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Abstract 9 

This article reviews modern applications of mathematical descriptions of biofilm formation.  10 

The focus is on theoretically obtained results which have implications for areas including the 11 

medical sector, food industry and wastewater treatment. Examples are given as to how models 12 

have contributed to the overall knowledge on biofilms and how they are used to predict biofilm 13 

behaviour. We conclude that the use of mathematical models of biofilms has demonstrated 14 

over the years the ability to significantly contribute to the vast field of biofilm research. Among 15 

other things, they have been used to test various hypotheses on the nature of interspecies 16 

interactions, viability of biofilm treatment methods or forces behind observed biofilm pattern 17 

formations. Mathematical models can also play a key role in future biofilm research. Many 18 

models nowadays are analysed through computer simulations and continue to improve along 19 

with computational capabilities. We predict that models will keep on providing answers to 20 

important challenges involving biofilm formation. However, further strengthening of the ties 21 

between various disciplines is necessary to fully utilize the tools of collective knowledge in 22 

tackling the biofilm phenomenon. 23 
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 It is estimated that bacteria and archaea constitute approximately half of all existing life 1 

on our planet [1]. It should thereby not come as a surprise that microbes have such a profound 2 

impact on our environment and our day to day lives. It is evident that the control and utilization 3 

of these tiny, ubiquitous organisms can generate huge leaps to advance human society, be it 4 

through introducing improvements in environmental protection [2], general health and well-5 

being [3] or in various industries, e.g. food [4], energy [5], water treatment [6], or mining [7]. 6 

The immense complexity and diversity of the microbial world, and its sensitivity to 7 

environmental influences, physical or chemical alike, calls for a joining of forces between 8 

various science disciplines (for example biology, physics, mathematics, engineering, or 9 

chemistry), to fully equip the research field with the necessary tools for solving the associated 10 

challenges [8–10]. 11 

 Bacteria may either exist in a "free-floating" planktonic state, or attached to a surface, 12 

forming biofilm communities [11].  There are substantial differences between these two modes 13 

of bacterial existence, chemical gradients and stress responses being only the tip of the iceberg 14 

[12]. In this review we will focus on the latter situation, i.e. bacteria growing in biofilms, 15 

although some comparisons to bacterial development in planktonic state will be included. 16 

 Biofilms can be defined as bacterial communities surrounded by polymeric matrices of 17 

extracellular matter and other associated products, most commonly attached to a surface or at 18 

an interface [13]. The biofilm matrix itself can be an immensely complicated environment, 19 

ranging from one strain and all its associated products to multiple species (for example oral 20 

biofilms can contain more than 500 species of bacteria [14]). Generally, the associated products 21 

include eDNA, proteins, polysaccharides and lysed cell debris, but the matrix can also contain 22 

enzymes, RNA and abiotic materials [1,15]. Furthermore, biofilm communities typically grow 23 

in complex environments such as soil; a highly heterogeneous and geometrically intricate 24 

landscape [16,17], which affects biological, ecological and  physical processes in complicated 25 

ways.  26 

 Biofilm formation can be supported by virtually any nutrient sufficient environment, as 27 

is the case for general microbial growth [13]. The biofilm phenomenon poses a significant 28 

challenge to industries and to human health, as bacteria within a mature biofilm structure are 29 

better protected against harsh environmental conditions and antimicrobial agents as compared 30 

to planktonic cultures [13]. Indeed, such colonial growth can be seen as a strategy of unicellular 31 

organisms to gain the advantages that multi-cellular organisms have innately [18]. 32 

 Biofilm control is of great importance to industries as their accumulation can cause 33 

significant economic losses, by causing, among other things, deterioration of equipment 34 



through inducing corrosion [19] or increasing fluid resistance [20]. Furthermore, biofilm 1 

contamination may affect chemical processes involved in production, thus making them less 2 

effective. This is particularly important in the energy and chemical industries [21]. Other note-3 

worthy examples are the paper industry, where biofouling may have a detrimental effect on the 4 

quality of the final product, or the accumulation of biofilms below the waterline on the hulls of 5 

ships, which causes considerable losses for shipping industries by increasing drag, and what 6 

naturally follows, fuel consumption [21].  7 

 In contrast to generating losses, biofilm formation of some non-pathogenic bacteria can 8 

be utilized by industries, by e.g. inhibiting the growth of pathogens [22,23], preventing fungi-9 

related food spoilage [24], or engineering biofuels [25,26]. Microbes have also been recognized 10 

as useful in the treatment of wastewater [27,28], cleaning up fuel spills [29], and even for their 11 

potential in generating electricity [5,10,30]. The list of associations between biofilms and 12 

industries goes on and on and it is therefore no wonder that these bacterial communities are of 13 

great interest from an economical perspective. 14 

 Apart from generating significant interest directly from businesses, there are also great 15 

health concerns associated with biofilm formation (which are also connected with economic 16 

factors, albeit indirectly) [31]. The problem is that there are innumerable species of human 17 

pathogens capable of forming biofilms, and many of these microbes, potentially dangerous to 18 

human health, are our constant co-habitants [32]. Microbial contamination in the food, 19 

agricultural or medical sectors calls for, among other control measures, detailed exploration of 20 

possible disinfection methods, employed to prevent human disease outbreaks and to reduce the 21 

amount of food waste. The quest to gain control over microorganisms is extremely difficult, as 22 

these organisms have many tools at their disposal which aid their survival and growth. 23 

Developing resistance to antimicrobials [33] and cooperation with other microbial species [34], 24 

by e.g. quorum sensing [35], are a few examples of such survival tools. 25 

 It has been repeatedly shown that bacteria in a sessile growth phase are much harder to 26 

control than the bacteria grown a free-floating state, and studies have been undertaken to 27 

understand what properties of biofilms give the bacteria embedded within a competitive edge 28 

against treatment [36].  Mathematical models have significantly contributed to the field of 29 

biofilm formation in at least two important ways. First, mathematical models help to understand 30 

the key mechanisms involved in biofilm formation. These include quorum sensing [37–43], 31 

effects of multi-species interactions [44–46], antimicrobial resistance [47], or the mechanical 32 

properties of the extracellular matrix [48]. Second, mathematical models are routinely used to 33 



inform strategies to prevent or promote biofilm formation in specific situations relevant to, e.g., 1 

food and water security [27,49] or biofuel production [30,50].  2 

 In this review, we give a concise summary of the current stage of application of 3 

mathematical models of biofilms, providing arguments for the continuation and further 4 

strengthening interdisciplinary collaboration within the field. We emphasise the applications 5 

of the models rather than their mathematical intricacies which are covered by other reviews 6 

[1,51,52]. Section 2 describes results obtained from mathematical models used to understand 7 

key mechanisms for biofilm formation (see Table 1 for a summary of the reviewed models and 8 

Figure 1 for a schematic diagram of all sections discussed).The importance of mathematical 9 

modelling to address each of the selected topics is demonstrated by reviewing key findings 10 

based on state-of-the-art models that represent a substantial addition to the understanding 11 

gained through experimental approaches. 12 

 13 
Table 1 Summary of Biofilm Modelling Work Mentioned in this Review 14 

Author (Date) Model Description Organism Purpose 
O. Wanner, 
S. Gujer (1986) 

1D, continuum, 
deterministic 

Not specified Study of the competition 
between autotrophs and 
heterotrophs in a 
multispecies biofilm 
[45]. 

W. Nichols et al. (1989) 1D, continuum, 
deterministic 

Pseudomonas aeruginosa Study of antibiotic 
penetration of biofilms 
of mucoid and non-
mucoid strains [47]. 

E. Ben-Jacob et 
al.(1994) 

2D, cellular automaton, 
stochastic 

Bacillus subtilis Exploration of patterns 
of bacterial growth in 
various nutrient 
conditions [53]. 

O. Wanner, 
P. Reichert (1995) 

1D, continuum, 
deterministic 

Not specified Extension of previous 
work [45]. General 
approach to modelling 
mixed species biofilms, 
exploring spatial profiles 
of chemical compounds 
and microbial organisms 
[54]. 

P. S. Stewart et al. 
(1996) 
 

1D, continuum, 
deterministic 

Not specified Analysis of biocide 
action against biofilms 
[55]. 

C. Picioreanu et al. 
(2000) 

2D, continuum, 
deterministic 

Not specified Study of the effect of 
biofilm surface 
roughness on the mass 
transport within the 
biofilm [56]. 

M. G. Dodds et al. 
(2000) 

1D, continuum, 
deterministic 

Pseudomonas aeruginosa Analysis of antimicrobial 
resistance mechanisms 
of biofilms [57]. 

J. Dockery, 
J. Keener (2001) 

1D, continuum, 
deterministic 

Pseudomonas aeruginosa General analysis of the 
quorum sensing 



 mechanism in biofilms 
[37]. 

D. L. Chopp et al. (2002) 1D, continuum, 
deterministic 

Pseudomonas aeruginosa Prediction of acyl-HSL 
and oxygen 
concentration profiles 
within the biofilm and 
analysis of their effect on 
biofilm growth [58]. 

I.Chang et al. (2003) 3D, cellular automaton, 
stochastic 

Not specified Effect of transport 
limitation on microbial 
growth and biofilm 
structure [59]. 

K. Anguige et al. (2004) 1D, continuum Pseudomonas aeruginosa Analysis of effects of 
quorum sensing 
inhibitors and antibiotics 
on the quorum sensing 
mechanism of biofilms 
[38]. 

C. Picioreanu et al. 
(2004) 

2D/3D, individual-based Not specified Analysis of the effect of 
multidimensional 
gradients on multispecies 
biofilm development 
[60]. 

J. Xavier et al. (2004) 3D, individual-based Not specified Comparison of CLSM 
data to spatial structures 
of multispecies biofilms 
generated by the model 
[61]. 

J. Xavier et al. (2005) 3D, individual-based Not specified Introduction of a general 
framework for IBM 
modelling [62] and 
evaluating the efficiency 
of biofilm treatment by 
detachment promoting 
agents [63]. 

K. Anguige et al. (2005) 1D, continuum Pseudomonas aeruginosa Quorum sensing 
inhibition [39]; extension 
of [38]. 

S. M. Hunt et al. (2005) 3D, cellular automaton Not specified Analysis of antimicrobial 
action on biofilms, 
which focused on the 
scope of substrate 
limitation contribution 
on antimicrobial 
resistance [64]. 

J. D. Chanbless (2006) 3D, hybrid differential-
discrete cellular 
automaton, stochastic 

Not specified Exploration of four 
hypothetical mechanisms 
of antimicrobial 
resistance, i.e. poor 
antimicrobial 
penetration, stress 
response mechanism, 
physiological 
heterogeneity within the 
biofilm and persister 
cells [65]. 

A. K.  Marcus et al. 
(2007) 

1D, conduction-based, 
deterministic 

Not specified Modelling the 
electrochemical 
processes in microbial 
fuel cells biofilms with 



focus on factors affecting 
electron flow  [30]. 

J. Xavier 
K. Foster (2007) 

2D, individual-based, 
deterministic 

Not specified Evolutionary outcomes 
of exopolymeric 
substances producers 
competing with non-
producing individuals 
[46]. 

G. E. Kapellos (2007) 2D, hybrid differential-
discrete cellular 
automaton, deterministic 

Not specified Analysis of biofilm 
growth dynamics in 
porous media. First 
modelling work to 
account for fluid flow 
through the biofilm [66]. 

F. Romero-Campero 
M. Pérez-Jiménez (2008) 

P-system Vibrio fischeri Quorum sensing analysis 
using biochemical 
reaction networks [40]. 

J. Ward (2008) 1D, continuum, 
deterministic 

Not specified Investigation of anti-
quorum sensing 
treatment of biofilms 
[39]. 

N. Jayasinghe 
R.Mahadevan,  (2010) 

1D, continuum model, 
combined with genome 
scale metabolism 
modelling 

Geobacter 
sulfurreducens 

Analysis of the effect of 
maintenance energy 
requirements on 
maximum current 
production and thickness 
of biofilms in microbial 
fuel cells [10]. 

M. Frederick et al. 
(2011) 

2D, continuum, 
stochastic 

Not specified Analysis of how quorum 
sensing controlled EPS 
production affects 
biofilm formation [42]. 

Z. Wang et al. (2011) 2D, cellular automaton, 
deterministic 

Caldicellulosiruptfor 
obsidiansis, 
Clostridium 
thermocellum 

Study of cellulose 
degradation by biofilms 
in biofuel production 
[50,67]. 

L. Lardon et al. (2011) 2D, individual-based Not specified Introduction of a biofilm 
modelling platform for 
non-programmers; 
iDynoMiCS [68]. 

D. Rodriguez et al. 
(2012) 

2D/3D, cellular 
automaton, stochastic 

Not specified Studying effects of 
surface roughness 
patterns on biofilm 
formation in the 
presence of flow [69]. 

M. Asally et al. (2012) 2D, hybrid differential-
discrete cellular 
automaton, deterministic 

Bacillus subtilis Theoretical analysis of 
mechanical forces 
behind emergent pattern 
formation of biofilms 
[70]. 

F. Pérez-Reche(2012) 3D, network, stochastic Not specified Analysis of network 
representation of soil 
samples with regards to 
potential microbial 
invasions [17]. 

R. Ferrier et al. (2013) 2D, individual-based, 
stochastic 

Listeria monocytogenes Estimating counts of 
food spoilage organisms 
on the surface of cheese 
[49]. 



A. Ehret, 
M. Böl (2013) 
 

3D, continuum, 
deterministic 

Pseudomonas aeruginosa Study of mechanical role 
of EPS matrix on 
biofilms, representing 
the EPS matrix as a 
worm-like chain network 
[48]. 

S. Bottero et al. (2013) 2D, cellular automaton, 
stochastic 

Not specified Examination of factors 
influencing the 
development of flow 
paths in a biofilm formed 
in porous media [71]. 

W. Harcombe (2014) 2D, differential-discrete 
model, combined with 
genome scale 
metabolism modelling 

Escherichia coli 
Salmonella enterica 
Methylobacterium 
extorquens 

Proposed a modelling 
framework for 
incorporating genomic 
scale information on the 
scale of microbial 
communities with the 
aim to predict the 
behaviour of 
multispecies consortia 
[72]. 

N. Jayasinghe et al. 
(2014) 

1D, continuum model, 
combined with genome 
scale metabolism 
modelling 

Geobacter 
sulfurreducens 

Metabolic modelling of 
spatial heterogeneity of 
biofilms in microbial 
fuel cells [73]. 

J. Cole et al. (2015) 3D, continuum model, 
combined with genome 
scale metabolism 
modelling 

Escherichia coli Analysis of the effect of 
metabolic interactions 
within densely packed 
biofilm colonies, i.e. the 
relation between a cell’s 
position within a colony 
and its metabolism [74]. 

B. Emerenini et al. 
(2015) 

2D/3D, continuum, 
deterministic 

Not specified Analysis of biofilm 
detachment regulated by 
quorum sensing 
mechanism [43]. 

R. Bennett et al. (2016) Hydrodynamic, 
deterministic 

Pseudomonas aeruginosa 
et al. 

Analysis of individual 
cells flagellar spinning 
movements on the 
surface in early biofilm 
development [75]. 

P. Phalak et el. (2016) 1D differential-discrete 
model combined with 
genome scale 
metabolism modelling 

Pseudomonas 
aeruginosa, 
Staphylococcus aureus 

Role of metabolic factors 
on the spatial 
distribution of cells in a 
two species biofilm. The 
species were chosen for 
their common 
occurrence  in chronic 
wound infections [76] . 

M. Azari et al. (2017) Activated Sludge Model Candidatus brocadia et 
al. 

Wastewater treatment 
reactor study [27]. 

B. Né Dicte Martin et al. 
(2017) 

2D, cellular automaton, 
stochastic 

Streptococcus gordonii, 
Porphyromonas 
gingivalis 

Assessment of mixed 
species interactions in 
oral biofilms [44] 

I.Tack et al. (2017) 2D, individual based, 
stochastic 

Escherichia coli Analysis of the effect of 
various environmental 
factors on the biofilm 
morphology [77]. 

K. Coyte (2017) 2D, hydrodynamic, game 
theory 

Escherichia coli Analysis of the relative 
success of microbial 



strategies in porous 
media for various flow 
conditions [78]. 

S. Stump et al. (2018) 2D, cellular automaton, 
stochastic 

Not specified Study of the competition 
between co-operators 
and cheaters within a 
microbial community 
[79]. 

 1 

 2 
Figure 1 Schematic diagram of the review. The biofilm models are categorised according to their purpose. Firstly, models 3 
which aimed to understand various biofilm formation mechanisms are discussed. We give examples of how mathematical 4 
modelling explained some observed phenomena arising from mixed species interactions, extracellular substances, quorum 5 
sensing mechanism, apparent antimicrobial resistance of biofilms and biofilm formation in complex structures. Secondly, 6 
attention is turned to second type of biofilm model, which aim to predict levels of biofilm accumulation. These models are 7 
generally specific to a given area of interest. We give examples of applications of these predictive models in the food industry, 8 
wastewater management and in engineering biofuels. 9 
 10 

2 Understanding biofilm-related mechanisms with mathematical models 11 

 12 

 Ever since the 1980s, efforts have been made to use mathematical descriptions to 13 

supplement experimental observations of biofilm communities. Many biofilm models have 14 

appeared since the initial efforts which considered one-dimensional, mono-species descriptions 15 

[80]. These have been extended to add more spatial dimensions, more bacterial species, or by 16 

analysing the effects of varying environmental properties such as temperature, pH, fluid flow 17 

or spatial constraints from rough surfaces or porous media. The biofilm models are either 18 

stochastic [49,68,81,82], taking into account a certain degree of randomness of biological 19 

processes, or deterministic [83–85], if the stochasticity analysis is not needed to answer a 20 



particular question. They can be individual-based [49,62,68,86–88], where each bacterial cell 1 

is considered as an entity, or mesoscopic [89–91], where an entity of interest is a whole colony 2 

or a microcolony of cells, and a single event may be for example population doubling. The 3 

models developed can focus on describing the biofilm at the scale of the whole population, or 4 

at the level of the individual cells, taking into account the details of cell structure and how it 5 

affects its behaviour [75].  The fact that different models have been developed to focus on 6 

different spatial and temporal scales reflects the inherent multi scalar nature of the processes 7 

involved in biofilm formation [92,93]. 8 

 Although biofilm models may significantly differ from each other, they also have many 9 

things in common. Fundamental processes such as attachment, microbial growth, nutrient 10 

uptake, cellular death, extracellular products generation, detachment and some chemical 11 

processes are usually introduced in some manner, albeit the methods used vary. For example, 12 

microbial growth in an individual-based model is introduced by a division of a cell with a set 13 

of rules governing the structural changes in the matrix following the introduction of a daughter 14 

cell. On the other hand, in models in which biomass is treated as a continuum, growth may be 15 

portrayed in terms of continuous biomass expansion and movement [1]. Furthermore, diffusion 16 

of chemical compounds is generally introduced by solving Fick’s law, convection is often 17 

governed by Navier-Stokes equations for fluid flow or their approximations, and nutrient 18 

uptake and biomass growth implementation usually includes a form of Monod equation 19 

[51,52]. 20 

 The following section presents examples in which mathematical modelling has proven 21 

instrumental to understand complex factors in biofilm growth whose elucidation using 22 

experimental methods remains a challenge. We will discuss the role of extracellular matrix and 23 

quorum sensing, the emergent antimicrobial resistance of biofilms and models which test 24 

viability of treatment methods, biofilm formation in complex structures and in mixed species 25 

biofilms. The list of topics presented here is by no means exhaustive. Due to the complexity of 26 

the field, we were forced to leave out many aspects, for example, the effect of motility of cells 27 

or factors influencing attachment (see, e.g. [94–96] for mathematical models incorporating 28 

some of these factors). We believe however, that the aspects we present give a taste of how 29 

mathematical modelling has been employed in biofilm research to this date.  30 

 31 

2.1 Role of Extracellular Substances 32 

The general role of the biofilm extracellular matrix (ECM) is to hold the biofilm 33 

together and fix it in place, but it has also been reported to be utilized by cells as a nutrient 34 



source [1,15]. By keeping the cells closer together, accumulation of quorum sensing signalling 1 

molecules is more likely to occur, making communication mechanisms more effective [15]. 2 

Furthermore, the immobilizing properties of the ECM have the effect of keeping extracellular 3 

enzymes close to the cells and thus the ECM may act as an external digestive system [97]. 4 

Other fundamental roles include  facilitating gene transfer [98] or inducing formation of 5 

complex, self-organised structures [70]. The ECM has also been reported to protect the biofilm 6 

cells from desiccation, biocides, antibiotics, heavy metals, UV light, host immune responses, 7 

and protozoan grazers [97]. 8 

In IbM models, individual agents such as bacteria cells or EPS material are treated as 9 

discrete entities, with specific properties assigned to them, such as their biomass, size and 10 

interactions with the environment. These agents are typically placed in continuous space, 11 

which is what puts IbM models apart from Cellular Automaton (CA) models, in which space 12 

is discretised in the form of a lattice [60]. 13 

 A study using an individual based model (IbM) in 3 dimensions has been conducted to 14 

assess the potential of enzymic disruption of the ECM as a biofilm control strategy [62,63]. 15 

Prior to the theoretical study, the ability of NaOH to break down Staphylococcus epidermidis 16 

biofilms was confirmed experimentally, resulting in the need to identify factors affecting the 17 

efficiency of the treatment which could potentially be applicable for other bacterial species 18 

[99]. The simulations had two stages. In the first stage, a biofilm was developed without the 19 

presence of disruptive enzymes. Subsequently, after a simulation time of 60 days, the biofilm 20 

was treated with a chemical compromising the ECM matrix, along with activating flow in order 21 

to trigger the detachment effect of the weakened biofilm structure. The modelling study found 22 

that 99% of biofilm removal resulting from the treatment occurred quickly, i.e. within a couple 23 

of hours. However, it took much longer for the remaining biofilm to be removed, i.e. 94 % of 24 

the total treatment time. Another interesting result obtained by the study was that the efficiency 25 

of the treatment in the simulations depended strongly on the ratios between the decay rate of 26 

the treatment substance in the biofilm, the rate at which the substance was able to compromise 27 

the ECM produced by the bacteria in question, and the rate at which the bacteria produced 28 

ECM. In some cases, the production of ECM was sufficient to counteract the effects of the 29 

treatment, resulting in persistence of the biofilm. The results of the study thus underlined the 30 

role of ECM material in biofilm prevalence, as well as provided possible reasoning behind 31 

differences in the relative success of biofilm treatment targeted at various bacterial strains. 32 

 The results of mathematical analysis of the role of ECM in protecting cells from 33 

antimicrobials will be discussed in later sections on antimicrobial resistance of biofilms. Now 34 



we introduce another modelling example, which analysed the influence of the ECM on the 1 

interactions between different species within the biofilm community [46]. This individual 2 

based modelling study of mixed species biofilms has challenged the common perception of 3 

exopolymeric substances (EPS) production within the ECM matrix as a purely cooperative 4 

behaviour. Computational analysis identified the potential evolutionary advantage of EPS 5 

production in terms of aiding the individual's genes propagation. The study considered two 6 

species, in all other aspects equal, except that one produced EPS and the other did not. The 7 

non-EPS producer grew faster, as it had more resources available to allocate for reproduction 8 

compared to the other species. Simulations of the competition between two species have shown 9 

that the outcome was strongly dependant on the ratio of EPS produced per biomass formed and 10 

the ratio between the density of the EPS to the biomass. In some cases, the non-producing 11 

species indeed had an advantage over the EPS producers. It is interesting, however, that the 12 

EPS producers were favoured when the density of the EPS was lower than the density of 13 

biomass, for a wide range of EPS production rates and diffusion coefficients of the growth-14 

limiting compound. This extended to being able to “suffocate” its rival with its generated 15 

product, while displacing the individuals of its species towards the top of the biofilm, where 16 

nutrients were more abundant. The authors of this study argued that considering EPS-producing 17 

behaviour solely as a group-benefiting sacrifice may be wrong, as this behaviour may be 18 

capable of causing a detrimental effect towards the neighbours of the producers.   19 

 20 

2.2 Role of Quorum Sensing on Biofilm Formation 21 

 22 

 Quorum sensing (QS) is a means of cell-cell communication using signal molecules 23 

(autoinducers), allowing bacteria to sense the changes in their environment and react 24 

appropriately by activating or inhibiting gene expression [100]. This phenomenon is thought 25 

to have a greater impact on bacterial communities in biofilms, as opposed to the planktonic 26 

phase, due to closer clustering of cells, which increases the number of signalling molecules in 27 

the  external environment of the cells and may thus be a cause of increased QS associated gene 28 

expression [36]. The QS mechanism has been reported to greatly affect biofilm formation. It 29 

has been suggested to play a significant role in attachment of cells or their detachment. For 30 

example, disrupting the QS mechanism in P. aeruginosa biofilms has been observed to result 31 

in thinner biofilms [101]. The  effect of quorum sensing on P. aeruginosa biofilms may well 32 

be a consequence of the fact that approximately 6% of all P. aeruginosa genes seem to be 33 

regulated by this communication mechanism [102]. 34 



 Synthetic engineering of Quorum Sensing Inhibitors (QSI) has been suggested as a 1 

possible solution to aid eradication of unwanted biofilms. It has been observed experimentally 2 

that supplementing tobramycin as an antibiotic treatment of P. aeruginosa biofilms with a 3 

garlic extract, a natural QSI, was successful in killing all biofilm cells, a result that was not 4 

obtained when using either one of the compounds alone. Interestingly, disrupting the growth 5 

of cells within biofilms through manipulating their quorum sensing mechanism is not solely a 6 

man-made concept. For example, it has been observed that inhibition of quorum sensing can 7 

be imposed on one bacterial species by another within a mixed species biofilm [103]. 8 

 Several mathematical models have been developed over the years to describe the role of 9 

QS on biofilm communities [37,40,41,43,58,89,104,105]. For instance,  the study in Ref. [104] 10 

predicted diminished role of the QS mechanism in a biofilm exposed to high flow rates, in 11 

agreement with experimental observations. 12 

 The factors that may influence the effectiveness of P. aeruginosa biofilm treatment by 13 

disrupting cell-cell communication were analysed in a theoretical study [39]. A critical biofilm 14 

depth was predicted, above which the treatment with QSI inhibitors would not be successful. 15 

This is thought to be partly due to a predicted exponential increase of the successful 16 

concentrations of QSI, or for that matter, any kind of antimicrobial compound, with biofilm 17 

depth [39]. In contrast, in the case of planktonic cultures, the concentration of antimicrobials 18 

needed to eliminate the population of cells has been predicted by a previous theoretical study 19 

to increase linearly with the amount of treated biomass [38], which may be one of the direct 20 

causes of the difference in antimicrobial sensitivity between these two modes of bacterial 21 

growth. 22 

 In another application, a two-dimensional, deterministic model designed to study the 23 

quorum sensing mechanism has been proposed by Frederick et al. [42]. Specifically, it aimed 24 

to investigate whether the QS regulation of EPS production by cells may be beneficial 25 

compared to a non-regulated, steady extracellular excretion process. Cases when EPS could 26 

serve as a nutrient source and when it could not, were investigated separately under high and 27 

low nutrient conditions. It was found that upregulated EPS production does not provide an 28 

advantage in terms of achieving higher population numbers, when compared to steady, low 29 

EPS production. It may, however, increase the optical density of the biofilm and thus protect 30 

the cells from environmental stresses or trap nutrients and thus lead to out-competition of the 31 

low-EPS producing rivals in nutrient rich conditions, even though the EPS production comes 32 

at a cost of slower growth [42]. 33 

 34 



2.3 Increased Antimicrobial Resistance 1 

 2 

 The structure and chemical composition of a mature biofilm provides a barrier which in 3 

many cases protects embedded cells from antimicrobials. This causes significant concern in the 4 

medical sector, among other industries [106] .  Biofilm-caused infections often result in the 5 

development of chronic illnesses in patients, with available treatments inadequate in 6 

completely eradicating the bacteria within the biofilm. These can include foreign-body 7 

infections, e.g. biofilm formation on surgically inserted medical implants, or infections of 8 

regular tissue, e.g. lung tissue [107]. Chronic patients must often maintain a constant, life-long 9 

treatment with antibiotics in order to keep the biofilms at a manageable level. However, this 10 

solution, among other things, disrupts the normal gut flora which may cause further 11 

deterioration of the overall health of the patient and may as a consequence cause the emergence 12 

of bacterial infections resistant to all types of available antibiotics. This in turn renders further 13 

treatment even more challenging and ultimate eradication of the infection difficult [36]. 14 

Increased antimicrobial resistance of cells in biofilms is believed to be caused by many factors 15 

including, for example, increased level of mutation in biofilms in comparison to their 16 

planktonic counterparts. This phenomenon in turn is believed to emerge due to increased cell-17 

cell communication in the biofilm community, where cells are naturally bundled closer together 18 

than in the case of bacteria floating in a free planktonic state [36]. The increase in 19 

mutations can cause upregulation of genes responsible for production of enzymes which 20 

degrade antimicrobial agents, or increased activity of efflux pumps, which expel the 21 

antimicrobial agent out of the cell membrane, making the bacteria more tolerant to antibiotic 22 

exposure. 23 

 In addition to increase in mutations and its effects in increasing antimicrobial resistance, 24 

development of chemical gradients in the biofilm layers is also believed to contribute to the 25 

persistence of treated biofilms. The chemical gradients of nutrients and other substances within 26 

the biofilm structure cause the emergence of dormant cells in the layers of the biofilm where 27 

nutrients become limited, while the dividing cells occupy the outer layers, closer to the biofilm 28 

surface. Some commonly used antibiotics exclusively target either dormant or active cells 29 

which is why using only one type may not prove sufficient to kill all cells within the biofilm. 30 

However, applying both of those antibiotics at the same time seems to be able to overcome this 31 

particular problem. For example, synergistic treatment with ciprofloxacin and colistin have 32 

been observed to be successful in clinical trials on patients in the early stages of cystic fibrosis 33 

[36]. 34 



 Another advantage gained by the cells from the structural properties of the biofilm 1 

matrix is that diffusion of antimicrobials through the matrix may be significantly delayed, or 2 

even inhibited due to the chemical composition of the matrix, by breaking down or trapping 3 

the antimicrobial compound before it reaches the cells within biofilm depths. Pre-treatment of 4 

the biofilm with enzymes degrading the biofilm matrix has been demonstrated to be a 5 

successful strategy by rendering the biofilm more susceptible to application of antimicrobials 6 

in a study involving P. aeruginosa biofilms [36]. 7 

 Numerous modelling efforts have been employed in order to address the challenge of 8 

biofilm treatment with antimicrobials [62,108–113], for example, a hybrid differential-discrete 9 

approach which tested four biofilm survival mechanisms separately (i.e. slow penetration, 10 

stress response, altered microenvironment and emergence of persisters). It was found by the 11 

study that the survival behaviours predicted by the simulations for each of the mechanisms 12 

were clearly distinct from each other. This result can be useful for determining the most 13 

dominant protection mechanism in an observed scenario and thus could prove informative in 14 

terms of choosing prospective disinfection strategies [109].  15 

 In another example, a continuous, diffusion-reaction, one-dimensional model, has been 16 

employed in order to predict antibiotic penetration into P. aeruginosa biofilms, in order to test 17 

the viability of antibiotic treatment for cystic fibrosis patients [47]. Tobramycin and cefsulodin 18 

were chosen as antimicrobial compounds, and a mucoid and non-mucoid version of the P. 19 

aeruginosa biofilm were modelled in the calculations, in order to assess how the physical 20 

barrier of mucus affects the resistance of the biofilm embedded bacteria to chemical treatment. 21 

Interestingly, the results pointed to the conclusion that even though the diffusion of the 22 

antibiotic was substantially delayed in the mucoid phenotype when compared to the non-23 

mucoid phenotype, the penetration time difference was not significant enough to account for 24 

the reported antimicrobial resistance. That is, the time it took for the antibiotic concentrations 25 

to reach high levels at the base of a 100 µm thick biofilm was still well within the common 26 

treatment time of cystic fibrosis patients. Furthermore, even when accounting for adsorption 27 

of the antibiotic to the exopolysaccharide, the concentration of the antibiotic at the base of the 28 

biofilm was eventually able to reach the concentration at the substratum. In the light of these 29 

calculations, it was concluded that the exopolysaccharide itself should not be considered as a 30 

significant physical protection barrier for P. aeruginosa biofilms against antibiotics. 31 

 Another hypothesis tested in [110] was whether the effect of bacterial production of 32 

enzymes is sufficient to effectively break down the antimicrobial compound. Assuming the 33 

enzymatic breakdown of an antibiotic in the model led to a phenomenon in which the 34 



concentration of antibiotic at the base of the biofilm could not rise above a certain threshold, 1 

as the diffusing substance would be continuously removed by the cell-produced enzymes. 2 

Simultaneously, it was observed that bacterial cells exposed to cefsulodin grew very slowly, 3 

and thus it was hypothesized that slow growth may be another likely reason for increased 4 

tolerance of the bacteria. There may be many reasons for this phenomenon, for example, 5 

bacteria in a state of low metabolic activity may naturally allow less uptake of substances into 6 

the cells, therefore decreasing uptake of the toxin. Furthermore, low metabolic activity may be 7 

caused by upregulated production of toxin-degrading enzymes or upregulated activity of toxin-8 

expelling efflux pumps. Results of experimental studies support the hypothesis that the 9 

concentration of biocides required for successful disinfection is much greater when applied to 10 

biofilms compared to planktonic cultures [114].  11 

 In another theoretical study, the efficiency of a biocide, benzalkonium chloride and 12 

peracetic acid, against P. aeruginosa biofilm was analysed [114]. When comparing the 13 

susceptibility of different strains of P. aeruginosa to benzalkonium chloride treatment, 14 

considerable differences have been found between the resistance of strains grown in biofilms 15 

(in contrast with planktonic cultures where no significant difference was found). In particular, 16 

the difference in the time it took for the antimicrobial activity to reach the depths of the biofilm 17 

cluster, and the resulting changes in the total inactivation rate of the bacterial cells, all seemed 18 

to confirm the crucial role of ECM in determining disinfection efficiency. Moreover, it has 19 

been found that, in agreement with the modelling study, most cells within the biofilm have 20 

been deactivated during a short treatment time of 25 min, with few live cells remaining. 21 

 22 

At present, biofilm treatment with enzymes is applied in industrial [115] and marine 23 

applications, and research is being undertaken to apply this strategy in the hospital setting with 24 

regards to development of antibacterial coatings for implants [36,116]. 25 

 26 

2.4 Biofilm formation in complex structures 27 

Experiments and models often describe biofilm communities growing on relatively 28 

simple substrates (e.g. flat surfaces). However, extremely flat surfaces on, e.g., the micrometre 29 

scale are an exception only found in some artificial settings [69] and most natural biofilms 30 

grow on rugose surfaces or porous media. Indeed, most bacteria on the planet inhabit 31 

structurally complex environments such as oceans or soils [16,117].   32 

The opacity of natural porous media makes it very challenging to study biofilm formation using 33 

only experiments. This fact has been recognised in e.g. predicting biofilm growth inside the 34 



cheese matrix, among other complex food structures [118] or questions regarding bacterial 1 

invasions of the gut [119]. Applications of mathematical modelling to understand microbial 2 

growth in porous media is still limited but we believe that mathematical models can 3 

significantly help understanding this phenomenon. A theoretical framework for generic 4 

biological invasions in porous media found that the shape, size and connectivity between pores 5 

within the medium plays a fundamental role in determining the extent of a potential microbial 6 

invasion [120]. In this study, the structural heterogeneity of the soil pore space was captured 7 

through a network description with edges and nodes representing channels and bifurcation 8 

points in the pore space, respectively. Biological invasions were numerically simulated as a 9 

stochastic epidemic spreading on the pore space network. Based on the topology of the 10 

networks of the porous medium, the authors argued that structural heterogeneity typically 11 

favours biological invasions. The growth of biofilms in porous media has been recently studied 12 

experimentally [121] and theoretically [66,71,78,122] but understanding is still limited due to 13 

the complexity of the problem. The difficulty of considering microbial accumulation in porous 14 

media is amplified by the fact that this network of flow channels is generally not static, i.e. 15 

various events, including microbial activities, lead to repeated clogging and unclogging of 16 

channels, formation of new channels, etc. [71]. An approach combining fluid dynamics with 17 

game theory and experimental techniques revealed that in porous media, relatively strong and 18 

weak flow conditions favour fast and slow growing microorganisms, respectively [78].  19 

 20 

Mathematical models have also been applied to study the effect of heterogeneity of 21 

abiotic surfaces on biofilm formation [69,123–126]. Some of these studies use computer fluid 22 

dynamics (CFD) modelling which may be combined with reconstruction of specific surface 23 

topography by Surface Element Integration (SEI) techniques, to assess the combined effect of 24 

flow and roughness patterns on biofilm accumulation [123,125]. These are highly advanced 25 

models, which can provide a detailed analysis of biofilm formation in a specific scenario. 26 

However, we discuss below in more detail results of a study which addressed the effect of 27 

surface roughness on biofilm formation with a cellular automaton, which we believe give a 28 

more general view of the problem  [69]. In cellular automata, space is discretised into equally 29 

sized patches, forming a lattice. Each patch may contain several objects (e.g. cells, extracellular 30 

material, oxygen or nutrients in [69]) and rules are introduced as to how objects interact with 31 

each other and with their environment. Properties of both objects and the environment may be 32 

defined as required. The authors in Ref. [69] argued that surface roughness may aid or inhibit 33 

biofilm formation when the flow of liquid above the biofilm is of considerable force, depending 34 



on the topography of the surface [69]. The study focused on roughness on the length scale of a 1 

bacterial cell, i.e. at around one micron. The motivation for studying surface roughness of such 2 

magnitude was to address biofilm growth on mechanically milled surfaces, as the effect of 3 

roughness patterns of these surfaces may be an important factor for industrial applications. The 4 

modelling study found that in the case when flow is an important factor, biofilms growing on 5 

flat surfaces are easily washed out. However, for otherwise identical environmental conditions, 6 

if blocks of size comparable to a single bacterium are fixed on the surface, the bacteria at the 7 

cracks between these blocks may become sheltered from the erosion effects of the flow, and 8 

are thus allowed to colonize, expand, and spread to downstream regions of the surface. This 9 

study found that one of the key factors determining whether roughness was beneficial to the 10 

development of the biofilm or not, was the spacing between the roughness blocks. If the spacing 11 

was too small, the resulting biofilms were flat, with less cells, as space for development was 12 

scarce; if the spacing was too large, the sheltering effect was insufficient to prevent flow-13 

induced detachment. Furthermore, increasing the height of the blocks was also predicted to 14 

present a problem for the bacteria, as at sufficiently low niches nutrients could become limited, 15 

inhibiting biofilm development at the sheltered locations. 16 

The results of the study discussed above provide a better understanding of how exactly some 17 

surface roughness patterns affect biofilm formation. In comparison, through experimental 18 

observations, it has been reported that when mimicking the conditions of a drinking water 19 

system, with flow adjusted to 10 cm s-1 , matt stainless steel accumulated a significantly greater 20 

number of microorganisms than electro-polished or bright annealed stainless steel [127]. A 21 

separate experimental study on 316L stainless steel confirmed that bacteria may exhibit higher 22 

colonization levels at the cavities present on the unpolished metal surface [128].  Interestingly, 23 

although many experimental studies simply conclude that increased surface roughness seems 24 

to promote biofilm accumulation [127,129–131], when investigated more closely, the surface 25 

topography, i.e. the depth and size of the cavities on the surface, has been found to be of more 26 

importance [132–135]. The latter conclusions are supported by the modelling study of 27 

Rodriguez et al. [82]. 28 

It is worth noting, that nowadays the engineering of surface coatings with topographies 29 

designed to reduce biofouling are extensively studied, as technological advances allow for 30 

creating topographies of exquisite detail [134–136]. In addition to the topography, other 31 

fundamental factors have to be taken into account in such designs. These include, but are not 32 

limited to, the surface free energy, wettability, elasticity, and antimicrobial properties of the 33 

surface [135]. 34 



2.5 Mixed Species Interactions 1 

A single species biofilm is in most cases a laboratory construct, as the natural environment 2 

is full of microbial life and growth of single species seldom occurs in isolation. It is therefore 3 

mixed-species biofilms that are mostly apparent in situ, and thus the study of inter-species 4 

interactions within a biofilm is of great importance in addressing the challenges associated with 5 

biofilm control. Studying the role of mixed species interactions on biofilm growth is 6 

experimentally challenging [44] and mathematical models can be of great help [44,87,137]. In 7 

particular, we describe two recent applications of mathematical models which reveal key 8 

mechanisms in biofilm communities involving multiple species. 9 

 Recently, a new 2D cellular automata (discrete space and time) model has been developed 10 

to study biofilm formation of two species of bacteria, Streptococcus gordonii and 11 

Porphyromonas gingivalis [44]. These two species have been identified as the leading causes 12 

of periodontitis, commonly referred to as gum infection, which can lead to tooth loss around 13 

the infected area. The study was performed to address the gaps in knowledge on the initial 14 

development of this two species biofilm, which follows after adhesion to periodontal tissues. 15 

Experiments informed by the model were performed to verify simulation outputs against 16 

observation. The model was designed to test whether the relationship between S. gordonii and 17 

P. gingivalis in the initial stages of biofilm development was independent, competitive or 18 

detrimental. The results of the simulations agreed with experimental observations only for the 19 

detrimental case, i.e. when it was assumed in the model that S. gordonii produces a compound 20 

which slows down the growth of P. gingivalis. This finding is in line with the fact that S. 21 

gordonii is known to be able to produce hydrogen peroxide, while P. gingivalis is known to be 22 

sensitive to this compound. Furthermore, it has been suggested by array analysis and reverse 23 

transcription PCR that oxidative stress response may be triggered in P. gingivalis in the 24 

presence of S. gordonii [138].  In summary, the model has been able to provide evidence for a 25 

detrimental effect of S. gordonii on the growth of P. gingivalis in a two-species biofilm, 26 

following adhesion. 27 

 In another recent example, a stochastic two-dimensional cellular automaton model was 28 

applied to study mutualism versus exploitation in a microbial context [79]. In particular, the 29 

study analysed potential mechanisms which could promote the success of bacteria producing 30 

nutrients for other organisms, over “cheating” bacteria which did not produce any nutrients. 31 

The results of the contest between the two species exhibiting these distinct behaviours were 32 

mapped against the distance between the microbes and the distance at which the produced 33 

resources could reach other microbes. It was shown that, consistently, for high cell dispersal 34 



and high reach of the shared resource, cheaters had a competitive advantage, and after reaching 1 

a certain threshold for these parameters, extinction of the co-operators was predicted. It was 2 

reasoned that for these conditions, the cells were forced to interact with many random 3 

neighbours, thus making co-operators open to exploitation. In contrast, the case when both cell 4 

dispersal and reach of the resources were low, provided an opportunity for groups of co-5 

operators to persist against the invasion of the cheaters. Interestingly, for intermediate 6 

conditions, i.e. high cell dispersal and low reach of the resource, or low cell dispersal and high 7 

reach of the resource, the co-operators also were found to persist. In the former case, it was 8 

found that the uncertainty of the interactions between neighbours harmed the exploiter, as it 9 

led to uncertainty of resources. In the latter case, the community exhibited self-organised 10 

pattern formation, in which co-operators organised themselves into stripes or spots. The 11 

conditions within these organised groups were such that they limited the growth of cheaters. It 12 

is noteworthy that such patterns are reminiscent of similar phenomena observed in biofilms. 13 

 14 

 15 

3 Applications of mathematical models in predicting biofilm formation 16 

 17 

Biofilm models have proliferated due to a need to answer particular questions stemming 18 

from areas where biofilm formation is a significant concern. Today, modern theoretical biofilm 19 

models are recognized for their ability to, among other things, analyse spatial interactions 20 

between organisms within a biofilm on an individual scale [139]. Other models may focus their 21 

analysis on predictions of biofilm formation in specific environments [10,26,27,32]. In the 22 

previous section, we have discussed the former, i.e. models developed in order to understand 23 

the role of various factors on biofilm formation. In this section, we will focus on the models 24 

which aim to predict accumulation of biofilms. For example, the output of such models may 25 

be a prediction of bacterial counts on a given surface [49], or a detailed biofilm composition in 26 

the studied environment [27]. 27 

 28 

3.1 Food Spoilage and Safety 29 

 30 

It is recognized that food spoilage depends on factors such as storage conditions, initial 31 

unwanted microbial counts in the food and their properties, and finally, the properties of the 32 

food involved, such as its pH or moisture. Estimating the shelf life of food products has been 33 



aided by means of mathematical models developed as early as the 19th century [140,141], and 1 

the value of these microbial count models for the food industry is now widely appreciated at 2 

the product development stage [142].   3 

Empirical models build on data obtained from storage trials are common among models 4 

employed to predict shelf life [143–145]. These models are characterised by a systematic 5 

experimental approach, in which the effect of a specific variable (e.g. temperature) on 6 

microbial growth is assessed. Data collection is followed by fitting experimental data with a 7 

theoretical curve in order to analyse the correlations between considered factors, formulate 8 

general hypotheses, and subsequently allow for making better predictions. One of the notable 9 

examples in this area is the work by Ratkowsky et al. [145], in which the authors proposed a 10 

general law governing the relationship between the temperature and growth rates of bacteria. 11 

The results of the Ratkowsky et al. study were found to fit experimental data better than what 12 

was predicted by Arrhenius Law [140,146] (this is a classical law describing the relation 13 

between chemical reaction rates and temperature). Furthermore,  a slight modification of the 14 

Ratkowsky et al. model [145] was found to fit empirical data for a temperature dependency 15 

study of Lactobacillus plantarum growth [144]. Apart from temperature, other factors affecting 16 

growth have been empirically modelled, e.g. the effect of carbon dioxide on growth of 17 

Photobacterium phosphoreum and Shewanella putrefaciens [143]. 18 

More recently, predictive modelling has been employed to estimate bacterial growth in 19 

seafood, dairy, bakery, vegetable, meat products, and other products, e,g, infant formula or 20 

acidified sauces [118]. For example, one of the recent approaches used an individual-based 21 

stochastic model, able to accurately predict Listeria monocytogenes counts on soft cheese [49].  22 

The individual based approach, so far uncommon in the area of predicting the microbial shelf 23 

life of food products, was introduced in order to account for variability in the microenvironment 24 

of individual cells.  25 

The area of predictive modelling for food safety is so vast that it is beyond the scope of 26 

this review to go into the amount of detail it deserves. For an extensive, recent evaluation of 27 

this particular topic, the reader is encouraged to turn to the book by Mahony and Seman [118]. 28 

It is noteworthy that apart from predicting growth of microorganisms during food 29 

storage, empirical mathematical modelling has also been applied to address other food safety 30 

concerns. For example, a relationship describing cross contamination of Escherichia coli and 31 

Listeria monocytogenes from slicer to deli meat has been proposed based on experimental data 32 

[147,148]. 33 

 34 



3.2 Wastewater Management 1 

 2 

 The use of bacteria in the Activated Sludge (AS) process, designed to treat water 3 

systems, dates back over a hundred years and it is safe to say that this invention revolutionised 4 

wastewater management [149]. Computational modelling of microbial communities can 5 

contribute to engineering safe water treatment reactors by, for example, testing for 6 

mathematically plausible causes for the occurrence of some observed phenomenon. This may 7 

include testing the nature of interactions between microorganisms present in the reactor [27]. 8 

Such models aim to simulate a typical environment of a wastewater system, in order to predict 9 

the distribution and relative concentrations of various microorganisms and their effectiveness 10 

in water treatment.  11 

 Activated Sludge Models (ASM) is the name given to the specific type of a biofilm 12 

model designed to optimize the AS process. ASM models describe processes such as oxygen 13 

consumption, sludge production, nitrification and denitrification in the activated sludge 14 

designed to treat water systems [150]. ASM models serve as a good example for specialised 15 

models which can be widely adopted in the field they are designed for [151]. These models 16 

can aid the daily operations of plants, as well as the development of plans for introducing 17 

modifications. A careful design and continuous improvement are fundamental in using ASM 18 

models as tools for the wastewater industry, as significant decisions with financial and 19 

environmental implications may be based on their predictions. With the incorporation of 20 

computational models into water treatment industry comes the necessity to develop stringent 21 

procedures for accurate software usage and interpretation of the model's outputs,  a task which 22 

has been taken on by the International Water Association [152]. It was estimated, that in 2009, 23 

the number of ASM users worldwide was between 3000 and 5000 and included university and 24 

public researchers, as well as private company employees [152]. 25 

 26 

 The ASM1 model describes the water purification system by a series of processes which 27 

take place in the reactor. The processes are governed by substrate-dependant rates and by 28 

stoichiometry of the occurring reactions in each process [151]. The rates of all processes are 29 

described by various equations; for example,  growth of biomass is unsurprisingly modelled 30 

by use of Monod relationships [153]. The other processes modelled by ASM1 are the decay of 31 

biomass, ammonification of organic nitrogen and hydrolysis [151].  32 

 33 



A very recent example of a biofilm model designed for wastewater management purposes 1 

was presented by Azari et al. [27]. The model had been developed with the aim of identifying 2 

the most important parameters affecting biofilm formation in an anammox reactor; a reactor 3 

engineered to remove ammonium from wastewater. The framework of the study was based on 4 

Activated Sludge Model no. 1 (ASM1). It has been found by the model that biofilm formation 5 

and ammonium removal was most affected by the maximum specific growth rate of organisms 6 

and heterotrophic biomass yield. The levels of nitrogen compounds and biofilm composition 7 

predicted by the model were in good agreement with experimental findings, suggesting  that 8 

the results obtained by the simulations were reliable [27].  9 

 10 

 11 

3.3 Biofuels 12 

 13 

 With advancements in technology, energy consumption has been rapidly rising. The 14 

need to move from non-renewable energy sources such as fossil fuels, to sustainable solutions 15 

which rely on renewable energy sources, is apparent. Most people are aware of such solutions 16 

being applied in the form of harnessing solar, wind, geothermal or tidal energy. Surprisingly, 17 

it does not seem to be commonly known that microbes are also being utilized by the energy 18 

industry, for instance in engineering biofuels such as e.g. bioethanol, biodiesel or biohydrogen 19 

[154]. However, biofuels have been claimed to have the biggest potential for reducing CO2 20 

release into the atmosphere [26]. This is largely due to the fact that the demand for fuels makes 21 

up a majority of the overall demand for energy [155]. Biofuels can be produced by 22 

thermochemical means or by microbial fermentation [26]. In the latter case, degradation of 23 

biomass (e.g. cellulose) by microbes ( e.g. yeast, bacteria or mould) is a key process in biofuel 24 

production [156] Although there is already an established procedure for engineering biofuels, 25 

research is being undertaken to make this process more efficient [25,50].The area of biofuels 26 

is a multifaceted one, as for instance complex chemical and biological reactions, as well as 27 

engineering solutions have to be designed and perfected for process optimisation. Advanced 28 

technologies, e.g. genomics, have been identified to be fundamental for maximizing the 29 

efficiency of biofuel production methods [25]. Furthermore, given the undeniably immense 30 

global scale impact of the energy industry, the efforts for engineering biofuels should be done 31 

in close cooperation with environmental scientist [157]. One review on microalgal biofuels 32 

listed fundamental biology, systems biology, metabolic modelling, strain development, 33 

bioprocess engineering, integrated production chain and the whole system design, as areas 34 



which need to be included in the biofuel research portfolio. The biggest share of mathematical 1 

modelling in aiding biofuel production process engineering probably lies in metabolic 2 

modelling, which is a key part of the systems biology approach to metabolic engineering [158]. 3 

However, as such techniques are performed on the scale of genomes, rather than bacterial 4 

populations, these models are beyond the scope of this review. Although we have not found in 5 

the literature the link of population scale metabolic modelling to biofuel production, it should 6 

be noted that some recently published studies combined genome scale metabolic 7 

reconstructions with differential equations for the diffusion of metabolites, thus creating 8 

genome scale resolution models of biofilm populations [76].  9 

 There are not many papers available which explicitly link biofuels to biofilm formation, 10 

and this may be due to the fact that smaller scale modelling integrated in the system biology 11 

approach has been found more applicable for this field. We will presently discuss results of a 12 

modelling study which did focus on population scale degradation of cellulose. 13 

A cellular automaton model has been developed which is able to mimic experimentally 14 

observed structure of biofilms formed by Caldicellulosiruptor obsidiansis [67], and in a 15 

separate study, those formed by Caldicellulosiruptfor obsidiansis and Clostridium 16 

thermocellum on cellulose substrate [50]. In the latter study, the observed thickness of the 17 

biofilm was achieved in the simulation by incorporating a detachment mechanism, which was 18 

activated once the biofilm thickness approached an observed threshold. It is quite plausible 19 

that a colony which feeds on the substrate to which it adheres will exhibit such behaviour, as 20 

this allows detached cells to float towards areas where nutrients are unexploited, i.e. to the non-21 

colonized areas of the substrate. 22 

Analysis of both experimental and computational results obtained from the study 23 

published in [50] seemed to point to the conclusion that cellulose degradation was synchronous 24 

to biofilm formation of the particular species. Moreover, only cellulose areas to which bacterial 25 

cells were attached exhibited degradation and increasing number of planktonic cells in the 26 

culture did not produce a significant effect. In the light of obtained results, the authors 27 

concluded that the process of cellulose degradation could theoretically be sped up by covering 28 

the cellulose substrate with a highly concentrated inoculum of cellulose-degrading cells  [50].  29 

 30 

3.4 Application of genome-scale reconstructions in biofilm modelling 31 

With recent advancements in genomics, proteomics and metabolomics, there has been a rise 32 

in biofilm models which incorporate genome-scale data for obtaining more sophisticated 33 

predictions for microbial communities [10,72–74,76]. The aim of incorporation of genome 34 



scale data in biofilm modelling is to improve the quantitative understanding of spatial and 1 

temporal variation of the microenvironment of cells embedded within a biofilm, which is 2 

believed to have a critical impact on biofilm development [76]. A table of available genome-3 

scale metabolic reconstructions which have been validated by experimental data can be 4 

accessed through Systems Biology Research Group web page [159]. These reconstructions can 5 

be used to feed more information into biofilm models, e.g. the metabolic by-products, 6 

compound uptake fluxes, or the secretion of toxins and growth inhibitors of the documented 7 

strains. It has been suggested that the accuracy of predictions related to spatial partitioning of 8 

species within a mixed-species biofilm is enhanced by inclusion of the effect of metabolic 9 

factors [72,76].  10 

The studies which explicitly coupled genomic scale data and biofilm modelling have targeted 11 

e.g. illness related biofilms [76] or microbial fuel cells biofilms [10,73]. In another study of 12 

this kind which focused on E. coli biofilms, it was suggested that a similar methodology may 13 

also be useful for models of tissues or tumours [74]. In essence, these studies incorporate 14 

differential equations for the diffusion of metabolites in population scale models, and they do 15 

seem promising in terms of improving prediction power of mathematical models of biofilms. 16 

For example, in a modelling study of E. coli colonies grown on glucose minimal agar, 17 

incorporation of data from E. coli metabolic reconstruction led to the discovery of a feature of 18 

E. coli colonies which has not been recognised previously. The study found that glucose and 19 

oxygen gradients within the colony gave rise to four distinctly spaced metabolic phenotypes, 20 

namely, rapidly growing cells at the bottom edge of the colony, where both glucose and oxygen 21 

concentrations were high, nearly dormant cells in the interior, where both glucose and oxygen 22 

levels were low, and two other subpopulations between which acetate cross-feeding was found 23 

to take place. The first subpopulation, located at the base of the agar, exhibited high glucose 24 

consumption and acetate production due to high glucose concentrations. The second 25 

subpopulation, located at the regime of high oxygen concentrations and low glucose 26 

concentrations, exhibited a phenotype which favoured acetate consumption. In terms of the 27 

predictive power of this modelling study, the height to width ratios of simulated colonies were 28 

in agreement with those of colonies grown experimentally [74].  29 

 30 

4 Conclusion 31 

Mathematics can be used to understand and exploit the world around us. Examples of 32 

mathematical models of biofilm formation presented in this review only scrape the surface of 33 



the vast number of models which have been developed, from their earliest descriptions until 1 

the present. We presented some examples of biofilm models which significantly advanced our 2 

understanding of biofilm communities and generated results applicable, for example, to 3 

medicine, the food industry, dentistry, water management and for engineering more 4 

environmentally friendly energy. 5 

 Although computational models have been found useful over the years in providing 6 

practical answers about microbial communities, they do all have considerable limitations. The 7 

fact that a model is necessarily a significant simplification of reality is both a handicap and a 8 

strength, depending on the point of view and application. Just as the biofilm field is complex, 9 

so is the branch of biofilm modelling. This creates obstacles between model development and 10 

applications, because if the model is to be trusted, it must be verifiable in a specific setup for 11 

which it has been created. Furthermore, the wide use of any given model is difficult to achieve, 12 

as any model would have to go through modifications to become usable for another research 13 

problem. This requires understanding of the language in which the model source code was 14 

written, and a thorough grasp of the implemented processes. Luckily, when building a model 15 

to address a specific problem, one may build on the general rules adapted by existing models 16 

and choose suitable methods of implementation for the question which needs to be answered. 17 

For instance, empirical models give an idea of the relations between specific factors affecting 18 

biofilm formation, e.g. the relationship between temperature and growth rates. Although these 19 

are built on specific experimental results, as evidence of their reliability builds up, they become 20 

widely adapted, as has been the case with Monod growth equations, for example. Empirical 21 

modelling has been particularly favoured when estimating bacterial counts is the priority of the 22 

study, as is the case in e.g. developing food spoilage prevention methods. On the other hand, 23 

in studying the interactions between biofilm components on the scale of bacteria cells, the 24 

mechanisms of biofilm organisation and structuring, or when considering structurally complex 25 

environments such as rough surfaces and porous media, spatial, individual based or cellular 26 

automaton models seem to be a suitable choice, as does the game theory approach. 27 

Furthermore, treating the biomass as a continuous, viscoelastic substance, may allow for 28 

applying mechanics laws in studying the material properties and behaviour of the biomass. 29 

Finally, for analysis of e.g. antimicrobial penetration of a biofilm, a one-dimensional model 30 

treating biomass as a continuum may be fitting for its purpose.  31 

In their current form, mathematical models of biofilms can play a key role in addressing 32 

many important questions. For example, a proper combination of experimental and theoretical 33 

approaches will help understanding the behaviour of biofilm communities in some habitats that 34 



can be reasonably complex (e.g. through structural or chemical heterogeneity). Other questions 1 

will require holistic approaches accounting for biofilm formation at multiple scales, 2 

interactions between species and other factors. For instance, biofilms are likely to promote 3 

survival and persistence of pathogens in food-related environments [160]. In this context, 4 

biofilms can be regarded as just one element of a larger multifaceted problem involving 5 

domains ranging from the natural environment to food production factories and consumers. 6 

Integrating the key factors in a single framework to address biofilms associated problems (e.g. 7 

risk assessment of food contamination), is a challenge that will necessarily involve 8 

mathematical modelling and data analysis combined with experimental approaches.  9 

 10 

 It seems that although great improvement has been seen over the years with regards to 11 

computational models of biofilm formation, with substantial useful information gathered from 12 

computational analysis, much work is yet to be done to bridge the gap between theoretical and 13 

practical aspects, in order to synergistically build a general set of principles by means of which 14 

microbial development can be understood. Although not an easy endeavour, it is a necessary 15 

next step to fully realize the potential of biofilm models in addressing new challenges 16 

associated with biofilm control and utilization. A relatively recent, however fast developing 17 

field of systems biology promises to provide such an integrated framework [161]. Systems 18 

biology has already been successful in engineering new solutions for e.g. biofuel or 19 

pharmaceutical industry [162]. The idea behind this research field is to develop fine-detailed 20 

models of ecosystems which take advantage of the new advances in genome sequencing data 21 

collection [163]. Among a plethora of potential applications of this technology, when paired 22 

with advances in computing, it can lead to development of highly sophisticated biofilm models. 23 

The high resolution methodology of systems biology has already been to some extent applied 24 

at the scale of whole populations of bacteria cells, for example by combining genome-scale 25 

metabolic modelling techniques with partial differential equations to model the spatial 26 

distribution of metabolites within the biofilm [76]. The systems biology approach requires a 27 

high level of cooperation between various disciplines. In building such fine-resolution models, 28 

apart from biology, expertise in fields such as chemistry, physics, engineering and informatics 29 

may be necessary, depending on the research question. It is likely we will see more field-30 

specialised biofilm models develop, as is the case with ASM models for wastewater 31 

management or shelf life prediction models. Before incorporating solutions to challenges of 32 

microbial control and utilization on a large scale, potential environmental concerns should be 33 

addressed, thus further widening the desirable network of collaboration in the biofilm research 34 



field. This sentiment has already been expressed by researchers in the biofuel field [157], 1 

however, it should extend to all areas capable of producing a large-scale impact on the 2 

environment.  3 

 4 

 5 

 6 
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