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Highlights 

• Kenyan tea factories could act as a demand anchor extending rural electricity access 

• Cost allocation to different consumers impacts on whether full benefits are attained 

• Cost sharing rules can be designed where all actors benefit and would participate 

• Without incentives, tea factories may prefer to exclude other rural consumers 

• Regulation should consider mini-grid and national electricity pricing interactions 

 

Abstract  

We use a discounted cash flow model to explore the impact of electricity pricing and cost 

sharing rules on the economics of a small wind-powered mini-grid project in Kenya, designed 

around local tea factories as a demand anchor and connected to the national grid.  The results 

show that including rural domestic and small business consumers in the project increases the 

overall economic benefit, illustrating the potential gains from using the tea factories as a 

demand anchor.  However, the results also demonstrate that how costs are allocated to 

different consumer types impacts on participation and on whether the full benefits could be 

attained.  If all consumers must pay towards the infrastructure they use according to their 

consumption, domestic consumers with low energy demands would not join the mini-grid.  

Cost sharing rules can be designed where tea factories, small businesses and domestic 

consumers all individually benefit and would therefore have incentives to participate.  

However, when the mini-grid is owned by the tea factories there are also possible outcomes 

where they might prefer to exclude domestic consumers.  The results emphasise the need for 

policy makers to consider appropriate mini-grid tariffing regulation and how these tariffs 

interact with any existing national electricity pricing systems.  

 

Keywords: Renewable energy, mini-grids, Kenyan tea, electricity pricing, cost sharing, 

demand anchor 

 

 

 



1. Introduction  

In Sub-Saharan Africa (SSA) 62.5% of the population do not have access to energy (IEA and 

World Bank, 2017), a factor that poses a significant obstacle to sustainable socio-economic 

development in the region.  Government electrification strategies often follow a twin track 

approach; electrification occurs through national grid extension - typically built by a state-

owned company - and via decentralized mini-grids developed by local communities and/or 

private investors.  While electrification through national grid extension has had limited 

success in SSA (Bhattacharyya, 2012), decentralized renewable energy mini-grids may 

provide an alternative solution particularly for rural electrification (Deichmann et al., 2011; 

Abdul-Salam and Phimister, 2016).  It has, however, been argued that insufficient attention 

has been given to how the two approaches might be coordinated (Tenenbaum et al., 2014).  

Of particular importance to private investors is what happens to the isolated (rural) mini-grid 

after the national grid arrives, as this uncertainty has the potential to undermine their business 

models (Tenenbaum et al., 2014; IRENA, 2016; Bhattacharyya and Palit, 2016).     

 

The tariff that operators are allowed to charge is a key consideration in the economics of 

decentralized mini-grids.  Grid-based electricity generation, distribution and retail have 

traditionally been dominated by wholly or partially state-owned power companies.  

Consequently, electricity pricing tends to have been tightly controlled by governments.  

Many SSA governments are trying to encourage a growth in both small, renewable energy 

Independent Power Producers (IPPs) and Distributors (IPDs) by offering a range of 

incentives, e.g. FiTs in Kenya (MoE, 2012, 2015).  However, the emergence of privately 

funded IPPs and IPDs raises policy issues with regards to how tariffs within new mini-grids 

should be set and the extent to which they should be regulated.  As is the case for all 

distribution networks, such firms have local market power which they may exploit to the 

detriment of (often poor) consumers.  At the same time, flexible tariff pricing rules are 

needed to provide private firms with sufficient incentives to invest.  However, while 

flexibility may be accepted in principle, there are also often political considerations and 

pressure for equity across consumers may require providers to charge the same tariffs as the 

national grid, particularly if the national utility is also the mini-grid operator, e.g. TANESCO 

in Tanzania (Tenenbaum et al., 2014).  Despite this, some SSA governments have introduced 

regulation to allow IPDs to charge cost-reflective tariffs which may be significantly higher 



than the rates charged by the national grid (Kapika and Eberhard, 2013; Tenenbaum et al., 

2014).  For example in Kenya, although the retail prices of the national utility responsible for 

the transmission and distribution of grid electricity are regulated to “ensure efficiency pricing 

and a fair return on investments” (Kapika and Eberhard, 2013, p 39, para. 1), the Kenyan 

Government does allow flexibility in setting private sector operated mini-grid tariffs to reflect 

costs (Tenebaum et al., 2014; IRENA, 2016).  

 

Mini-grid projects are not always developed as isolated from the main grid.  Rather they exist 

in a variety of configurations and include those in which the mini-grids export/import power 

from the main grid and serve local retail customers (Tenenbaum et al., 2014).  Even when 

grid connection is available mini-grids may still be established due to main grid service 

reliability issues, for example supply shortfalls or unanticipated demand may lead to “load-

shedding” by national utilities (Global Lighting, 2018).  In addition, with the development of 

renewable energy technologies, the traditional model of electricity supply based around a 

small number of large power plants has changed to one where production is naturally more 

decentralised and spatially distributed (Cossent et al., 2009).  However, the development of 

community and private sector-operated mini-grids in rural areas can be affected by 

insufficient funding and unstable demand (Yadoo and Cruickshank, 2012; Bhattacharyya and 

Palit, 2016).  One solution may be to design mini-grids around a rural commercial ‘anchor 

load’, a local consumer whose base electricity demand is large, to reduce investment risk 

(WEF-PwC, 2013; Bhattacharyya and Palit, 2016).  Large commercial customers may also be 

able to finance such investments from their own resources and thus facilitate investments 

which might not be fundable from other sources.  Connecting such mini-grids to the national 

transmission network could then further lower demand risk and stabilize the service if 

electricity import/export is permitted (Tenenbaum et al., 2014).  These connected mini-grids 

could offer insights into the challenge of ensuring that incentives to invest in isolated mini-

grids are not undermined by the arrival of the main grid, as well as provide an opportunity to 

explore how tariff structures in the mini-grid and wider national grid interact.  

 

The rural tea-growing regions in Central and Western Kenya provide a good example of areas 

where connected mini-grids have potential.  The Kenyan tea industry is an important 

contributor to the country’s economy and accounts for ~20% of income from exports (FAO, 



2016; KNBS, 2016).  The tea-growing regions are, however, energy-poor and existing 

electricity distribution systems are not sufficient to supply the local population (IED, 2008; 

SWERA, 2008; Nordman, 2014).  The tea industry has a high demand for electricity.  

Harvested green leaf tea is processed in tea factories, large rural energy consumers that are 

distributed across the tea-growing region (IED, 2008).  Several tea factories have already 

invested in small own-use renewable energy plants, some of which are connected to the 

national grid (ERC, 2015b).  Small hydro-power is an inexpensive energy source in the tea-

growing region (IED, 2008), but it is spatially restrictive and climatically sensitive.  Nordman 

(2014) demonstrated that wind-power may provide a viable alternative energy source for the 

tea industry.   

 

This paper aims to explore how interactions between mini-grid tariffs and the national grid 

affect the economics of a mini-grid investment and the extent to which connected mini-grids, 

with commercial demand anchors, can be used to extend access to electricity to smaller rural 

consumers.  To do this we use a case study, based in Kenya’s tea-growing region, in which 

rural tea factories serve as both the facilitator and demand anchor for a wind-powered rural 

electrification scheme.  As is typically the case for Kenya’s tea factories, the rural mini-grid 

also has a connection to the national electricity grid.  We construct a discounted cash flow 

model to examine the impact of electricity pricing and cost sharing rules on the economics of 

the grid-connected, wind-powered IPP mini-grid project.  The underlying data is drawn from 

a range of actual projects from East Africa (e.g. IED, 2008, 2009; Nordman, 2014).  Using 

this model to test different cost sharing rules, we explore how local electricity pricing affects 

the economic benefits both of the overall project and for different types of local consumers, 

and consider how these benefits might (or might not) be achieved via private investment.  

 

The remainder of the paper is structured as follows.   Section 2 provides an overview of the 

effect of Kenya’s current policy on mini-grid projects and outlines the potential for a 

decentralized wind energy project in the tea-growing region.  Section 3 describes the 

financial cost-benefit models used to investigate the economic case for the wind energy plant 

and rural electrification scheme, the cost sharing rules assumed and how local electricity 

prices are determined in each case.  The data and technical assumptions underpinning the 



study are detailed in Section 4.  Empirical results are presented and discussed in Section 5.  

Finally, in Section 6, key conclusions and policy implications are highlighted.  

 

2. Background 

Around 74% of the population of Kenya live in rural areas (FAO, 2017) and, in 2015, rural 

electrification rates were estimated to be as low as 10% (MoE, 2015).  Rural consumers are in 

favour of replacing existing diesel, kerosene or liquefied petroleum gas with electricity due to 

high fuel costs and supply uncertainties (Abdullah and Jeanty, 2011).  Kenya’s Rural 

Electrification Authority (REA) was tasked with overseeing service expansion in rural areas 

and many public facilities are now connected to the national grid (Parsons Brinckerhoff, 

2013; Boampong and Phillips, 2016; Eberhard et al., 2016, Lee et al., 2016).  Increasing 

demand for electricity in Kenya (MoE, 2015; Osano and Koine, 2016) could, however, place 

a significant burden on existing generation and transmission capacity (MoE, 2015; 

Boampong and Phillips, 2016).  

 

The Kenya Tea Development Agency (KTDA), the largest co-operative of tea-growers in 

Kenya, is central to our case study.  The KTDA produces ~60% of all Kenyan tea and has a 

membership of more than half a million small-scale farmers (IED, 2008; Nordman, 2014).  

Sixty five independently-run tea factories fall under the management of the KTDA (KTDA, 

2017) and small-scale farmers both supply and hold shares in their local factory.  On average, 

each factory serves a catchment area of ~2,000 ha and ~9,000 growers (KTDA, 2017).  In a 

small hydropower feasibility study conducted by the IED (2008) on behalf of the East Africa 

Tea Trade Association (EATTA) and the ‘Greening the Tea Industry in East Africa’ (GTIEA) 

initiative, the KTDA expressed an interest in providing electricity to local communities.  

However, this is not currently permitted by the Kenya Government (Nordman, 2014).     

 

2.1 Existing Policy Environment for Mini-Grid Projects  

Electricity generation in Kenya is dominated by the partially privatized KenGen and the 50% 

state-owned national power utility, Kenya Power and Lighting Company or Kenya Power 

(KPLC), maintains operating control over the national transmission-distribution networks and 



monopoly power in the retail sector (Parsons Brinckerhoff, 2013; ERC, 2015a; Eberhard et 

al., 2016).  But the energy market is changing.  The Kenyan Government supports the growth 

in small renewable energy Independent Power Producers (IPPs) and Distributors (IPDs).  

Technology-specific feed-in-tariffs (FiTs) are available for small (0.5 to 10MW) renewable 

energy projects (MoE, 2012, 2015).  The standard FiT is an inflation-adjusted, fixed-price 

tariff (in U.S. dollars) guaranteed under a Power Purchase Agreement (PPA) for a contract 

period of around 20 years (MoE, 2012, 2015).  These FiTs were originally calculated to 

reflect the underlying costs for each technology.  Accounting for the estimated lifetime of the 

plant and electricity to be generated, they were set to allow a fair rate of return on invested 

capital, where allowable expenses include for example plant capital expenditure, costs of 

connecting to the grid, and operating, maintenance and financing costs (MoE, 2012).  

However, there have been few adjustments for increases in the cost of generating equipment 

or financing since 2012 and the Kenyan Government has recognized that “to attract private 

investment a realistic review of the tariffs” will be required (MoE, 2015, p.65).  

 

Additional revisions made by the Kenyan Government to the energy regulatory environment 

also aim to promote IPPs and IPDs (Kiplagat et al., 2011; Kirubi et al., 2008).  Although 

several IPPs have entered the market since 1996 (Eberhard et al., 2016), few independent 

companies are currently involved in managing small electricity distribution networks.  Until 

recently, rural mini-grids in Kenya were either community-run or operated by KPLC (Yadoo 

and Cruickshank, 2012; IRENA, 2016).  Independent companies, such as PowerGen 

Renewable Energy and Powerhive, have now entered the mini-grid operating market 

(IRENA, 2016; Aglionby, 2017).  With more players in the market, electricity pricing, in 

particular for the rural poor, may become a key issue.  

 

As in many developing countries, uniform national tariffs have typically been imposed on 

many larger mini-grids in Kenya (Tenebaum et al., 2014).  Rural mini-grids operated by 

KPLC charge national grid prices but, as these schemes are typically diesel-powered, 

additional subsidization is required to cover the high costs of fuel (IRENA, 2016).  KPLC 

uses a long run marginal cost (LRMC) pricing approach to determine its national two-part 

electricity charges and any shortfall in revenue from its mini-grids is recovered from the 

Rural Electrification surcharge applied to the national electricity market (IRENA, 2016).  



Although seen as a ‘fair’ pricing scheme, the use of national uniform tariffs for mini-grids 

may not lead to efficient outcomes (Tenebaum et al., 2014; IRENA, 2016) and tariffs may be 

too low to encourage investment from independent, private sector companies.  To allow for 

cost recovery, small community-operated mini-grids may levy break-even (average cost) 

tariffs, often at very low discount rates, but these tariffs can be higher than main grid prices 

(Yadoo and Cruickshank, 2012; IRENA, 2016).  To ensure project financial viability, the 

Kenyan Government has given Powerhive, one of the first independent mini-grid operators, 

the authority to charge its own rates (Tenebaum et al., 2014; IRENA, 2016).   

 

2.2 Potential for Small Wind Energy Projects in Tea-growing Regions 

Tea factories owned by the KTDA are large rural energy consumers, using 2-3 GWh of 

electricity per year (IED, 2008).  Currently connected to the national grid, electricity accounts 

for ~50% of the energy cost per ton of ‘made’ tea for KTDA factories (IED, 2008).  In 

addition, due to their ‘end-of-the-line’ rural location, tea factories may experience variable 

quality electricity supply and expensive back-up diesel generators are often employed (IED, 

2008).  To reduce cost, improve electricity reliability and move towards ‘clean’ energy 

sources, the KTDA has already invested in a number of own-use small hydro-electric projects 

through its subsidiary power company (IED, 2008; KTDA, 2017).  

  

Located at high altitudes on the eastern and western flanks of the Great Rift Valley, Kenya’s 

tea-growing regions experience good rainfall and wind conditions that could support both 

hydro and wind-energy projects (AFA TD, 2017; MoE, 2015).  Hydropower is an established 

energy source in Kenya, but interest and capacity in the wind-power sector is growing, in 

particular due to the impact of climate change on water resources (IEA, 2014; Murage and 

Anderson, 2014; ERC, 2015a; MoE, 2015).  A pre-feasibility study by Nordman (2014) 

estimates ~30% of Kenya’s tea-growing region could have ample wind resources, based on 

data from the UNEP Solar and Wind Energy Resource Assessment (SWERA) project.  

Nordman’s study showed that the potential for wind power is highest in the eastern tea-

growing regions, where the density of tea plantations is lowest, while in the west where most 

tea plantations are located, wind potential is significantly lower.  Despite this, he found that 

19 tea plantations in the west (approximately 23% of all plantations) had potential for the 



economic use of wind power.  Clearly local, site specific wind conditions may change the 

economic viability of any investment in wind power projects.  For example, the data used in 

Nordman is based on quite a “coarse spatial resolution” (25 km2) and at sites where finer 

scale data is available, there is some evidence that wind resources can be substantially higher 

(Nordman, 2014, p.512).  

 

The Kenyan Government also identified a lack of detailed wind regime data as a barrier to the 

development of wind power, and they have installed 60 wind masts and loggers across Kenya 

to help improve available information (MoE, 2015).  Therefore, wind-power could provide a 

flexible, but as yet relatively unexploited, alternative energy resource in the tea-growing 

region, if the cost of generation is sufficiently low and if local wind speeds and densities at 

specific sites are sufficiently high. 

  

3. Methodology 

A discounted cash flow model is used to explore the economics of the potential wind-

powered IPP-mini-grid project.  The electricity price is key to project viability and rural 

consumer participation.  To ensure cost recovery, project electricity prices are determined 

using an average cost/break-even pricing approach.  The business case for a small wind-

powered IPP and mini-grid in this study is informed by a similar hydro-powered project in 

Tanzania (IED, 2009), and builds upon wind-power (Nordman, 2014) and hydro-power (IED, 

2008) studies linked to the tea industry in Kenya.  The grid-connected IPP is assumed to 

supply four tea factories directly and, as the factories are already connected to the national 

grid, these also serve as nodes from which electricity is distributed to local rural consumers 

(Figure 1).  To balance the intermittency of wind power, the generation-distribution system in 

this study makes allowance for all consumers to draw electricity from the main grid during 

periods of low IPP production.  

 



 

Figure 1:  Proposed business case with wind power generator-supplier and potential consumers. 

 

In the base case two main scenarios are examined.  In Scenario 1 the IPP supplies tea 

factories and rural communities, whereas in Scenario 2 the IPP supplies only the tea factories.  

In both scenarios we assume that any excess electricity generated can be exported to the 

national grid at the feed-in-tariff.  As highlighted in Section 1, how different cost allocations 

and pricing rules affect the results is a key element of this study.  To explore this, three 

simple IPP electricity pricing options are used here.  First the two scenarios above are 

considered in the base case, where project cost is allocated so that all consumers are treated 

as equals and pay towards the infrastructure that they use.  Scenario 1 is then re-considered 

under two alternative cost allocation rules: where all consumers share all project costs and 

where rural consumers pay only the extra costs associated with the mini-grid.  

 

3.1 IPP-Mini-grid Cash Flow Model 

The discounted cash flow model, constructed in real terms, is used to evaluate revenue 

streams for the IPP and mini-grid and find break-even electricity prices.  Only financial costs 

and benefits of the project are considered in Net Present Value (NPV) calculations.  



Externalities, such as environmental costs and benefits, are excluded.  Project life is assumed 

to be 24 years and electricity generation and sales occur over a 20 year period in accordance 

with typical wind-plant lifetimes (IRENA, 2012b) and standard Kenyan PPAs (MoE, 2015).  

Electricity generation starts at full capacity and sales commence after a two year construction 

period.  Total benefits are restricted to revenues obtained from the sale of electricity and total 

costs include capital investments (CAPEX), operations and maintenance (OPEX), and 

decommissioning costs (DECEX).   

 

Capital costs (CAPEX) depend upon the type and number of consumers included in the 

project.  Plant costs include estimates for civils works, electro-mechanical items and the 

turbines.  A medium voltage (MV) transmission system connects the plant to the tea factories 

and national grid.  The MV system cost is given by the cost per unit length of line, and the 

distances from the power plant to each tea factory and to the national grid.  It is assumed that 

there is no national grid connection fee.  Rural mini-grid costs are given by the cost per unit 

length of low voltage (LV) line, and the total number and maximum length of each LV 

distribution line extending from each tea factory.  The cost of an additional transformer per 

tea factory is included to support the LV distribution system.  

 

OPEX is calculated as a percentage of the power plant-MV system and the rural mini-grid 

CAPEX, and applied separately.  DECEX is calculated as a percentage of total CAPEX.  

CAPEX is split 70:30 over the two-year construction period and DECEX is split 70:30 over 

two years following the cessation of operations.  Capital equipment has no scrap value and 

CAPEX is depreciated along a straight-line over 20 years (after IED, 2008).  Kenyan 

corporation tax is included in the model as we are assuming that the project is financed by 

private investors.  All values used are in real terms.   

 

 

3.2 Wind Electricity Price Determination (Base Case) 

In practice, tariffs are set following a range of different principles, such as uniform pricing, 

avoided cost tariffs or cost-reflective tariffs.  The  tariff structures faced by consumers come 



in a variety of types, including a simple flat rate amount, a price per unit of consumption, a 

combination of these, or more complex multiple block tariffs (Train, 1991; Tenenbaum et al., 

2014; RECP, 2016).  Here, to ensure economic viability, we use cost-reflective tariffs and 

assume that the IPP-mini-grid price consumers face is a simple per unit rate.  Specifically, 

power plant revenue is a function of the prices charged and quantities of electricity consumed 

by each consumer type.1   

 

To allow for cost recovery, a simplified average cost pricing approach is used to estimate the 

price per unit of wind-generated electricity.  The base case cost allocation rule used in this 

study assumes that tea factories and rural consumers contribute equally (pbase) to the total 

costs of the power plant and MV transmission system.  Rural consumers pay an additional 

surcharge (pRC) to cover the total LV-distribution system costs.  Surplus electricity exported 

to the national grid is sold at the feed-in-tariff (pFiT).  Under the break-even constraint, the 

total cost (TC) of building and operating the plant, transmission and distribution systems is 

equal to the project’s total revenue (TR):   

𝑇𝐶 = 𝑇𝑅 = 𝑝𝑏𝑎𝑠𝑒 ∑ 𝑞𝑇𝐹𝑖
𝑖=𝑛
𝑖=1 + (𝑝𝑏𝑎𝑠𝑒 + 𝑝𝑅𝐶) ∑ 𝑞𝑅𝐶𝑗

𝑗=𝑚
𝑗=1 +  𝑝𝐹𝑖𝑇 . 𝑞𝑁𝐺

  

i = 1,…,n number of tea factories ; j = 1,….,m number of rural consumers 

where the quantities of electricity consumed by each tea factory, each rural consumer and 

sold to the national grid are qTFi, qRCj and qNG, respectively. 

 

3.3 Financial Benefits for Tea Factories 

We assume that the tea factories will invest in the IPP project only if there is if a non-

negative Present Value of savings (PVsavings) with respect to electricity expenditure.  Any 

additional financial benefits from improved tea quality or product ‘greening’ by participating 

in a renewable energy scheme (IED, 2008) are not considered.  Without the IPP, a tea 

factory’s total electricity cost (TCgd+d) consists of national grid and backup diesel generation 

components (IED, 2008).  Wind-generated electricity is intermittent and this model assumes 

that the cost of IPP electricity (TCIPP) will displace only a fraction of the current national grid 

                                                           
1 For simplicity, we assume that domestic consumers and small businesses are charged the same price. 



and diesel electricity costs.  As diesel generators serve as a backup, a constant demand ratio 

of diesel and national grid electricity is assumed.  Savings are calculated as:    

Savings (undiscounted) = 𝑇𝐶𝑔𝑑+𝑑 − [𝑙𝑇𝐹. 𝑇𝐶𝐼𝑃𝑃 + 𝐹𝐶𝑔𝑑 + 𝑉𝐶𝑔𝑑+𝑑 . (1 − 𝑙𝑇𝐹)] 

where the fraction of electricity obtained from the IPP is lTF, FCgd is the fixed cost of grid 

electricity and VCgd+d are the variable costs associated with grid electricity and diesel 

generation.  Diesel generator maintenance costs are considered insignificant, and sunk fixed 

costs associated with the generator and pre-existing grid connections are excluded from this 

model.   

 

3.4 Financial Benefits for Rural Consumers 

Two consumer types are identified within rural communities; domestic and small businesses.  

For simplicity, it is assumed that all rural consumers wish to connect to electricity in project 

year 2.  Financial benefits to rural consumers of joining the IPP are represented by the 

Present Value of savings (PVsavings) made over the duration of the project.  The PVsavings are 

calculated as the difference between the cost of national grid electricity (TCgd) and the cost of 

a combination of national grid and IPP-mini-grid electricity: 

Savings (undiscounted) =  𝑇𝐶𝑔𝑑 − [𝑙𝑅𝐶 . 𝑇𝐶𝐼𝑃𝑃 + 𝐹𝐶𝑔𝑑 +  𝑉𝐶𝑔𝑑(1 − 𝑙𝑅𝐶)] 

where the fraction of electricity obtained from the IPP is lRC, TCIPP is the cost of the IPP-

mini-grid electricity, FCgd and VCgd are the fixed and variable costs associated with grid 

electricity.2  

 

 

 

 

                                                           
2 Where a household connects directly to the national grid it is assumed that they would pay the standard 

Kenyan grid connection fee per household (149 USD; Mwiti, 2016).  Where the connection is via the mini-grid 

the marginal cost of connection under the IPP is assumed to be 80 USD (Lee et al., 2016).   

 

 



3.5 Cost Allocation Rules  

After assessing the two main scenarios under the base case cost allocation rule two further 

cost allocation mechanisms are considered.  Under the base case cost allocation (Option 1, 

equation 1), consumers are treated as equals and pay towards the infrastructure that they use, 

according to their consumption.  The second cost allocation option (Option 2, equation 2) 

assumes that all consumers share all project costs, proportional to their consumption.  The 

third cost allocation option trialled (Option 3, equation 3) assumes that rural consumers pay 

only the excess, or costs associated with the mini-grid, while all other costs of the IPP project 

are paid by the tea factories.  Equations expressing these three pricing options are given 

below and for completeness the base case is repeated:    

TCs =TRs = pbase.qTF + (pbase + pRC).qRC + pFIT.qNG    (1) 

TCs =TRs = pall.(qTF + qRC) + pFIT.qNG     (2) 

TCs =TRs = pTF.qTF + pRC.qRC + pFIT.qNG     (3) 

where TCs = total cost of supply, TRs = total revenue,  pbase = price covering IPP and MV line 

costs (paid by all consumers, Option 1), pRC = price covering LV mini-grid costs (paid by 

rural consumers only, Option 1), pall = price covering all costs (paid by all consumers, Option 

2), pTF = price covering all costs for the IPP and MV lines (paid by tea factories only, Option 

3), pRC = price covering LV mini-grid costs (paid by rural consumers only, Option 3), qTF = 

tea factories’ consumption, qRC = rural consumers’ consumption, pFIT.qNG = revenue from the 

national grid at the feed-in-tariff. 

 

4. Technical Assumptions and Data 

The design and costing of the power plant and mini-grid is informed by the wind power pre-

feasibility study of Nordman (2014) and the hydro-power feasibility studies of IED (2008, 

2009).  Additional legal and technical regulatory requirements for the operation of the grid 

and power plant are beyond the scope of this study.  Key model input data is presented in 

Table 1 and technical assumptions are given below.    

  



Cash Flow Model Input Parameters Assumption Source 

All Discount rate  10% Pueyo et al. (2014) 

Independent  Wind FiTa  0.11 USD MoE (2012) 

Power Total Costsb    

Plant CAPEX Civils, other  845k USD Nordman (2014) 

  Wind Turbine 422k USD Nordman (2014) 
  Transmission line (11kV)  14k USD/km IED (2008) 

  Transmission line (LV)  8.5k USD/km 
Authors’ estimate; after IED 
(2009), Lee et al. (2016) 

  No. of LV lines 7 per tea factory Authors’ estimate 

  Transformer (MV-LV) 6,2k USD 
Authors’ estimate; after IED 
(2009) 

 OPEX IPP 3 % of IPP CAPEX 
Authors’ estimate; after IRENA 
(2012b) 

  Transmission line (LV) 2 % of LV CAPEX Authors’ estimate 
     
 Exchange Rate USD:KSh 1:103 January 2017 rate 
 Corporation tax rate  30% Pueyo et al., 2016; IED, 2008 

Rural Consumers No. of consumers Domestic households 30 Authors’ estimate 
 per LV line Small businesses 5 Authors’ estimate 
    

a FiT originally calculated by Kenyan Ministry of Energy to provide a fair return on investment after including costs for capital, 
operating and maintenance, connection to grid, economic lifetime and estimated electricity output (MoE, 2012).  
bFeasibility studies excluded. Costs (in U.S. dollars) from the literature were adjusted to January 2017 values using U.S. inflation 
rates (World Bank, 2017b). 

Table 1:  Base case cost assumptions for the Independent Power Plant cash-flow model. 

4.1 Power Generation and Rural Mini-grid 

IPP annual electricity generation capacity is calculated here using total turbine capacity and a 

wind power capacity factor.  Due to discrepancies between SWERA and ground observed 

wind data (Nordman, 2014), we assume a capacity factor of 33% based on the average annual 

generation of the 5.1MW Ng’ong Hills Wind Farm (KenGen, 2017).  Cost estimates follow 

Nordman (2014) and assume Goldwind S48 750 kW turbines are a suitable option.  An 

annual degradation factor of 1.6% (Staffell and Green, 2014) is applied to turbine generation 

capacity.  To explore the efficient level of local production, i.e. how much of the local 

electricity demand should be met by the project, we examine the overall economics of 

investing in three, four or five turbines.   

 

Cost estimates for the medium voltage (MV) transmission system are based on 11 kV lines.  

IED (2008) demonstrated the technical viability of a single 35km 11kV line supplying four 

tea factories, linked in tandem.  For simplicity, voltage losses along the lines are considered 

negligible.  It is assumed that an MV line from the plant can connect to the national grid 

through an existing regional substation (IED, 2008).  Provision is made for one additional 

transformer per tea factory to convert MV current to low voltages (LV) for distribution to 

rural consumers (ECA, 2014; Tenenbaum et al., 2014).  A maximum of 600m is allowed for 



each LV line in the rural mini-grid, in accordance with Kenyan regulations (Parsons 

Brinckerhoff, 2013; Lee et al., 2016).  The installation of transmission and distribution lines 

is assumed to be optimized to reach the maximum number of consumers.   

 

4.2 Electricity Demand 

Although tea factories have year-round electricity requirements, electricity demand is 

primarily a function of the quantity of tea processed.  The mean processing capacity, 

estimated across thirty-three KTDA tea factories, is 15 million kilograms of green leaf 

(KTDA, 2017) and approximately 0.067kWh is required to process 1kg of green leaf (IED, 

2008).  These values are used to evaluate the annual demands of our four ‘average capacity’ 

tea factories.   

 

Rural domestic and small business electricity requirements are more challenging to quantify.  

As a domestic household density of around 210 households per km2 is assumed, we use the 

electricity usage estimate of 45kWh/month per household from Parshall et al. (2009) for 

lower density areas (<256 people per km2) in the base case.   Small rural businesses can have 

highly variable electricity demands (e.g. IED, 2009; Parshall et al., 2009; Lee et al., 2016).  

Here we assume thirty-five small businesses surround each tea factory, each with an 

electricity usage of 125kWh/month in the base case (estimated after IED, 2009).   

 

Electricity demand of the tea factories and rural communities will vary over short (e.g. 

hourly) and long (e.g. annual) timescales.  For example the Kenyan tea industry experiences 

up to two harvests per year, with highest electricity demand falling between July and 

September (Figure 2) (IED, 2008; Azapagic et al., 2016; KTDA, 2017).  Although electricity 

demand is not specifically modelled here, the percentage of tea factory and rural consumer 

annual electricity requirements that could be fulfilled by the wind plant is estimated using the 

monthly frequency data of winds >5.4m.s-1 at Ng’ong Hills (Figure 2) (Meteoblue, 2017).  

Average wind strengths of >5.5m.s-1 are typically considered acceptable for generation 

(SWERA, 2008; Nordman, 2014). 



 

Figure 2: Monthly frequency of winds of greater than ~5.4m.s-1 (green) at Ng'ong (Meteoblue, 2017) and 

averaged recorded monthly electricity usage of four tea factories (blue) (IED, 2008). 

 

4.3 Current Cost of Electricity (without IPP-mini-grid project) 

The electricity prices that all consumers would pay if they were connected to the national grid 

are presented in Table 2 (for tea factories this allows for the unreliability of the grid and the 

need for diesel backup).  Monthly national grid electricity charges are calculated for all 

consumers following World Bank (2017a).  Grid electricity charges consist of a fixed 

‘access’ and variable ‘usage’ components.  The usage component for small businesses (Small 

Commercial cost band) and domestic consumers is limited to a consumption charge.  

Domestic consumers face an inverted block tariff with a lower lifeline (subsidized) tariff for 

the first 50kWh consumed, paid for by increased tariffs for those consuming higher quantities 

of electricity (Kapika and Eberhard, 2016).  Access to even limited quantities of electricity 

can have positive impacts on livelihoods of the poor and marginalized groups via budget, 

health and productivity effects (Abdul-Salam and Phimister, 2019).  This type of in-kind 

benefit is often used in developing countries as a pro-poor policy, although evidence suggests 

that its benefits are not necessarily well targeted on the poor and marginalized groups 

(Komives et al, 2007; Angel and Wodon, 2007).  In addition to a consumption charge, larger 

commercial users also pay a demand charge that is determined by their peak electricity 

demand.  Tea factories are treated as Commercial/Industrial CI2 electricity users and a peak 

electricity demand of 550 kVA is assumed (IED, 2008).  Tea factory electricity prices also 

include a diesel-generator component at a ratio of diesel generation to national grid electricity 

of 1:50 (IED, 2008).  We assume a diesel price of 0.77 USD/kWh.  
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Consumers No. of consumers 
Monthly 

consumptiona 
Imputed priceb 

Tea Factory 4 146,041 kWh 0.18 USD/kWh 

Rural Domestic 840 45 kWh 0.12 USD/kWh 

Rural Small Business 140 125 kWh 0.23 USD/kWh 

aAverage assumed per consumer. 
bPrice per unit paid by consumers if connected to the national grid.  To compensate for grid 
unreliability, the price paid by the tea factories includes a diesel generation component. 

 

Table 2:  Imputed average electricity prices for all consumers if connected to the national grid. 

 

5. Results and Discussion 

5.1 Project viability under the Base Case Pricing Assumption 

As discussed in Section 3, the base case allocation rule sets break-even prices so that the tea 

factories and rural consumers contribute equally to the total project costs.  These results are 

presented under Scenario 1 in Tables 3 and 4 for three, four and five turbine IPP projects.  In 

addition, to explore whether the tea factories would have incentives to invest in an own-use 

wind-power plant, we report the results for the project without the mini-grid extension to the 

rural consumers.  These results are presented under Scenario 2.  For the IPP-mini grid project 

to be viable, the wind electricity price must be sufficiently low to reduce tea factory operating 

costs.  Similarly, rural consumers will only participate in the project if the cost of electricity 

with the IPP-mini-grid is no more than that with national grid electricity only.  In Table 4, the 

overall results are therefore disaggregated for each type of consumer.   

 

The Table 3 results indicate the level of electricity generation, export to the national grid, the 

overall level of CAPEX and the break-even electricity prices under the various project sizes 

and scenarios.  In Scenario 1, rural consumers and tea factories contribute equally to the costs 

of the IPP and MV systems, with excess electricity exported to the national grid at the feed-

in-tariff.  The higher NPV CAPEX in Scenario 1 is due to the costs of the rural mini-grid, but 

this cost is borne solely by rural consumers.  In Scenario 2, without the rural consumers, 

more electricity is exported to the national grid at the wind feed-in-tariff.   

  



 3 Turbines 4 Turbines 5 Turbines 

Scenarioa, Rural Consumers 
Scenario 1, 

Inclusive  
Scenario 2, 
Exclusive  

Scenario 1, 
Inclusive  

Scenario 2, 
Exclusive  

Scenario 1, 
Inclusive  

Scenario 2, 
Exclusive  

Electricity Generated (in Year 2) 6,504,300 kWh 8,672,400 kWh 10,840,500 kWh 

Electricity Export (in Year 22) 129,512 kWh 328,592 kWh 1,249,766 kWh 1,640,009 kWh 2,904,353 kWh 3,174,847 kWh 

NPV CAPEX 4,238,841 USD 4,179,854 USD 5,471,475 USD 5,412,488 USD 6,694,195 USD 6,645,122 USD 

Simple Payback Period 9 years 9 years 9 years 9 years 9 years 9 years 

Electricity Price per kWh  
(Post tax NPV=0) 

0.145 USD 0.147 USD 0.147 USD 0.150 USD  0.151 USD 0.154 USD 

Rural Community surcharge / 
differential price (per kWh) 

0.054 USD  0.027 USD 
 

0.027 USD  

aUnder the base case allocation rule break-even prices imply tea factories and rural consumers contribute equally to total costs.  Scenario 1 results 
include rural consumers.  Scenario 2 results are for an own-use IPP for the tea factories alone. In all cases, surplus electricity is exported to the 
national grid at the feed-in-tariff (0.11 USD/kWh) throughout project life. 
 

Table 3:  Key results of wind-power project with three, four and five turbines under the base case cost 

allocation rule. 

 

By calculating the Present Value (PV) of savings (Table 4), the benefits, both overall and for 

each different type of individual consumer, can be evaluated.  The Table 4 results show that 

the overall project economics benefit from the inclusion of rural consumers under the base 

case cost allocation rule.  For example, acting on their own (Scenario 2) the tea factories 

generate economic savings of 388.5 thousand U.S. dollars for the four turbine case, whereas 

if the project is extended to supply electricity to other local customers the overall economic 

value increases to 406.5 thousand U.S. dollars.   

 Scenarioa PV of Savings Total Savingsb 

5 Turbines Scenario 1 PV Savings for Tea Factory 87,598 USD  

  PV Savings for Rural Consumers   

  Domestic: (per household) -181 USD  

  Small Business: (per property) 307 USD 241,332 USD 

 Scenario 2 PV Savings for Tea Factory 55,584 USD 222,336 USD 

4 Turbines Scenario 1 PV Savings for Tea Factory 125,258 USD  

  PV Savings for Rural Consumers   

  Domestic: (per household) -167 USD  

  Small Business: (per property) 327 USD 406,532 USD 

 Scenario 2 PV Savings for Tea Factory 97,132 USD 388,528 USD 

3 Turbines Scenario 1 PV Savings for Tea Factory 130,346 USD  

  PV Savings for Rural Consumers   

  Domestic: (per household) -83 USD  

  Small Business: (per property) 113 USD 467,484 USD 

 Scenario 2 PV Savings for Tea Factory 116,532 USD 466,128 USD 
 

aBase case allocation rule breakeven prices imply tea factories and rural consumers contribute equally to 
total costs.  Scenario 1 results include rural consumers.  Scenario 2 results are for tea factories alone. Tea 
factories and rural consumers pay a ‘base price’ and share the CAPEX, OPEX and DECEX for the plant 
and MV lines.  A surcharge for rural electrification is paid by rural consumers (see equation 1). 
bTotal of the PV of savings made by all actors in each scenario.  

 

Table 4:  PV of savings per consumer under base case cost allocation rule. 



The individual impacts on different consumers within the model are also important as these 

indicate whether each type of consumer would have an incentive to buy electricity from the 

IPP.  The wind plant produces savings for the tea factories under all scenarios. Tea factories 

make the greatest savings under Scenario 1, which includes small business and domestic 

consumers, with either a three turbine (130,346 USD) or a four turbine (125,258 USD) plant.  

Small businesses have the greatest PV of savings (327 USD) with a four turbine plant.  

However, the base case cost allocation rule produces an IPP electricity price that is too high 

for our domestic consumers whatever the number of turbines in the project.  Hence, these 

consumers would be better off using the grid alone.  Without intervention the full economic 

value of the project could, therefore, not be achieved.   

 

Under the base case cost allocation rule, the PV of savings differ for rural domestic and small 

business consumers depending upon their respective electricity demands (Figure 3).  As we 

use fixed per unit pricing for the IPP electricity, the observed differences are explained by the 

national grid pricing structure.  Small businesses make a positive PV of savings by 

connecting to the IPP across all tested demand levels.  As the national grid usage fee for 

small businesses increases at a fixed rate with increasing consumption, the amount of savings 

gained by joining the IPP project also increases with increasing consumption.   

 

The impact on domestic consumers is more complicated due to the inverted block tariff (with 

lifeline tariff) that they face when using the national grid.  Consistent with the simple welfare 

analysis of multi-part tariffs by Train (1991), if the inverted block tariff faced by the 

consumer is replaced by a single unit price with the IPP, those consuming at or below the 

maximum quantity attracting the lifeline tariff will lose consumer surplus (assuming the 

single unit price is above the lifeline tariff).  When the single IPP unit price lies below 

national block tariff, consumers will gain from every unit of extra consumption so that the 

losses on low consumption will eventually be offset.  This is reflected in Figure 3.  Assuming 

negligible price effects, the modelling shows that domestic consumers with high electricity 

usage (>100kWh per month) make a positive PV of savings with the IPP, whereas consumers 

with a usage of between 45 and 55kWh/month make the greatest losses.   



 

Figure 3:  PV of savings sensitivity for rural consumers under the base case cost allocation rule. 

 

The results in Table 4 also appear to show that the three turbine configuration provides the 

overall largest economic surplus.  However, this ignores the economic value associated with 

the increased reliability arising from an increase in local electricity supply.  Although we can 

see from Table 3 that a three turbine wind farm provides the lowest base IPP electricity price 

(pbase = 0.145 USD/kWh) for tea factories, by project year 22 the plant is capacity 

constrained.  In our model, with three turbines there is sufficient electricity to cover 63% of 

tea factory and just 30% of local rural consumer annual demand.  As less electricity is sold to 

rural consumers, a higher rural surcharge (pRC = 0.054 USD/kWh) is needed to cover the 

mini-grid costs.  The four and five turbine plants produce sufficient electricity to meet 66% 

and 67% of the tea factories’, and 59% and 60% of local rural consumers’ annual 

requirements, respectively.  The IPP base electricity price is, however, 0.004 USD/kWh 

cheaper for a four turbine plant under both Scenarios 1 and 2.  With increased sales to rural 

consumers, the mini-grid surcharge is also lower at 0.027 USD/kWh.  Hence arguably, the 

four turbine wind farm will provide a better trade-off between local capacity, potential 

reliability and electricity price, if the difference in the overall value is less than the value of 

extra reliability to local consumers.   

  

5.2 Evaluation of Different Cost Allocation Strategies 

As the previous results showed (Section 5.1, Table 4), the full potential economic benefits are 

unlikely to be realised with the base case cost allocation because the associated pricing means 
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that rural domestic consumers have no incentive to participate and buy electricity from the 

IPP.  In this section we consider whether alternative cost allocation mechanisms, and their 

associated prices, could lead to a situation in which all consumers would have positive 

incentives to participate and buy from the IPP.  In addition to the base case, two further cost 

allocation mechanisms are now considered.  

 

The base case, or cost allocation Option 1 (equation 1), is as before where consumers are 

treated as equals and pay towards the infrastructure that they use, according to their 

consumption.  In Option 2 (equation 2): Share All Costs, all consumers share all project costs 

proportional to their consumption.  In Option 3 (equation 3): Rural Pay Excess Only, it is 

assumed that rural consumers pay only the excess or costs associated with the mini-grid, 

while all other costs of the IPP project are paid by the tea factories.  Tea factories therefore 

partially subsidize the rural consumers in Option 3.  As, by definition, the IPP achieves cost 

recovery in all of these cost allocation options, the differences in savings across the options 

are most easily interpreted as the transfer of economic rent across the consumer groups.    

 

The PV of savings for each consumer type under the three cost allocation rules are presented 

in Table 5.  Rural small businesses achieve a positive PV of savings with all cost allocation 

options, irrespective of the number of turbines in the IPP.  Tea factories maximize their 

savings with Option 1 and make the least savings with Option 3.  Options 1 and 2 could not 

be sustained without, for example, direct subsidy as rural domestic consumers otherwise face 

negative PV of savings under these options and would not buy from the IPP.  Cost allocation 

Option 3, on the other hand, does provide a positive surplus to rural domestic consumers, and 

all other actors, and would therefore be sustainable.  Although overall economic value is 

reduced in Option 3 relative to Option 1 for the three turbine plant, this is not the case if the 

higher level of local electricity supply of the four turbine plant is preferred.   

 

 

 

 



  3 Turbines 4 Turbines 5 Turbines 

1. Base Case PV Savings for Tea Factory 130,346 USD 125,258 USD 87,598 USD 

 PV Savings for Rural Consumers 

 Domestic: (per household) -83 USD -167 USD -181 USD 

 Small Business: (per property) 113 USD 327 USD  307 USD 

 Total Savingsa 467,484 USD 406,532 USD 241,332 USD 

2. Share all costs 
PV Savings for Tea Factory 107,116 USD 104,321 USD 68,348 USD 

 PV Savings for Rural Consumers 

 Domestic: (per household) -19 USD -105 USD -119 USD 

 Small Business: (per property) 293 USD 501 USD 481 USD 

 Total Savingsa 453,524 USD 399,224 USD 240,772 USD 

3. Rural pay only 

excess 
PV Savings for Tea Factory 72,661 USD 13,094 USD -32,769 USD 

 PV Savings for Rural Consumers 

 Domestic: (per household) 101 USD 202 USD 202 USD 

 Small Business: (per property) 625 USD 1,373 USD 1,373 USD 

 Total Savingsa 462,984 USD 414,276 USD 230,824 USD 

aTotal of the PV of savings made by all actors in each scenario. 
 

Table 5:  PV of savings per consumer under three Cost Allocation Rules. 

 

Both the Table 4 and Table 5 results suggest that the ownership of the IPP-mini-grid may 

play a role in determining whether all of the potential economic benefits are likely to be 

realised or whether the tea factories would have incentives to simply ‘go-it-alone’.  The Table 

5 results indicate that while Option 3 is the only cost allocation which provides incentives for 

the domestic consumers to join the IPP, the gains to the tea factories in this case are rather 

small.  If the tea factories finance the project, by excluding the rural consumers and choosing 

a three turbine plant they could maximise their PV of savings (Scenario 2, Table 4).  This 

would suggest that if the IPP-mini-grid project was to be financed by the tea factories, the 

factories would have few incentives to act as a demand anchor for other local consumers, and 

are likely to require additional incentives and subsidy from the government in order to invest 

both for themselves and for wider the rural community.   

 



6. Conclusions and Policy Implications  

This paper shows that including local rural domestic and small business consumers could 

increase the net economic benefit from small wind-powered projects in Kenya’s tea-growing 

region, and provide increased access to locally produced electricity among rural households.  

However, how project costs are allocated to different consumer types has a significant impact 

on participation.  If all consumers must pay towards the infrastructure they use according to 

their consumption, it is not financially beneficial for domestic consumers with low energy 

demands (<100 kWh/month) to join the wind-power project compared to the national grid.  

This is, in part, due to the increasing block structure, with a lifeline tariff, of the KPLC 

national electricity tariffs.   

 

A cost allocation rule can be found that provides benefits (and positive incentives to 

participate) for all consumers.  Under this rule, cost is allocated so that rural consumers pay 

only the extra costs associated with the mini-grid, while the tea factories cover all other 

project costs.  Rural domestic and small business consumers benefit most from a four turbine 

plant because greater rent is transferred to them from the tea factories.  Tea factories may not, 

however, have an incentive to provide electricity to rural consumers under such a cost 

allocation scheme as they would benefit more from a less capital intensive, three turbine, 

own-use plant.    

 

Although the wind-power project recovers all of its costs under all scenarios and cost 

allocation rules examined, ownership issues could lead to exploitive IPP electricity pricing.  

For example, if the tea factories own shares in the IPP-mini-grid, there may be incentives to 

extract rent from rural domestic and small business consumers.  Additional incentives and/or 

regulations, such as tariff caps (IRENA, 2016), may therefore be needed to promote this type 

of rural electrification project and encourage equitable pricing and distributive efficiency.  

 

Such regulations may also be desirable to ensure that the cross-subsidization of poor and 

marginal consumers is achieved in the mini-grid.  As discussed, the national lifeline tariff 

impacts significantly on the net benefits of the IPP for domestic consumers, with low quantity 



consumers losing in the base case cost allocation rule.  On the national grid, more affluent 

consumers cross-subsidize the lifeline tariff for poorer consumers.  Hence mini-grids may be 

at a relative disadvantage as the lower number of rural consumers able to pay higher tariffs 

limits this type of cross-subsidy.3  Where this is the only source of cross-subsidization 

available to fund a lifeline tariff, it may mean that the national grid should remain the first-

choice provider of electricity for domestic customers.  However, the different cost-allocation 

rules presented here, e.g. where domestic consumers only pay extra costs associated with the 

mini-grid, effectively provide alternative methods of cross-subsidizing a lifeline tariff.   

 

The results presented here emphasise that while there are potential gains from using local tea 

factories as demand anchors for the mini-grid project, there is no guarantee that private 

investors will invest to a scale which will lead to maximum potential social net benefit. There 

is therefore a role for government in supporting such initiatives.  The case discussed here 

focusses on wind as the renewable investment and, in reality, the project economics will 

depend on a range of site-specific characteristics, including wind speed and density, which 

may not make some investments attractive.  The appropriate regulation of pricing in mini-

grids, how local prices interact with any existing national electricity pricing system, the role 

of feed-in tariffs and the impact on overall investment incentives is, however, relevant for a 

wide range of renewable technologies.  In the Kenyan context, for example, the structure of 

the problem would be similar for the other technologies supported by Feed-in Tariffs, such as 

hydro or biomass.   

 

 

 

 

 

 

 

                                                           
3 We thank one of the referees for highlighting this point.  
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