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A B S T R A C T

Self-healing materials with an inherent repair mechanism have been widely studied. However, the self-healing
efficiencies of most materials can only be measured by laboratory-based experiments, which can be time con-
suming and expensive. Inspired by modern machine learning approaches, we are interested in predicting the self-
healing efficiency of new bio-hybrid materials, as part of our ongoing EPSRC funded “Manufacturing
Immortality” project. By modelling existing experimental data, predictive models can be built to forecast self-
healing efficiency. This has the potential to reduce the time input required by laboratory experiments, guide
material and component selection, and inform hypotheses, thereby facilitating the design of novel self-healing
materials. In this position paper, we first present preliminary knowledge and quantitative definitions of the self-
healing efficiency of materials. We then demonstrate several widely used machine learning approaches and
review an experimental case of predictive modelling based on neural networks. Furthermore, and aiming to
expedite self-healing material development, we propose an on-line ensemble learning framework as the whole
system model for the optimization of predictive computational models. Finally, the rationality of our on-line
ensemble learning framework is experimentally studied and validated.

1. Introduction

The ability to autonomously sense and repair damage is an inherent
property of many biological systems. Bio-mimetic approaches that seek
to reproduce natural mechanisms of self-repair using both bio-derived
and synthetic components, have opened up new opportunities in the
development of materials with latent self-healing abilities [1,2]. Such
materials have the potential to benefit human sustainable manu-
facturing systems by increasing product lifetime, reducing repair costs,
and will ultimately contribute to the goal of manufacturing self-sus-
taining materials [3,4]. Generally, prospective self-healing materials
are those which can repair damage and restore lost or degraded prop-
erties using inherently accessible resources [5] without any require-
ment for external diagnosis or extrinsic intervention [2]. This is cur-
rently measured quantitatively by comparing the extent of restoration
and recovery following damage, versus the original state, and can be
defined as self-healing efficiency (SHE) [1]. Recently, many self-healing
materials, including plastics, rubbers, ceramics, concrete, glass, and

metal based systems have been explored, encompassing both coatings
and bulk materials [1,2,6].

Despite successes, significant challenges in the design and manu-
facture of self-healing materials remain. The reason for this is two-
fold: i) There are a vast array of potential design choices for new
materials, meaning that the underlying search space for new self-
healing systems is so large as to be insurmountable; and ii) As en-
vironmental conditions for self-healing are varied, the self-healing
efficiencies may vary as well. It is therefore necessary to accurately
assess the self-healing behavior in all possible environmental condi-
tions. As a result, the selection of appropriate test configurations in
combination with phenomenologically different experiments and
healing conditions is required, and thus many tens, or even hundreds,
of laboratory experiments are required to thoroughly measure SHE
[7]. Undertaking such extensive testing is often intractable in ‘ex-
treme’ conditions, including those that pose significant health and
safety risks to humans, and where self-healing materials would have
the most significant impact.
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Usually, a new material prototype is designed according to the
knowledge of the material itself, or closely related materials, with this
knowledge derived from previous experimentation. This is followed by
the in-laboratory production of several specimens and associated
testing of their properties (or performance), with regards to self-healing
behaviour. The SHEs of these new material prototypes are then statis-
tically analysed [8]. According to the experimental results, the design of
new materials is further refined and adjusted, for instance, increasing or
decreasing the amount of specific components, the addition of new
components or the removal of trivial ones. Subsequently laboratory
testing will be repeated to monitor SHE, and then a better design so-
lution of self-healing materials may be selected, and the experiments
will be carried out accordingly. This design-build-test-learn cycle can be
repeated multiple times to produce the best prototype, making the
design of a new material an iterative and time-consuming process. From
the perspective of computational optimisation, material design may be
considered as a search problem to discover the underlying design space
of a novel self-healing material. We are aiming to design and discover
better materials with high SHE under various environmental condi-
tions, based on existing knowledge and experiences, historical data, and
intuition [9].

Machine learning approaches enable more knowledge to be ex-
tracted from historical data, and furthermore, this knowledge can be
used to predict properties of new materials [10], which could accelerate
discovery and design processes for novel materials. For example, che-
mists have previously trained support vector machines (SVM) and
neural networks (NN) to categorise a spectrum of reagents as reactive or
non-reactive in order to discover new chemical reactions [11]. Conse-
quently, new reactions were found and then verified by laboratory
experimentation [11]. In a further example a general procedure of
applying machine learning for lithium-ion battery development is pre-
sented as three key steps: i) sample construction, ii) model building,
and iii) model evaluation [12]. Based on these steps, several commonly
used machine learning algorithms and their value in predicting the
properties, structures and components of novel materials are reviewed
[13]. Moreover, the fundamental interplay between the predictive
capability of machine learning models and the availability of data were
analysed, and a method of using small datasets was introduced by
Zhang et al. in [14].

In our ongoing EPSRC funded project “New Industrial Systems:
Manufacturing Immortality”, one of the key ambitions is to use machine
learning approaches, such as regression and classification, to predict the
SHE of new material prototypes. We aim to construct predictive models
which are trained and validated by historical data, and these predic-
tions will then be verified by laboratory experimentation. By using
these predictive models, significant theoretical results can be drawn to
support the intuitional inferences from experienced materials specia-
lists, and it is expected that this will lead to new insights and inspira-
tions. However, it should be acknowledged that predicted results may
not be as accurate as those measured by lab experiments. Generally, a
larger quantity and higher quality of historical data will improve the
performance of predictive models, and therefore, our project also aims
to create an experimentally verified database of parameter effects on
SHE, that can be used in this way.

The contributions of this work are summarized as follows. Section 1
contains a brief introduction on self-healing materials and the related
mathematical definitions regarding damage and SHE. Section 2 pre-
sents some primary knowledge on self-healing materials and extracts

the definition of SHE. Then, machine learning approaches such as re-
gression and classification are reviewed in Section 3, leading to a de-
scription of a neural network model for predicting SHE in Section 4. In
Section 5, to enable the modelling of SHE, we propose an on-line en-
semble learning framework including multiple learning approaches,
which is experimentally studied and validated. Finally, in Section 6,
conclusions and future suggestions are presented.

2. Primary definitions and types of self-healing materials

In this section, the background of self-healing materials will be
presented in terms of the following three parts: (1) an explanation of
intrinsic and extrinsic self-healing, (2) quantitative definitions of da-
mage and SHE, and (3) a classification of three types of bio-hybrid self-
healing materials. Whilst biological and bio-hybrid self-healing mate-
rials are only a subset of the self-healing materials available, this project
has chosen to concentrate on these for their relatively untapped po-
tential in this area. Biology has evolved over millions of years to both
sense and repair damage rapidly and effectively and this is a property
that is highly desirable in the manufacture of new materials.
Furthermore, recent advances in the field of synthetic biology have
made the incorporation of biological components tractable.

2.1. Intrinsic and extrinsic self-healing for material

Our extensive literature review on self-healing materials reveals
that basic self-healing behaviour can be classified into two types: in-
trinsic and extrinsic self-healing [6]. Intrinsic self-healing means that
the material can be healed by changing only the environmental con-
ditions to stimulate intrinsic activities, such as Diels-Alder (DA) reac-
tions [15], sol-gel transitions (SG) [16], or other spontaneous reactions
[17]. In contrast, extrinsic self-healing is implemented by adding ex-
ternal healing components, such as those contained in capsules [5,18],
or vascular based [19,20] healing systems. When damage occurs the
vessel housing is broken, releasing the healing components to partici-
pate in or activate the healing process. The vascular based self-healing
materials keep the healing components in capillaries (or vascular nets)
[21]. The latter can be particularly useful or components that need to
be continuously circulated or that need to be accessible at all locations
within the material.

2.2. The quantitative definitions for damage and self-healing efficiency

There are many kinds of material damage, which can be visible or
invisible, such as cracks or functional failures. This can include mate-
rials such as electrical wiring or fibre optic damage, as well as the more
commonly considered bulk materials e.g. metal sheeting. To define it
quantitatively, the property (or performance) of the virgin material and
damaged material are denoted as F0 and Fd, respectively [2]. It should
be noted that the properties or performance of materials can include
stress, stiffness, conductivity, bulk, and so on. Thus, the measurement of
damage f0 (i.e. loss of property or performance) can simply be defined
as follows [1,7]:

=f F F0 0 d (1)

As we can see, a lager value of f0 indicates a bigger damage. If the
damage material can be self-healed, then the measurement of recovery
can be denoted as follows:
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=f F Frepair repair d (2)

where the recovered property from self-healing is Frepair. Based on the
definitions of damage and recovery, SHE can be defined as the per-
centage of performance that is recovered compared to that of the da-
maged performance, as shown in Fig. 1 [22]. Thus SHE can be calcu-
lated by the following equation [1,7]:

= f f/repair 0 (3)

For some material M , a larger number of experiments on the
functional property are carried out between the virgin status and da-
maged status to get a good estimation of f0. Also, many experimental
repeats are used to obtain an accurate, averaged damaged status for
calculating frepair. Supposing that all the damage occurs in the same (or
very similar) manner, then the percentage calculated by Eq. (3) can
stand for the self-healing efficiency of material M under the healing
process H , termed HM . However, for any self-healing material, varia-
tion to the healing process H (including different environmental con-
figurations for the self-healing process) may lead to different results.
Thus the optimization approaches shown here could be beneficial in
new material design, incorporating a wide range of parameters that
cannot all be experimentally tested for.

2.3. The types of bio-hybrid self-healing materials

For the future research in our project, we will focus on the design of
bio-hybrid self-healing material. Here, bio-hybrid materials and non-
biological materials can be distinguished according to whether they
contain biological components, such as nucleic acid, peptide, protein,
or whole microorganisms [21,22], or not. If a material does not contain
any biological components, e.g., some types of alloy metals, it should be
considered as a non-biological material. For ease of clarification in this
process, we further classify the bio-hybrid materials into three types
(see Table 1), and the non-biological material as one type because we
are currently focused on investigating those that include biological
components. Furthermore, as shown in this table, we consider that the
added components may either directly react with the material or in-
directly activate as catalysts to accelerate the healing process.

3. Machine learning approaches for predicting self-healing
efficiency

Regression and classification are well-known machine learning ap-
proaches [27]. In this section we will briefly introduce our ideas to use
regression and classification for the prediction of SHE.

3.1. Regression for prediction

Regression has been widely used for analyzing the relationship be-
tween dependent and independent variables [27]. For example, ridge
regression, support vector regression and back-propagation neural
networks have been used to predict the onset temperature of AsxSe1-x
glasses transition with respect to the input variable x (x indicates the
Molar ratio of glasses components) [28]. In the case of SHE prediction,
suppose the input of experiments (including the configuration of ma-
terial and environmental conditions) are the independent variables, and
the outputs (properties of material) are dependent variable(s). Regres-
sion models can be built to reveal the relationship between the input
and output. An example of a bio-inspired self-healing material design,
which benefitted from regression modelling was demonstrated by Sar-
iola et al. [24]. In that work the authors used a structural protein with
alternating soft and rigid domains to act as the self-healing mechanism
and through regression modelling they learnt the relationships between
the adhesion force Fa with relation to the duration time of the experi-
ment t , residual , exponent parameter k, temperature-dependent
parameter c, and temperature-independent constant F0. This is shown in
Table 2.

All the above-mentioned regression models in Table 2 are trained by
historical data, i.e., all parameters are estimated. According to the
criteria of minimum residual sum of squares (RSS), = + +F c T t F( )a

k
0

is the best fitted model, and its fitting curve is plotted in Fig. 2. As a
result, if the adhesion forces Fa under other duration time is required,
we could use this model = + +F c T t F( )a

k
0 to predict it without lab

experiments.

Table 1
Bio-hybrid and non-bio-hybrid materials.

Component+Material Non-bio- Material Bio- Material

Non-bio Component Epoxy+Glass [18] Furan/amine+ polymer [25]
Bio Component Bacteria+ Concrete [23] Chitosan+Hydrogel [26]

Table 2
Regression models for prediction. (Table credits: [24]).

= +F cta k = +F c T t( )a k

= +F cta k T( ) = +F c T t( )a k T( )

= + +F ct Fa k i = + +F c T t F( )a k i

= + +F ct Fa k T i( ) = + +F c T t F( )a k T i( )

= + +F ct F T( )a k i = + +F c T t F T( ) ( )a k i

= + +F ct F T( )a k T i( ) = + +F c T t F T( ) ( )a k T i( )

= +F cea tk = +F c T e( )a tk

= +F cea tk T( ) = +F c T e( )a tk T( )

= + +F ce Fa tk i = + +F c T e F( )a tk i

= + +F ce Fa tk T i( ) = + +F c T e F( )a tk T i( )

= + +F ce F T( )a tk i = + +F c T e F T( ) ( )a tk i

= + +F ce F T( )a tk T i( ) = + +F c T e F T( ) ( )a tk T i( )

Fig. 1. The definition of self-healing efficiency. (Figure credits: [22]).
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3.2. Classification for prediction

Sometimes an exact fitting curve is desired but there is less histor-
ical data available, which means the problem is underfitted. In this
case, the aim of predicting a real number for SHE should be reduced to
categorizing a binary conclusion on whether the material can be healed
or not. As presented above, there may be many factors that affect SHE,
such as healing temperature, duration time, and PH value, which can be
written as a variable vector X. Consider the following logistic regression
model [27,29]:

p y X( | ; ) (4)

where is the parameter vector, y is a binary dependent variable with
values 1 or 0 (which mean true or false, respectively). For ease of il-
lustration, we can model this classifier as =h X X( ) T . Then we would
predict 1 on an input X if and only if X 0T , as shown below:

=
<

p y X X
X

( | ; ) 1 , 0
0, 0

T

T (5)

It should be noted that a larger XT indicates a larger
=h X p y X( ) ( 1| ; ), thus a higher degree of confidence that the label

being 1. On the other hand, if X 0T , we consider a very high con-
fident prediction of =y 0. So, an optimal classifier should be obtained
by maximizing the confidences either =y 1 or =y 0. Usually the
margins are intuitionally used to describe the confidences, so the op-
timal classifier can be achieved by maximizing the margins, as shown in
Fig. 3.

In Fig. 3, the nearest distance from data points to the linear classifier
is defined as the margin, and the red and blue data points (which have
the same margin value in this figure) are reasonably defined as support

vectors (with respect to the original point o). It is proved that the for-
mula of classifier can be deduced based on its support vectors, so this
method is named as support vector machine (SVM) [27]. SVMs are
widely used in classification problems, and recently it was employed by
an organic synthesis robot to search for new reactions [11]. In that
study, SVM was trained by the spectrum of reactive and non-reactive
reagents, and then it was used to predict a new reagent.

There are many material design problems that can use SVM to
predict the properties of materials. For example, if we have already
obtained some test data as shown in Table 3 [30], we can specify that a
yield of more than 80% is considered as healed. Otherwise, a yield of
below 80% is labelled as unhealed. An SVM model (classifier) can then
be trained by these labelled data in order to predict the healing status
under new configurations of reagents. In Table 3, the Ring-Opening
Metathesis Polymerization was carried out using ENB and DCPD with
different catalysts, and the reaction yield (conversion percentage)
under different conditions are recorded, where G1 and HG1 denote
Grubbs catalyst and Hoveyda-Grubbs 1, DCPD and ENB stand for di-
cyclopentadiene and 5-ethylene-2 norbornene, respectively.

4. Machine learning examples by using artificial neural networks

In this section we will first introduce the fundamental models of
artificial neural networks (ANNs), and then present a classification
experiment realized ANN to predict new reactions [11], and a simu-
lated regression experiment for learning the curve of tensile stress (TS)
with respect to the number-average molecular weight (Mn) [31].

4.1. Neuron model and neural networks

A single neuron model (also called a perception model) contains
several inputs and one output as shown in Fig. 4 [32], where xi (i=0,
1, …, n−1) are n input variables, where =x 10 is a constant number. wi
(i=0, 1, …, n−1) are the n unknown weight parameters to be esti-
mated, and the value of function f is the output. Usually, a neuron is a
computational unit that takes n input x x x(1, , , ... )n1 2 1 , and the output
as =f X w x( ) i i, (i = 0, 1, …, n−1) , where f R R: is named as the
activation function. There are many choices for activation functions,
such as linear summation function, sigmoid function, tanh function,
that can be used for building a neural network [32].

An artificial neural network (ANN) is constructed by hooking to-
gether many of the simple neuron models, and thus the input of a
neuron can be the output of another neuron [27]. It is noted that NN
can contain many layers as shown in Fig. 5, where the leftmost layer is
called the input layer, and the rightmost layer is called output layer
(which, in this example, only has one node), and the middle layers are
named as hidden layers. An ANN model can be constructed by using
many neurons, layers, and different activation functions, and it is
widely used in tackling those highly complex and large-scale problems
[27].

Fig. 2. The fitting curve for adhesion force Fa. (Figure credits: [24]).

Fig. 3. Linear SVM and margins.

Table 3
Conversion percentage (Yields %) in the ROMP reaction of ENB and DCPD with
different catalysts. (Table credits: [30]. ROMP denotes ring-opening metathesis
polymerization; ENB denotes 5-ethylidene-2-norbornene; DCPD denotes dicy-
clopentadiene.)

Catalyst Monomer Temperature Time Yields

G1 DCPD 25 15 34
G1 DCPD 10 30 0
G1 ENB 25 0.5 100
G1 ENB 0 13 100
G1 ENB −30 1440 74
G1 ENB −40 1440 52
HG1 ENB 25 0.5 96
HG1 ENB −50 450 99
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4.2. ANN for classification

In order to further explore the chemical reaction space, an ANN
model was applied to the Suzuki-Miyaura reaction space dataset [33],
in which the dimensions of independent variable increase to 37 [11], as
shown in Fig. 6. In the first layer of ANN, the input is a 37-bits variable
vector, which code reactant 1 with 7 bits, reactant 2 with 4 bits, ligand
with 12 bits, chemical base with 8 bits, and chemical solvent with 6
bits, thus the final chemical reaction space is 37 dimensions. While in
the second layer, 50 neurons with sigmoid activation functions are
constructed. The third layer comprises 7 neurons in the fully connected
layer (also with sigmoid activation functions). The final prediction of
yield was obtained as the output from the third layer. Mean squared
errors (MSE) between the predicted and experimental yield were used
as the loss function to train this ANN. As reported, this ANN model was
trained by 3,456 reactions and validated by 576 reactions with only
0.01208 MSE, when predicting the Suzuki-Miyaura dataset [33].

4.3. ANN for regression

To further demonstrate the value of ANN in regression, the re-
lationship curve between the simulated tensile stress (TS) and the
number-average molecular weight (Mn) is learned. An ANN with two
hidden layers was constructed; each layer contains 4 neuron models
with sigmoid activation functions. Fig. 7 shows the computational re-
sults for linear, nonlinear regression (with order 2 and 3), and ANN
regression together with ANN predictions. It should be noted that the
ANN regression only fits the TS values of the data points that have exact
Mn values with the experimental data points, while the ANN prediction
gives the whole prediction of TS with respect of a uniformly sampled
Mn values from 1.0×105 to 1.2×106.

As shown in Fig. 7, compared to the traditional linear and nonlinear
regressions, ANN regression has the minimum mean square errors

(MSE), and its predictive curve is more promising than other methods.
To improve the performance of nonlinear regression, one approach is to
increase the order of the nonlinear function, e.g., using 4 or even higher
order of polynomial model to fit the data, however, this may lead to
overfitting [34].

5. An on-line ensemble learning framework and experimental
study

As lab experiments are undertaken we acquire an increasing number
of specimens and experimental results. These can be used further to
refine predictive models. In this section we present a novel on-line
ensemble learning (OEL) framework with three open issues: i) a ter-
mination condition; ii) a refining method; and iii) an adviser of new
material designs and environmental settings. Finally, the rationality of
our OEL framework is experimentally studied.

5.1. An on-line ensemble learning framework

In order to refine the predictive model, we propose an OEL frame-
work based on considering the SHE prediction error as feedback or
reward. By analyzing this feedback, we can adjust the predictive
models, or re-train the model based on both historical data and new
experimental data, thus forming an on-line learning framework
[35,36]. Here we present this on-line learning framework for SHE
prediction with details shown in Fig. 8.

In this framework, there are two processes indicated by black and

Fig. 6. The structure of ANN used for chemical reaction prediction (Figure
credit: the supplementary file of [11]).

Fig. 7. Experimental data points and regression results by linear, nonlinear
(order 2 and 3) and ANN models, and their prediction.

Fig. 4. Neuron model.

Fig. 5. The artificial neural network model.
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red lines, respectively. The black loop is the general learning process,
and its starting point is the module of ‘Initialization’, while the end
point is ‘Initial predictive model’. The general learning process contain
5 steps as follow:

Step 1: Input material and environmental settings
Step 2: Measuring properties of material
Step 3: Calculating SHE
Step 4: Input Ci and CESHE_ i to ensemble learning (EL)
Step 5: Optimization to get an initial predictive model

Firstly, some material design and environmental settings termed as
Ci (i=1, 2, …, n) are carried out based on historical experimental data.
In Step 1, {Ci} will be sent to lab for test. In Step 2, testers measure/
record the property values concerned with SHE, then we can get the
experimental SHE termed as CESHE_ i through calculation in Step 3.
Step 4 denotes the modelling process, and in this step, we construct an
ensemble of machine learning models for prediction, including such as
linear model, nonlinear model, SVM, and ANN, but we are not re-
stricted to these models. According to the MSE criterion, in Step 5 the
optimal machine learning model is selected as the initial predictive
model.

The red loop stands for the on-line learning progress, which contains
7 steps as follows:

Step 6: SHE prediction to suggest new experiments
Step 7: Request new experiments to the lab
Step 8: Measuring properties of material
Step 9: Calculating SHE
Step 10: Calculating the predictive errors of SHE
Step 11: Checking for the termination condition
Step 12: Refining the ensemble of predictive models
Step 13: Optimization to get the refined predictive model

In Step 6, based on the presented initial predictive model, several
new material designs with high SHE will be carried out in feasible
environmental settings, which are termed as Ci (i=1, 2, …, n ), and
their SHEs are predicted and termed as CPSHE_ i . Step 7, Step 8, and
Step 9 are similar to Step 1, Step 2 and Step 3, which are used to get
new experimental SHEs, termed as CESHE_ i . Step 10 calculates the
prediction error of the proposed predictive model, and through Step 11

these prediction errors are sent for termination condition checking. If
the termination condition is satisfied, then in Step 14 we will have the
final predictive model, otherwise it will go to Step 12 for refining, e.g,
adding a new selective model, deleting a poorly performed one, or
simply tuning the parameters of existing models. Through Step 13 the
predictive models will be adjusted by using the information from SHE
prediction errors, material configurations and environmental settings as
feedbacks. Then we will go to Step 6 to re-start a new on-line learning
iteration, until the termination condition is satisfied.

There are three open issues in this framework that should be ad-
dressed further, and they are listed as follows.

(1) Termination condition

Intuitively, we can set a threshold for the predictive error of SHE.
However, as we know there might be over-fitting issues which would
lead to poor predictions. By combining the MSE threshold with other
criterion e.g., smoothness constraints [34] or regularization [37], this
OEL approach would give more robust results.

(2) Refining ensemble and its predictive models

With the prediction errors as feedback, we can retrain the initial
predictive model to adjust its parameters. Alternatively, we can also
add more predictive models with new typical configurations and set-
tings into the ensemble that we constructed. For instance, if we choose
ANN as the optimal initial predictive model, we can not only refine its
parameters (usually referring to weight vectors), but can also change its
layer and node numbers, activation functions and training methods (the
so-called hyperparameters). As different configurations of ANN have
different performance, in this case, adding several different ANNs with
characteristic configurations into the ensemble would show the ad-
vantage of ensemble learning. However, characteristic configuration of
ANN is a challenging issue, which will depend on specific problems in
material design.

(3) Suggesting new material design solutions and environmental set-
tings

With the initial/refined predictive model, any SHE of new material
design solutions within varying environmental settings could be

Fig. 8. An on-line ensemble learning framework for SHE prediction.
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calculated. However, we cannot predict all the cases in both chemical
and environmental setting spaces. According to the predictive model, a
fast adviser that can quickly guide material design should be further
investigated.

5.2. Experimental study

To validate the rationality of the proposed OEL framework, a si-
mulated experiment using incremental data has been studied. We
choose self-healing electrical conductivity polyurethane nanocompo-
sites as target material (termed as TM). As the SHE of TM depend on its
surface temperature heavily, we suppose the surface temperature can
stand for SHE of TM. The surface temperature property varies with
respect to two variables: the concentration of the structure graphene
oxide materials (rmGO) and laser density [38]. The former belongs to
material design choices, and the latter belongs to environmental set-
tings.

The whole experimental results are randomly divided into three
subsets, and each subset contains 10 samples. We first use subset 1 as
{Ci} which is presented in Section 5.1, and then suppose that subset 2
and subset 3 respectively stand for the on-line dataset {Ci } and {Ci }.
Here we do not consider how to suggest new material design solutions
and environmental settings in this context. Also for simplicity, the re-
fining method now we used is just re-training the model, while the
termination condition is set to be a threshold of prediction errors in
terms of MSE.

The ensemble of predictive models contains two models: 1) non-
linear polynomial regression model; 2) an ANN with 9 hidden layers,
and with both sigmoid and radial basis functions for its activation
functions. Fig. 9 shows one of the experimental results of the proposed
OEL framework. It is indicated that the optimal model changed with
respect to the size of the dataset: at the beginning when only {Ci} is
available, the optimal predictive model is the polynomial regression
model (Fig. 9(a)). However, later on when new experimental data are
available, the optimal predictive model is changed to ANN (Fig. 9(c)).
This demonstrates the rationality of using ensemble learning. Moreover,
as the on-line dataset scales up, the nonlinear polynomial regression
model seems not suitable for describing complicated surface any more,
while the ANN model demonstrates its advantage. However, according
to our experiments ANN will not be always better than nonlinear
polynomial regression model, due to the randomly generated initial
parameters used in training ANN.

6. Conclusions and future works

This position paper aims to give a brief introduction to self-healing
materials and explore possible predictive models to elucidate their
SHEs. By reviewing the fundamental knowledge of self-healing

materials the typical machine learning methods in related studies, as
well as performing several simulated experiments, three main conclu-
sions can be summarized as follow:

1) Regression methods can be used for discovering the relationship of
SHE and other properties of material. Suppose that there is a new
design solution for a self-healing material, but the relationship be-
tween its properties affects its SHE value, in this case regression
approaches to approximate the functional curve of SHE can be used.
The desired SHE value estimation under new properties and en-
vironmental configurations can then be predicted by machine
learning models (predictive models).

2) Classification has been successfully used to predict new chemical
reactions. Inspired by this, both the SVM and ANN models trained
by historical data can be used to predict whether a new material
would possess the self-healing ability.

3) By using prediction errors of predictive models and lab experiments
as feedback, an on-line ensemble learning framework is proposed to
improve the accuracy and reliability of predictive models. Also, the
effectiveness of ensemble and on-line learning are experimentally
studied.

As for our future work, we would like to focus on further exploring
the proposed OEL framework, especially to tackle the three open issues
mentioned in Section 5.1. With respect to the immediate next step of
our EPSRC project, the presented OEL framework and predictive
models would be adapted and employed to facilitate the advanced bio-
hybrid self-healing material design tasks, and this will also further
verify the effectiveness of OEL on these tasks.
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