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Abstract 

Two bottlenecks that have impeded the genetic analysis of complex traits in inbred 

strain crosses and populations derived from them, are the lack of gene level mapping 

resolution and the need for population specific genotyping arrays and haplotype 

reference panels. To address these problems we mapped multiple complex traits at high 

resolution in a highly recombinant commercially-available outbred mouse population, 

using imputed genotypes from 0.15x whole genome sequencing. By simultaneously 

imputing the ancestral haplotype space comprising 5,766,828 single nucleotide 

polymorphisms and the genomes of the mapping population at 359,559 tagging variants, 

we mapped 255 quantitative trait loci representing 156 unique regions in 1,887 mice for 

92 phenotypes. Linkage disequilibrium decays fast enough to provide gene-level 

mapping resolution at about a fifth of loci. Our results implicate Unc13c and Pgc1-alpha 

at loci affecting the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of 

reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T-cell measures and 

Prkca for bone mineral content. Six diverse phenotypes map over the Met gene: muscle 

weight, startle response, serum albumin, calcium, protein and cholesterol levels, 

suggesting this is an important pleiotropic locus.  These findings have implications for 

diverse areas of mammalian biology and demonstrate how GWAS can be extended via 

low-coverage sequencing to species with large highly recombinant outbred populations. 
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Introduction 

Genome-wide association studies (GWAS) have delivered new insights into the biology 

and genetic architecture of complex traits but so far they have found application 

primarily in human genetics1,2 and in plant species where naturally-occurring inbred 

lines exist 3,4 . Two obstacles stand in the way of their routine application in other 

species: access to a mapping population able to deliver gene-level mapping resolution, 

and the deployment of a genotyping technology able to capture at least the majority of 

those sequence variants that contribute to phenotypic variation, in the absence of 

haplotype reference panels of the kind routinely employed in human populations to 

impute sequence variants.    

In this study we exploit the properties of commercially available outbred mice for 

GWAS in the Crl:CFW(SW)-US_P08 stock. Compared to other mouse mapping 

populations, commercial outbred mice are maintained at relatively large effective 

population sizes and are descended from a relatively small number of founders, with 

mean minor allele frequencies and linkage disequilibrium (LD) resembling to those 

found in genetically isolated human populations 5. While LD extends over a larger range 

than in general human populations, such populations can still deliver gene level 

resolution 5. Furthermore, compared to a human GWAS, comparatively fewer markers 

are needed to tag the genome, thus requiring a lower significance threshold and smaller 

sample sizes than are usual for a human GWAS.  

GWAS methodology typically uses arrays to genotype known Single Nucleotide 

Polymorphisms (SNPs) and hence represent each individual’s genome as a haplotype 

mosaic of a reference panel of more densely typed or sequenced individuals (such as the 

1000 Genomes project 6), to impute genotypes at the majority of segregating sites in a 
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population 7. However, in common with other populations that have not previously been 

subject to GWAS, commercial outbred mice lack accurate catalogs of sequence variants, 

allele frequencies and haplotypes, thus excluding the application of standard GWAS 

approaches.  

We show here how low coverage sequencing overcomes these limitations. We 

apply a method that models each chromosome as a mosaic of unknown ancestral 

haplotypes that are jointly estimated as part of the analysis, exploiting phase information 

in sequence reads to optimize haplotype reconstruction. Using this approach we map the 

genetic basis of multiple phenotypes in almost 2000 mice, in some cases at near single-

gene resolution, thereby providing insights into the biology of a number of bio-medically 

important traits.  

 

Results 

Phenotypes 

For this experiment we chose the Crl:CFW(SW)-US_P08 outbred stock (CFW) from 

Charles River, Portage, USA 5 and subjected 2,049 adult mice to a four-week phenotyping 

pipeline (see Methods and Supplementary Figure 1). The phenotype battery is notable 

for both the depth of information provided (anatomical, biochemical, immunological, 

physiological and behavioral measures) as well as the assessment of phenotypes rarely 

mapped in mice. The latter include assessments of sleep and cardiac electrical function 

(electrocardiography). We provide measures for 200 phenotypes from 18 assays 

(Methods), for each of which data are available on a mean of 1,578 animals (range 905 - 

1,968). We assign each measure to one of the following three heuristic categories: 
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behavior, physiological or tissue; physiological measures include those taken when the 

mice were alive such as body weight and cardiac function, while the tissue measures 

comprise those obtained after dissection such as blood clinical chemistry and 

neurogenesis. Supplementary Table 1 lists the phenotypes reported here, the category to 

which they belong, the means and standard deviations on all animals and also separately 

for each sex. For 63% of the measures males and females are significantly different at 

P<0.05. We tested the effect of all potential covariates on the variance of each measure in 

order to regress them for the genetic analysis. The strongest effect comes from the batch, 

affecting 190 measures with a mean effect of 15%. This is unsurprising as batch is 

confounded with many environmental factors including shipment, time of year or 

experimental day. 

 

Genotypes 

In order to capture all common variants in the CFW mice, we employed a two-stage 

genotyping strategy using low coverage sequencing that makes use of, but does not 

require, prior knowledge of segregating sites. We first generated a list of candidate 

variant sites using GATK 8 and then imputed genotype probabilities at these sites.  

We obtained a mean coverage of 0.15X sequence coverage per animal for 2,073 

mice (range 0.06X to 0.51X). We identified 7,073,398 single-nucleotide polymorphisms 

(SNPs) in the ~370X pile-up of all sequence data that segregated in our sample and were 

either polymorphic in laboratory strains sequenced in the mouse genomes project 

(MGP) (3), or passed GATK’s variant quality score recalibration (VQSR) (Methods). We 

then imputed genotype dosages at these sites using our reference-panel free method, 

STITCH (Methods, and described in Davies et al 2016). After stringent post-imputation 
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quality control we retained 5,766,828 high-quality imputed SNPs for subsequent 

analysis. Accuracy at these sites is very high: the mean SNP-wise correlation (r2) against 

sites polymorphic on a genotyping microarray9 using 44 samples was 0.974 before QC 

and 0.981 after QC. We annotated the high-quality imputed SNPs using the mouse 

reference mm10 assembly and identified 11,931 SNP positions in protein coding 

sequence that lead to amino acid changes in 3,938 individual genes (non-synonymous 

substitutions) and 25,669 that do not (synonymous substitutions). Supplementary Table 

2 lists the variants per chromosomes and Supplementary Table 3 lists the number of 

variants obtained at each stage of the variant calling and imputation process. 

Genetic architecture  

Inspection of the genetic variation segregating in CFW mice revealed several notable 

characteristics. The total of 5.7 million variants in the CFW mice is about 1/3 fewer than 

the number segregating in crosses derived from classical laboratory inbred strains 

(heterogeneous stocks10, 11, Hybrid Mouse Diversity Panel, HMDP 12) but far less than the 

45 million segregating in the recently created Collaborative Cross (CC) and Diversity 

Outbred (DO) populations using wild-derived strains from different subspecies of mice 

11. 

The distribution of variants across the genome was highly non-uniform (Figure 

1A). Chromosome 16 has only 20% of the variants found on chromosome 15, despite 

being almost the same size (Supplementary Table 2). This likely reflects an extreme 

bottleneck in the founding of the CFW, a view supported by the fact that only four 

ancestral haplotypes were required for the imputation procedure to work effectively. On 

chromosome 19, on average, at each SNP 87.1% of samples are represented by only two 

haplotypes.  
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Rates of heterozygosity are low (Figure 1B) with 22% of the genome close to 

fixation (Figures 1A and 1C). Of the 5.7M imputed variants, 97.6% were found in 36 

sequenced inbred strains in the Sanger Mouse Genomes database Release 1505. The 

FVB/NJ strain alone contributes 38% of non-reference CFW alleles (Supplementary 

Table 4) and in combination with the progenitors of the mouse HS45 account for 76%. 

Wild-derived strains (LEWES/EiJ, ZALENDE/EiJ, WSB/EiJ, CAST/EiJ, MOLF/EiJ, 

PWK/PhJ, SPRET/EiJ) only account for about 5% of alternative alleles absent from other 

sequenced strains. 11,13. Both novel and known variants have very similar minor allele 

frequency distributions across the genome (Figures 1C and 1D). Average minor allele 

frequency (MAF) was 0.19, with 18.4% of variants having MAF <0.05. Figure 1E shows 

the decay of linkage disequilibrium with increasing distance (providing an indication of 

the expected mapping resolution obtainable with the CFW mice). Average pairwise r2 

falls to 0.28 at 1Mbp, 0.16 at 2 Mbp, and 0.10 at 3 Mbp. We identified a subset of 359,559 

SNPs, that tag all other SNPs with MAF >0.1% at LD r2>0.98. This subset was used for 

subsequent analyses except where stated otherwise. 

To investigate population structure and unequal relatedness between the 2073 

mice, we estimated identity by descent (IBD) from allele sharing between tagging SNPs 

(Methods); Supplementary Figure 2 plots the proportion of genome with IBD = 1 against 

IBD = 0. For GWAS, we removed 135 animals with higher relatedness than second-

degree relatives, and 4 outliers identified from principal component analysis (PCA) on a 

genetic relatedness matrix (GRM, Methods). The population structure of the remaining 

1934 animals was further assessed by performing another PCA on a GRM from only 

these mice; Supplementary Figure 3 plots the relationship between the first 5 principal 

components and shows no evidence of extensive structure.   
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Genome-wide association 

Genotypes and phenotypes were available for 1887 mice. We performed GWAS by 

testing association between the 359,559 tagging SNPs and all phenotypes. We first 

transformed each phenotype by regression on relevant covariates (see Methods) and 

quantile-normalised the residuals. We used a genetic relationship matrix (GRM) in a 

mixed linear model to control for population structure and genetic relationship. To test 

for association with SNPs on a given chromosome, we used a GRM based on those 

tagging SNPS on the other chromosomes 14,15 to increase power 16. We calculated a 

genome-wide false discovery rate (FDR) separately for each phenotype, using 

permutations of the mixed model-transformed phenotypes to determine empirical trait-

specific genome-wide significance thresholds (Methods).  

At a 5% FDR, we identified 255 QTLs in 92 out of 200 phenotypes (46%), as 

shown in Supplementary Table 5. Quantile-quantile plots for a representative selection 

of phenotypes are given in Supplementary Figure 4. It should be noted that due to the 

large number of SNPs used (in this case not pruned for LD) and the fact that LD extends 

over longer distances than exist in human populations, deviation from the expected 

values extends over a larger range of P-values than is commonly seen in quantile-

quantile plots generated for human association studies.); plots of all QTLs are available 

at http://outbredmice.org).  Statistical power is expected to increase with MAF, and in 

our QTLs the MAF of significantly associated SNPs (range 1.7-50%, median 31%) was 

higher than expected (compared to all 5.7M SNPs) (Mann Whitney U test, P = 1.95e-28): 

133 QTLs (52%) have a MAF>30% and only 11 (4%) below 5% (Figure 2a). Among the 

5.7M imputed SNPs, 25% have MAF>30% and 18% MAF<5% (Figure 1c). 
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 To aid gene identification, we estimated the 95% confidence intervals (CI) of 

every QTL using a method based on the LOD-drop concept17. To do so, around each QTL 

we simulated causal SNPs that matched the QTL’s observed effect size. A local scan of the 

region using the same mixed model but using a simulated phenotype was performed, 

and the location and LogP of the top SNP recorded. From 1,000 simulations, we derive a 

distribution of the drop (∆) in LogP between the most highly associated SNP and the 

causal SNP (∆ is zero when the top and causal SNPs coincide).  Since the width of the 

interval containing ∆ is well-calibrated with respect to true confidence intervals 17, the 

fraction of simulations 𝑓(∆) within ∆ can be used to determine confidence intervals for 

the original phenotype data 17. The 95% CIs ranged from 0.01-7.33Mb with a mean at 

1.50Mb; 43% of QTLs being less than 1Mb in size. On average each QTL covered 19 

protein coding genes (0-205) with a median of 9 genes. Figure 2b shows the distribution 

of the number of genes at a QTL. Mapping results can be visualised at 

http://mus.well.ox.ac.uk/gscandb/ (GScanViewer) 18 and at http://outbredmice.org. 

 

Heritability and variance attributable to QTLs  

SNP-based heritability estimates, h2, based on a GRM computed from the tagging SNPs, 

were greater than 0 (at P<0.05) for 152 of 200 phenotypes, with a mean value of 26.3%, 

(range 9.1-71.1%), as reported in Supplementary Table 1. To assess how much of the 

heritability can be explained by detected QTLs (FDR<5%), we first estimated the effect 

size of each QTL by performing analysis of variance (ANOVA) at the most significantly 

associated SNP then summed the variance explained by all QTLs associated with every 

phenotype. On average, 21.1% of the heritability estimated for each trait with significant 

h2 estimates can be explained in this way (Figure 2c). This indicates that missing 

http://mus.well.ox.ac.uk/gscandb/
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heritability affects the CFW population, although to a lesser degree than most human 

GWAS. 

Traits with higher heritabilities yielded more QTLs than traits with lower 

heritabilities: the mean heritability of those traits for which at least one QTL was 

identified was 30.6%, compared to a mean heritability of 20.6% for those traits for 

which no QTLs were detected, a highly significant difference (t-test P-value = 8.9x10-8). 

Mean heritabilities differed between the three categories of phenotypes: 14.5% for 

behavior, 18.2% for physiological and 24.2% for tissue phenotypes. We also noted the 

same pattern in the median locus effect size of the three categories: 1.37% for 

behavioural QTLs, 1.5% for physiological and 2.8% for tissue QTLs (Figure 2c). 

 

Distribution of QTLs reflects genetic diversity along the genome 

Many of the loci detected overlap, and are associated with, closely related phenotypic 

measures. Examples include the 2 QTLs for HDL and total cholesterol mapping over the 

Apoa2 gene on chromosome 1 19, or the 8 different bone mineral content measures 

mapping over Slc4a2 on chromosome 5 20. To avoid redundancy in our analysis we 

considered that if two overlapping QTLs (where the top SNP of the first QTL lies inside 

the 95% CI of the second QTL) were associated with measures of the same biological 

function they were representing a unique locus. Using this approach we identified a 

reduced set of 156 unique loci, each associated with 1 to 12 measures. We report these 

156 unique QTLs in Supplementary Table 6 with all the measures associated with each 

locus. A “porcupine” plot on Figure 3 shows the superimposed Manhattan plots of all the 

measures where a least one QTL was detected and highlights the 156 unique loci. Some 

regions of the genome are devoid of any QTLs, reflecting the uneven genomic 
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distribution of sequence variants, a prime example being the lack of any QTL detected on 

chromosome 16 (Figure 1A). Figure 3 also highlights the presence of clusters of QTLs, 

notably on chromosomes 6, 11, 17 and X. The chromosome 17 locus overlaps the major 

histocompatibility complex (MHC), a naturally highly polymorphic region in wild 

populations that remains highly variable in the CFW mice. 

 

High-resolution QTLs confirm known genetic associations and identify novel candidate 

genes 

We focused on those QTLs containing small numbers of genes, since these loci provide a 

starting point for functional investigation of the relevant phenotypes. Of the 156 unique 

loci identified in this study, 56 contain three or fewer genes (36%) and 25 contain a 

single gene in the 95% confidence interval (6 QTLs do not overlap any gene).  

Table 1 lists the 25 QTLs containing a single gene. The table categorizes QTLs into 

three classes, according to prior evidence supporting the candidacy of the gene at the 

locus. (i) Phenotypes of knockouts support candidacy of three genes: Met, Fli1, and Grm7. 

The locus on chromosome 6 containing the Met gene contributes to all five muscles 

weight measures (Figure 4a). Met encodes a hepatocyte growth factor receptor and has a 

known function in embryonic development 21,22 and regeneration23 of adult limb skeletal 

muscle. Fli1 modulates B cells development 24 and mice lacking Grm7 are more active 

when placed in a novel environment 25  (ii) The genes at six loci are strongly 

corroborated by prior published evidence. These include the bone morphogenetic 

protein Bmp2 at a locus for wound healing 26; PGC-1α, at a locus for sleep fragmentation, 

is involved in regulating inhibitory neurotransmission in the cerebral cortex associated 

with cortical hyperexcitability 27; a protein kinase (PKCα) that promotes osteoblastic cell 
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proliferation, at a locus for bone mineral content 28,29; the pre B cell leukemia homeobox 

1 (Pbx1) at a locus influencing NK cells population 30 and finally an Interleukin (Il15, Fig 

4d) 31 and the transcription factor Id2 32 at two independent loci affecting several T-cell 

measures.  (iii) The remaining 16 QTLs contain single genes not previously associated 

with the trait, including 5 that concern behaviour. Notably, our mapping results 

implicate Unc13c in the quality of sleep (duration of long bouts of sleep, Fig 4b). UNC13C 

is involved in synaptic transmission 33, but has never previously been associated with 

sleep. However, there is evidence for the differential expression of the human ortholog in 

individuals with poor sleep quality34. Basal home cage activity is associated with Adarb2, 

a brain-specific adenosine deaminase acting on RNA 35,36. Rtkn2, a member of the 

rhotekin family predominantly expressed in lymphoid cells 37, influences intensity of 

reaction to startle (Fig 4d). CNVs for the human orthologue of Rtkn2 have been 

implicated in attention-deficit and hyperactivity disorder 38. Similarly, the QTL for 

hypoxic ventilatory depression maps to the Hcn1 gene encoding a hyperpolarization-

activated cyclic nucleotide-gated cation channel.  

The low-coverage population-based sequencing approach used in this study 

provides a near complete catalogue of the SNPs segregating in our population, most 

importantly identifying SNPs that would have been ignored using microarrays for 

genotyping. We could also test associations at candidate variants responsible for the 

effect. The Met gene on chromosome 6 is associated with muscle phenotypes and our 

sequence data revealed two missense variants: I851M and R968C. The first variant is 

common amongst mouse inbred strains and is not known to alter gene function. The 

second variant, confirmed by Sanger sequencing, is specific to the SWR/J strain 39. The 

human homolog (R988C) has been identified in two small cell lung cancer cell-lines and 
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increases constitutive tyrosine phosphorylation activity in vitro 40. The R968C missense 

variant is highly associated with the five muscle weight phenotypes but the direction of 

the effect of the alternative allele is positive in extensor digitorum longus (EDL) and 

gastrocnemius and negative in the others. This difference reflects differences in the 

muscle fiber composition (soleus is dominated by type 1 and 2A fibers, EDL is enriched 

in 2X and 2B fibers 41) suggesting that R968C affects these fibers differently or shifts the 

composition in all muscles. 

 

Discussion 

Genome-wide association mapping for complex traits has been used extensively in 

human populations but less commonly in outbred populations of other organisms. We 

have shown here that mapping using commercially available outbred mice can identify 

individual genes involved in complex traits, some of which cannot easily be assayed in 

human subjects. Our results raise issues about the nature of mouse resources for 

mapping complex traits, and about the biological insights that can thereby be attained.  

Several resources have been developed to provide GWAS tools to rodent genetics. 

These resources fall into two broad categories: (i) genetic reference populations, 

consisting of pre-existing inbred strains (Hybrid Mouse Diversity Panel, HMDP 12) or 

recombinant inbred strains (BxD42 and Collaborative Cross43), (ii) populations 

descended after multiple generations of pseudo-random breeding from inbred strains 

(diversity outcross (DO) mice 44 and heterogeneous stocks (HS)45).  Each resource differs 

in its utility for GWAS, and no single population is ideal 1. 

 Commercially available outbred mice are an alternative resource with a number 

of advantages, and the CFW stock has already been used to map skull shape QTLs 46. 
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Compared to HMDP and HS animals, there was minimal evidence for population 

structure, and standard GWAS methods developed for human populations can be 

applied. LD decays fast enough to provide gene-level mapping resolution at about a fifth 

of loci, and although the resolution is still lower than in human populations, it is better 

than other mouse resources. The size of QTLs varied considerably, with the largest ones 

extending over several megabases, but half contained less than 10 genes, providing a 

relatively small list to investigate the biology at these sites.   

Compared to other rodent mapping resources, our results also indicate that the 

CFW population delivers fewer loci for fewer phenotypes. We mapped loci for 92 out of 

200 traits included in our phenotyping pipeline, yielding a mean number of 1.3 QTLs per 

trait, in 1,887 mice. One possible explanation for the low yield of QTLs is that the amount 

of genetic variation present in the CFW stock is relatively limited. Indeed, almost a 

quarter of the CFW genome is virtually devoid of variants (including almost all of 

chromosome 16). For comparison, the 5.7M variants in the CFW is less than the 7.2M 

segregating in the rat heterogeneous stock 10. However, a more important determinant 

for QTL detection in the CFW is likely to be allele frequencies (𝑝), which are on average 

lower in the CFW than in the HS. Since the variance explained by a QTL is proportional to 

𝑝(1 − 𝑝), effect sizes, and hence power, are systematically smaller in the CFW.  Indeed, 

the median effect size is 1.6%, which, while dwarfing the effects found to underlie human 

quantitative traits, is still less than half that found in the rat HS (median estimate 5%) 10. 

Supplementary Table 7 summarises the expected power to detect QTLs in the CFW 

population.   

The inclusion of a large number of behavioural measures in our pipeline also 

contributed to the relatively low QTL detection rate. Almost a third of the traits  
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(63/200) were collected from behavioral tests, yet the QTLs mapped with these 

measures accounted for less than 14% of the total.  These phenotypes typically had 

lower heritabilities, with fully one quarter (16) having no significant genetic 

contribution.  It should be noted that these non-significant estimates (as well as those for 

non-behavioural phenotypes) do not necessarily mean the traits are not heritable: as 

shown in Supplementary Table 1, the standard errors on these estimates are large, so 

that no heritability less than 10% can be reliably estimated.  Those loci we did detect had 

lower effect sizes (mean for behavioural QTLs was 1.37, compared to 1.5 for 

physiological and 2.8 for tissue QTLs). 

The heritability of the behavioural measures might also have been affected by the 

fact that mice were repeatedly tested over a 4 weeks period. Most behaviors are 

sensitive to repeated handling and repeated exposure to different types of novel stimuli, 

as will happen during the extensive phenotypic battery deployed here. Habituation to 

these exposures makes it harder to detect alleles that affect baseline differences in 

behavior, especially anxiety-like behaviors for which three different assays were 

conducted over a relatively short time frame. A more focused assessment of a specific 

behavioral phenotype under tightly controlled environmental conditions could have 

yielded higher heritabilities for some traits. 

These observations lead to two conclusions. First, finding more QTLs in the CFW 

will require thousands of mice. Supplementary Table 6 gives the power to detect QTLs in 

the CFW population as a function of effect size and sample size. For a typical QTL 

corresponding to the median effect size (1.6%) and sample size (1,732) in the current 

study, power is about 80% at a genomewide significance level of 10%. Power falls off for 

smaller effects sizes. Thus a 0.5% QTL is detectable at only 6.6% power with 1,732 
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animals; increasing the sample size to 4,000 increases the power to 51%, and with 6,000 

it is 85%. However, “winner’s curse” means that the true effects are likely to be lower 

than reported here, and given that our QTLs explain only 20% of the heritability it is 

reasonable to assume that the majority of loci will have effect sizes less than 1%. Second, 

additional loci can be found using different stocks. Not all commercial outbred mice 

populations are the same, as we previously documented in a survey of 66 stocks in which 

mean heterozygosity varied from 0.5% to 45% and mean minor allele frequencies from 

0.03% to 0.5%5. The use of complementary populations will make additional alleles open 

to discovery.  

Our study is the first to use extremely low coverage sequence to generate 

accurate genotypes without a reference panel. This strategy is generally applicable to 

any population, and any species, for which there is no information about segregating 

variation or haplotypes. It is competitive with arrays in terms of cost, although the 

optimal choice of strategy will depend on the reagents available for the population in 

question. An advantage of sequencing over array-based genotyping is that it does not 

require prior information about which variants are segregating in a population; nor does 

it require a pre-existing catalogue of variants or prior knowledge of the likely founders 

of the population.  

One unexpected finding was that, only 25,000 SNPs in the standard megaMUGA 

mouse genotyping array are polymorphic in the CFW mice; many of the QTLs we 

mapped would likely have been overlooked by genotyping with this array.  The CFW 

mice appear to be descended from four ancestral haplotypes, indicating this population 

was likely bottle-necked to two founding individuals. Our population is effectively bi-
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allelic at most loci, and there was little to be gained by considering haplotype-based tests 

of association (data not shown). 

We have shown here how commercially available outbred mice can deliver novel 

biological insights. We found single genes at 16 loci where no prior evidence existed for 

their involvement (Table 1). Importantly, the loci include those from phenotypes that 

could not easily be assayed in human subjects, such as response to hypoxia and the sleep 

phenotypes. More than 50 QTLs contain documented candidate genes (Supplementary 

Table 5): Slc4a2, which leads to osteopetrosis when disrupted in mice 20, is present at a 

QTL affecting bone mineral content; Apoa2 and Scarb1, both known to affect blood lipid 

homeostasis 19,47 are detected at two distinct QTLs for cholesterol levels; Gdnf, a gene 

required for the neuronal colonization of the pancreas, at a locus for pancreatic amylase 

48. These examples demonstrate that the narrow QTLs detected in the commercially 

available outbred mice can lead to the identification of the genes affecting the measured 

traits, emphasizing the potential of our results as a resource to identify new genes in 

those QTLs without documented candidates. 
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Methods 
 
Study animals and phenotyping 

A total of 2117 outbred mice (Crl:CFW(SW)-US_P08, 1065 males and 1052 females) 

were purchased from Charles River, Portage, USA at 4-7 weeks of age over a period of 2 

years. Animals were selected from the breeding colony as to avoid siblings and half-

siblings. Monthly shipments of approximately 130 mice were delivered, maintained and 

tested at the MRC Harwell in Harwell, Oxfordshire, UK following local regulations. Mice 

of the same age within each shipment were treated as a batch (approximately 30 

animals, range 7 to 36, half males and half females, the total number of batch for the 

entire study is 69) and each animal randomly assigned a testing order. Mice were housed 

in IVC cages (3 per cage) on an ad lib diet for the duration of the study. At 16 weeks of 

age 2049 mice started a 4-weeks phenotyping pipeline in which we collected behavioral 

and physiological data (Suppl. Fig. 1). Mice within a batch performed each test during the 

same day following the assigned testing order. The sequencing of the animals was 

performed after completion of the study so experimenters were blind to the genotype of 

the mice during testing. Power calculations to estimate the sample size for the mapping 

experiment assumed effect sizes were similar to those identified in a previous analysis of 

outbred stocks 5. Every effort was made to minimize suffering by considerate housing 

and husbandry. All phenotyping procedures were examined for potential refinements. 

All animal work was carried out in accordance with UK Home Office regulations. The 

project was reviewed by the ethics committee at MRC-Harwell: Animal Welfare and 

Ethical Review Board, approval license PPL 30/2653. 
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Behavior 

Anxiety was modeled by 3 tests: Five minutes activity in a bright lit round arena (Open 

Field Test), Elevated Plus Maze and latency to eat a novel food after 10 hours food 

restriction (Neophagia). We also measured home cage activity over a 30 minutes period 

using photoactivity system from San Diego Instruments (San Diego, CA). Protocols for 

these tests have been described in 49. Pre-pulse inhibition of startle (Startle PPI) was 

measured and analyzed as previously described, using 3 different pulse and 3 different 

prepulse intensities 50,51. Fear conditioning was performed following the protocol in 52, 

keeping the order of context and cue testing sessions identical for all mice. On the first 

day of the test mice were subjected to a 13 minutes training session during which they 

were placed in a Perspex enclosure with a metal grid floor and received 2 electric foot 

shocks (0.3mA, 0.5sec) preceded by a 30 seconds tone.  In the morning of the second day 

of the test the mice were placed in the same enclosure for 5 minutes and fear associated 

with the context was measured by the amount of freezing. In the afternoon the animals 

were placed in a different enclosure for 5 minutes where they were subjected to two 30 

seconds tones without any paired electric shock. The fear associated to the cue was 

assessed by measuring the freezing behaviour during tones. Freezing behaviour during 

all sessions of the test was scored using a VideoTrack automated system (Viewpoint, 

Champagne Au Mont D'Or, France). Because the distribution of the measures varied 

significantly between the 4 enclosures in which the mice where tested for fear 

conditioning, we quantile normalised the data per enclosure before performing further 

analysis. Depressive-like behavior of mice was assessed with the forced swim test 53. 

Animals were placed for 6 minutes in a 30cm diameter plastic cylinder filed with water 
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at 25°C. Immobility of the mice during the last 4 minutes was scored using VideoTrack 

FST automated system (Viewpoint, Champagne Au Mont D'Or, France). 

Ventilatory responses to acute hypoxia 

Ventilatory responses to acute hypoxia were measured using whole body 

plethysmography. Awake unrestrained mice were placed in individual plethysmographs 

(550 ml volume, Model PLY3211, Buxco, Wilmington, NC USA) to which premixed gases 

were delivered at a rate of 2 L min-1. After a brief (5-min) acclimatisation period, mice 

were exposed to 15 min of 21% O2, balance N2 (pre-normoxia), followed by 5 min of 

10% O2, balance N2 (hypoxia), followed by a final 5-min period of 21% O2 (post-

normoxia). Tidal volume (TV) and respiratory frequency (f) were measured 

continuously, and used to calculate minute ventilation (MV). For each of these three 

parameters, the following indices of the respiratory phenotype were derived: i) Baseline 

(mean value for MV, TV or f during the final 3 min of pre-normoxia); ii) Acute Hypoxic 

Response (AHR, difference between the mean value during first 30 sec of hypoxia and 

the Baseline); iii) Hypoxic Ventilatory Decline (HVD, difference between mean value 

during the first 30 sec of hypoxia and mean value during final 2 min of hypoxia); iv) 

Undershoot (difference between mean value during the first 30 sec of post-normoxia and 

the Baseline); v) Off-Response (difference between mean value during first 30 sec of 

post-normoxia and mean value during final 2 min of hypoxia); vi) Sustained Hypoxia 

Response (SHR, difference between Off-Response and Undershoot); and vii) Normoxic 

Recovery (NR, difference between value during first 30 sec of post-normoxia and final 2 

min of post-normoxia). 

Electrocardiography 
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For surface electrocardiography (ECG), mice were anesthetized using isoflurane 

inhalation (induction: 4.0 volume % in oxygen; maintenance: 1.5-2.5 volume %). Surface 

ECGs were recorded from subcutaneous 23-gauge needle electrodes attached to each 

limb using the Powerlab acquisition system (ADInstruments). ECG traces were signal 

averaged and analysed for heart rate (RR interval), PRmain (interval between start P 

wave and start QRS complex), PRpeak (interval between start P wave and R peak), 

QRSmain (interval between start of QRS complex and S peak), QRSpeak (interval 

between R peak and S peak), QTmain (interval between start of QRS complex and end of 

T wave), and QTpeak (interval between R peak and end of T wave) using the 

LabChart7Pro software (ADInstruments). QTmain and QTpeak intervals were corrected 

for heart rate using the formula: QTc=QT/(RR/100)1/2 (RR in ms). 

Sleep 

At the end of the phenotyping pipeline mice were moved to individual cages to assess 

their baseline sleeping behaviour using a non-invasive EEG-validated piezo-electric sleep 

recording system 54 (MouseRec system by Signal Solutions, LLC, Lexington, KY, USA). 

Sleep was recorded for 72 hours but only the last 48 hours were used for analysis thus 

allowing one day of habituation. Light-dark cycle (12h:12h light:dark) and ambient 

temperature (21°C) during the recordings were the same as in the colony rooms. In each 

of the 1607 mice for which good quality signals could be obtained, 19 sleep phenotypes 

were quantified concerning the amount of sleep, its distribution over the 24h day, and 

the fine structure of sleep (e.g. sleep bout duration and sleep fragmentation). All values 

are reported per 24h and represent the average over the last two 24h recording periods 

starting at light onset.  

Body weight 
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We measured body weight at 17, 18, 19 and 20 weeks of age. The last measure was 

collected immediately before sacrifice after overnight fast. We calculated Body Mass 

Index (BMI) by dividing the body weight at 20 weeks by the square of the body length, 

collected at the same time. We also calculated a “pseudo BMI” dividing the body weight 

at 20 weeks by the square of the length of the tibia. 

At 20 weeks of age mice were sacrificed between 8am and 12pm after overnight food 

restriction and tissues harvested for further measures. We measured body and tail 

length during the procedure. 

Haematology 

Whole blood samples for haematology were collected by cardiac puncture into 200µl 

EDTA coated paediatric tubes. Samples were placed on a rotary mixer for 30 minutes 

before full blood count and differential analyses were performed on board a Siemens 

Advia 2120 haematology analyser.  

Clinical Chemistry 

Blood samples were collected by cardiac puncture into 1ml lithium heparin-coated 

paediatric tubes. Samples were mixed by gentle inversion and centrifuged within 2 hours 

of collection at 5000 X g, for 10 minutes in a refrigerated centrifuge set at 8°C. 200µl of 

plasma was collected from each sample and analysed on board a Beckman Coulter 

AU680 clinical chemistry analyser using reagents and settings as recommended by the 

manufacturer for the following profile of 20 tests: sodium, potassium, chloride, urea, 

creatinine, total calcium, inorganic phosphorous, alkaline phosphatase (ALP), alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), lactate hedydrogenase 
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(LDH), total protein, albumin, total cholesterol, HDL cholesterol, LDL cholesterol, 

glucose, triglycerides, glycerol, free fatty acids, total bilirubin, iron and alpha amylase.  

Platelet serotonin 

A small aliquot of whole blood was immediately snap frozen after collection by cardiac 

puncture into a lithium heparin-coated tube. At the time of measure 10µl of this whole 

blood aliquot was thawed and used for serotonin quantification. Serotonin was extracted 

by adding 390 µl of 10-3 M HCl containing sodium metabisulfite, EDTA and ascorbic acid. 

After 30 sec shaking, samples were centrifuged at 20000g for 20 min at 5°C. The 

supernatants were collected and filtered through a 10 kDa membrane (Nanosep, Pall) by 

centrifugation at 7000g. Then, a 20 µl aliquot was analysed for serotonin by fluorometric 

detection 55. 

Micronucleus 

We measured the formation of micronuclei, markers of genomic stability, in erythrocytes 

by flow cytometry 56. 

Neurogenesis 

Following sacrifice the brain was weighted and then split in two halves by sagittal 

section and the left hemisphere fixed overnight in 4% paraformaldehyde followed by 

dehydration in 30% sucrose solution for 3-5 days. Sections (40 μm) were prepared on a 

freezing microtome and stored in antifreeze solution at −20°C. We measured 

hippocampal neurogenesis by Ki67 and DCX staining 57, counting labelled cells on every 

sixteenth (DCX) or eighth (Ki67) section through the entire rostrocaudal extent of the 

granule cell layer.  
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Wound healing 

We measured healing of hole punctures made to the animal’s ears following the 

approach described in 58. A 2-mm diameter hole was made in the center of each ear 

when the mice started the phenotyping pipeline (16 weeks old) and following sacrifice 5 

weeks later ears were fixed and stored in 4% paraformaldehyde. Both ears were then 

flattened between 2 coverslips, scanned at 600dpi and the image analysed with the 

ImageJ software to measure the area of the hole still open. We excluded ears when the 

hole merged with the edge of the ear and only analysed mice when both ear measures 

were available. 

Adrenal weight 

Following sacrifice adrenals were removed together with the kidneys, fixed and stored in 

4% paraformaldehyde. Adrenals were dissected from the kidneys at a later day and their 

weight measured. Data was analysed only when weight from both adrenals was 

available. 

Immunology 

Following sacrifice, mouse spleens were stored in PBS on ice prior to processing. 

Splenocytes were extracted by mashing the spleen through a 45μm filter using the 

plunger end of a syringe. The cells were then washed extensively with PBS and re-

filtered prior to staining. Erythrocyte contamination in the splenocyte sample was 

minimal. Splenocytes were stained with fixable near-IR dead cell stain (Life 

Technologies), CD3e PE Cy7, CD45 V450, CD44 FITC, CD4 V500 (all BD Bioscience), 

CD49b APC, CD19 PE, CD8a PerCP Cy5.5 (all eBioscience) for 25 minutes in the dark at 
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4°C before being fixed in 2% formaldehyde solution. Data were collected using a 3-laser 

LSRII or MACSQuant flow cytometer and analysed on Flowjo v8.4 (Treestar, OR, USA).  

Muscle weight and tibia length 

Following sacrifice, one hindlimb was removed and transferred to a -70 °C freezer. On 

the day of dissection, the leg was defrosted and two dorsiflexors (tibialis anterior (TA), 

and extensor digitorum longus (EDL)), and three plantar flexors (gastrocnemius 

(“gastroc”), plantaris and soleus) were dissected under a microscope.  Each muscle was 

weighed to a precision of 0.1 mg on a balance (Pioneer, Ohaus).  A panel of muscles was 

examined because muscles of different size, shape, proportion of the oxidative and 

glycolytic fibres, or pattern of activation may be affected by different genetic 

mechanisms.  The soft tissues were removed from the tibia and bone length was 

measured to a precision of 0.01 mm with a digital caliper (Z22855, OWIM GmbH & Co). 

Apparent bone mineral content 

Mineral content of the tibia was measured with the Faxitron MX-20 scanner (Faxitron 

Bioptics LLC, AZ, USA) using methods adapted from (Bassett et al., 2012). Three types of 

materials; 0.8 mm of aluminium, 1.0 mm of polystyrene and 0.8 mm of steel, were 

scanned together with the bones for calibration of the image.  ImageJ (V1.48p, National 

Institutes of Health, USA) was used to quantify the apparent bone mineral content, 

appBMC, and the bone size. The appBMC was characterized by the mean, mode, median, 

minimum, maximum, standard deviation, skewness and kurtosis of the optical density of 

bone image. The bone area, perimeter, Feret’s diameter (longest distance between 2 

points on the perimeter), and width and height of the bounding rectangle characterized 

the bone size. 



 28 

Pre-processing of Phenotype Data 

Analysis of the phenotypic data was performed using the R statistical analysis software 

59. Outliers, defined as observations more than 3 standard deviations from the mean, 

were excluded. The effect of covariates such as sex and batch on quantitative phenotypes 

were assessed with analysis of variance (ANOVA) and those explaining more than 1% of 

the variance at P<0.05 were included in a multiple linear regression model from which 

residual measures were obtained. Batch, defined here as mice of the same age in each 

individual shipment, was treated as a random effect. All tests with covariates and models 

used to generate the residuals for genetic mapping are shown in Supplementary Table 1. 

We then quantile-normalised the residuals to minimize the effects of non-normality.  

 

Sequencing 

Genomic DNA was extracted from tissue samples of 2,028 mice that began the pipeline 

using Nucleon BACC resin (Hologic) following the manufacturer’s instructions. DNA was 

obtained from an additional 45 mice from the same population where no phenotypic 

measures were available producing a total of 2073 samples for analysis. Each individual 

DNA sample was then sonicated and barcoded with an in house unique 8-mer 

oligonucleotide 60. Groups of 95 barcoded DNA samples were pooled and pair end 100bp 

sequenced on 1 lane Hi-Seq generating read groups of ~30 Gb sequence per lane/pool. 

Alignment to mm10 reference and pre-processing of sequence data  

BWA version 0.5.6 61 was used to align the reads from each read group to the mouse 

mm10 reference genome. The BWA alignments were refined with Stampy v1.0.21 62 and 

converted into the bam format by samtools v0.1.18-dev63. Library PCR duplicates were 



 29 

removed with samtools and sequence reads processed following the pipeline described 

11,13. All bam files were processed through the Indel Realignment and Base Quality Score 

Recalibration steps of the Genome Analysis Toolkit (GATK) 8 recommended Best 

Practices 64. All pre-processing used GATK v2.4-9-g532efad. The option –rf BadCigar was 

applied to filter out reads that a) have hard/soft clips in the middle of the CIGAR string, 

b) start or end in deletions, c) fully hard/soft clipped, d) have consecutive INDELs in 

them. The option –rf BadMate was applied to filter out reads whose mate maps to a 

different contig. Previously discovered INDELs from all mouse strains in the Mouse 

Genome Project (MGP) 11,65 were used as intervals for Indel Realignment in addition to 

those discovered in the 2073 mice, and SNPs from the Mus musculus domesticus strains 

in MGP were used as known sites masked for Base Quality Score Recalibration.  

Variant calling from low coverage sequencing data  

Variant calling was then performed using all 2073 bam files with GATK’s Unifed 

Genotyper with thresholds -stand_call_conf 30 and -stand_emit_conf 30, as well as 

options for building variant quality recalibration tables: -A QualByDepth -A 

HaplotypeScore -A BaseQualityRankSumTest -A ReadPosRankSumTest -A 

MappingQualityRankSumTest -A RMSMappingQuality -A DepthOfCoverage -A 

FisherStrand -A HardyWeinberg -A HomopolymerRun.  

Raw vcf files from variant calling step for all chromosomes except chromosome Y were 

pooled together for variant quality score recalibration (VQSR) using GATK’s 

VariantRecalibrator under SNP mode. Training, known and true sets for building the 

positive model are the SNPs which segregate among the classical laboratory strains of 

the Mouse Genomes Project 11 (2011 release REL-1211) on all chromosomes except 

chromosome Y. Transversion ratios (TsTv) and recalibration tables were generated at 14 
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sensitivities (100.0, 99.9, 99.0, 97.0, 95.0, 90.0, 85.0, 80.0, 75.0, 70.0, 65.0, 60.0, 55.0, 

50.0) to training sets for runs of VQSR utilizing different sets of annotations. A final set of 

annotations for VQSR and sensitivities to known sites were chosen to maximize TsTv at 

both known and novel sites to reduce the rate of false positive calls. Sensitivity of 97% 

for known sites was selected for a total of 8,597,879 SNPs (6,430,809 known and 

2,177,070 novel, TsTv of 2.13 at known sites and 1.56 at novel sites). We then further 

removed sites that were fixed alternative allele variants (hence non-polymorphic in our 

study) or were multi-allelic, leaving 7,073,398 (5,701,865 known, 1,371,533 novel, TsTv 

of 2.13 at known sites and 1.56 at novel sites) biallelic SNPs. The annotations used for 

VQSR were HaplotypeScore, BaseQualityRankSumTest,  ReadPosRankSumTest, 

MappingQualityRankSumTest, RMSMappingQuality, DepthOfCoverage, FisherStrand, 

HardyWeinberg, HomopolymerRun.  

We used the 7M biallelic SNPs in the mice cohort for imputation, using the 

method described below. To ensure quality of the imputed of SNPs used for downstream 

genetic analysis, we first extracted those SNPs imputed with high certainty using 

IMPUTE2-style INFO scores. We observed from inspecting allele distributions that an 

INFO score greater than 0.4 indicated markers where the three genotype classes were 

clearly separable. Thus we included only sites that met this criterion. We also discarded 

sites where more than 10% of mice had maximum genotype probability smaller than 0.9, 

and on autosomal chromosomes we discarded sites where the P-value for violation of 

Hardy Weinberg equilibrium was smaller than 10-6.  This resulted in a final set of 5.76M 

SNPs that we used for genetic mapping. Lastly, we used the most current release of the 

Sanger mouse genomes database (2016, REL-1505, comprising 36 genomes, almost 

twice the original number) to refine the set of novel SNPs. The number of novel sites 
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among the 5.76M dropped from 799,133 (13.8%) to 152,671 (2.6%) (Supplemental 

Table S3). However, the TsTv ratios for the novel SNPs remained little changed, at 1.74 

and 1.73 respectively. 

  

Imputation 

We developed a novel imputation algorithm, STITCH, described in a separate publication 

(Davies et al). This employed a hidden Markov model (HMM) that extended the 

population genetic methods of Li and Stephens66, and more specifically the fastPHASE 

algorithm of Scheet and Stephens 67. We assume that the CFW population was founded 

with K unknown ancestral haplotypes and that the chromosomes of each sequenced 

CFW mice are mosaics of the founder haplotypes. After some experimentation with 

different values of K we found that K=4 was optimal (ie the population was modeled as 

being founded from two individuals). 

Simulating under the model (hidden ancestral states and sequencing reads) consists of: 

(i) choosing initial state probabilities (𝜋𝑘) from one of the k haplotypes (ii) choosing 

where to recombine between ancestral haplotypes assuming T=100 of generations since 

the population’s founding and a genetic distance between SNPs 𝑡 and 𝑡 + 1 (𝜎𝑡), (iii) 

choosing the ancestry within each segment with respect to the frequencies of each 

founder haplotype at that location (𝛼𝑡,𝑘), and (iv) sampling read locations, base qualities, 

underlying unobserved bases and observed sequenced bases, based on the relative 

probability that ancestral haplotype k emits a reference or ancestral base at SNP 𝑡 (𝜃𝑡,𝑘). 

Together, these represent the parameters of the model 𝜆 = (𝜋, 𝜎, 𝛼, 𝜃).  
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To generate the probabilistic genotype of an individual CFW outbred mouse, we first 

calculate the probability of observing a given sequencing read given membership in 

ancestral haplotype k, as follows. We first removed SNPs with low base quality (<17) and 

SNPs in reads with low mapping quality (<17). For an individual read 𝑅𝑟 indexed by r, let 

𝐽𝑟 be the number of SNPs in the read and 𝑃(𝑠𝑟,𝑗|𝑔𝑖 = 𝑖) = 𝜙𝑟,𝑗
𝑖  the base-quality scaled 

emission probability of sequencing read 𝑠𝑟,𝑗  given true underlying genotype i. Let SNP 𝑗 

in read 𝑅𝑟 correspond to SNP 𝑢𝑟,𝑗. We assume the probability of a recombination within 

a read is low, so we assign each read as having been emitted from a central SNP 𝑡 = 𝑐𝑟 . 

Therefore, the probability of read 𝑅𝑟 given it came from ancestral haplotype 𝑘 is 

𝑃(𝑅𝑟|𝑞𝑡 = 𝑘) =  ∏ (𝜃𝑢𝑟,𝑗,𝑘𝜙𝑟,𝑗
1 + (1 − 𝜃𝑢𝑟,𝑗,𝑘) 𝜙𝑟,𝑗

0 ) 

𝐽𝑟

𝑗=1

 

and the probability of observing all reads at SNP 𝑡 in a diploid sample given diploid 

hidden state at SNP t of 𝑞𝑡 = (𝑘1, 𝑘2) is  

𝑃(𝑂𝑡|𝑞𝑡 = (𝑘1, 𝑘2)) =  ∏ (
1

2
𝑃(𝑅𝑟|𝑞𝑡 = 𝑘1) + 

1

2
𝑃(𝑅𝑟|𝑞𝑡 = 𝑘2)) 

 

𝑟:𝑐𝑟=𝑡

 

The full chromosome diploid probability is then calculated using the initial, 

recombination and transition probabilities in the normal manner. 

We ran the method for 40 Expectation-Maximisation (EM) iterations, where in each 

iteration, during the expectation step, state probabilities are calculated for each mouse 

using the current parameters of the model, while in the maximization step, new initial, 

transition, recombination and emission parameters are estimated based on state 

probabilities. Upon completion, haplotype and genotype probabilities, as well as dosages, 
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are calculated. For example, the dosage of the number of Alt alleles is 1* P(G = (Ref,Alt) | 

O, λ) + 2* P(G=(Alt,Alt) | O, λ) for a given mouse and SNP site. 

Selection of tagging SNPs 

We then identified a subset of 359,559 (353,697 autosomal) tagging SNPs with MAF > 

0.1% and LD r2< 0.98. Genotypes at these sites were called based on maximum genotype 

probability from imputation; genotypes were only called based on maximum genotype 

probabilities of higher than 0.9, mice with maximum genotype probability of smaller 

than 0.9 at a particular site would have a missing genotype at the site. 

Sample selection based on estimation of Identity by Descent (IBD) between samples  

Pairwise Identity by Descent (IBD) was estimated by calculation of pairwise Identity by 

State (IBS) using PLINK (v1.07) at the tagging SNPs located on the autosomal 

chromosomes. Mice were excluded from further analysis if they had estimated PIHAT of 

higher than 0.5 with at least one other mice, or percentage IBS=1 of higher than 0.75 

with at least one other mice, or percentage of IBS=0 of smaller than 0.25 with at least one 

other mice. 135 mice were excluded by the above criteria. 

Sample Selection based on Principal Component Analysis (PCA)  

Linkage Disequilibrium Adjusted Kinship (LDAK, version 5.9) 68 was used to estimate 

local linkage disequilibrium (LD) by calculation of local pairwise correlations between 

SNPs and generating weightings of each SNP in the calculation of a genetic relatedness 

matrix (GRM) adjusted for local LD. The GRM was generated using hard-called genotypes 

at the tagging SNPs of MAF > 5% from all autosomes. Principal component analysis 

(PCA) was performed on the GRM to derive the top 20 principal components (PCs). PC2 
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separates out four mice from the rest; these four mice were excluded from further 

analysis. 

Estimation of whole-genome SNP-based heritability  

LDAK (version 5.9) was used to generate a new GRM using hard-called genoytpes of MAF 

> 5% at the same tagging SNPs in mice remaining in the analysis. Restricted maximum 

likelihood (REML) was used to estimate h2 of each of the 200 phenotypes measured.  

 

QTL mapping 

We mapped quantitative trait loci (QTLs) at the tagging SNPs using purpose-written 

software in R. For each phenotype 𝑘, we used the quantile-normalised residuals 𝒚𝒌 for 

QTL mapping and heritability analysis. Although we found little evidence of unequal 

degrees of relatedness between the CFW mice, as a precaution we used mixed models to 

control for cryptic relatedness and to avoid false positive QTL calls. We first used the 

imputed dosages of the tagging SNPs on the autosomal chromosomes to compute 

genome wide kinship matrices (K). Thus, if 𝑎𝑖𝑝 is the imputed reference allele dosage of 

SNP 𝑝 in individual 𝑖 then the genetic relationship 𝐾𝑖𝑗 between individuals 𝑖, 𝑗 is defined 

to be the Pearson correlation coefficient of the vectors 𝑎𝑖𝑝, 𝑎𝑗𝑝 across all autosomal 

tagging SNPs 𝑝 . The 𝑖, 𝑗 ‘th element of the population-wide genetic relationship matrix 𝐾 

is 𝐾𝑖𝑗. We also computed leave-one-out kinship matrices 𝐾𝑐 for each chromosome 𝑐, 

using all tagging SNPs not on chromosome 𝑐.  

We modified the standard mixed model formulation for mapping QTLs by computing 

separate mixed models for each chromosome, in order to ameliorate the reduction in 
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statistical significance of a locus caused by the same information being present in the 

kinship matrix.  To test association between the phenotype 𝑘 and tagging SNP 𝑝 resident 

on chromosome 𝑐, we estimated the phenotypic covariance matrix 𝑉𝑘𝑐 = 𝜎𝑔𝑘𝑐
2 𝐾𝑐 + 𝜎𝑒𝑘𝑐

2 𝐼 

where the genetic and environmental variance components 𝜎𝑔𝑘𝑐
2 , 𝜎𝑒𝑘𝑐

2  are estimated as 

above, and factorized it into its square root using the eigen-decomposition  

𝑉𝑘𝑐 = 𝐸𝑘𝑐
′ Λ𝑘𝑐𝐸𝑘𝑐 = (𝐸𝑘𝑐

′ Λ𝑘𝑐
1 2⁄

𝐸𝑘𝑐)2 = 𝐴𝑘𝑐
2  

where 𝐸𝑘𝑐 is the orthogonal matrix of eigenvectors and Λ𝑘𝑐 the diagonal matrix of 

eigenvalues of  𝑉𝑘𝑐. Then we fitted the transformed mixed model 

𝒛𝒌𝒄 = 𝐴𝑘𝑐
−1𝒚𝒌 =  𝜇 + 𝛼(𝐴𝑘𝑐

−1𝒂𝒑) + 𝒆  

where 𝜇, 𝛼 are parameters to be estimated, and the error vector 𝒆 is uncorrelated so the 

model can be fit efficiently by computing the correlation coefficient of 𝒛𝒌𝒄 , 𝐴𝑘𝑐
−1𝒂𝒑.  

Nominal statistical significance at a locus was measured as the logP (the negative log10 of 

the P-value of the ANOVA comparing the fit of the allele model to the null model). We 

defined a candidate QTL as any locus such that the logP was at a local maximum 

compared to the tests at neighbouring loci, and no other locus within 3Mb had a larger 

logP.  

We estimated separate genome-wide thresholds for each phenotype, aiming to control 

the per-phenotype false discovery rate (FDR). We made 𝑄 = 100 permutations of each 

transformed phenotype vector 𝒛𝒌𝒄, keeping the transformed allele dosages fixed, and 

refitted the model. This is efficient because most of the computational effort in fitting a 

mixed model is reusable when fitting the permuted phenotypes. We found candidate 
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QTLs in the permuted data in the same way and estimated the per-phenotype FDR of a 

QTL as  

𝐹𝐷𝑅𝑘(𝑥) =
𝑃𝑘(𝑥)

𝑄𝑁𝑘(𝑥)
  

where 𝑁𝑘(𝑥), 𝑃𝑘(𝑥) are the numbers of QTLs with logP ≥ 𝑥 observed for phenotype 𝑘 in 

the unpermuted and permuted data respectively, and 𝑄 = 100 is the number of 

permutations. 

Fine mapping 

Once a QTL had been mapped using the tagging SNPs and exceeded the FDR threshold, 

association was re-calculated with all imputed SNPs (from the 5.7M set) in a 20Mb 

window around the peak using the same mixed model.  

Confidence Interval Estimation 

Confidence intervals were estimated by simulation. First, at each QTL, a residual 

phenotype was constructed by removing the effect of the top SNP at the QTL from the 

phenotype vector used in the QTL mapping above. This ablated the QTL whilst 

maintaining genetic contributions from elsewhere in the genome. Next, 1000 SNPs were 

selected at random, subject to the constraint that they were within 2.5Mb of the top SNP 

and were polymorphic in the subset of individuals phenotyped for the trait (where the 

95% interval estimate was 2.0 Mb or greater, we repeated the analysis using SNPs up to 

10Mb from the top SNP). A causal variant was simulated at the SNP, with effect size 

matching that of the top SNP, taking account of the allele frequency, and its trait value 

added to the residual phenotype. A local scan of the region using the same mixed model 

but the simulated phenotype was performed and the location and logP of the top SNP 
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recorded. Across the 1000 simulations, we estimated the distribution of the drop ∆ in 

logP between the simulated top SNP and the simulated causal SNP (this was zero when 

the top and causal SNPs coincided). We used the fraction of simulations 𝑓(∆) within ∆ to 

determine confidence intervals for the original phenotype data. Thus we identified the 

range of SNPs within 2.5Mb of the top SNP and with a logP drop less than ∆ to define the 

100𝑓(∆)% confidence interval for the QTL. We did this using both the tagging SNPs and 

the fine-mapping SNPs.  

Power Calculation 

Since we applied an FDR approach to call QTLs we did not require a logP threshold that 

would be required in order to determine power. However, in order to estimate power 

and the effects of sample size and effect size, we determined approximate genome-wide 

thresholds based on permutations of the mixed-model transformed phenotypes 𝑧 =

𝐴−1𝑦 keeping the genotypes fixed in order to preserve LD structure. For each of the 200 

phenotypes, we performed 100 permutations and computed the genome-wide maximum 

logP across the 359,559 tagging SNPs in order to define genome-wide thresholds 𝑇(𝑝) at 

𝑝 = 0.5, 0.1, 0.5 levels of significance (e.g. the threshold 𝑇(𝑝) is such that in a fraction 𝑝 

of simulations the genomewide maximum logP exceeds 𝑇(𝑝). Thresholds vary slightly 

between phenotypes, so we used the thresholds obtained by pooling all 20,000 

simulations to estimate power for sample sizes 𝑁 =  1000, 1732, 2000, 4000  and 

apparent effect sizes 𝑣 =  0.01, 0.016, 0.02. (𝑁 = 1732 and 𝑣 = 0.016 are the median 

sample size and effect size in the current study). Power 𝜋(𝑁, 𝑣, 𝑇) to detect a QTL with 

effect size 𝑣 and sample size 𝑁 at genome-wide logP threshold 𝑇, was computed as 

 𝜋(𝑁, 𝑣, 𝑇) = Pr(𝑋 > 𝑤(𝑇)| 𝑋 ~ 𝜒1,𝑁𝑣
2 )  where 𝜒1,𝑁𝑣

2  is the noncentral chi-square 

distribution on 1df with noncentrality parameter 𝑁𝑣, and  𝑤(𝑇) is the quantile of a 
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standard chi-squared distribution corresponding to logP 𝑇, ie  Pr(𝑋 > 𝑤(𝑇)| 𝑋 ~ 𝜒1,0
2 ) =

 10−𝑇. 

Data availability 

Results from this project and the data used for analysis are maintained in an open access 

database, available at http://outbredmice.org. Sequencing reads are obtainable from the 

European Nucleotide Archive: http://www.ebi.ac.uk/ena/data/view/ERP001040. 

Software availability 

Custom R code for QTL mapping, written specifically for this project, is available from 

Richard Mott (r.mott@ucl.ac.uk). STITCH is available from Robert Davies 

(robertwilliamdavies@gmail.com) 

  

http://outbredmice.org/
http://www.ebi.ac.uk/ena/data/view/ERP001040
mailto:r.mott@ucl.ac.uk
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Tables 

Table 1. QTLs mapping to a single gene 

Phenotype Chr. 
Position 
(Mb) -logP Gene 

Refere
nces 

Knock-out mouse recapitulates the phenotype 
Weight of soleus muscle (g) 6 17.5 16.2 Met  21-23 
Total distance travelled in Elevated Plus 
Maze (cm) 6 110.2 5.6 Grm7  

25 

CD45+/CD3-/CD19+ cells (%) 9 32.6 5.8 Fli1 24 
Association supported by literature 
CD45+/CD3-/DX5+ cells (%) 1 168.2 4.7 Pbx1 30 
Wound healing 2 134.2 5.5 Bmp2 26 
Number of long (>1min) sleep episodes 5 51.8 6.8 Ppargc1a 27 
Ratio of CD3+/CD4+ to CD3+/CD8+ cells 8 82.4 8.7 Il15 31 
Bone mineral content 11 108.2 4.6 Prkca 28,29 
CD3+/CD8+ cells (%) 12 25.5 5.4 Id2 32 
No previous evidence 
Length of tibia (mm) 5 51.7 4.5 Ppargc1a  
Startle pulse reactivity 6 17.5 6.7 Met  
Calcium (mmol/l) 6 17.5 8.3 Met  
Total Cholesterol (mmol/l) 6 17.5 6.1 Met  
Total Protein (g/l) 6 17.5 27.7 Met  
CD45+/CD3-/CD19+ cells (%) 7 72.2 6.2 Mctp2  
Number of long (>1min) sleep episodes  9 73.8 5.5 Unc13c  
Startle pulse reactivity 10 68.0 8.0 Rtkn2  
Weight of tibialis anterior muscle (g) 11 17.6 6.3 Etaa1  
Length of tibia (mm) 12 83.6 7.1 Zfyve1  
Basal activity 13 7.3 10.6 Adarb2  
Respiratory rate during Hypoxic 
Ventilatory Decline 13 118.0 5.9 Hcn1 

 

Total distance travelled in Elevated Plus 
Maze (cm) 14 82.1 6.2 Pcdh17 

 

Measure of the size of tibia 15 26.6 5.3 Fbxl7  
Percentage of Eosinophils (%) 17 70.4 5.2 Dlgap1  
Percentage of Eosinophils (%) X 155.6 6.0 Ptchd1  
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Figure Legends 
 
Figure 1 

Sequence diversity of the CFW population. (a) Distribution of heterozygosity in 100kbp 

windows genome-wide. (b) Histogram of genome-wide heterozygosity. (c) Example of 

novel and total SNP density for a region of chromosome 19. Results are representative of 

those seen genome-wide. (d) Minor allele frequency (MAF) density for population of 

wild Indian (n=10, 44.9 M whole genome sequencing SNPs), CFW mice (n=2,073, 5.7M 

imputed SNPs) and HS mice (n=1,904, 11K SNPs from a genotyping array). Known CFW 

variation refers to those variants also segregating among 14 sequenced classical inbred 

strains. (e) The extent of linkage disequilibrium in CFW and HS mice. Values are mean r2 

between all pairs of SNPs binned by distance to the kbp.  

 

Figure 2  

Properties of QTLs. Frequency distribution of (a) the size and (b) the number of genes 

present in the 95% confidence intervals (CI) in 255 QTLs, (c) The sum of variance 

explained by the QTLs plotted against heritability in 92 measures where heritability 

could be estimated and at least one QTL was detected. Colour of dots indicates the type 

of measure: behaviour, physiological (body weight, respiratory, electrocardiography) or 

tissue (any measure obtained after dissection) 
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Figure 3 

Summary Manhattan plot. Genome-wide representation of all unique QTLs (n=156, 

FDR<5%) identified in this study. Light and dark grey dots show association from the 92 

measures where at least one QTL was detected at the tagging SNPs positions 

(n=359,559). Most significant SNPs at each QTL are marked with a colour dot, depending 

on the type of measure. Y-axis shows –log10(P) of the imputed allele dosages with tested 

measures and is truncated at –log10(P)=32. The position of the 2 strongest QTLs with –

log10(P) values of 133 (chr4) and 76 (chr17) is marked by triangles. 

 

Figure 4  

Single-gene resolution mapping at 4 loci using the entire set of SNPs (7.1 M). (a) Weight 

of soleus muscle on chromosome 6 (n=1832), (b) Measure of the number of long sleep 

episodes on chromosome 9 (n=1577), (c) Ratio of CD3+/CD4+ to CD3+/CD8+ cells on 

chromosome 8 (n=1324) and (d) Intensity of reaction to startle on chromosome 10 

(n=1740). The plots were drawn using LocusZoom 69. Strongest associated SNP is 

marked with a purple diamond, the other SNPs that passed post-imputation quality 

control (IMPUTE2-style INFO scores > 0.4 and HWE r2>1e-6,) are coloured following LD 

r2 with strongest SNP. The grey dots represent SNPs that failed post-imputation QC and 

therefore were not used for the analysis. 


