 341 

Acknowledgment 342 

This paper utilised opportunistic coal samples and characterisation data as a part of a study into 343 

multiphase flow in coal for Southern Qinshui coal basin. The University of Aberdeen School of 344 



Engineering and School of Geosciences are thanked for their support. The authors also thank John Still 345 

from The University of Aberdeen School of Geosciences for his support regarding SEM data analysis 346 

and Amir Golparvar from The University of Aberdeen School of Engineering for his help with Matlab. 347 

  348 

References 349 

1. Arns C.H., Bauget F., Limaye A., Sakellariou A., Senden T.J., Sheppard A.P., Sok R.M., Pinczewski 350 

W.V., Bakke S., Berge L.I., Oren P.E., Knackstedt M.A., 2005. Pore-scale characterization of 351 

carbonates using X-ray microtomography. SPE Journal, 10 (4), 475–84. 352 

2. Arns J.Y., Sheppard A.P., Arns C.H., Knackstedt M.A., Yelkhovsky A., Pinczewski W.V., 2007. Pore-353 

level validation of representative pore networks obtained from micro-CT images. In: Proceedings 354 

of the annual symposium of the society of core analysis, SCA 2007-A26, Calgary, Canada. 355 

3. Blunt M.J., Bijeljic B., Dong H., Gharbi O., Iglauer S., Mostaghimi P., Paluszny A., Penland C., 2013. 356 

Pore-scale imaging and modelling. Advanced in Water Resources, 51, 197-216. 357 

4. Cai, Y., Liu, D., Yao, Y., Li, J., Qiu, Y., 2011. Geological controls on prediction of coalbed methane of 358 

No. 3 coal seam in Southern Qinshui Basin, North China. International Journal of Coal Geology, 88, 359 

101 – 112. 360 

5. Carlson, W.D., Rowe, T., Ketcham, R.A., Colbert, M.W., 2003. Applications of high resolution X-ray 361 

computed tomography in petrology, meteoritics and paleontology. In: Mees, F., Swennen, R., Van 362 

Geet, M., Jacobs, P. (Eds.), Applications of X-ray Computed Tomography in the Geosciences: 363 

Geological Society, London, Special Publication, 215, 7–22. 364 

6. Clarkson, C.R., Bustin, R.M., 1996. Variation in micropore capacity and size distribution with 365 

composition in bituminous coal of the Western Canadian Sedimentary Basin: implications for 366 

coalbed methane potential. Fuel, 75, 1483–1498. 367 

7. Ersoy, O., Şen, E., Aydar, E., Tatar, İ., Çelik, H.H., 2010. Surface area and volume measurements of 368 

volcanic ash particles using micro-computed tomography (micro-CT): a comparison with scanning 369 

electron microscope (SEM) stereoscopic imaging and geometric considerations. Journal of 370 

Volcanology and Geothermal Research, 196, 281–286. 371 

8. Flannery, B.P., Deckman H.W., Roberge W.G., D’Amico K.L., 1987. Three-dimensional X-ray 372 

microtomography. Science, 237, 1439–1444. 373 

9. Giffin, S., Littke, R., Klaver, J., Urai, J.L., 2013. Application of BIB-SEM technology to characterise 374 

macropore morphology in coal. International Journal of Coal Geology, 114, 85-95. 375 

10.  Golab, A., Knackstedt, M.A., Averdunk, H., Senden, T., Butcher, A.R., Jaime, P., 2010. 3D porosity 376 

and mineralogy characterization in tight gas sandstones. The Leading Edge, 936–942 (December). 377 



11.  Golab A., Ward C.R., Permana A.,Lennox P., Botha P., 2013. High-resolution three-dimensional 378 

imaging of coal using microfocus X-ray computed tomography, with special reference to modes of 379 

mineral occurrence. International Journal of Coal Geology, 113, 97-118. 380 

12.  Hwang S.N., Wehrli F.W, 1999. Estimating voxel volume fractions of trabecular bone on the basis 381 

of magnetic resonance images acquired in vivo. International Journal of Imaging Systems and 382 

Technology, 10, 186–198. 383 

13.  Hwang, S.N., Wehrli, F.W., 2002. Subvoxel processing: a method for reducing partial volume 384 

blurring with application to in vivo MR images of trabecular bone.  385 

14.  Jing, Y., Armstrong, R.T., Ramandi, H.L., Mostaghimi, P., 2016. Coal cleat reconstruction using 386 

micro-computed tomography imaging. Fuel, 181, 286 – 299. 387 

15.  Karachan, C.O., Okandan, E., 2001. Adsorption and gas transport in coal microstructure: 388 

investigation and evaluation by quantitative X-ray CT imaging. Fuel, 80, 509-520. 389 

16.  Kartal, M., Dugdale, L.H., Harrigan, J.J., Siddiq, M., Pokrajac, D., Mulvihill, D.M., 2017.  Three-390 

dimensional in situ observations of compressive damage mechanisms in syntactic foam using X-ray 391 

microcomputed tomography. Journal of Materials Science, 52, 10186-10197. 392 

17.  Ketcham R.A., Carlson W.D., 2001. Acquisition, optimization and interpretation of X-ray computed 393 

tomographic imagery: applications to the geosciences. Computers & Geosciences, 27, 381–400. 394 

18.  Knackstedt, M., Arns, C., Senden, T.J., Gross, K., 2006. Structure and properties of clinical coralline 395 

implants measured via 3D imaging and analysis. Biomaterials, 27 (13), 2776–2786. 396 

19.  Knackstedt, M., Jaime, P., Butcher, A.R., Botha, P.W.S.K., Middleton, J., Sok, R., 2010. Integrating 397 

reservoir characterization: 3D dynamic, petrophysical and geological description of reservoir facies. 398 

In: Proceedings of the SPE Asia Pacific oil and gas conference and exhibition, 18–20 October, 2010, 399 

Brisbane, Queensland, Australia, SPE 133981. 400 

20.  Knackstedt, M., Carnerup, A., Golab, A., Sok, R., Young, B., & Riepe, L., 2013. Petrophysical 401 

Characterization of Unconventional Reservoir Core at Multiple Scales. Society of Petrophysicists 402 

and Well-Log Analysts, 54 (03). 403 

21.  Lemmens H.J., Butcher A.R., Botha P.W.S.K., 2010. FIB/SEM and automated mineralogy for core 404 

and cuttings analysis. In: Proceedings of the SPE Russian oil and gas conference and exhibition, 26–405 

28 October, 2010, Moscow, Russia, SPE 136327. 406 

22.  Li, C., Liu, D., Cai, Y., Yao, Y., 2016. Fracture permeability evaluation of a coal reservoir using 407 

geophysical logging: a case study in the Zhengzhuang area, southern Quishui Basin. Energy 408 

Exploration and Exploitation, 34 (3), 378–399. 409 

23.  Long, J., Young, G., Holland, T., Senden, T., Fitzgerald, E., 2006. An exceptional Devonian fish from 410 

Australia sheds light on tetrapod origins. Nature, 444, 199–202. 411 



24.  Mazumder, S., Wolf, K.-H.A.A., Elewaut, K., Ephrain, R., 2006. Application of X-ray computed 412 

tomography for analyzing cleat spacing and cleat aperture in coal samples. International Journal of 413 

Coal Geology, 68, 205–222. 414 

25.  Moore, T.A., 2012. Coalbed methane: a review. International Journal of Coal Geology, 101, 36 – 415 

81. 416 

26.  Mostaghimi, P., Armstrong, R.T., Gerami, A., et al., 2015. Micro-CT imaging and microfluidics for 417 

understanding flow in coal seam reservoirs. Paper presented at the International Symposium of 418 

the Society of Core Analysts, Newfoundland, Canada, 16–21 August. 419 

27.  Novelline, R., 1997. Squire's Fundamentals of Radiology. Harvard University Press, Cambridge, 420 

Massachusetts, 638. 421 

28.  Puri, R., Evanoff, J., Brugler, M., 1991. Measurement of coal cleat porosity and relative 422 

permeability characteristics. Paper presented at the SPE Gas Technology Symposium, Houston, 423 

Texas.  424 

29.  Ramandi H. L., Mostaghimi P., Armstrong R.T., Pinczewski W.V., 2016. Porosity and permeability 425 

characterization of coal: A micro-computed tomography study. International Journal of Coal 426 

Geology, 154-155, 57-68. 427 

30.  Roberts, R., Senden, T.J., Knackstedt, M.A., Lyne, M.B., 2003. Spreading of aqueous liquids in 428 

unsized papers is by film flow. Journal of Pulp and Paper Science, 29, 123–130. 429 

31.  Singh, H. and Cai, J., 2018a. A Feature-Based Stochastic Permeability of Shale: Part 1—Validation 430 

and Two-Phase Permeability in a Utica Shale Sample.  Transport in Porous Media 126 (3), 527–560. 431 

32.  Singh, H. and Cai, J., 2018b. A Feature-Based Stochastic Permeability of Shale: Part 2-Predicting 432 

Field-Scale Permeability. Transport in Porous Media 126 (3), 561-578.  433 

33.  Simons, F.J., Verhelst, F., Swennen, R., 1997. Quantitative characterization of coal be means of 434 

microfocal X-ray computed microtomography (CMT) and colour image analysis (CIA). International 435 

Journal of Coal Geology, 34, 69-88. 436 

34.  Van Geet, M., Swennen, R., 2001. Quantitative 3D-fracture analysis by means of microfocus X-ray 437 

computer tomography (micro-CT): an example from coal. Geophysical research letters, 28 (17), 438 

3333-3336. 439 

35.  Verhelst, F., David, P., Fermont, W., Jegers, L., Vervoort, A., 1996. Correlation of 3D-computerised 440 

tomographic scans and 2D-colour image analysis of Westphalian coal by means of multivariate 441 

statistics. International Journal of Coal Geology, 29, 1-21. 442 

36.  Wang, H., Yao, Y., Liu, D., Pan, Z., Yang, Y., Cai, Y., 2016. Fault-sealing capability and its impact on 443 

coalbed methane distribution in the Zhengzhuang field, southern Quinshui Basin, North China. 444 

Journal of Natural Gac Science and Engineering, 28, 613 – 625. 445 



37.  Wu, H., Zhou, Y., Yao, Y. and Liu, D., Imaged based fractal characterization of micro-pore structure 446 

in coal sample, Fuel 239, 53-62.  447 

38.  Wu K., Van Dijke M.I.J., Couples G.D., Sorbie K.S., Ma J., 2006. 3D stochastic modelling of 448 

heterogeneous porous media – applications to reservoir rocks. Transport Porous Media, 65 (3), 449 

443–67. 450 

39.  Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., Huang, W., 2009. Non-destructive characterization of 451 

coal samples from China using microfocus X-ray computed tomography. International Journal of 452 

Coal Geology, 80, 113-123. 453 

40.  Zezabe, R., Jones, A., Knackstedt, M., Seeman, E., 2005. Femoral neck shape and the spatial 454 

distribution of its mineral mass varies with its size: clinical and biomechanical implications. Bone, 455 

37 (2), 243–252. 456 


	Abstract
	Key words
	1. Introduction
	2. Samples and samples preparation
	3. Methodology
	4. Results
	5. Discussion, conclusion and future challenges
	Acknowledgment
	References

