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This study argues that severalmetrics are necessary to build up a picture of yield gain and nitrogen losses for rye-
grass sheep pastures. Metrics of resource use efficiency, nitrous oxide emission factor, leached and emitted nitro-
gen per unit product are used to encompass yield gain and losses relating to nitrogen. These metrics are
calculated from field system simulations using the DAYCENT model, validated from field sensor measurements
and observations relating to crop yield, fertilizer applied, ammonium in soil and nitrate in soil and water, nitrous
oxide and soil moisture. Three ryegrass pastures with traditional management for sheep grazing and silage are
studied. As expected, themetrics between long-term ryegrass swards in this study are not very dissimilar. Slight
differences between simulations of different field systems likely result from varying soil bulk density, as revealed
by a sensitivity analysis applied to DAYCENT. The field with the highest resource use efficiency was also the field
with the lowest leached inorganic nitrogen per unit product, and vice versa. Field system simulation using cli-
mate projections indicates an increase in nitrogen loss towater and air,with a corresponding increase in biomass.
If we simulate both nitrogen loss by leaching and by gaseous emission, we obtain a fuller picture. Under climate
projections, the field with the lowest determined nitrous oxide emissions factor, had a relatively high leached ni-
trogen per product amongst the three fields. When management differences were investigated, the amount of
nitrous oxide per unit biomass was found to be significantly higher for an annual management of grazing only,
than a silage harvest plus grazing, likely relating to the increased period of livestock on pasture. This work
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emphasizes how several metrics validated by auto-sampled data provide a measure of nitrogen loss, efficiency
and best management practise.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Food production and sustainable management

Agricultural production needs to increase to feed an increasing
global population under a changing climate. Strategies that promote
long-term sustainability and yields, rather than purely peak quantity,
should be introduced (Heinemann et al., 2013). Unsustainable farming
practises run the risk of environmental pollution due to nutrient run-
off, soil degradation and the loss of biodiversity through inappropriate
management (Tilman et al., 2002; Hayati et al., 2010). Nitrogen
(N) fertilizer increases crop production, but a large proportion of agri-
cultural N is leached to the environment in chemical forms that have
caused contamination of drinking water and eutrophication of water
bodies (Diaz and Rosenberg, 2008, US Environmental Protection
Agency Science Advisory Board, 2011) and its gaseous emission is the
form of nitrous oxide participates in photochemical reactions in the
upper atmosphere (the stratosphere) that destroy ozone (Crutzen,
1970).

Improving one aspect of the field system, does not always have a
beneficial effect on other environmental features. A test of beneficial
and harmful effects, or gains against losses, can be viewed by usingmet-
rics to compare management methods, and innovations could be com-
pared to a baseline of traditional agronomy to compare benefits and
offsets. Many agricultural metrics exist, however there is no consensus
on a correct ormost suitable one. Hayati et al. (2010) advise to construct
metrics which are location specific and within the context of the situa-
tion. Our interest in this study is to view how several related metrics
can improve agronomic information.

1.2. Comparative resource use and productivity

N use efficiency (NUE) can bemeasured in different ways, as crop N
offtake per unit of N applied, or as defined byMoll et al. (1982) as grain
production per unit of N available in the soil, thereby translating it to a
measure of biomass per unit N applied. Resource use efficiency (RUE)
is a ratio of productivity per unit of resource (Sheriff et al., 1995)
where the resource can be any limiting factor to growth. If the resource
is soil N, the definition of RUE overlaps that of Moll's definition of NUE,
and these metrics on traditional management can act as a benchmark
from which future improvements can be assessed. Low values usually
indicate inefficient use of the added Nwhereas very high values usually
indicate themining of soil N (Norton et al., 2015). NUE is not necessarily
a direct quantitative estimate of N loss from the system, because N not
removed in the harvest might remain in the soil. Over the long term,
however, changes in soil N stocks are usually low relative to inputs
and outputs, and therefore, low NUE values overmultiple years are rea-
sonably reliable indirect indicators of probable significant N loss to the
environment (Norton et al., 2015).

RUEs relating to productivity are important agronomic indicators fo-
cussing on production as the aim rather than efficient use of the N. An
advantage of RUE relating to productivity and fertilizer is that the bio-
mass and fertilizer data are generally available at the field level. In this
study RUE is used, and termed f-RUE (fertilizer RUE).

1.3. Leached N

Plant available N loss depends upon a balance of the timing and rate
of N application and the demand for N by the crop, or by microbial
uptake. If uptake has a lower rate than application, or heavy rains follow
application, excess NO3

− and NH4 is susceptible to water transport. NO3
−

flows through soil pores more rapidly than NH4 which is held back by
chemical bonding (Mekala and Nambi, 2016). Nitrate is a common
risk in leached runoff to water bodies, due to the tendency of eutrophi-
cation to result in reduced oxygen in water, detrimental to aquatic and
human life. In this study, we refer to leached inorganic N, predomi-
nantly NO3

−, as leached N because dissolved organic N cannot be auto-
matically sensed in runoff like inorganic N, due to the need to digest
the sample prior to analysis which is not possible to automate under
field conditions (ASA Analytics, 2017). Studies in agriculture have gen-
erally shown less leaching from dissolved organic N than inorganic N
(Siemens and Kaupenjohann, 2002; Lehmann and Schroth, 2003), but
we accept that the lack of measured dissolved organic N measurement
is a gap in the system.

1.4. N2O emissions

Agriculture practices of N amendments cultivation, excess soil
water, can increase N2O production and emissions (Del Grosso et al.,
2006).Mineral N supply, plant N demand, and abiotic soil conditions in-
teract to control N2O emissions from soils. Agricultural practices also in-
crease NO3

− leaching, which enters aquatic systems or is transported to a
non-farmplant-soil system, and undergoes denitrificationwhich results
in indirect N2O emissions.

To reduce leaching losses, best practise field management tries to
minimize the amount of excess nitrate (NO3

−) present in the soil at any
given time, timing the application of fertilizer to smaller and more fre-
quent applications. However, the fact that pores hold back ammonium
(NH4), allows it to be in contact with microbial matter longer (Mekala
and Nambi, 2016). This increases the risk of conversion from NH4 to ni-
trite and then to NO3

− by nitrifying bacteria in aerobic conditions, and
then conversion to N2O by heterotrophic bacteria in anaerobic condi-
tions. Both aerobic and anaerobic processes result in the production of
N2O, a potent greenhouse gas and precursor of stratospheric ozone
loss. These processes occur simultaneously and in proximity in grass-
land soils (Abbasi and Adams, 1998).

1.5. Agronomic modelling as a precursor to metric calculation

Data collected manually, or by sensor, is not available every day for
every year, and weather cannot be measured for future climate projec-
tions. The only way to obtain consistent multi-annual production and N
loss data is to simulate the data using a calibrated model. We have cho-
sen the DAYCENT model (Parton et al., 1998) for its applicability to our
study. This is a field-scalemodel concerning soil emissions, leaching and
crop production, which calculates the grazed offtake of biomass, from
which we determine the live-weight gain efficiency of livestock.

2. Aim of study

Our aim is to view how collating several related metrics, related to
the gains or losses of nitrogen in traditional agronomic practises, can
build up information on the agronomic system. This is carried out across
three neighbouring sheep pastures under a similar soil type, and the
same historic climate and projected late 21st century climate, where
the main difference is the seasonal pasture management.

We will use measured variables from manual soil sampling and air
and water quantity and quality sensors of the North Wyke Farm

http://creativecommons.org/licenses/by/4.0/
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Platform (NWFP) site to calibrate andvalidate theDAYCENT agricultural
systemsmodel. The calibrated model will provide information to calcu-
late the metrics concerned with field-scale gains in production against
losses of N. Three fields will be compared under two types of traditional
annual management, grazed use only and a silage crop followed by
grazing. A null hypothesis is that the two types of management result
in the same yield gain to nitrogen loss.
Fig. 1. The North Wyke Farm Platf
3. Materials and methods

3.1. Site description

The NWFP (Orr et al., 2016) is the grassland research site of
Rothamsted Research (50.46.30° N–3.54.54° E, 150m a.s.l.). It is located
at North Wyke in the south-west of England to the north of Dartmoor
orm, fields in study outlined.
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National Park, the largest area of upland in south-west England, and the
sheep pastures are typical of those found in the south-west region. The
NWFP fields in this study are located on clay loams of the Halstow soil
series.

In this study we are interested in three specific fields of the NWFP,
Longlands South, Dairy North and Golden Rove (Fig. 1). Since 2011,
fields of the NWFP have been made into hydrologically sealed units,
on which the fluxes of soil water are measured. The fields drain natu-
rally to a clay subsoil of low permeability below 30 cm depth. Runoff
leaving individual fields flows into surrounding drainage ditches and
is channelled to a flume. Surface flow cannot be measured separately
from lateral flow, so the term runoff comprises all field water flow to
the flume. The flume is fully instrumented to enable flow rates to be
measured and water samples to be automatically collected and
analysed. Runoff flow is measured in litres per second at 15 min inter-
vals, measured at a V-notch ceramic weir with connection to a Teledyne
ISCO 4230 bubbler flowmeter. The flume measurements are converted
from level of water to flow rate. In addition, a Nitratax instrument mea-
sures NO3

− in runoff flow. Fifteen-minute interval data were scaled up to
the daily time-step of the DAYCENT model, and used for runoff valida-
tion. Adcon SM1 capacitance soil moisture sensors are located in the
centre of NWFP fields at 10, 20 and 30 cm depth. All sensor data is
telemetried to a server. Manual sampling is taken to measure silage
crop harvest yields, soil NH4 and NO3

−, and N2O by chamber
measurements.

The three study fields are all sheep pastures maintained with rye-
grass (Lolium perenne). Each year, these fields are either grazed, or
have one crop grown for silage and grazed after harvesting, silage har-
vest years can be seen in Tables 2 and3. Replicate samples (four samples
per field on four dates) were taken at periods during the growing sea-
sons of 2013 and 2014 for soil NH4 and NO3

−, and N2O emissions (mea-
sured by 12 automated chambers on each field, periodically moved to
different locations to cover different areas). In a modelling study such
as this, we have to use historic data, becausewe are trying tomatch sen-
sor data with manual soil nitrogen sampling campaigns, and it was the
manual soil NH4 and NO3

− sampling which was most limited.

3.2.1. DAYCENT model set-up
DAYCENT (Parton et al., 1998) is an agricultural system model sim-

ulating crop growth and biogeochemical cycling between the soil-
water-crop-atmosphere. Plant production is a functionof genetic poten-
tial, phenology, nutrient availability, water/temperature stress, and
solar radiation. The model includes soil organic matter decomposition
pools (active, slow and passive) with different decomposition rates,
above and belowground litter pools and a surface microbial pool. Soil
NO3

− and NH4, labile soil carbon, water content and temperature deter-
mine N2O production (Parton et al., 1998). DAYCENT was used because
it has been globally validated against forage production (Henderson
et al., 2015). It was chosen because of its flexibility, many field manage-
ment techniques are simulated and linked to the system, and it incorpo-
rates forage removal and nitrogen return by ruminants. It was also
chosen for ease of use and applicability to our study; it has a daily
time-step and a scheduling file which controls the simulation, bringing
together all input files and process modules. Organic matter
Table 1
Soil parameters, LS = Longlands South, DN= Dairy North, GR = Golden Rove.

Soil parameters LS

Field area (ha) 1.75
Soil type Halstow soil s
Bulk density
(g cm−3) (0–30 cm)

1.07

Field capacity
(volumetric %) (avg 0–30 cm)

36.5

Permanent wilting point (volumetric %) (avg 0–30 cm) 17.5
pH (0–10 cm) 5.48
decomposition, nitrification, denitrification, water balance and nutrient
transport are included in the model. The model is able to simulate the
soil water, soil NO3

− and NH4, crop yield, leached N and separate outputs
for daily N-gas flux (N2O from nitrification, N2O from denitrification,
NOx, N2). Whilst all these variables are necessary for validation crop-
soil nitrogen-water-atmosphere processes of the grassland system, it
is the crop yield, leached N and N2O that are especially pertinent to
this study.

This work was carried out using the model version listed as
‘DailyDaycent_August2014’, an update to the downloadable version
4.5 of DAYCENT, in terms of crop growth and soil pools. A climate record
(1982–2016) was provided from the central weather station located on
the NWFP (station domain DLY3208 DEVON, Met Office).

The properties of the soil in the three fields (bulk density, pH, % sand,
% clay, organic matter content, field capacity and permanent wilting
point) were based on NWFP field surveys conducted on the pastures
of Longlands South, Dairy North and Golden Rove in 2012 (Table 1). Ag-
ronomic management data was converted into scientific units from the
farm management records from the open-access NWFP data portal
(https://nwfp.rothamsted.ac.uk/), summarized in Table 2. Fertilizer ap-
plied was converted into elemental units using the fertilizer handbook
RB209 (Defra, 2010).

A moderate grazing regime was selected in the model's grazing
management options, which simulated a linear decrease in production
through the growing season, involving the offtake of 40% of biomass
as live shoots and 10% of biomass as leaf litter. In the case of sheep graz-
ing, the management option was set to return 90% of N in offtake to the
soil, and proportion 34% of excreted N into faeces, the rest in urine. It is
advised (Agricultural and Horticultural Development Board, Beef and
Lambmanual 8, 2016) that the percentage of live biomass grazed is nor-
mally 50% or above, hence this was increased by 50% but this resulted in
no difference in model output of N in soil, leached or emitted.

DAYCENT allows the creation of newmanagement options, to create
tailored effects of each type of management. We created new grazing
options to switch grazing on and off for the exact dates when livestock
were in the field. The option to switch on grazing simulation requires
fraction of biomass grazed and fraction of N returned, so these were
set to zero and this module listed in the model's scheduling file to
switch off the grazing. New fertilizer options have been created, each
new fertilizer type and application rate requires a value containing spe-
cific rates of N applied, calculated from different formulations and
spreading rates using RB209 recommendations. Each fertilizer module
has a different name and each one is listed as required in the scheduling
file to set up an application.

Two schedule files were created: a spin-up file of grazed grassland
without inorganic fertilizer for years 1–1900 to balance biogeochemical
cycling, leading on to themain schedule file for years 1901–2016. Using
a spin-up output for initialization of the main simulation, is commonly
utilized with DAYCENT to represent the historic land use and manage-
ment of the site and initialize soil organic matter pools before current
practices are simulated. Our focus is the period 2011–2015, for which
we have very detailed field management operational data records for
type, rate and dates of fertilizer application, number of days of sheep
grazing, dates of harvest, from which we constructed the annual
DN GR

1.78 3.85
eries Halstow soil series Halstow soil series

1.07 0.9 (0–10 cm)/
1.05 (11–30 cm)

37.3 37.3

17.5 17.5
5.78 5.72

https://nwfp.rothamsted.ac.uk/


Table 2
Field management 2011–2015. No. of days grazed, commercial fertilizers and farm yard manure (FYM) applied. LS = Longlands South, DN= Dairy North, GR= Golden Rove; inorganic
fertilizer application area is 1.69, 1.74 and 3.78 ha, respectively; FYM (0.12% N) organic application area is 3.28 ha on GR.

Field, year & fertilizer type Application (App) (kg) App rate of N (kg ha−1) Harvest & grazing

LS 2011 Nitram 982 App ∗ 0.345/Area = 200 180 days grazed
LS 2012 Nitram 393 80 277 days grazed
LS 2013 Nitram 736 150 171 days grazed
LS 2014 Nitram
LS 2014 20-8-12-7

657
726

134
App ∗ 0.2/Area = 86

June harvest; 139 days grazed

LS 2015 Nitram 812 166 Aug harvest; 152 days grazed
DN 2011 Nitram 1007 200 180 days grazed
DN 2012 Nitram 403 80 186 days grazed
DN 2013 Nitram 799 158 196 days grazed
DN 2014 Nitram 409 81 June harvest; 27 days grazed
DN 2015 Nitram 1002 199 175 days grazed
GR 2011 Nitram
GR 2011 25-0-13

1753
756

160
50

179 days grazed

GR2012 Nitram
GR 2012 20-8-12-7

438
1512

40
80

May & Aug harvest; 49 days grazed

GR2013 Nitram
GR 2013 22-4-14-7

709
1496

65
App ∗ 0.22/Area = 87

June harvest; 130 days grazed

GR 2014 Nitram 1747 159 210 days grazed
GR 2015 Nitram
GR 2015 25-0-13-7

1352
1182

123
App ∗ 0.25/Area = 78

Sept harvest; 46 days grazed
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summary in Table 2, and the fertilizer schedule (Table 3). We did not
use grazingnumbers of livestock, theDAYCENTmodel does not use live-
stocknumbers, it assumes a fraction of live and dead drymatter biomass
removed”. The NWFP attempts to maintain a constant rate of grazing.
Using literature from the same study site (Orr et al., 2001, and Robert
Orr in 2016, pers. comm.), we used fractions of 0.4 (live biomass) and
0.1 (dead biomass)”.

3.2.2. The DAYCENT model calibration
The DAYCENTmodel obtained from the USA had been calibrated for

use in that country, so required calibration for a precipitation-heavy UK
agriculture. The type of growthmodule usedwas changed, from one re-
lating carbon allocation to rainfall, to a module for the UK using a
growth based on degree-day accumulation. The climate record for the
site, common to all three neighbouring fields, was analysed to deter-
mine degree-day parameters (Supplementary Data, Table S1). The soil
parameters were similar, only bulk density and pH were modified for
each field (Table 1). Field management for the three grazed fields in
the study was unique to each field, for each year (Tables 2 and 3).

The calibration was carried out on biomass, followed by soil mois-
ture, soil nutrients, and finally gaseous emission, as advised in the
DAYCENT 4.5 INSTRUCTIONS (NREL online, accessed Mar 8, 2019).

There is very little harvest yield data available on the three fields
studied. Silage crop fields (for which there is harvest data) surrounding
the three used for study and had the same management regime in the
same year, the same soil type and climate, and therefore mean field
Table 3
Fertilizer schedule: application dates (and application rate, kg N/ha).

Longlands South 2011 G 07/03/2011 (40) 11/04/201
2012 G 22/05/2012 (40) 19/06/201
2013 G 05/03/2013 (40) 10/04/201
2014 HG 19/04/2014 (86) 02/05/201
2015 HG 19/03/2015 (40) 28/04/201

Dairy North 2011 G 04/03/2011 (40) 11/04/201
2012 G 22/05/2012 (40) 19/06/201
2013 G 05/03/2013 (39) 10/04/201
2014 HG 28/04/2014 (40) 08/07/201
2015 G 19/03/2015 (36) 28/04/201

Golden Rove 2011 G 08/03/2011 (40) 11/04/201
2012 2HG 09/03/2012 (80) 17/04/201
2013 HG 10/04/2013 (87) 21/05/201
2014 G 28/04/2014 (40) 20/05/201
2015 HG 10/04/2015 (43) 15/05/201

G = grazed only, HG = one harvest and grazed, 2HG = two harvests and minimal grazing.
parameters were used to obtain simulated yield. Therefore, the har-
vest yield of L. perenne grass cut for silage was collected from the
mean yield data of 10 neighbouring fields to the three study fields,
and was compared against the modelled yield for calibration. The
DAYCENT model calculates grazed offtake biomass as a proportion
of crop yield, so we used this as a proxy for a further check of biomass
calibration against measured herbage offtake data from literature.
Herbage offtake data from grazing sheep in 1998 was available for
the Longlands South field from literature (Orr et al., 2001). The sim-
ulated offtake will be variable dependent on the period of livestock
grazing and stocking rate, but it should be possible to check the
same if the values are in the same vicinity as the literature values
for a specific year.

For all other parameters than biomass (soil moisture and runoff, soil
N and leached N, and N2O emission), simulated output using data from
the Longlands Southfieldwere compared againstmeasuredfield data to
calibrate the model. During the process of calibration using data of
Longlands South, parameters were modified and seven calibration ver-
sions of the model formed, until the seventh version obtained a balance
between the fit of simulated-observed variables for yield, soil water,
plant available N and N2O. Calibrated parameters are listed in S1 of Sup-
plementary Data, all versions of the calibration are listed up to the final
calibration reported, to show the complexity and iterative pathway of
the calibration process.

Fresh measured field data from fields Dairy North and Golden Rove
was used validate the model. No further modifications were made.
1 (40) 05/05/2011 (40) 06/06/2011 (40) 05/07/2011 (40)
2 (40)
3 (40) 07/05/2013 (40) 06/06/2013 (30)
4 (40) 25/06/2014 (50) 21/07/2014 (44)
5 (44) 26/05/2015 (42) 22/06/2015 (40)
1 (40) 05/05/2011 (40) 06/06/2011 (40) 05/07/2011 (40)
2 (40)
3 (39) 07/05/2013 (39) 06/06/2013 (41)
4 (41)
5 (41) 26/05/2015 (41) 22/06/2015 (40) 22/07/2015 (41)
1 (40) 05/05/2011 (40) 06/06/2011 (40) 06/07/2011 (50)
2 (40)
3 (24) 12/06/2013 (41)
4 (39) 26/06/2014 (39) 21/07/2014 (41)
5 (41) 16/06/2015 (39) 29/06/2015 (78)
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Guidance on DAYCENT calibration and validation methods is found
in the study by Hartman et al. (2011). Simulated-observed comparison
(RMSE, modelling efficiency, coefficient of determination) were carried
out on frequent and consistent time-series data, and comparisons
against a 1:1 line applied to simulated-observed pairs in cases where
missing data interrupted a constant time series. Ratios of areas under
the curve (AUC) were also carried out on time series, integrating AUC
areas is a statistic commonly used in pharmacokinetics, and provides
the integral of a plot representing the total amount over time, so that
the ratio shows the accumulated relative values (VisualCyp, online
accessed, 2019; Wu et al., 2012).

Aftermodel calibration, it is good practise to do a sensitivity analysis,
as model inputs such as soil parameters from field averages contain un-
certainty (Wu and Shepherd, 2011; Jørgensen, 1995). A sensitivity anal-
ysis was conducted on the DAYCENT model using inputs for the
Longlands South field. Changes were made with respect to fertilizer
(for a change in soil N), pH, precipitation (for a change in soil moisture)
and bulk density; these have previously been the inputs found most
likely to influence the N2O (Fitton et al., 2014b), as a proxy for the effect
on general N cycling. Each of the four input parameters was separately
modified by an increase and a decrease in 5% and 10% from for the site
value, holding the remaining inputs at the field values.

To automate the process, two shell scripts were written in R to run
the DAYCENT model in batch mode and collate results, these have
been listed in Supplementary Material, S2.

3.3. Climate projections

Previousworkwith theUKClimate Projections, 2009 (UKCP09) (Wu
and Shepherd, 2011) has shown that for this study site, climate varia-
tion is mild until significant change in the second half of the 21st cen-
tury. Therefore, we want to determine what effect the climate from
latter part of the century will have on traditional pasture management.
UKCP09 data for a 30-year period with a mid-point of the 2080s
(2070–2099), were used from the UKCP09 website. Two 2080s climate
projections were extracted from high and medium GHG emission sce-
narios corresponding to IPCC A1F1 and A1B scenarios, respectively
(IPCC, 2007). The A1F1 scenario is fossil intensive, whereas A1B does
not relying too heavily on one particular energy source. Baseline climate
was also extracted. The baseline is a stochastic simulation of the North
Wyke historic climate (1961–1990), against which climate projection
data should be compared. Although created in 2009, and being
superceded by UKCP18, a study by the UK Met Office shows that
UKCP09 continues to provide a valid assessment of the UK future cli-
mate over land and can still be used for adaptation planning (UK
Climate Projections, online, accessed December 28, 2018).

The field management for 2011–2015 was continuously repeated
each year for the 30-year climate projections. Averages of the climate
data and resulting output are reported.

3.4. Calculation of resource use, product and N loss metrics

The f-RUE is an indicator of N use for productivity, whereas the N2O
emission factor (EF) and the emission or leaching per product are indi-
cations of the loss of N to the field system.

f-RUEwas calculated annually, from gm−2 harvest product/gm−2 ni-
trogen, from fertilizer applied and livestock excreted (Moll et al., 1982;
Sheriff et al., 1995). The harvest product is annual aboveground bio-
mass, or alternatively the live-weight gain of lamb that the biomass
would support in these sheep fields. This is based on the average feed
conversion of 8 kg dry matter biomass to 1 kg live-weight gain (Eblex
sheep BRP Manual 5, 2014).

N2O emission EFs for grassland are calculated annually from simula-
tions using fertilizer and grazing returns of N, and control simulations
with zero N applied. EF = g N2O-N m−2 (fertilizer and grazed return to
the soil) – g N2O-N m−2 (zero N)/g m−2 total N applied. The total N
applied is fertilizer N plus N from excreta of grazing animals applied an-
nually (g Nm−2 y−1) (following Rafique et al., 2011; Barton et al., 2008).

N loss metrics were calculated annually as g N2O-N m−2 (or
gN leachedm−2)/g harvest productm−2, where harvest product is either
g aboveground sward biomass per m−2, or the live-weight gain of lamb
that the biomass would support.

DAYCENT outputsmost variables in units of gm−2 and have been re-
ported as such, as themetrics are ratios of the same units. The exception
is EFs which have been reported as kg N2O-N per kg fertilizer applied
(for the same area), for comparison against EFs from literature.

All metrics for the three fieldswere calculated annually using output
from the validated DAYCENTmodel, for 2011–2015 when precise man-
agement records were available, and by 30-year mean for the climate
scenarios.

The annual simulations comprising 3 fields, for 5 years (2011–2015)
or 30-year climate scenarios, containmanagements for grazing only (i.e.
no silage harvest) or one silage harvest plus grazing. To test for differ-
ences between grazing and silage-grazing managements, a one-
sample t-test for one variate with group factor was carried out on
each of the metrics produced.

4. Results and discussion

4.1. Model validation

Measured yield datawas very limited. The site is a working farm and
documented yield data had been measured when contractors cut grass
for silage and weighed grass from a collected harvest from all fields to-
gether. So for the calibration of yield, the simulation was based on aver-
age field conditions. The simulation of harvest yield is compared against
measured yield for 4 harvests (25.05.2011, 09.08.2011, 25.05.2012 and
07.06.2013). The observed dry matter yield of grass grown for silage
with means (and standard error) is 6.4 t ha−1 (0.20), 5.2 (0.21), 3.8
(0.14) and 6.2 (0.27), corresponding to the afore-mentioned dates.
The simulated values (6.15, 4.47, 6.20 and 6.27, respectively) compare
favourably against each harvest (RMSE 23.4%, Max error 2.4, despite
there only being 4 harvest values to measure). The exception to this
was harvests collected on the 25.05.2012. In this case the observed
values were unusually low due to physical difficulties in collecting the
biomass. This condition existed because of water-logged conditions in
the field after heavy and persistent rainfall during the harvest season.

Simulated sheep-grazed herbage offtake per unit area (2011–2014)
was also plotted (Fig. 2) against literature values for the same field,
Longlands South (Orr et al., 2001). The grazed offtake varies monthly,
and varies with the period of livestock grazing and stocking rate, and
if there is a silage crop grown before grazing (seen in the 2014 simu-
lated data) whereas the same literature values are repeated from the
1998 season with constant grazing. With fixed values, we cannot prop-
erly compare these datasets statistically, because stocking rates will
vary and some yearswill include a silage cut, however as a general guid-
ance they give confidence that simulated grazed offtake values are not
unreasonable, and being heavily reliant on simulated biomass, by
proxy this serves as an extra check that biomass values are not
unreasonable.

Soil N was measured over 4 separate dates and compared to a con-
tinuous profile of simulated soil N. Simulated soil NO3

− and NH4 follow
the pattern (Fig. 3a and b, respectively) and value of mean observations
quite closely but there is a time lag of about 14 days, the simulations
having a more rapid rate of decay than the observations. For both NO3

−

and NH4 there is a large variation in observations for the first date of
field measurement, and therefore a large variation in the observed
rate of decay between the first and second date of observations.

It is easier to assess the simulated vs. observed soil moisture when
using sensors rather than sparse manually sampled data, because sen-
sors provide a continuous profile to match the simulations.
Simulation-observation compared favourably overall with no time lag



Fig. 2.Monthly grazed biomass offtake on Longlands South, simulated values against fixed 1998 monthly values from literature on the same field.
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(Fig. 3c). The correlation coefficient between DAYCENT simulatedmois-
ture and sensor data was 0.98, modelling efficiency was 0.94 and coeffi-
cient of determination was 0.85, which indicated a high positive degree
of association. Fig. 3c shows a discrepancy in DAYCENT and sensor soil
moisture for the replenishment of soil water after a dry summer. This
is because most agricultural models' do not simulate cracking clay
soils. On the study fields, the clay soils crack open to create fissures
when dry. 2013 was a dry year, while 2012 was not (Fig. 3c). In
DAYCENT the 2013 autumn rainfall simulates a rapid increase in soil
moisture, but in the cracking clay dry soil a proportion of rainfall by-
passes the soil matrix until the cracks have reduced with prolonged
rainfall. However most agricultural models do not incorporate a hydro-
logical component for a cracking clay, and overall DAYCENT agrees well
overall with sensor values.

DAYCENT matches the occurrence of runoff (0.86 monthly correla-
tion coefficient) but over-estimates it compared to a line connecting
the measured values (3.16 AUC ratio, i.e. the ratio between the inte-
grated areas under a daily time-step profile of simulated and measured
data) (Fig. 3d). As with soil moisture, this particularly occurs on clay
soils when DAYCENT simulates surface runoff after a dry summer with
an autumnal increase of precipitation, yet in the field the cracking
clays bypass a proportion of the water.

DAYCENT matches the timing of occurrences of observed leached N
in soil water runoff (Fig. 3e), although overall the observed values are
lower than simulated (0.04 AUC ratio), due to the much higher simu-
lated N leached at fertilizer application. This is likely due to an inherent
sensor problem in the way that this type of measuring system misses
measurements of leached N, at continuous but low runoff flows which
occur frequently at this site. All fertilizer applications were the same,
40 kg N ha−1. Fertilizer is applied when there is a forecast for dry
weather to follow application, but forecasts for good weather at this
site near the Dartmoor hills often result in a persistent drizzle. This sit-
uation occurred in Fig. 3e at the third and seventh fertilizer applications.
Persistent drizzle only creates low runoff, under the threshold flow for
the N leaching instrument to work. Yet a persistent low runoff immedi-
ately after fertilizer application can result in a relatively high daily con-
centration of Nmissed by the leaching sensor. Other than this situation,
N leaching is reasonably concurrent between simulation and
observation.

DAYCENT satisfactorily simulated N2O emissions for 2013 (Fig. 3f)
on the Longlands South grass sward (RMSE 102.5; coefficient of deter-
mination 0.68; relative error 13.63; mean difference 8.0; n = 50,
respectively).

Figs. 4a, 4d and 4e show a comparison of simulated-observed vari-
ables for the N system over the three swards studied, adding in Dairy
North and Golden Rove. Figs. 4b and 4c show a comparison of
simulated-observed soilmoisture and runoff, reflecting the hydrological
processes of the three swardswhich impact emission and leaching of ni-
trogen. Field measurements vary spatially whereas a model simulates a
field average, so a greater number of outliers can be expected from field
observations.

Golden Rove data has, in part, been taken from Horrocks et al.
(2014), but over the same growing season as the other two fields.
Golden Rove has a more variable slope across the field, which explains
the greater variability in observed soil water runoff compared to other
fields.

For most simulated-observed pairs in Fig. 4, the dense area of points
on the plots falls near the 1:1 line. Soil inorganic N simulation generally
appears to be lower than observed data (Fig. 4a), but Fig. 3a and b sug-
gest the cause is a faster rate of soil N assimilation in the DAYCENT
model than measured, however measured soil inorganic N data is in
limited supply and also variable.

For the North Wyke site with high rainfall and heavy clays, the N2O
emissions have been described as higher than most sites (Fitton et al.,
2014a). If we alter DAYCENT calibration parameters relating to nitrifica-
tion and denitrification to match a high measured rate of gaseous emis-
sion, we also speed up the depletion of soil inorganic N. Smaller
estimation of soil N by DAYCENT compared to measurement is known
and has been described in literature (Senapati et al., 2016).

Over several fields the occurrence of daily simulated and observed
leached N is concurrent, generally simulations are higher than observa-
tions but data has a wide spread. Since daily values are so variable,
leached data is accumulated annually for use in the metrics. Annual
simulations-observations compare better than daily, by a simulated to
measured ratio of 1.5:1, however the under-estimation inherent in
this type of sensor system for leached inorganic N has been discussed
earlier.

The simulated-observed daily N2O emissions are spread widely and
evenly over the plot (Fig. 4e), and field measurements have provided
outliers, but individual field profiles have shown reasonable agreement
with observations (Dairy North 2015 and Golden Rove 2012: RMSE
157.5, 148.1, n=105, 18; respectively). N2Owill be accumulated annu-
ally for the metrics and EFs to even out differences in response rate to
emission stimuli (as per Senapati et al., 2016 who found discrepancies
betweenmeasured and simulated daily N2O fluxes, but good agreement
on annual accumulations).

Summarizing, it was always going to be difficult to attempt a multi-
parameter system calibration of a model, rather than focussing on a de-
sired parameter, because modifications made on one component of the
model will inevitably lead to changes in other areas, nevertheless this is
what we have attempted. DAYCENT simulated soil N and daily N
leached with a sizeable uncertainty, however replicate soil sampling



Fig. 3. Longlands South field simulated-observed time series plots for soil (a) nitrate (b) ammonium (c) moisture (d) runoff (e) leached inorganic nitrogen (f) nitrous oxide emission.
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showed a high variation and was limited in temporal occurrence, and
observed leached N data is temporal by nature without replicates to
show spatial variability of leaching. Despite a farm platform that aiming
to provide data for modelling, it can never be a perfect set-up or fre-
quency of sampling for all models. DAYCENT simulated dry matter bio-
mass, soil moisture, N2O and monthly leached N with a reasonable



Fig. 4. Three-field simulated-observed plots for soil (a) total inorganic nitrogen (b)moisture (c) runoff (d) leached inorganic nitrogen (e) nitrous oxide emission, on thefields of Longlands
South (LS), Dairy North (DN), and Golden Rove (GR).
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Fig. 5. Sensitivity analysis of DayCent focussing on nitrous oxide.

Table 4
Fertilizer resource use efficiency. Annual harvest product per annual N applied or excreted
between 3 grazed fields.a

LS DN GR

g m−2: g m−2 g m−2: g m−2 g m−2: g m−2

Biomass:Applied N Biomass:Applied N Biomass:Applied N

2011 21.9 32.3 16.5
2012 47.6 55.8 65.3
2013 48.4 54.2 39.2
2014 58.7 115.4 44.3
2015 56.0 38.6 78.0
AVG 46.5 [5.8]b 59.2 [7.4]b 48.6 [6.0]b

LS = Longlands South, DN= Dairy North, GR = Golden Rove.
a Fertilizer resource use efficiency in this study is the gm−2 of harvest product per gm−2

of nitrogen applied from fertilizer and excreta, where harvest product is defined as
(a) annual aboveground biomass harvested and grazed (mixed annual management), or
(b) in square brackets, the live-weight gain of stock that the biomass would support.

b In square brackets, the live-weight gain of stock that the biomass would support. This
is based on the average feed conversion ratio of 8 kg dry matter per kg live weight gain
(Eblex sheep BRP Manual 5, 2014). 44% of the sward's dry matter biomass is carbon, and
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degree of agreement. Previous studies have shown that DAYCENT does
under-estimate N2O (Wang et al., 2017), also that NorthWyke soil pro-
duces high N2O emissions (in Fitton et al., 2014a, whose study on N2O
emissions focused on the Rowden fields nearby with the same soil
type). The variables related to N in the system indicate that to obtain a
reasonable simulation of N2O, the calibration may inadvertently in-
crease the rate of N turnover in the soil, shown by a faster rate of simu-
lated soil NH4 and NO3

− decrease, although the uncertainty in soil
observations is high because of the low sampling frequency. Senapati
et al. (2016) have similarly commented on this relationship of soil N
transformations and N2O emission.

Fig. 5 displays a spider plot as the result of a sensitivity analysis with
respect to N2O emission. Sensitivity was expressed as percentage
change in the simulated variable compared to its original base simula-
tion (Senapati et al., 2016). For a change of±10% and 20%, the bulk den-
sity, fertilizer and precipitation were found to be influential, in
agreement with the literature (Fitton et al., 2014b). Modified precipita-
tion (being an indirect way for modifying soil moisture) is the only fac-
tor to increase the total N2O in the drying and wetting of soils, i.e. via
nitrification and denitrification. Fertilizer increase results in an expo-
nential increase in nitrous oxide, and increased bulk density produces
general increase in N2O.Modifying only pH did not have a conclusive ef-
fect on N2O emissions in the model simulations we used. The process
leading to nitrogen emission does not proceed linearly, but in multiple
stages of which the last stage is the loss of N to the atmosphere
(Butterbach-Bahl et al., 2013), which means it is more likely for factors
to have an effect in unison whereas a sensitivity analysis isolates the ef-
fect of each factor”.

Our sensitivity analysis likely explains differences in simulated out-
put between Golden Rove and the other two fields, with Golden Rove
having the lowest bulk density of 0.9 for the top 10 cm depth of its
clay loam compared to 1.07. Although all soils are of the Halstow series,
bulk density will vary with soil compaction and soil organic matter con-
tent, which are related to previous field management. Comparatively,
Senapati et al. (2016) found DAYCENT to be most sensitive to field ca-
pacity and a decrease in bulk density, followed by pH, fertilizer-N and
soil organic matter.
4.2. Metrics from validated model simulation (accumulated annually)

4.2.1. Resource use efficiency
Table 4 shows f-RUE, the annual aboveground biomass per unit N

applied (both from fertilizer and stock returns) simulated by
DAYCENT for each of the three fields. This is shown to be variable,
both between years 2011–15 and between the three fields. Dairy
North has the highest f-RUE and Longlands South the lowest.

It is unclear from f-RUE whether higher or lower values result from
biomass or fertilizer variation. In fact, the higher f-RUE value of 115.4
in 2014 for Dairy North hides the information that only 80 kg fertilizer
N ha−1 was applied (150 kg N ha−1 is the 5-year average), a reduction
in N applied did not reduce the aboveground biomass by the same pro-
portion, hence increasing the f-RUE value. Eliminating the high f-RUE
value for 2014, gives very similar resource efficiency levels for the
three fields, with Golden Rove as the largest.
is used to convert model output of carbon to biomass.



Table 5
N2O emission factors (referred to below as EFs, kg N2O-N per kg fertilizer applied) mean and standard deviation, for grassland aggregated from fertilizer and grazed returns, simulated
(a) annually from validated model by field and year for current climate, and (b) 30-year mean for climate scenarios. LS = Longlands South, DN= Dairy North, GR = Golden Rove.

(a)

Year Mean Max Temp Mean
Min
Temp

Mean Temp Total Precip LS EF DN EF GR EF

2011 13.98 7.32 10.65 834 0.025 0.028 0.040
2012 13.08 6.76 9.92 1229 0.039 0.046 0.033
2013 13.07 6.52 9.79 968 0.026 0.036 0.018
2014 14.45 7.60 11.02 1184 0.031 0.060 0.054
2015 13.58 7.26 10.42 933 0.036 0.035 0.028
Mean 13.63 7.09 10.36 1030 0.031 0.041 0.029
SD 0.6 0.4 0.5 169 0.006 0.013 0.009

(b)

Year Mean Max Temp Mean Min Temp Mean Temp Total Precip LS EF DN EF GR EF

Baseline scenario
30 yr mean (SD)

12.8
(0.2)

5.8
(0.2)

9.3
(0.2)

1038 (123.1) 0.056
(1.53)

0.075
(1.7)

0.045
(1.9)

Medium emission 2080s
30 yr mean (SD)

16.4
(0.2)

9.0
(0.2)

12.7
(0.2)

1041 (123.3) 0.059
(1.45)

0.076
(1.7)

0.048
(2.0)

High. emission 2080s
30 yr mean (SD)

17.5
(0.2)

10.0
(0.1)

13.8
(0.2)

1025 (118.5) 0.059
(1.44)

0.078
(1.8)

0.048
(2.1)
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4.2.2. N2O emission factor
The 2011–2015 average annual simulated N2O (minus zero N emis-

sion) for Longlands South, Dairy North and Golden Rove were 6.9, 7.9
and 5.9 kg N2O-N ha−1, respectively. If the Tier 1 IPCC EFs are applied,
based on the fertilizer applied and grazing returns, they estimate re-
spective emissions of 2.3, 2.1 and 2.0 kg N2O-N ha−1. If Tier 1 EFs were
added for the crop residue from the amount of standing dead leaf litter,
respective emission estimates would be 2.6, 2.5 and 2.2 kg N2O-N ha−1.

The 2011–2015 average annual EFs obtained in this study for
Longlands South, Dairy North and Golden Rove were 0.031, 0.041 and
0.029 kg N2O-N per kg fertilizer N applied, respectively (Table 5), com-
pared with the IPCC Tier 1 EFs of 0.01.

Our model compares satisfactorily with the literature. For Irish
grassland, Rafique et al. (2011) calculated EFs at 0.01–0.031 and Hyde
et al. (2006) at 0.007–0.05. For Scottish grasslands Dobbie and Smith
(2003) reported EFs at 0.01–0.03. Cardenas et al. (2010) reported a
N2O flux minus background flux of 3.9 kg N2O–N ha−1 yr−1, for the
west of England in afield close to this study, using a fertilizer application
of 100 kg N ha−1, resulting in an EF of 0.039.

All these studies have a higher limit than the 2006 IPCC EF of 0.01 for
direct N2O emissions. Deviations of observed N2O emissions from those
calculated using the IPCC Tier 1 EF approach clearly shows that this
methodology is too simplistic to reflect regional variations of biologi-
cally produced N2O emissions (Skiba et al., 2012). The Department for
Environment, Food and Rural Affairs and devolved UK governments
funded the GHG Platform in order to improve the UK's agricultural
greenhouse gas emission inventories which should improve regional
N2O EFs. Research since the adoption of the IPCC EF for grassland
strongly suggests that weather and management modifies EFs. Smith
et al. (1999) cite UK studies with EF maxima of 1.4 to 7.1 kg N2O-N
per kg fertilizer N applied.

It is only possible to compare N2O simulation for the 5 years of avail-
able management data in the early 21st century against the 30-year
mean for the climate projections in the late 21st century. We recognize
that the weather of 2011–2015 will not encompass the extremes en-
countered in 30 years.

The climate projection for the latter part of the 21st century, at me-
dium and high GHG levels, has been applied to N2O simulation, plus its
stochastic baseline. The earliest observed 30-year mean climate record
available for North Wyke (1982–2011) has a mean temperature of
10.0 degrees C and 1043.3 mm precipitation, so the baseline stochastic
temperature (Table 5b) is slightly lower than the 30-year record and
also themean of 2011–15 (Table 5a), and the baseline stochastic precip-
itation falls between the 30-year mean and the mean of 2011–15.

Baseline climate N2O EFs are higher than 2011–2015, partly because
the differences in a 30-year period to a 5-year period. This is also partly
because we cannot re-create the same concurrence between baseline
stochastic precipitation/temperature and the time of fertilizer applica-
tion date or grazing period in the same way as it occurred 2011–2015.

For UK climate projections, the baseline climate produces EFs of
0.056, 0.076 and 0.048 kg N2O-N per kg applied fertilizer for Longlands
South, Dairy North and Golden Rove, respectively. The medium GHG
emission climate projection (36.6% increase of mean temperature over
baseline climate) increased EFs by a value of 0.03, 0.01 and 0.03 respec-
tively, above baseline climate. The high GHG emission climate projec-
tion (48.4% increase of mean temperature) increased EFs by a value of
0.03, 0.03 and 0.03, respectively.

Simulated N2O EFs for Golden Rove are lower than the other fields,
the sole exception being2011. This is due to the lower top-soil bulk den-
sity, which is considered a key factor in reducing emission via the soil
porosity and hence oxygen levels reducing microbial denitrification
(Oenema et al., 1997). However, a factor to also bear in mind is the
DAYCENT model's known sensitivity to bulk density.

The aim of a calibratedmodel is to obtain a reasonable agreement for
the fit of all simulated output against measured data, and to do this ge-
nerically for a crop and soil type, therefore we do not expect to obtain a
perfect fit for all variables for all fields. A source of error in measured
data is the spatial heterogeneity of the physical and biological factors
in a grazed field that control the rate of N2O emissions. The limited
area of static chambers covering the field means that it is possible that
N2O emissions are under- or over-estimated (Chadwick et al., 2014).
This is especially true for N hotspots created by urine patches (Cowan
et al., 2015), and it is difficult when setting up static chambers to
know beforehand where these exist. The chambers are moved every
few weeks to a different part of a field containing livestock, this results
in hotspots from fresh urine being covered and therefore varying values
of soil N as the chambers are moved around the field, whereas a model
simulates the processes of nutrient cycling resulting from the average
rate of N applied to the field.

4.2.3. N2O or leaching per unit product
Averaged over 2011–2015, 0.002 g N2O-Nm−2 was emitted annually

per g m−2 of aboveground sward biomass (Table 6a) for all three fields,
and 0.016 g N2O-Nm−2 was emitted annually per g m−2 of grazing stock



Table 6
Metrics between three grazed fields growing Lolium perenne for nitrous oxide (N2O\\N) per unit product (a) simulated for 2011–2015, where the product is grass biomass or, in square
brackets the live-weight gain of lamba, and (b) simulated 30-year mean results for climate scenarios. LS = Longlands South, DN= Dairy North, GR = Golden Rove.

(a)

Mean temp Total precip LS
N2O-N:biomass
g m−2: g m−2

DN
N2O-N:biomass
g m−2: g m−2

GR
N2O-N:biomass
g m−2: g m−2

2011 10.65 834.80 0.003 [0.024] 0.002 [0.016] 0.003 [0.024]
2012 9.92 1229.30 0.002 [0.016] 0.002 [0.016] 0.001 [0.008]
2013 9.79 968.70 0.001 [0.008] 0.001 [0.008] 0.001 [0.008]
2014 11.02 1184.00 0.001 [0.008] 0.001 [0.008] 0.001 [0.008]
2015 10.42 933.00 0.001 [0.008] 0.002 [0.016] 0.001 [0.008]
AVG 10.36 1029.96 0.002 [0.016] 0.002 [0.016] 0.002 [0.016]

(b)

N2O-N:biomass
g m−2: g m−2

N2O-N:biomass
g m−2: g m−2

N2O-N:biomass
g m−2: g m−2

Baseline scenario
30 yr mean (SD)

0.0012 [0.0096]
(0.0003)

0.0014 [0.0112]
(0.0005)

0.0011 [0.0088]
(0.0005)

Medium emission 2080s
30 yr mean (SD)

0.0012 [0.0096]b

(0.0003)
0.0015 [0.012]
(0.0005)

0.0011 [0.0088]b

(0.0005)
High. emission 2080s
30 yr mean (SD)

0.0012 [0.0096]b

(0.0003)
0.0016 [0.0128]
(0.0006)

0.0012 [0.0096]
(0.0005)

a based on average feed conversion of 8 kg DM per kg live weight gain (Eblex sheep BRP Manual 5, 2014).
b both biomass and annual N2O both increased under a warmer climate, retaining the same N2O-N per unit product.
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live-weight gain. N2O per product is shown to be consistent, both be-
tween fields and between years 2011–2015. There appears little in-
crease in these metrics under future climate projections (Table 6b)
from the baseline values; but thismetric hides the fact thatwithwarmer
projected temperatures there is a corresponding increase in biomass
plus a proportional increase in annual N2O emissions.

In contrast to N2O, the inorganic N leached per unit product
2011–2015 was variable (Table 7a), both between years and between
fields, averaging from 0.0025 to 0.004 g Nm−2 leached per gm−2 above-
ground sward biomass, and averaging from 0.016 to 0.032 g N m−2

leached per g m−2 of grazing stock live-weight gain. These metrics rep-
resent 27 kg to 45 kg leached N ha−1 annually. The average annual fertil-
izer applied over 2011–2015 was 16.3, 14.4 and 17.2 kg N ha−1 for
Longlands South, Dairy North and Golden Rove, respectively. Total
days grazing over 2011–2015were 919, 764 and 614 days for Longlands
South, Dairy North and Golden Rove. Because fertilizer N inputs for the
Table 7
Metrics between three grazed fields growing Lolium perenne for leached inorganic nitrogen per
brackets the live-weight gain of lamba, and (b) simulated 30-year mean results for climate sce

(a)

Mean temp Total precip LS
Nl
g

2011 10.65 834.80 0.
2012 9.92 1229.30 0.
2013 9.79 968.70 0.
2014 11.02 1184.00 0.
2015 10.42 933.00 0.
AVG 10.36 1029.96 0.

(b)

Nleach:biomass
g m−2:g m−2

Baseline scenario
30 yr mean (SD)

0.0039 [0.0312]
(0.0015)

Medium emission 2080s
30 yr mean (SD)

0.0041 [0.0328]b

(0.0016)
High. emission 2080s
30 yr mean (SD)

0.0039b

(0.0015)

a Based on average feed conversion of 8 kg DM per kg live weight gain (Eblex sheep BRP Ma
b Both biomass and annual N2O both increased under a warmer climate, retaining the same
three fields were similar, the reason behind higher leaching of
Longlands South is likely animal derived, the longer the total period of
grazing over a year, the higher the risk of leaching (Cuttle et al., 1998).

The climate projection under both the medium and high GHG sce-
narios (Table 7b) resulted in a small increase in leaching above the base-
line scenario together with a small increase in biomass, resulting in a
small increase in inorganic N leached per unit product.

Based on the same simulated units of g m−2, metrics for leaching per
unit product are smaller than N2O emissions per unit product. This
agrees with other findings from DAYCENT which showed that fine tex-
tured soils emit more N2O, but with smaller leaching losses (Del Grosso
et al., 2008).

In this study the Dairy North field with the highest f-RUE was also
the field with the lowest leached N per unit product, and Longlands
South field with the lowest f-RUE was also the field with the highest
leaching. Norton et al. (2015) reported that improvements in N use
unit product (a) simulated for 2011–2015, where the product is grass biomass or, in square
narios. LS = Longlands South, DN= Dairy North, GR = Golden Rove.

each:biomass
m−2:g m−2

DN
Nleach:biomass
g m−2:g m−2

GR
Nleach:biomass
g m−2:g m−2

008 [0.064] 0.0014 [0.011] 0.0114 [0.091]
003 [0.024] 0.0017 [0.014] 0.0020 [0.016]
004 [0.032] 0.0023 [0.018] 0.0013 [0.010]
003 [0.024] 0.0005 [0.004] 0.0018 [0.014]
003 [0.024] 0.0065 [0.052] 0.0014 [0.011]
004 [0.032] 0.0025 [0.016] 0.0036 [0.029]

Nleach:biomass
g m−2:g m−2

Nleach:biomass
g m−2:g m−2

0.0042 [0.0336]
(0.0011)

0.0031 [0.0248]
(0.0016)

0.0042 [0.0336]
(0.0011)

0.0033 [0.0264]b

(0.0015)
0.0040 [0.0320]
(0.0013)

0.0033 [0.0264]
(0.0015)

nual 5, 2014).
N2O-N per unit product.
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efficiency from increased productivity coincide with reductions in N
pollution of surface waters.

4.2.4. Significant differences between managements for grazing or silage
crop with grazing

The annual simulations contain a mixture of field management
types, either grazing only or one silage harvest plus grazing. There was
a significant difference (p b 0.05) in the simulated N2O emission per
unit product, with values for the grazing only management found to
be significantly higher than the silage plus grazing management. This
disproves the null hypothesis that the two managements would result
in the same yield gain to N loss. The higher N2O emission per unit prod-
uct for grazing only management related to the total period livestock
spent on pasture, which were 171–277 days per year for grazing only,
and 27–152 days per year for silage plus grazing. Total annual inorganic
fertilizer applied was not significantly different between the two man-
agements. N2O emission in grazed pastures are known to be primarily
associated with animal excreta and soil compaction from livestock
(Saggar et al., 2004, 2007) rather than resulting indirectly from a reduc-
tion in the grass biomass (Zhang et al., 2015), and livestock numbers
plus number of grazing days have shown an increase in N2O (Wang
et al., 2012). Here however, the simulated grazing intensity is assumed
constant, and theDAYCENTmodel does not directly simulate grazing in-
tensity with livestock numbers. Themetrics for leaching, fertilizer N use
efficiency or EFs did not display a significant difference between the si-
lage plus grazing management and the grazing management.

5. Conclusion

By applying the automated sensor data to model calibration, the
simulations provided continuous data to create the metrics to build up
a picture for the health of the field system in terms of gains in product
offset by the losses in nitrogen.

Comparing the three field systems, there appeared to be no differ-
ence in absolute leached N, but Golden Rove was better in terms of effi-
ciency with lower average leached N per unit product (0.0032 for
Golden Rove, compared to 0.004 and 0.003 (ignoring 2012)), and had
the highest resource use efficiency (48.2 biomass: applied N, compared
to 46.5 and 45.2). N2O emission was lower on Golden Rove
(0.029 kg N2O-N per kg fertilizer applied, compared to 0.041 and
0.031) which is due to lower topsoil bulk density, enhanced by the
model's sensitivity to bulk density.

Warmer temperature projections for the latter 21st century in-
creased N2O EFs consistently across all fields under medium and high
GHG scenarios compared to baseline (from baseline 0.045, 0.056 and
0.075 kg N2O-N per kg fertilizer applied, to 0.048, 0.059 and 0.077). Al-
though Golden Rove had the lowest N2O EF, using one metric does not
show the whole picture, because the leached N per product was rela-
tively high amongst the three fields (0.0033 for Golden Rove, compared
to 0.0040 and 0.0041).

Separating results for N2O emission per product into different field
managements of silage harvest followed by grazing versus grazing
only, added a further dimension to the picture showing that reduced
days grazing annually was coincident with reduced emission (0.001
N2O\\N: biomass, compared to 0.0018, respectively), disproving the
hypothesis that all management yields the same gain to loss.

If we simulate both N loss by leaching and by gaseous emission, we
get a fuller picture of the loss, and comparison to product gained adds
information on efficiency, separation into field management categories
adds further data. By using several metrics and layering up more infor-
mation, field sites ormanagement techniques are better compared than
relying on one metric. This study has produced metrics for traditional
management of sheep ryegrass pasture. New technology for field man-
agement, new cultivars or livestock breeds for greater yield can have
unintended consequences of the loss of nitrogen to air or water. If in fu-
ture, metrics for agronomic innovations are compared to those for
traditional management under current climate and future climate pro-
jections, we will be able to determine the relative benefits and offsets.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.05.038.
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