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We introduce two new complementary concepts, frictional rigidity percolation and minimal rigidity
proliferation, to help identify the nature of the frictional jamming transition as well as significantly broaden
the scope of rigidity percolation. To probe frictional rigidity percolation, we construct rigid clusters using a
(3,3) pebble game for sliding and frictional contacts first on a honeycomb lattice with next-nearest
neighbors, and second on a hierarchical lattice. For both lattices, we find a continuous rigidity transition.
Our numerically obtained transition exponents for frictional rigidity percolation on the honeycomb lattice
are distinct from those of central-force rigidity percolation. We propose that localized motifs, such as
hinges connecting rigid clusters that are allowed only with friction, could give rise to this new frictional
universality class. And yet, the distinction between the exponents characterizing the spanning rigid cluster
for frictional and central-force rigidity percolation is small, motivating us to look for a limit in which they
are identical, i.e., a search for mechanisms of superuniversality. To achieve this goal, we construct a
minimally rigid cluster generating algorithm invoking generalized Henneberg moves, dubbed minimal
rigidity proliferation. For both frictional and central-force rigidity percolation, these clusters appear to be
in the same universality class as connectivity percolation, suggesting superuniversality between all three
transitions for such minimally rigid clusters. These combined results allow us, for the first time in rigidity
percolation, to directly compare two universality classes on the same lattice and to highlight unifying and
distinguishing concepts of rigidity transitions in disordered systems.
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I. INTRODUCTION

At the heart of every rigidity transition is the emergence
of a spanning rigid cluster—an entity of interconnected
bonds that are rigid with respect to each other. For
disordered systems, the starting point of choice has become
randomly diluted spring networks with central-force inter-
actions [1–4]. As bonds are randomly diluted from a
triangular lattice, either a regular one or with slightly
randomized lattice points (a generic lattice), the system
goes from rigid with a nonzero shear modulus to floppy
without this feature [5–8]. Underlying this mechanical
phase change is the transition from a system with a
spanning rigid cluster to a system without one, as identified

by the combinatorial (2,3) pebble game [9]. The location of
this rigidity transition occurs approximately at isostaticity
where the number of degrees of freedom (d.o.f.) are frozen
out by the number of force-balance equation constraints,
known as Maxwell constraint counting [10].
The rigidity transition in the central-force, randomly

bond-diluted triangular lattice was numerically found to
be a continuous onewith a correlation length exponent, ν ¼
1.21� 0.06, an order parameter exponent β ¼ 0.18� 0.02,
and a fractal dimension of the spanning rigid cluster, df ¼
1.86� 0.02 [6,8,11]. These exponents differ slightly from
two-dimensional connectivity percolation where ν ¼ 4=3,
β ¼ 5=36, and df ¼ 91=48 [12]. Despite the small differ-
ence in exponents, it was eventually argued that central-
force rigidity percolation (RP) is in a separate universality
class since there are nonlocal effects in terms of how rigid
clusters grow that differ from connectivity percolation
[6,8]. Meanwhile, Bethe lattices with no loops are amenable
to analytical treatment and demonstrate that the spanning
rigid cluster at the transition is not fractal [13,14]. To add to
the complexity, numerical simulations of three-dimensional
lattices with central-force interactions indicate a dis-
continuous rigidity transition as well, in contrast to the
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two-dimensional case [15]. Finally, central-forcemodels with
next-neighbor springs can exhibit hybrid rigidity transitions
with both continuous and discontinuous features [16]. With
this rather varied set of phase transitions when changing just
the type of lattice, the general solution to the central-force RP
problem is far from clear, if it is even possible.
Rigidity percolation with bond-bending forces adds

another “dimension” to the problem [17–21]. Numerical
simulations of two-dimensional systems measuring elastic
properties suggest that bond-bending forces drive the tran-
sition into a different universality class [22]. However, since
there is currently no pebble game for bond-bending forces
even in two dimensions, a direct comparison to central-force
rigidity percolation in terms of ν, β, and df has yet to
be made.
Particle packings also undergo a rigidity transition as a

function of the packing fraction [23–25] and additionally
feature contact network rearrangements, unlike the randomly
diluted spring networks. The rigidity transition in such
systems has been labeled the jamming transition, where
the system moves from a zero to a nonzero bulk and shear
modulus with increasing packing fraction, suggesting the
emergence of a spanning rigid cluster [24]. This suggestion
was made explicit by first extracting the contact network of
a two-dimensional frictionless (i.e., central forces only)
particle packing at jamming. Second, constructing the rigid
clusters from this network via the (2,3) pebble game shows
that at the onset of rigidity or jamming every particle
participating in the contact network is part of one rigid
cluster; i.e., the spanning rigid cluster is bulky at the
transition [26].
In frictional particle packings, jamming is even less

understood. Recently, two of us [27] developed a new
pebble game algorithm incorporating both particle trans-
lations and rotations to compute rigid clusters for networks

abstracted from two-dimensional frictional particle pack-
ings. We applied it to molecular dynamics simulations of
frictional particle packings at a fixed packing fraction
experiencing slow shear, and determined rigid clusters at
constant strain intervals as the packing repeatedly goes
through jamming or unjamming. The size of the largest
rigid cluster indicates a continuous transition, and so does
the observation of a roughly power-law distribution of rigid
cluster sizes near the jamming transition [27]. Within the
spanning rigid clusters, we found regions of floppiness,
showing partial rigidity. The floppy regions are also physi-
cally relevant as the nonaffine motion of the particles is
smaller inside the rigid cluster compared to outside, and the
pressure is higher. We present four such rigid cluster images
close to the transition for four different values of the friction
coefficient μ in Fig. 1. Themajor open question arising from
this recent study of frictional rigid clusters is whether or not
the rigidity transition is actually continuous or not, as a
continuous rigidity transition would be very different from
the frictionless case. Unfortunately, the molecular dynamics
simulation could not tune the system to be arbitrarily close to
the rigidity transition, and so it remains difficult to assess the
nature of the transition using such simulations.
Here, we ascertain the nature of the rigidity transition

in frictional systems with the introduction of frictional RP,
that is, the study of rigid clusters constructed via the
frictional (3,3) pebble game, on randomly diluted lattices
with bonds denoted as either frictional or sliding. We study
two types of lattices: the honeycomb lattice with next-
nearest neighbors (NNN) and a hierarchical lattice. The
former can be studied numerically, while the latter is
amenable to analytical calculations. The results for both
lattices can then be compared to results for central-force
RP to arrive at the first direct comparison ever between
different types of forces on the same lattice. In generalizing

(a) (b) (c) (d)

FIG. 1. Rigid clusters in simulated frictional packings under slow shear. Four snapshots from the molecular dynamics simulation
showing partially rigid systems close to the frictional rigidity transition. In black is the largest rigid cluster, while floppy regions are
colored gray. Blue, green, and red disks correspond to three, two, and one leftover pebble, respectively. The range of partial rigidity
decreases with increasing friction coefficient μ, or equivalently, increasing q. (a) μ ¼ 0.2, with a transition at q ¼ 0.78 and average
coordination number z ¼ 3.35, (b) μ ¼ 0.3, with a transition at q ¼ 0.86 and z ¼ 3.15, (c) μ ¼ 0.5, with a transition at q ¼ 0.95 and
z ¼ 3.0, and finally (d) μ ¼ 10 with a transition at q ¼ 1.0 and z ¼ 2.8. The last value is due to the large number of contactless particles
(rattlers) in the packing, visible in blue.
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rigidity percolation, we can now take a step back to look at
a broader set of problems to be more readily able to identify
special cases in a forest of rather eclectic trees.
Our findings can be summarized as follows.
(1) Both our numerical results on the honeycomb lattice

with next-nearest neighbors and our analytical re-
sults on a hierarchical lattice exhibit a continuous
rigidity transition with a distinct set of cluster-
merging mechanisms not available to central forces
to lead to a new universality class distinct from
central-force rigidity percolation.

(2) Since now all three universality classes (connectivity
percolation, central-force rigidity percolation, and
frictional rigidity percolation) have only slightly
distinct order parameter exponents and fractal dimen-
sion of each spanning rigid cluster at the transition, we
hypothesize that within a subset of minimally rigid
clusters, there may be superuniversality across these
transitions. We construct a new algorithm for both
types of rigidity percolation, dubbedminimal rigidity
proliferation (MRP), to directly create minimally
rigid spanning clusters whose properties are indeed
similar to clusters in connectivity percolation.

More specifically, our numerical finite-size scaling
results show that while the correlation length exponent
ν and the nonspanning rigid cluster size exponent τ are
rather different between the two types of forces, the order
parameter exponent β and the fractal dimension of the
spanning rigid cluster at the transition df are rather similar.
We conclude that central-force RP and frictional RP
represent two distinct universality classes based on the
rather different values of ν and τ. We analyze the mechanics
of merging rigid clusters and find, for example, that hinges
between rigid clusters constitute rigid connectors for fric-
tional RP, whereas they are not for central-force RP. The
different rigid cluster merging mechanisms between the
two cases, along with different types of rigid clusters,
potentially account for the difference in ν and τ, as
evidenced by our analytical calculations on a hierarchical
lattice. However, the nearness of the other two exponents
pertaining to the spanning rigid cluster (β and df) motivates
us to search for the possibility of superuniversality in which
the two universality classes collapse onto the universality
class of connectivity percolation. Superuniversality occurs
when, despite a symmetry difference, two different models
are in the same universality class, i.e., have the same
exponents. An example of superuniversality is the three-state
Potts model and the four-state Potts model in the presence of
quenched disorder belonging to the same universality class,
despite having different spin symmetries [28].
We explore the superuniversal possibility only within the

subset of rigid cluster configurations that are minimally
rigid. By (1) using concepts from invasion percolation [29]
used to build only spanning clusters in connectivity
percolation and (2) extending the Henneberg moves [30]
to grow a minimally rigid network with central forces only,

we construct a new algorithm to directly grow a minimally
rigid network with frictional forces, which we dub minimal
rigidity proliferation. We argue that the order parameter
exponent in minimal rigidity proliferation is indeed the
same across connectivity percolation, central-force RP, and
frictional RP. This search for superuniversality within a
subset of rigid cluster configurations will motivate searches
for other subsets in which the same phenomenon arises, and
then determine how to navigate between those subsets that
are distinct and those that are not. This more nuanced
approach moves beyond the standard paradigm of central-
force rigidity percolation and connectivity percolation as
being completely distinct.
The structure of this paper is as follows. We first describe

frictional rigidity percolation on the honeycomb lattice with
next-nearest neighbors and present our results. We then
describe frictional rigidity percolation on a hierarchical
lattice and discuss how our analytical calculations can help
bolster the numerical results on the honeycomb lattice.
Moving on, we present minimal rigidity proliferation and
argue how its strategic bond occupation method is different
enough from our earlier random bond occupation to lead
to superuniversality amongst the different models. We then
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= Connected spanning cluster 
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Henneberg moves Invasion percolation

Exponents suggest a continuous transition distinct from central-force rigidity
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cluster are rather similar and so spur a search for superuniversality leading to
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FIG. 2. Graphical abstract. In conjunction with the Introduc-
tion, this serves as a visual guide to the paper.
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conclude with a discussion of the implications of our
results. A graphical abstract is provided in Fig. 2 and
serves as a roadmap for the paper.

II. FRICTIONAL RIGIDITY PERCOLATION

A. Honeycomb lattice with next-nearest neighbors

1. Model

To motivate the model we begin by reviewing Maxwell
constraint counting in two-dimensional frictionless pack-
ings (or central-force spring networks) with N particles
(vertices) and average coordination number z [10]. The
total number of d.o.f. is 2N, while there are ½ðNzÞ=2� force-
balance constraints. When the number of d.o.f. is equal to
the number of force-balance constraints, the system is
minimally rigid, i.e.,

2N − 3 ¼ zcN
2

; ð1Þ

where the number of global rigid body translations and
rotations has been subtracted out since they are trivial. This
equation yields the critical average coordination number
zc ¼ 4 (as N → ∞) for the onset of rigidity. Much
numerical work with frictionless particle packings has
shown that this counting is an extremely good method
to determine the rigidity transition point [31–33]. No states
of self-stress are observed in particle packings at the
transition, since the values of the purely repulsive forces
are uniquely determined by the boundary conditions at this
point, such that a more involved constraint counting
approach is not needed [34].
For two-dimensional frictional particle packings, some

contacts are below the Coulomb threshold with the mag-
nitude of the tangential force less than the magnitude of the
repulsive, central force times the friction coefficient. At
such contacts, two particles can only rotate and translate
with respect to one another just as a gear does, and these
are denoted as frictional contacts. There are also contacts at
the Coulomb threshold in which two particles slide with
respect to each other. For these sliding contacts, the
magnitude of the tangential force is set by the magnitude
of the repulsive, central force; i.e., there is only one
constraint. We distinguish between these two types of
contacts by denoting q to be the probability of having a
frictional contact, with 1 − q denoting the probability of
having a sliding constact; i.e., if q ¼ 1, all contacts are
frictional. Then, performing the Maxwell constraint count-
ing as above, since each particle has 3 translational and
rotational d.o.f., there are 3ðN − 1Þ total d.o.f. (subtracting
out the trivial global d.o.f. in which there is no relative
motion between the particles). Moreover, the interparticle
forces yield f½zð1þ qÞN�=2g total constraints. We, there-
fore, arrive at the minimal rigidity criterion, or

3N − 3 ¼ ð1þ qÞzcN
2

; ð2Þ

where q denotes the probability of having a frictional bond.
For N → ∞ and q ¼ 1, all bonds are frictional and zc ¼ 3.
If q ¼ 1=2, we have zc ¼ 4. Therefore, Eq. (2) describes a
line of transition points interpolating from zc ¼ 3 to zc ¼ 4
as the ratio of frictional to sliding bonds changes.
This method of counting is now known as generalized
isostaticity [35,36]. Such bounds are indeed observed in
experiments [37]. Note that increasing the friction coef-
ficient μ increases q, and in addition, that one cannot
smoothly interpolate between frictional and frictionless
packings as one cannot smoothly interpolate between 2
and 3 local d.o.f.
To construct a lattice model for frictional particle

packings, we consider a honeycomb lattice with additional
NNN bonds. This modified honeycomb lattice has a
maximum coordination number of zmax ¼ 9. We define
p as the probability of bond or contact occupation. The
reason we employ the honeycomb lattice with next-nearest
neighbors is because we can explore geometry to determine
whether or not it is relevant for determining the nature of
the phase transition. We do so by constructing and studying
two different models for bond occupation; see Fig. 3. For
the first model, we fully occupy the honeycomb backbone
such that p ¼ 1=3 and then occupy the additional NNN
bonds occupied randomly such that p ≥ 1=3. We dub this
first strategy of bond occupation HC1.We also implement a
second strategy of bond occupation in which the bonds,
both nearest-neighbor and next-nearest neighbor, are occu-
pied at random, which we dub HC2. For HC1, since the
honeycomb backbone is fully occupied, the central forces
on each particle can be balanced, which is required by local
mechanical stability in frictionless, but not frictional,
packings. Therefore, HC1 will allow us to more readily

HC1 HC2

FIG. 3. Schematic frictional rigidity percolation models HC1
and HC2. These random networks are constructed by either
adding next-nearest neighbor (NNN) bonds to an occupied
honeycomb lattice (HC1) or adding random first- and second-
neighbor bonds (HC2), all with probability p. Double bonds
denote frictional or gearlike bonds, which occur with probability
q, while single bonds denote sliding bonds.
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compare with the geometry of frictionless packings in order
to see how frictionless differs from frictional. The frictional
bonds are then randomly assigned with probability q, and
periodic boundary conditions are implemented.
Now we address the frictional versus sliding bonds for

this lattice model. Since frictional bonds randomly occur
with probability q, using Eq. (2) the critical occupation
probability predicted by Maxell constraint counting is

pc ¼
zc
zmax

¼ 2

3ð1þ qÞ : ð3Þ

Equation (3) tells us how pc depends on q, therefore,
denoting a phase transition line between floppy and rigid
phases just as in generalized isostaticity.
Once the frictional and sliding bonds have been iden-

tified, we construct a constraint network in which frictional
bonds below the Coulomb criterion are denoted as double
bonds in the constraint network and sliding bonds at the
Coulomb threshold are denoted as single bonds in the
constraint network. We then play the (3,3) pebble game on
this constraint network in which the first number denotes
the number of local d.o.f. and the second number denotes
the number of trivial global d.o.f., which does depend on

boundary conditions. However, Ref. [27] found that
changing the number of trivial global d.o.f. from 3 to 2
due to periodic boundary conditions did not significantly
affect the rigid cluster analysis for both frictional and
frictionless particles, and so we stick with the (3,3) and
(2,3) pebble games.
We illustrate the (3,3) pebble game algorithm using

several very simple constraint networks in Fig. 4. A more
detailed explanation can be found in Appendix A.
Examples of the rigid clusters we find below, at, and above
the rigidity transition for both HC1 and HC2 are shown in
Fig. 5. To compare frictional RP with central-force RP, we
complement our analysis with an approach where any
double bond is converted to a single bond and a (2,3)
pebble game is played since each site contains now only
2 d.o.f. Examples of the corresponding rigid clusters are
shown in Fig. 6. Finally, we implement finite-size scaling
analysis to quantify the transition for HC1 and HC2 for
different q’s for the frictional (3,3) pebble game and for the
central-force (2,3) pebble game.

2. Results

Spanning probability.—We first identify the location of
the rigidity transition by determining whether or not there
exists at least one spanning rigid cluster in the x or y
direction as both p and q are varied. We do this for all four
variants, HC1 and HC2 for both the frictional (3,3) game
and the frictionless (2,3) game. For HC2, we study q ¼ 0.5
and q ¼ 1.0, the two extreme values of q. For q ¼ 1,
isostaticity predicts pcð1Þ ¼ 1

3
. For the HC1 model, this is

identical to the initial occupation of the honeycomb lattice
backbone, and for this regular lattice, we expect one
spanning rigid cluster with a unity probability of spanning,
i.e., a first-order transition. Therefore, for HC1, we study

FIG. 4. Small minimally rigid clusters. For a triangular con-
straint network with all double bonds, this network is minimally
rigid via the (3,3) pebble game. For a four-site constraint network,
there are 5 possible configurations in which this network is
minimally rigid via the (3,3) pebble game, two of which are
presented.

H
C

2
H

C
1

Below Critical Above

FIG. 5. Rigid clusters in frictional rigidity percolation. Rigid clusters below, at, and above the rigidity transition for HC1 and HC2 with
q ¼ 0.5. Rigid clusters are colored, with the largest cluster in black, while floppy regions are in gray.
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q ¼ 0.5 and q ¼ 0.7 and do not explore the limit q → 1
since q ¼ 1 is a special case.
Figure 7 plots the probability that the system contains at

least one spanning rigid cluster as a function of p for
different system lengths L. Figure 7(a) presents data
for HC1 with q ¼ 0.5, while Fig. 7(b) presents data for
HC1 with q ¼ 0.7. In both figures, different curves with

different system sizes cross near a particular value of p,
which indicates the location of the transition point
denoted hereafter as pcðqÞ. In particular, pcð0.5Þ ≈
0.447ð1Þ and pcð0.7Þ ≈ 0.396ð1Þ. These two critical points
are very close to the results from the generalized iso-
staticity counting in Eq. (3) with pcð0.5Þ ¼ 4

9
≈ 0.444

and pcð0.7Þ ¼ 20
51
≈ 0.392.

H
C

2
H

C
1

Below Critical Above

FIG. 6. Rigid clusters in central-force rigidity percolation. Rigid clusters below, at, and above the rigidity transition for HC1 and HC2.
The black indicates the largest rigid cluster, and floppy regions are gray again.
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FIG. 7. Spanning rigid cluster probability. Probability of having a spanning rigid cluster as a function of p for lattices of different
lengths L for different models, with HC1 in the top row and HC2 in the bottom row and the (3,3) pebble game results (frictional) on the
left, while the (2,3) pebble game results (central force) are on the right. Solid lines are fits to the data using an error function as a fitting
function. Data points are averaged over 2500 samples for the (3,3) game and over 1000 samples for the (2,3) game.
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The probability of spanning for HC1 at pcðqÞ for both
q ¼ 0.5 and q ¼ 0.7 is approximately 0.6. Since this value
is significantly less than unity, our findings suggest a
continuous transition for the onset of the spanning rigid
cluster. Typically, the value of probability of spanning at the
transition is not a universal quantity and depends on details
of the model. For the frictionless version of HC1, shown in
Fig. 7(c), the crossing point is more difficult to determine,
but we estimate it to be near 0.448(1).
For the HC2 version of the model (bottom row of Fig. 7),

we again find crossing points near the predicted generalized
isostaticity counting since the formula also applies to this
variant of the bond occupation. Since there is no ordered
honeycomb backbone that is initially occupied, we explore
both the lower and upper bounds of q, i.e., q ¼ 0.5 and
q ¼ 1.0 [Figs. 7(d) and 7(e)]. Our results can be found in
the first column of the table in Fig. 9. We note that there is
greater discrepancy of the estimated pc from generalized
isostaticity for HC2 than for HC1. We also note that the
probability of spanning at the transition (the crossing point)
now differs between q ¼ 0.5 and q ¼ 1.0, which does not
imply a different universality class because the crossing
point depends on details of the lattice. The frictionless
version of HC2 is plotted in Fig. 7(f).
Correlation length.—The correlation length ξ quantifies

how two distant particles or sites interact. In a continuous

transition, the correlation length diverges at the transition,
while near the critical point, ξ ∼ jp − pcðqÞj−ν on either
side of the transition, where ν is the correlation length
exponent. In a finite-size system and near the transition,
ξ is replaced by the system length L. For each realization,
after this replacement, the system has a finite-size critical
point pL

c ðqÞ when the system contains a spanning rigid
cluster, with jpL

c ðqÞ − p∞
c ðqÞj ∝ L−1=ν. Since the location

of the transition fluctuates for each realization, we therefore
obtain a distribution of finite-size critical points as observed
in Fig. 7. The standard deviation of this distribution Δ
yields a measurement of the correlation length exponent
[38]. More precisely,

ΔðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pL
c ðqÞ2 − pL

c ðqÞ2
q

∼ L−1=ν: ð4Þ

Using error function fits to the data in Fig. 7, we numeri-
cally differentiate the curves and fit to Gaussians to
compute ΔðLÞ and extract the correlation length exponents
ν ¼ 1.58� 0.13 for HC1 with q ¼ 0.5 and ν ¼ 1.48�
0.20 for q ¼ 0.7. Both values are within 1 standard
deviation of each other. For the frictionless version of
HC1, we obtain ν ¼ 1.50� 0.07. For HC2, we find ν ¼
1.48� 0.05 for q ¼ 0.5, ν ¼ 1.43� 0.04 for q ¼ 1.0, and
ν ¼ 1.33� 0.05 for the frictionless version. Figure 8(e)
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FIG. 8. Finite-size scaling analysis to obtain exponents β, ν, and df. (a) For HC1 with q ¼ 0.5, we plot P∞, the fraction of occupied
bonds in the largest rigid cluster, as a function of p for different system sizes. We observe P∞ ∼ ðp − pcðqÞÞβ just above critical point
and tends towards p further away from the transition. (b) Collapse of (a) using pcðqÞ ¼ 0.448, ν ¼ 1.56, β ¼ 0.18. (c) P∞ forHC1 with
the (2,3) pebble game as a function of p for different system sizes. (d) Collapse of (c) using pcðqÞ ¼ 0.448, ν ¼ 1.54, β ¼ 0.07. (e)Δ, as
defined in Eq. (4), versus system length L for six different cases of the model. (f) Log-log plot of the number of bonds in the spanning
cluster M versus L for HC1 with q ¼ 0.5 and q ¼ 0.7.
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shows the width of the transition for the six different
variations of the honeycomb lattice model.
Spanning rigid cluster.—We now study the properties of

the spanning rigid cluster using P∞, the fraction of
occupied bonds in the spanning rigid cluster. Figure 8(a)
shows P∞ for increasing p for different system lengths for
HC1 with q ¼ 0.5. We note that P∞ at pcð0.5Þ decreases as
the system size increases, which, again, suggests that
rigidity transition here is continuous. The behavior of this
curve just above the critical point pcðqÞ is described by the
order parameter exponent β with P∞ ∼ ½p − pcðqÞ�β for
p ≥ pcðqÞ, for an infinite-size system. As long as L ≫ ξ,
the equation applies and P∞ ∼ ξ−β=ν. However, when
L ≪ ξ, the length scale will be set by L such that
P∞ ∼ L−β=ν. We therefore introduce a universal scaling
function fðL=ξÞ that interpolates between these two
regimes, or

P∞ðp;L; ξÞ ¼ ½p − pcðqÞ�βf
�
L
ξ

�

¼ ½p − pcðqÞ�βffL½p − pcðqÞ�νg
¼ L−β=νf̃fL1=ν½p − pcðqÞ�g; ð5Þ

with fðL=ξÞ ¼ ðL=ξÞ−β=ν for L ≪ ξ and a constant for
L ≫ ξ. The universal scaling function f̃ðL=ξÞ can be
obtained by rescaling

P∞Lβ=ν ¼ f̃f½p − pcðqÞ�L1=νg; ð6Þ
as is done in Fig. 8(b) for q ¼ 0.5, with ν ¼ 1.56 and β ¼
0.18 used as fitting parameters to obtain the optimal
collapse. This estimate for ν is consistent with our previous
measurement for the same q from ΔðLÞ in Fig. 8(e).
The collapse supports the notion of a continuous rigidity
transition. We implement the same protocol for the remain-
ing cases to look for a continuous rigidity transition.
With the exception of the frictionless version of HC1,

shown in Figs. 8(c) and 8(d), the order parameter exponent
does not vary too much between the different models, as
summarized in Fig. 9(c), though given the smallness of β, it
is more difficult to measure as precisely as ν. The small
value of β ≈ 0.07 for the frictionless version of HC1
perhaps suggests that this model is similar to the square
and kagome lattices with next-nearest neighbors studied in
Ref. [16]. There, a hybrid transition was found, where the
onset of the spanning cluster was discontinuous, but with a
diverging correlation length, though the correlation length
exponent appeared to be unity.
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FIG. 9. Analysis to obtain exponent τ and summary table. (a) HC1 with L ¼ 320 and q ¼ 0.5. The red squares show the probability
for having finite rigid clusters with different sizes very close to the transition point. Blue circles and yellow triangles show the
distribution below and above rigidity transition, respectively. (b) Nonspanning cluster size probability distribution at pc for the six
different cases of the model. (c) This table lists the types of rigidity transitions and some critical exponents for the different models
defined as follows: ξ ∼ ðp − pc;qÞ−ν is the correlation length and diverges at critical point; the nonspanning rigid cluster size obeys a
broad distribution, ns ∼ s−τ, at the critical point; df is the fractal dimension of spanning rigid cluster at the rigidity transition; β is the
order parameter exponent; q is the percentage of contacts as double bonds. As a point of reference, exponents from the triangular
lattice (TL) using the (2,3) pebble game, as well as ordinary connectivity percolation (CP) exponents, are listed at the bottom of
the table.
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In addition to the order parameter exponent, one can also
measure the fractal dimension of the spanning cluster to
determine whether or not it is, indeed, fractal. To test for
this possibility, the fractal dimension is determined by
measuring the number of bonds in the spanning rigid
clusterM as a function of system length such thatM ∼ Ldf .
In Fig. 8(f), we see that when q ¼ 0.5, df ¼ 1.81� 0.06.
For q ¼ 0.7, df ¼ 1.80� 0.05, so we observe little change
in the fractal dimension with q, at least for these system
sizes, provided q is not close to unity. Similar fractal
dimensions were found for both the frictional and friction-
less versions of the HC2 version of the model and are listed
in the table in Fig. 9(c).
Nonspanning rigid clusters.—In connectivity percola-

tion, one typically investigates the nonspanning cluster size
distribution, defined as the number of finite clusters of
size s per lattice site or bond, or ns [38]. At the transition,
ns ∼ s−τ, where τ is the cluster size exponent. For con-
nectivity percolation, we have the inequality τ > 2 strictly.
How can we understand this result? We start withP∞

s¼1 snsðpÞ þ P∞ðpÞ ¼ p. Since P∞ðpcÞ ¼ 0 for con-
nectivity percolation, then

P∞
s¼1 snsðpcÞ ¼ pc at the tran-

sition. Using the assumption that ns ∼ s−τ and converting
the sum to an integral, τ > 2 for convergence to a finite
value, i.e., pc.
In rigidity percolation, the situation is more complex

because there are nonspanning rigid clusters, spanning rigid
cluster(s), and floppy regions. If both the nonspanning rigid
cluster size distribution and the floppy cluster size distri-
bution are power laws independently at the transition, each
exponent associated with the respective size distribution
should be greater than 2. On the other hand, if one of the
exponents is less than 2, that would suggest a natural cutoff
for that type of cluster and the more tenuous structure could
still facilitate a continuous transition. If both exponents are
less than 2, then perhaps this aspect of the transition is
discontinuous.
As detailed below, we cannot rely on hyperscaling

relations for RP. Therefore, we keep track of the non-
spanning rigid clusters only and posit that their size
distribution also behaves as a power law at the transition
with exponent τ. If τ < 2, then there is presumably a
characteristic cutoff for the nonspanning rigid cluster sizes
at large enough sizes with coupling to the floppy regions
perhaps driving the continuity of the transition. Figure 9(a)
shows the probability for having a nonspanning rigid
cluster of size s as p is increased through the transition
point for HC1 with q ¼ 0.5 on a log-log scale. Below the
transition point, there are many small rigid clusters in
the system. As p increases, they merge into larger ones and
the distribution broadens to approach a linear function on a
log-log scale; the downward trend of the tail is due to finite-
size effects. We obtain τ ¼ 1.90� 0.03 < 2 from a linear
fit to the relevant part of the curve. Above pcðqÞ, the
spanning rigid cluster “swallows” the nonspanning rigid

clusters and ultimately, as p is increased far beyond the
transition point, there is only one spanning rigid cluster left.
We have measured τ for the six different cases and find a
persistent difference between the frictional and frictionless
case in that τ > 2 for the frictionless cases, while τ < 2 for
all frictional versions [see Figs. 9(a) and 9(b)] indicative of
rather different ways the rigid clusters merge and grow in
the two cases.

3. Rigid cluster merging mechanisms

The results of our finite-size scaling analysis are sum-
marized in the table in Fig. 9. We also include the
exponents for central-force rigidity percolation using the
(2,3) pebble game on the triangular lattice (denoted as TL)
and for connectivity percolation (denoted as CP) on the
triangular lattice for comparison. For the frictional versions
implementing the (3,3) pebble game, we find that HC1 and
HC2 appear to be in the same universality class, with the
exception of the special case of HC1 at q ¼ 1, in which a
discontinuous transition emerges as discussed earlier in
Sec. II. We also conclude that exponents associated with
HC2 and the (2,3) pebble game are in the same universality
class as the exponents for central-force rigidity percolation
on the triangular lattice obtained about 20 years ago. On the
other hand, we find that the exponents associated with HC1
and the (2,3) pebble game are potentially more related to
the square lattice plus braces (i.e., next-nearest neighbors)
in which a hybrid transition was found [16], so that this
case is special, just as HC1 with q ¼ 1 is special.
So while our (2,3) pebble game results are consistent

with prior central-force rigidity percolation results, our new
frictional rigidity percolation compels us to ask the ques-
tion, what mechanism(s) could drive frictional rigidity
percolation and central-force rigidity percolation to be in
distinct universality classes? To begin to answer this
question, we ask the following question: How do two
rigid clusters combine to form one larger rigid cluster?
Unlike in connectivity percolation, in rigidity percolation

two independently rigid clusters cannot become one rigid
cluster by joining via a single bond. For a frictional rigidity
percolation example with q ¼ 1, consider two triangles,
which are individually rigid. If they are now joined by a
double bond, 18 d.o.f. of the now 6 particles, minus 3
global d.o.f., are compared with 14 constraints from 7
bonds to ultimately give one floppy mode. However, two
distinct rigid clusters connected by two double bonds
makes a new rigid cluster [see Figs. 10(a) and 10(d)].
Even one double bond and one single bond connecting to
the two triangles generates one merged rigid cluster. The
two spatially distinct bonds leading to rigid clusters
merging in frictional rigidity percolation does not hold
for central-force rigidity percolation. For central-force
rigidity percolation, at least three bonds are needed to
merge two independently rigid clusters. One bond fixes the
distance between the two rigid clusters, the second bond the
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relative rotation between them, and the third the shearing,
provided the bonds are not all parallel with respect to each
other. In the frictional case, the one double bond between
the two rigid clusters fixes both the distance and the relative
rotation. Rigid hinges are another means by which two
rigid clusters can merge at a point and still be rigid. In
central-force rigidity percolation, hinges consisting of
single bonds between rigid clusters are always floppy,
and so rigid hinges cannot exist. However in frictional
rigidity percolation, this is not the case, at least for a hinge
composed of all double bonds; see Figs. 10(b) and 10(d).
We conclude that two double bonds and the rigid hinge

(composed of double bonds) are distinct means of propa-
gating rigidity in frictional rigidity percolation that do not
occur in central-force rigidity percolation. Both frictional
motifs are more spatially localized than their central-force
analogs even in the absence of floppy regions. The presence
of floppy regions indeed complicates matters, as they can
become rigid as well due to the merging of rigid clusters.
This rigidification of floppy regions can then trigger other
rigid clusters to merge, until the rigidity cascade is
complete; see Figs. 10(c), 10(e), and 10(f). It is these very
local motifs of connecting rigid clusters that can participate
in a rigidity cascade to give rise to nonlocal, or distant,
rigidity due to the addition of one bond. While both types
of models contain such an effect, we believe that the zero-
dimensional rigid cluster connector (the hinge) and the
three- versus two-bond rigid cluster connectors could
potentially account for the difference in exponents

reminiscent of correlated percolation models such as k-
core percolation, where the k ¼ 2 behavior is very different
from the k ¼ 3 behavior [39]. To more thoroughly under-
stand how the rigidity propagates through the system for
frictional RP as compared to central-force RP is combi-
natorially tricky. In the next section we study a hierarchical
lattice where we are easily able to perform such a task.
In contrast, to the ν and τ exponents, the structure of

the ultimate spanning rigid cluster appears to not differ
as dramatically between the two cases. Specifically, we
observe little variation in β for the different models studied.
We also observe little variation in df for both HC1 and HC2
studied with just central forces and with frictional forces.
We address this finding after presenting our hierarchical
lattice results.

B. Hierarchical lattices

While we have presented predominantly numerical
results so far for frictional RP and argued for a distinct
universality class from central-force RP, one exactly
solvable RP model is RP on hierarchical lattices. We can
therefore analytically determine if indeed the central-force
RP is in a different universality class than frictional RP.
To do so, we first review prior results using the (2,3) pebble
game with central forces only and then generalize to the
frictional version.

1. Review: Central forces only

It has been previously shown that central-force RP
transitions in such lattices exhibit a continuous rigidity
transition [40,41]. To understand this finding, let us start
with the generation of a particular hierarchical lattice
known as the Berker lattice [41]. Given two points and
a bond as in Fig. 11(a), replace the bond with some base
structure to generate a first-generation hierarchical struc-
ture. This replacement continues ad infinitum to arrive at a
network with an infinite number of sites between two initial
points. For this particular lattice, the nth generation con-
tains 8n bonds (with the exception of n ¼ 0). To embed this
lattice in two dimensions, the bond length decreases with
each generation.
To analyze rigidity in this hierarchical lattice, assume

each bond has a probability p < 1 to be occupied. In the
n ¼ 0 graph, the probability of having a spanning rigid
cluster between the two ends (black dots) is p0 ¼ p. In the
n ¼ 1 graph, the probability of being rigid between two
ends can be found by subgraph counting: If all eight bonds
are occupied in the n ¼ 1 network, there is a spanning rigid
cluster between the two ends. The probability of such a
structure existing is p8, while the probability for any bond
belonging to the spanning rigid cluster is 1. All other
subgraphs that contain a spanning rigid cluster, as deter-
mined by the (2,3) pebble game, and their respective
probabilities are listed in Fig. 11(b). Summing up all ways

Rigid

Rigid

Rigid

Add one double bond and create spanning cluster

(d)

Rigid

Rigid

Rigid

Rigid

Rigid

Rigid

Rigid

(b)

(e) (f)

(a) (c)

Rigid hinge

FIG. 10. Rigid cluster merging mechanisms for frictional
rigidity percolation. (a) Schematic hinge linking two rigid
clusters. (b) Schematic double bond linking two rigid clusters.
(c) Merging three rigid clusters linked by three floppy double
bonds into one rigid structure with the addition of one double
bond indicated by the black arrow. (d) Example of a hinge in
HC2. (e),(f) Adding exactly one double bond merges and grows
five smaller rigid clusters into a new spanning rigid cluster.
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of having a spanning rigid cluster between the two ends of
the n ¼ 1 graph, we obtain

p1 ¼ 2p5 þ 2p7 − 3p8:

Given the hierarchical structure of the lattice, it is trivial
to generalize this relation to

pnþ1 ¼ 2p5
n þ 2p7

n − 3p8
n; ð7Þ

from which we can solve for a fixed point, pc ¼ 0.9446,
as the system approaches the thermodynamic limit, i.e.,
pnþ1 ¼ pn.
In Fig. 11(c), pn as a function of pn1 is plotted for the

first four generations. We observe that the curves cross
at p ¼ pc and pn will converge to a step function which
jumps from 0 to 1 at pc as n goes to infinity. Meanwhile, we
use PRðpÞ to denote the probability for a bond to belong
to the spanning rigid cluster. The recurrence relation for
PRðpÞ is

PR;nþ1ðpÞ ¼
1

4
ð5p4

n þ 13p6
n − 14p7

nÞPR;n ¼ λPR;nðpÞ;
ð8Þ

and near pc, λ ¼ 0.9554 < 1, demonstrating that the
probability of a bond belonging to the spanning rigid
network will approach zero as p approaches pc. This trend
suggests a continuous transition.
Expanding about pc in both Eqs. (7) and (8) leads to

ðpnþ1 − pcÞ ¼ λ1ðpn − pcÞ and Pnþ1ðpÞ ¼ λ2PnðpÞ, such
that λ1 ¼ b1=ν, λ2 ¼ b−β=ν, and λ3 ¼ bdf , where b is the
length rescaling factor from one generation of the hier-
archical lattice to the next. For the Berker lattice, λ3 ¼ 8.
We can therefore determine β ¼ − logðλ2Þ= logðλ1Þ and
νdf ¼ logðλ3Þ= logðλ1Þ, which are both quantities that are
independent of b, resulting in β ¼ 0.078 and νdf ¼ 3.533.

2. Frictional forces

Let us now consider a “frictional” hierarchical lattice
with double and single bonds to denote frictional and
sliding contacts. Double bonds are introduced at random
with probability q. When double bonds are taken into
account, they affect subgraph constraint counting in the
hierarchical lattice as we now play the (3,3) pebble game to
determine whether or not a subgraph has a spanning rigid
cluster. Since there is an increased number of possible
subnetworks in the frictional case given that the occupied
bonds can be either double or single bonds, let us first
discuss the q ¼ 1 case. Here, there are several additional
types of subgraphs containing a spanning rigid cluster that
were not allowed in the central-force case, as shown in
Fig. 12(a), which we can easily identify. For instance, one
of the subgraphs is not allowed in the central-force case
because it contains a hinge structure. In the frictional case,
the frustrated loops of odd numbers of vertices, or “gears,”
prevent rotation. These additional rigid subgraphs contrib-
ute an additional 16p6ð1pÞ2 to the probability of having a
spanning rigid cluster above the central force case.

(a) (b) (c)

pn

p n
+

1

p n
+

1

pn

FIG. 11. Central-force rigidity percolation on a hierarchical lattice. (a) First three generations of hierarchical Berker lattice.
(b) Subnetwork counting: dashed bonds are not occupied. Every type of subnetwork is a way to obtain a spanning rigid network between
two ends (black dots) and its probability is calculated, as well as the probability for an occupied bond to be in the spanning rigid cluster.
(c) First four pn as function of p. pn tends to converge to a step function at pc ¼ 0.9446, which jumps from 0 to 1.

(a) (b)

FIG. 12. Frictional rigidity percolation on a hierarchical lattice.
(a) Allowed rigid subgraphs for the q ¼ 1 case with the (3,3)
pebble game that are not allowed with the (2,3) pebble game.
(b) Plot of dfν versus q for frictional RP on the Berker
hierarchical lattice.
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Therefore, the counting for q ¼ 1 leads to the recursion
relation

pnþ1 ¼ 13p8
n − 30p7

n þ 16p6
n þ 2p5

n: ð9Þ

In the limit n → ∞, we find the unstable fixed point
pcðq ¼ 1Þ ¼ 0.8533, in addition to two stable fixed points
at p ¼ 0 and p ¼ 1. Moreover, we can compute
PR;nþ1ðp; q ¼ 1Þ to arrive at

PR;nþ1 ¼
1

4
ð5p4

n þ 48p5
n − 83p6

n þ 34p7
nÞPR;n

¼ λ2PR;n; ð10Þ

such that λ2ðq ¼ 1Þ ¼ 0.3511. Since λ2ðq ¼ 1Þ < 1, the
rigidity transition is continuous with dfν ¼ 3.181. This
value is indeed distinct from the central-force value on the
same lattice, thereby indicating two different universality
classes.
Now we consider q < 1. After keeping track of what

subgraphs are rigid between the two black circles in
Figs. 11(b) and 12(a) in the presence of both double and
single bonds, we obtain

pnþ1 ¼ p8
nð35q8 − 244q7 þ 474q6 − 312q5 þ 60q4Þ

þ p7
nð84q7 − 210q6 þ 96q5Þ þ 16p6

nq6

þ p5
nð−8q5 þ 10q4Þ: ð11Þ

With q ¼ 1, the unstable fixed point occurs at p ¼
pcðq ¼ 1Þ ¼ 0.8533 with the two stable fixed points at
p ¼ 0 and p ¼ 1. Therefore, pn will converge to a step
function as n → ∞. However, for 0.8465 < q < 1, both the
unstable and nonzero stable fixed points, plower and phigher,
respectively, are smaller than 1, so that pn will converge to
a step function which jumps at plower from 0 to phigher. The
reason that phigher is not unity in these cases is because p
denotes a double or a single bond such that when q ¼ 1,
p ¼ 1 translates to all double bonds; however, when q < 1
and p ¼ 1, phigher depends on the ratio of double to single
bonds. When q ¼ 0.8465, plower ¼ phigher, which means
when q ≤ 0.8465, pn will always converge to zero and
rigidity transition will vanish entirely, showing that the
existence of a rigidity transition in this hierarchical lattice
very much depends on q. We also compute dfν (for
q > 0.8465) and find that its value depends on q, as shown
in Fig. 12(b). And while there is one value of q at which the
two dfν values are the same, β may also be different. So,
again, we find analytical evidence for two distinct univer-
sality classes. In addition, the fact that the correlation
exponent depends continuously on q is not necessarily
unique, as has been found in Ising models on hierarchical
lattices; see, e.g., Ref. [42]. This sensitivity is presumably

due to the special nature of the hierarchical lattice, as
detailed in Appendix B.

III. MINIMAL RIGIDITY PROLIFERATION

For our numerical studies on the honeycomb lattice, we
found that the order parameter exponent β and the fractal
dimension of the spanning rigid cluster at the transition df
are not very distinct between frictional and central-force
RP. Are they in fact the same, signaling features of
superuniversality for the structure of the spanning rigid
cluster at the transition? Or is it the case that these
exponents are indeed different but the distinction is small,
making it hard to detect studying finite-sized systems? If
we can find a model where the order parameter exponents
are actually the same—a model where the bonds are
strategically placed as opposed to randomly placed, for
example—this strengthens the potential for superuniver-
sality rather than relying purely on numerical analysis,
which has its limitations.
So let us now explore more explicitly connections

between frictional RP and central-force RP via a subset
of rigid cluster configurations using an algorithmic
approach rather different from finite-size scaling. As will
become clear below, connectivity percolation also enters
the picture, since if we can construct spanning rigid clusters
in the same way as geometrically connecting clusters, then
we have evidence for superuniversality across all three
models.
We first review invasion percolation, which is motivated

by the problem of one fluid displacing another from a
random, porous medium [29]. More importantly for us,
invasion percolation allows one to create a spanning cluster
on a lattice that has the same properties as a spanning
cluster in connectivity percolation. Next, we review the
Henneberg moves [30], which are used to grow a large
minimally rigid network (a Laman graph) from a small
minimally rigid network in the central force case. We then
extend the Henneberg moves to include frictional forces
and ultimately unify the two concepts, invasion percolation
and Henneberg moves. The final algorithm that we intro-
duce, minimal rigidity proliferation, allows us to grow
minimally rigid networks that span a frictional system, and
only grow such networks.
Invasion percolation is a modified version of connec-

tivity percolation where the spanning cluster grows along
the path of smallest weights, with the following algorithm.
(1) Assign uniformly distributed random numbers rang-

ing from 0 to 1 to bonds on a lattice as their weights.
(2) Occupy an initial bond, and create a list of all its

neighbors. This list creates a boundary of bonds.
(3) Occupy the bond from the list that has the smallest

weight.
(4) Update the list so that it contains all unoccupied

nearest neighbors of occupied bond.
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(5) Repeat 3 and 4, until the occupied cluster spans the
entire lattice.

The above algorithm reduces to the Leath algorithm [43],
which creates the spanning cluster for bond connectivity
percolation for p > pc in the following limit: Instead of
occupying the boundary bond with the smallest weight, all
boundary bonds whose weight is less than p are accepted
into the cluster, and then the boundary list is updated. The
algorithm terminates when there are no bonds on the
boundary with weights less than p. This modification from
invasion percolation to the Leath algorithm does not affect
the large-scale structure of the spanning cluster; i.e., they
remain part of the same universality class [44].
Let us also review the Henneberg moves for building

a minimally rigid network with central forces only. A
minimally rigid graph in this case is also known as a Laman
graph. Minimal rigidity occurs when the d.o.f. match the
constraints and there are no rendundant bonds, as deter-
mined through a (2,3) pebble game. Starting from such a
network GðN;NBÞ with NB bonds and N sites, one can
extend it using two basic Henneberg moves, as illustrated
in Fig. 13 (top).
(1) Add one site and two bonds between this site and

two points in G, then G0ðN þ 1; NB þ 2Þ is the new
minimally rigid network (type I move),

(2) or add one site and three bonds between this site
and three prior sites in G, then delete a prior
bond between two of the selected three prior sites
(type II move).

Both moves simultaneously add 2 d.o.f. and two con-
straints, which results in a minimally rigid graph by
induction.
Now we generalize, for the first time, Henneberg moves

for the (3,3) pebble game in order to propagate minimal

rigidity. We focus on two cases: q ¼ 1=2 and q ¼ 1. For
q ¼ 1=2, we consider only a type I move by adding a site
and then adding three bonds, one double bond and one
single bond (see Fig. 13, middle). This move perpetuates
minimal rigidity since no dependent constraints are intro-
duced. For q ¼ 1, i.e., all double bonds, we consider two
type II moves in series, if you will, by adding two sites,
where the first site connects to two existing sites and the
second new site must attach to the initial new site as well as
an older site. Then, any one of the double bonds between
the first new site and either old site is removed, though not
the bond between the two new sites, to preserve minimal
rigidity (see Fig. 13, bottom).
Having discussed invasion bond percolation and the

“growing” of minimal rigidity via generalized Henneberg
moves, we are now ready to introduce minimal rigidity
proliferation. We first focus on (2,3) minimal rigidity and
then address (3,3) minimal rigidity.

A. Central-force case

To create a spanning minimally rigid cluster as defined
by the (2,3) pebble game, we combine the Henneberg move
type I and invasion bond percolation in the following
algorithm (see Fig. 14 for an illustration).
(1) Assign uniformly distributed random numbers rang-

ing from 0 to 1 to bonds on the honeycomb lattice as
their weights.

(2) Begin by occupying a random triangle between three
closest sites and create a list of all nearest and next-
nearest neighbor bonds of these sites.

(3) Determine the sum of the weights of any two bonds
from the sites on the list that join at one site and the
existing sites in the graph, then find the smallest sum
and occupy those two bonds.

(4) Update the bond list such that it contains any
unlisted nearest and next-nearest neighbor bonds
of the newly added site.

(5) Repeat 3 and 4, until the graph spans the lattice.
Though the graph is grown by adding two bonds at a

time, as opposed to one, we still expect that this process
will fall under the connectivity percolation universality
class. Why? Because adding two bonds (with their additive
weights) at a time involves a simple rescaling of time in
which two bonds are added in one time step as opposed to
two bonds in two time steps. With this simple rescaling of
time, we do not expect the structure of the spanning cluster
to change between standard invasion percolation and
minimal rigidity proliferation; i.e., they are the same.
Also note that in MRP there are no floppy regions and
so there is no distant, or nonlocal, rigidity.
In Fig. 15 we show an example of a spanning minimally

rigid cluster on the honeycomb lattice with NNN bonds
using minimal rigidity proliferation. We measure the fractal
dimension by computing the number of sites in the cluster
M as a function of total number of sites N, as shown in

(2,3)

(3,3)
q=1/2

(3,3)
q=1

Type 1

Type 2

Type 1

(Type 2) x (Type 2)

Pebble
game 

FIG. 13. Henneberg moves. Schematic of type I and type II
Henneberg moves for the central-force (2,3) game (top) and for
the frictional (3,3) game (middle and bottom).
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Fig. 16(a), and obtain M ¼ N0.958. Since N ¼ L2, this
leads to a fractal dimension of the spanning rigid cluster
at the critical point of df ¼ 1.916, which is consistent
with connectivity percolation. Figure 16(b) shows P∞, the
fraction of the system in the spanning cluster, converging to
zero when system becomes infinitely large, suggesting a
continuous transition just as with connectivity percolation.

B. Frictional case

Sincewe have extended the Hennebergmoves to the (3,3)
pebble game for q ¼ 1=2 and q ¼ 1, we can generalize
minimal rigidity proliferation to the frictional case. For the
q ¼ 1 case, two Henneberg type II moves are made in
sequence to arrive at one growth step. With bond removal, it
is not immediately clear that the minimally rigid cluster
growth results in the same cluster structure as the q ¼ 1=2
case, and so we leave this for future study. However, since
the type I move for q ¼ 1=2 corresponds precisely to the
type Imove for the central-force case justwith one single and
one double bond, we expect the same configurations as
above. Thus, both central-force percolation and frictional
RP collapse to an identical construction in this case. Since
we have already argued in the central-force case that adding
two bonds at a time is a simple rescaling of time from adding
one bond at a time, we also expect the q ¼ 1=2 frictional
process to be in the same universality class as connectivity
percolationvia transitivity. In other words, within this subset
of growing minimally rigid configurations, we expect
superuniversality to emerge: All three universality classes
collapse into one all with the same exponents.
Should we have expected this result? Indeed, we should

have because this strategic bond occupation does not
contain floppy regions, so there is no nonlocal rigidity,
and the minimal rigidity constraint maps to adding either
one or two bonds at a time. In other words, MRP is a
simpler model than random bond occupation given that
there is no nonlocal rigidity. Interestingly, transfer matrix
methods (not focusing on minimally rigid clusters) argued
that connectivity and central-force percolation were in the
same universality class, but their results were later dis-
counted [5,6]. We now perhaps have some understanding as
to why some exponents appear to be quite close in value in
that one can add floppy, or redundant, bonds in some
perturbative manner and interpolate between the two limits.

IV. DISCUSSION

We have now expanded the notion of rigidity percolation
to include friction in two dimensions with the extension of

(a) (b) (c) (d)

FIG. 14. Schematic of minimal rigidity proliferation (MRP). (a) Existing rigid cluster (blue) surrounded by nearest and next-nearest
bonds with their respective weights (purple). (b) Minimal sum of weights from bond pair has been associated to sites; candidate
Henneberg move pairs are in red. (c) The move is executed at the site with the lowest total weight. (d) New rigid cluster surrounded by
nearest and next-nearest bonds.
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FIG. 15. Generated spanning clusters. An example of spanning
rigid cluster constructed using minimal rigidity proliferation. Two
examples of rigid hinges are shown in more detail on the right.

(a) (b)

FIG. 16. MRP cluster property analysis. (a) Log-log plot
between size of spanning cluster at the critical point M and size
of whole system N. The slope of less than 1 indicates that the
spanning cluster at the critical point has a fractal dimension
df ¼ 1.916� 0.010. (b) As the system size increases, P∞ goes to
zero, suggesting a continuous transition. All plots have been
averaged from 935 samples.
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the (2,3) pebble game to the (3,3) pebble game and the
incorporation of double bonds representing contacts below
the Coulomb threshold. In doing so, we have uncovered a
new universality class in the realm of rigidity percolation,
namely that of frictional RP, which is directly compared
with central-force RP on the same lattice. Such a direct
comparison between two universality classes has not been
possible until now. By expanding the scope of RP, the direct
comparison presented here should help to formulate a more
general framework for rigidity transitions just as there
exists a general framework for spin systems, with and
without disorder, to understand how a transition in the
three-state Potts model is in a different universality class
from the one in the Ising model.
We make this direct comparison between central-force

RP and frictional RP on honeycomb lattices with additional
next-nearest bonds. We find different correlation length and
nonspanning rigid cluster size distribution exponents ν and
τ, respectively, between the two cases, but a statistically
similar order parameter exponent and fractal dimension of
the spanning rigid cluster at the transition. Given the
different ν and τ, we propose that local motifs, such as
two double bonds and a rigid hinge composed of double
bonds, are ways to connect rigid clusters in frictional RP
that are distinct from central-force RP. Neither construct is
rigid in central-force RP, and additional supporting bonds
are necessary. The less strict rigid cluster connection
mechanisms in frictional RP compared to central-force
RP potentially drive the distinction between universality
classes. For the hierarchical lattice, not only are there two
different universality classes, frictional and central-force
RP, that can be shown analytically, the exponents also
depend continuously on the fraction of double bonds.
Motivated by the small difference in order parameter

exponent in central-force and frictional RP, we combined
Henneberg moves [here extended to the (3,3) pebble game]
and invasion percolation to construct another new model,
minimal rigidity proliferation, that can be implemented for
both types of forces. The rigid cluster in MRP grows in a
simple fashion, unlike in RP where rigid clusters surrounded
by floppy regions can lead to a rigidity cascade.Withminimal
rigidity proliferation, there are no floppy or even redundant
bonds—the spanning rigid cluster is built in a “clever” way,
which is to be contrasted with the tuning by pruning
approaches [45],where springs are removedwhile conserving
the bulk modulus, for example, and the jamming graph
approach [46], where minimally rigid clusters follow the
geometric constraint of local mechanical stability. With the
strategic bond growth in minimal rigidity proliferation,
the order parameter exponent is the same across connectivity,
central-force RP, and frictional RP. This would be the first
time superuniversality is observed in RP in a way that goes
beyond transfer matrix methods [5]. Our work also suggests
that looking at minimally rigid configurations—a subset of
all possible configurations within RP—represents a new way

of viewing phase transitions in the sense that nested within
two distinct universality classes there could be an underlying
superuniversality establishing deeper connections between
the classes than previously thought.
Since frictional RP was devised to explore the nature of

the jamming transition in frictional particle packings, this
work compels us to make a rather strong claim that the
rigidity transition in frictionless particle packings with
purely repulsive central forces is of a different nature than
the rigidity transition in frictional particle packings. In fact,
the frictionless case with purely repulsive central forces
may indeed be a very special case because even rigid cluster
analysis of particle packings with both attractive and
repulsive central forces indicates a continuous transition
[47]. In frictionless packings, there are no redundant bonds,
which makes the constraint counting rather straightforward.
However, in frictional packings, redundant bonds emerge
such that the constraint counting is more intricate and,
therefore, perhaps non-mean-field. It will be interesting to
apply the frictional (3,3) pebble game to experimental
frictional particle packings to test the applicability of our
approach as well as to compare the rigid clusters with
dynamical matrix calculations. And very recently, the
frictional (3,3) pebble game has been applied to frictional
packing derived beam networks to predict fracture loca-
tions near the brittle-ductile transition [48].
Finally, we are currently exploring a limitation of the

(3,3) pebble game [49]. Specifically, if there are four
particles forming a square and all four contacts are below
Coulomb threshold, then we have a square with all double
bonds (like the middle image in Fig. 4 without the diagonal
bond). From the (3,3) pebble game perspective, this
configuration is floppy, and there is one floppy mode
where the particles are in a gearing motion. However, these
four particles are rigid under strain, since the pure spin
mode does not couple to translations, and so one can play a
(3,4) pebble game if one is interested only in translational
rigidity. More generally, odd loops of double bonds do not
contain this pure spin mode, while even loops of double
bonds do. This complication can be addressed by keeping
track of even and odd loops of double bonds. Any odd loop
intersecting an even loop destroys the gearing mode, and
we relabel the loop as even. If there are no even loops after
looking at intersections of even and odd loops, then the
original (3,3) pebble game is robust at all length scales.
Near the transition where system-spanning length scales
dominate, the initial version of the (3,3) pebble game is also
robust as long as there is no cluster-spanning set of even
loops, which is unlikely due to the intersection with odd
loops such as triangles. Note also that the low-energy
normal modes of rigid frictional packings show a rough
equipartition between rotational and translational d.o.f. and
do not contain any purely rotational modes [36].
In closing, our work opens up many new avenues for

exploration in rigidity percolation with new constraint
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counting methods and the discovery of potentially new
universality classes. It also invites us to explore not only
rigid regions but floppy regions as well, which may be the
key in constructing field theories of continuous rigidity
percolation transitions. Finally, our new optimal rigid
cluster growth algorithms do not waste material and,
therefore, perhaps have a chance of being realized in living
matter as well as provide mechanical examples for deci-
sion-based cluster growth that may draw links with
explosive percolation [50].
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APPENDIX A: PEBBLE GAME

Maxwell constraint counting discussed in Sec. II
assumes that every bond or constraint is an independent
one. However, not every bond is an independent constraint
in a random network. There may exist some redundant
bonds. In order to more accurately locate the critical point
where RP occurs in two-dimensional networks by keeping
track of independent and redundant constraints, one can
invoke the pebble game. This algorithm was described in
Ref. [9] and is rooted in the following Laman condition:
A two-dimensional network with N sites is minimally rigid
if and only if it has 2N − 3 bonds and no subnetwork of k
sites has more than 2k − 3 bonds [34]. To implement the
Laman condition numerically requires checking all pos-
sible subnetworks, which is computationally expensive.
The pebble game is a more computationally efficient
method with a running time proportional to the number
of sites times the number of bonds.
Here are a few more details of the pebble game. In a

network extracted from a frictionless particle packing, since
each site has 2 local d.o.f. and there are 3 global d.o.f., one
plays the (2,3) pebble game. Initially, there are two pebbles
on each site, then these pebbles are assigned or assigned to
bonds one by one based on specific rules. The rules stem
from an alternate version of the Laman condition, namely,
that the bonds in the network are independent from each
other if and only if for each bond in a new network formed
by quadrupling each bond in the original network has no
induced subnetwork of k sites and greater than 2k bonds.
With this reformulation, one can check when a new bond is
added to the existing set of independent bonds is itself
independent via quadrupling the bond in question and
invoking the Laman condition. To do this, the pebble game

quadruples the new bond and tries to find a pebble covering
for the 4 new bonds. If a pebble covering is not found, the
new bond is not an independent constraint from the others.
More specifically, the pebble game is as follows.
(1) Start with a set of covered bonds and add a

new bond.
(2) Look at the sites emanating from the new bond. If

any of those sites has a free pebble, use it to cover the
bond. Give a direction to this bond such that it points
away from the site that has given up the pebble.
Continue with another copy of the new bond. If the
pebbles of the neighboring sites already cover
existing bonds, then search for free pebbles in the
directed network of existing edges. Once a free
pebble is found, swap pebbles and reverse the arrows
on the bonds appropriately, so that the new bond is
covered. Repeat this three more times. If a free
pebble is found for each of the 4 copies (the
quadrupled bond), then remove three of the copies
and retain one bond (with its pebble and its direc-
tion) since it is added to the existing set of inde-
pendent bonds. If no free pebble is found for any of
the four copies, then the new bond is not indepen-
dent of the current set and it is not added to the
independent set of bonds.

(3) Once all the bonds in the network have been tested,
if 2N − 3 independent bonds are found, then the
network is minimally rigid. If there are less than
2N − 3 independent bonds and no free pebbles, the
network is overconstrained, or simply rigid, and if
there are less than 2N − 3 independent bonds and
free pebbles, the network is underconstrained, or
floppy.

To identify rigid clusters in the network, one introduces a
new cluster label for an unlabeled bond and gathers three
pebbles at its two incident sites. Then, three free pebbles are
temporarily pinned down and the two incident sites marked
as rigid. For each new nearest-neighbor site (to the two
incident sites), a pebble search is performed. If a free
pebble is found, the nearest-neighbor site is not mutually
rigid with respect to the initial bond nor is any other site that
was encountered during a pebble rearrangement; all of
these sites are floppy with respect to the initial bond.
However, if a free pebble is not found, the site is mutually
rigid with respect to the initial bond as well as all other sites
that make up the failed pebble search and so these sites are
marked as rigid. Then the next-nearest neighboring sites are
visited until all nearest neighbors to the set of rigid sites
have been marked floppy. All bonds between pairs of sites
marked as rigid are given the same cluster label. Finally,
floppy and rigid marks are removed from all sites (since a
site is not unique to a rigid cluster) and the process
continues until there are no unlabeled bonds. In mapping
out the rigid clusters, there will be two types of bonds:
isostatic bonds and redundant bonds. Isostatic bonds are
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critical for maintaining the rigidity of the cluster, while
redundant bonds can be removed without changing the
overall rigidity. Only the redundant bonds can carry stress.
For the frictional case, we must incorporate the addi-

tional rotational d.o.f. for each particle into the pebble
game. In addition, to account for the additional constraints
due to tangential forces in the frictional case, we introduce a
second bond for each frictional contact into the network.
The pebble game then explores the network to see if that
additional rotational d.o.f. can be independently con-
strained. This second bond in the network is only added
to frictional contacts below the Coulomb threshold, i.e.,
where the normal and tangential forces are independent
of each other. For contacts at the Coulomb threshold, the
tangential and normal forces are no longer independent, so
that only one bond in the network is needed. We, therefore,
arrive at a (3,3) pebble game where contacts below the
Coulomb criterion are denoted as double bonds in the
network and contacts at the Coulomb threshold are denoted
as single bonds in the network. Two very simple networks
were discussed earlier.

APPENDIX B: GENERAL HIERARCHICAL
LATTICES

Let us define a basic network motif with NB bonds in a
hierarchical lattice as the general first-generation network
and denote it by G0. Then perform the subnetwork
counting, as in Fig. 11(b). Assuming that we find an rigid
subnetworks which have n bonds less than the full network
motif G0, then, generically, the recurrence relation between
two generations is

pnþ1 ¼
XNB

n¼0

anp
NB−n
n ð1 − pnÞn: ðB1Þ

Usually a0 ¼ 1, and in the specific case we discussed in the
main text, a1 ¼ 8, a2 ¼ 6, a3 ¼ 2, and the others are zeros.
The critical point is determined by the crossing point of
plots of Eq. (B1) and pnþ1 ¼ pn. In Fig. 17, we can see that

we need at least the first two terms of Eq. (B1) to obtain a
crossing point and that they dominate the remaining terms
in determining critical point pc. With the same method, we
can obtain λ1 by taking the derivative of Eq. (B1), or

λ1 ¼
XNB

n¼0

anðNB−nÞpNB−n−1
c ð1−pcÞn

−annp
NB−n
c ð1−pcÞn−1; ðB2Þ

and use dfν ¼ logðNBÞ= logðλ1Þ to find dfν. Table I lists
how pc, λ1, and dfν change when we add higher-order
terms to first two terms in Eq. (B1).
Now let us investigate the first two terms in more detail.

We have pnþ1 ¼ pNB þ a1pNB−1ð1 − pÞ. To obtain a
critical point, we require that

pNB
c þ a1p

NB−1
c ð1 − pcÞ ¼ pc: ðB3Þ

To make this equation solvable in the range [0, 1], we can
rewrite it as

a1p
NB−2
c ¼ 1−pNB−1

c

1−pc
¼ 1þpcþp2

cþ�� �þpNB−1
c : ðB4Þ

We know that pc is a number between 0 and 1, so a solution
requires that a1 > NB − 1. Since a1 is the number of rigid
subnetworks when just one bond is taken away from G0,
we have a1 ≤ NB. Ultimately, we obtain the equality

a1 ¼ NB; ðB5Þ

which gives a rough criterion whether a general hierarchical
lattice has a critical point, based on simple subnetwork
counting.
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