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ABSTRACT 

Engineered nanoparticles such as iron oxide (Fe3O4) nanoparticles (IONPs) offer several 

benefits in nanomedicine, notably as contrast agents in magnetic resonance imaging (MRI). 

Ferumoxytol, a suspension of IONPs (with a manufacturer’s reported particle diameter of 27 

nm-30 nm) was characterized as a standard by spiking into rat blood plasma and cell 

fractions. Nanoparticle separation, and characterization was investigated with asymmetric 

flow field-flow fractionation (AF4) coupled online to ultraviolet-visible spectroscopy (UV-

VIS), multi-angle light scattering (MALS) and inductively coupled plasma mass 

spectrometry (ICP-MS) detectors; also with single particle inductively coupled plasma mass 

spectrometry (spICP-MS) and transmission electron microscopy (TEM). MALS signal of 

pristine Ferumoxytol indicated radii of gyration (Rg) between 15-28 nm for the Fe-containing 

fraction and 30-75 nm for the non-Fe fraction. IONPs spiked into blood plasma indicated a 

polydisperse distribution between 40 nm - 120 nm suggesting matrix-induced size alterations. 

Spiking of the IONPs into cells shows a shift in ICP-MS Fe signal to 15 min, however the 

MALS signal was undetected within the Fe containing fraction of the IONPs suggesting NP 

loss due to membrane-particle attraction. spICP-MS analysis of IONPs spiked in rat plasma 

suggested the release of Fe-containing colloids into plasma causing an increase in diameter of 

IONPs to 52± 0.8 nm; whereas no major variation in particle size and distribution of the 

IONPs spiked in cell fractions was observed (33.2 ± 2.0 nm) suggesting non-alteration of the 

NP Fe core. A complementary application of microscopic, light scattering, and mass 

spectrometry for the characterisation of NPs in challenging biological matrices like blood has 

been demonstrated. 
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1. Introduction 

Engineered nanoparticles are particles in the size range of 1-100 nm that are designed with 

specific intended properties and purposes. They have become increasingly useful in everyday 

life with applications across diverse sectors in products such as drugs, cosmetics, 

photovoltaic cells, surface coatings etc. In healthcare, engineered metallic nanoparticles 

(EMNPs) are now increasingly important in ‘nanomedicine’ for therapeutic as well as 

diagnostic purposes (nanotheranostics) [1,2] . The need to effectively and accurately deliver 

therapeutic load to target tissues across cell membranes is challenging to meet using 

conventional drugs, necessitating the development and use of biocompatible nano-sized 

particles as an alternative approach [3]. The unique properties of EMNPs such as high surface 

area/volume ratio, high reactivity, optical properties [4], and biocompatibility make them 

ideal candidates for such applications. Superparamagnetic iron oxide nanoparticles 

(SPIONs)[5-8]  have been well studied for their use as diagnostic contrast agents for 

magnetic resonance imaging of diseased cardiovascular tissue[9], and are preferred over 

gadolinium-based contrast agents especially in certain conditions such as in patients with 

chronic kidney disease (CKD)[10,11], where better tolerances have been reported[12]. In 

addition, iron supplements are regularly administered intravenously for severe Fe deficiency 

anaemia especially in cases where oral iron supplementation is inadequate [13]. However, 

despite the obvious advantages of iron oxide nanoparticles (IONPs), concerns abound 

regarding their safety and possible toxicity arising from their intravenous administration with 

potential occurrences of toxic reactions[14,15] .For instance, supplementation of iron in 

patients with underlying dysfunctional Fe metabolism such as in thalassemia[16], increases 

the risk of cell necrosis due to the interplay between Fe and reactive oxygen species 

(ROS)[17]; with evidence suggesting toxicity due to Fe release following biodegradation of 

the Fe core in SPIONs[18], as well as reported cases of hypersensitivity by the Food and 

Drug Administration (FDA)[19] . 

To better explain the interaction of intravenously injected IONPs within the circulatory 

system, there is a need to investigate NP size changes that may occur in vivo, particularly 

within the period (24 h) reported for normal systemic clearance. Phagocytosis of IONPs from 

macrophages resident in the spleen and bone marrow as well as liver cells have been reported 

to be the operative mechanism responsible for the rapid clearance of IONPs from reticulo-

endothelial system (RES) circulation [20].  It is therefore an imperative to understand the fate 
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of the injected IONPs; whether they undergo rapid transformation or slow dissolution in 

blood. From an analytical perspective, there is a need to study in vitro the influence and 

extent of sample matrix effect on a characterized ‘standard’ IONPs when it is spiked into 

blood. Dynamic light scattering (DLS) and electron microscopy have been used to 

characterize IONPs marketed as Ferumoxytol, a commercial IONP suspension [21]; with 

variable particle sizes reported for the core Fe and surrounding polysorbitol 

carboxymethylether (PSC) coating [22]. 

However, apart from generating images, these imaging and counting techniques do not 

provide enough reliable information with respect to changes in the size and form of the IONP 

during transport and interaction with matrix components in blood. In addition, conventional 

NP techniques such as TEM may in some cases be impeded by complex preparative 

techniques and sample matrix effects such as evaporation. More importantly, the high 

abundance of Fe in biological systems necessitates a need to employ a combination of 

techniques that combine separation, size characterization, as well as element specific 

detection capability. 

As previously acknowledged, no single technique can be applied to sufficiently identify, 

characterize and quantify NPs in a sample or scenario, rather a combination of techniques is 

required [23]. Asymmetric flow field-flow fractionation (AF4) is a gentle separation 

technique for the fractionation of NPs transported in a liquid carrier medium in a thin channel 

under the action of a perpendicular cross flow based on their diffusion coefficients, with a 

semi-permeable membrane acting as a an accumulation wall for the retention of 

nanoparticles[24,25]. The absence of a solid stationary phase enhances separation and reduces 

potential losses from analyte-column interactions. The AF4 fractionation system is equipped 

with a multi-angle light scattering (MALS) detector which has been applied for the accurate 

separation, particle size and molar mass characterization of polymers in drug delivery 

systems [26]. Multi-angle light scattering (MALS) detector generates a unique measurand for 

light scattering at various angles by individual particles of a macromolecule in solution 

known as the radius of gyration (Rg); defined as the root mean square distance of the object’s 

mass from either its centre of mass or a given axis[27]. Coupling of AF4-UV-MALS with 

online an element-specific detector such as inductively coupled plasma mass spectrometry 

(ICP-MS) is robust and has been extensively applied to provide highly needed elemental 

identification of fractionated NPs as a complement to particle size in a variety of sample 

matrices [28-30]. Conventional mode ICP-MS enables the quantification of the total elemental 
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concentration of EMNPs in various sample matrices, provided that the artefacts, 

natural/background levels can be sufficiently differentiated from the target EMNPs. Use of 

radiolabelled or stable isotopes can overcome this challenge and enables the traceability of 

such labelled NPs in biological cells. However, some inherent shortcomings of this approach 

are the potential for radioactive contamination, need for special detectors and inability to 

conduct long-term studies when handling samples with short-half-life [31].  Another viable 

alternative is single particle ICP-MS (spICP-MS); which measures metallic NPs above high 

levels of natural/background dissolved analyte, enabling the detection of single particle 

signals as ‘pulses’ at very fast dwell times and ultra-low sample concentrations. In addition, 

with the destruction of the organic coating of the IONP in the ICP-MS plasma, the particle 

diameter of the ionized Fe-NP can be obtained without matrix interference [32,33]. In this 

study, AF4 was coupled with online UV-VIS, multi angle light scattering (MALS), and ICP-

MS detectors to characterise an IONP, as well to investigate potential size changes due to 

sample matrix effect. In addition, spICP-MS was applied to investigate potential size changes 

to the metallic (Fe) core of the NP due to matrix effects. The objective of the study was the 

detection and sizing of the IONP in its unaltered form with minimal sample preparation. The 

IONPs will be spiked into rat blood plasma and cellular fractions with 24 h incubation and 

NP size characterisation performed using AF4-UV-MALS-ICP-MS/MS, TEM and spICP-

MS. 

 

2. Material and methods 

2.1 Experimental 

2.1.1 Reagents and standards. All reagents used were of analytical grade or better, except 

where otherwise stated. A 30 mg mL
-1

 suspension of an engineered IONP (as Ferumoxytol
®
) 

was supplied by the Cardiovascular Imaging Research Group, Institute of Medical Sciences, 

University of Aberdeen. De-ionised ultrapure water (18.2 MΩ cm) from a Smart 2 Pure 

Millipore water system (Thermo Scientific, Sweden) was used for preparation of the mobile 

phases and blank solutions. The mobile phase for AF4 was 0.2% v/v Novachem surfactant 

(Postnova Analytics) in ultrapure water. The Novachem surfactant is a mixture of anionic and 

non-ionic surfactants with a stated composition [34].  The mobile phase was subsequently 

filtered under vacuum through a 0.22 µm cellulose acetate filter prior to use. The nebulization 

efficiency was determined by measuring a commercial AuNP standard suspension 

(Nanocomposix, USA) with a certified median particle diameter of 56 ± 0.5 nm (TEM) and 
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50 mg kg
-1

 AuNP concentration. It was diluted 10
-6

 times with ultrapure water to yield a final 

working concentration of 50 ng kg
-1

. Dissolved Fe elemental standards (Accustandard, New 

Haven, USA) with a concentration of 1 µg kg
-1

 were prepared in ultrapure water from the 

stock solution of 10 mg L
-1

 and used to measure elemental response factors. 

 

2.1.2 Rat blood samples. Blood samples of adult rats were obtained from the Institute of 

Medical Sciences, University of Aberdeen and separated into plasma and cellular fractions by 

centrifugation. The cellular fractions were freeze dried for 12 hours (Heto Powerdry LL3000, 

Thermo Electron), and 50 mg fraction was dissolved in 10 mL of deionised water in acid 

washed sample tubes. Micro-sized particles were removed by filtering through a 0.45 µm 

syringe filter, and the filtrates were diluted with water.  

 

2.1.3 Spiking of samples with Ferumoxytol standard. A working suspension of the IONP 

as a standard was prepared by dilution of 30 mg mL
-1

 of Ferumoxytol to a final concentration 

of 0.150 mg mL 
-1

. Working solutions of the samples were prepared by spiking equivalent 

volume of diluted Ferumoxytol suspension respectively into 1 mL aliquots of plasma and 

cellular fractions and incubated at 37°C for 24 hours. 

2.1.4 Transmission electron microscopy (TEM). Samples were centrifuged for about 1 

min, and 5 µL of the suspension fixed onto circular, Formvar-coated copper films (200 mesh 

size) with a diameter of 3.05 mm. The TEM films were left to air-dry at ambient room 

temperature for 10 mins prior to analysis. 

2.1.5 Sample dilution (spICP-MS). To reduce the influence of soluble iron from 

haemoglobin which is naturally abundant in blood cells, micro-filtrates of the blood cell 

fraction were further centrifuged for 5 mins at 13,500 rpm and the supernatant was spiked 

with Ferumoxytol prior to dilution for spICP-MS. Ferumoxytol, plasma and filtered rat blood 

lysate samples were subsequently diluted to relevant concentrations with ultrapure deionised 

water. 

 

2.2 Instrumental analysis 

2.2.1 TEM. TEM images were acquired with a JEOL-1400 plus electron microscope, at an 

accelerating voltage of 80 kV, using an AMT UltraVUE camera. After image acquisition, 

they were filtered, and individual points counted as NPs using an open source image 

processing software (ImageJ); assuming a spherical morphology for the NPs. Particle 
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diameters were calculated from areas of individual spheres and the data subsequently 

exported to Microsoft Excel to plot size frequency histograms. 

 

2.2.2 Coupling of AF4-UV-MALS to ICP-MS/MS. AF4 experiments were performed on 

an AF2000 MT system (Postnova Analytics, Landsberg, Germany). The separation system 

consisted of a solvent degasser, solvent organiser, two isocratic solvent pumps, a pair of 

Kloehn pumps for generation of the crossflow, an auto-sampler (PN 5300), and a separation 

channel. The separation channel was enclosed inside a thermostat consisting of a trapezoid 

cartridge, a ceramic frit and a spacer of 350 µm nominal height. Temperatures of 4°C and 

25°C were maintained for the auto-sampler and oven respectively. The fractionation system 

was coupled to a UV-Vis detector, a 21 angle multi-angle light scattering (MALS) detector 

and an online interface for connection to ICP-MS; all signals were monitored simultaneously. 

The MALS detector consisted of 21 light scattering cells at angles between 7
o
 to 164

o
, with a 

laser light intensity of 50 mW and wavelength of 532 nm. Light scattering detectors were 

normalized by injecting a suspension of a mixture of 60 nm, 125 nm, and 350 nm latex beads. 

Light scattering data was recorded across all 21 angles but only the 90° signal was reported, 

except where stated otherwise, with UV-VIS absorbance monitored at 280 nm wavelength. A 

sample volume of 20 µL was used throughout the experiment, except where otherwise stated. 

Adequate membrane conditioning and reproducibility was achieved with a minimum of 

triplicate injections per sample.  Electronic signals generated from UV-VIS and MALS 

detectors were processed with the AF2000 software. Detailed AF4 elution conditions are 

shown in Table S1. ICP-MS/MS analysis was performed on an Agilent 8800 QQQ ICP-MS, 

fitted with a Micromist nebulizer and a double pass spray chamber. The ICP-MS/MS analysis 

parameters are outlined in Table S2. 

2.2.3 spICP-MS analysis. Single particle ICP-MS analysis was performed on an Agilent 

7900 ICP-MS equipped with a Micromist nebulizer and a double pass spray chamber. 

Nanoparticle signals were acquired at a dwell time of 100 µs. spICP-MS operating conditions 

are described in detail in Table S3. Instrumental parameters (lens position, torch position) 

were optimised daily to achieve maximum sensitivity with an aqueous tune solution of 

10 µg L
-1

 Li, Co, Y, Ce, Tl. Nanoparticle diameters for all the samples were reported as an 

average diameter of six replicates. Data analysis was performed using the Agilent 

MassHunter 4.4 software (Agilent Technologies, USA).  

 

3. Results and discussion 
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3.1 TEM: TEM is a conventional technique for the characterisation of NPs in biological 

specimens and has also been applied for the characterisation of IONPs [35]. However, a 

major constraint when analysing NP suspensions from a biological matrix using TEM are 

occasional low resolution images which are caused by the introduction of artefacts during the 

drying stage in the preparation of the TEM grid. Figure 1a indicates the presence of a cluster 

of spherical and random shaped structures in the pristine IONP which suggest the detection of 

IONPs. From the size frequency histogram, (Figure S1), the equivalent circular diameters of 

the pristine IONP ranged from 10-40 nm, with an average particle diameter of 21± 0.5 nm. 

 

 

 

 

 

 

 

 

 

 

However, in the study by Wu et al. [22], IONPs as Ferumoxytol have been studied by both 

cryo-TEM and room temperature TEM showing diameters of between 5 to 9 nm prepared and 

measured with room temperature TEM; and an average hydrodynamic of diameter 25 nm 

obtained with DLS. Remarkably,  the study showed that Ferumoxytol consisted of a structure 

of iron core clusters, which are composed of several iron-carbohydrate particles. The cluster 

structures suggest that the PSC coating surrounding Ferumoxytol iron cores might be shared 

among different iron cores. The increased particle diameters of IONPs from Ferumoxytol 

measured in this study therefore appear to be related to this cluster structure, as well as 

possible introduction of artefacts during room temperature sample preparation. In the IONPs 

spiked into blood plasma (Figure 1b), there appears to be an increased number of  particles, 

with the dominance of irregularly shaped structures. However, size frequency histograms 

Figure 1. TEM images of pristine IONP (top left), IONPs spiked into rat blood plasma (top right) 

and IONPs spiked into rat blood cell (bottom). 
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(Figure S1) of the IONPs spiked into blood plasma showed a size population with equivalent 

circular diameter ranging from 15 nm to 50 nm (average diameter=18.0 ±5.2 nm).  A 

hypothesis for this observation is that the iron cluster structure facilitated by the carbohydrate 

coating has been altered and the IONPs have disintegrated into smaller sized particles. The 

TEM images also indicate a change from spherical to rod-like morphology for the particles, 

which are now more dispersed within the matrix.   

The TEM image from the IONPs spiked into blood cell sample (Figure 1c) showed a number 

of random shaped structures which appeared significantly larger than those seen in pristine 

IONP. The size frequency histogram of the spiked rat blood cell also resulted in a 

polydisperse size distribution with an average particle equivalent circular diameter of 111± 

14 nm (Figure S1).  The IONPs are suggested to form agglomerates which may be induced 

by magnetic attraction forces as shown in a similar study of superparamagnetic magnetite 

NPs spiked into calf serum [36]. Alternatively, it can also be suggested that the iron-

carbohydrate cluster structure contributes to formation of aggregates and the increase in the 

sizes, when compared with the TEM image of a blood cell devoid of IONPs which shows 

only amorphous structures (Figure 2). 

 

 

 

 

Figure 2. TEM image of a blood cell extract devoid of IONPs.  

 

Despite the lower image resolution characteristic of room temperature TEM compared with 

images obtained from advanced techniques such as cryo-TEM, the images provides some 

evidence that when the pristine IONPs were spiked into blood plasma their morphology was 

altered to show more rod-like morphology and the IONPs became more dispersed. The TEM 

images of IONPs spiked into cells also suggest larger sized irregular shaped structures; but 
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from both specimens it is challenging to confirm if these are aggregated NPs because of the 

limitation of a low resolution of TEM. The polymeric coating of the IONPs in this case PSC 

are surface active [37] and may cause bias during TEM analysis. Thus, to achieve more 

accurate characterisation using conventional TEM in a biological matrix, the application of  

advanced TEM techniques will provide an enhanced image resolution and reduce the 

possibility of artefact formation during sample preparation. 

 

3.2 AF4-UV-MALS coupling  to ICP-MS/MS: In brief, asymmetric flow field-flow 

fractionation (AF4) is a technique for the sequential separation of nanoparticles and colloids 

in a thin channel  under the action of a perpendicular crossflow. NPs are separated 

sequentially, eluting  in order of  increasing particle size and characterized as an ensemble by 

the UV and MALS detectors, while ICP-MS enables element specific detection. From FFF 

theory, retention time 𝑡𝑟  is directly proportional to particle hydrodynamic diameter 𝑑𝐻  as 

shown in the equation below [38]: 

 

      𝑑𝐻 = (
2𝑘𝑇𝐴

𝜋𝜂𝑉𝑐𝑤𝑡𝑜) . 𝑡𝑟 

 

 

Where, 𝑑H= Particle hydrodynamic diameter, 𝑘 = Boltzmann constant, 𝑇 = Absolute 

temperature, 𝐴=Area of the accumulation wall, 𝑉𝑐= Cross flow rate, 

𝜂 = Viscosity of mobile phase, 𝑤 = Channel thickness, 𝑡𝑜 = void time, 𝑡𝑟 = Retention 

time. 

 

Though it was not applied in this study, the use of buffer solutions such as phosphate buffer 

saline (PBS) at physiological pH as AF4 mobile phases may appear suitable for biological 

samples but there are peculiar associated analytical problems such as salt precipitation which 

cause blockages in the AF4 system. The use of buffers as mobile phase in AF4 have been 

associated with loss of NP surface charge and aggregation [39,40]. As such, use of surfactant 

based mobile phases shows faster elution, better separation, peak reproducibility and higher 
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recovery rates because they shield the NP from unwanted interactions with the membrane 

which is considered a bigger advantage than a potential disadvantage of particle size over-

estimation [41]. The same surfactant used in this study has been applied for previous AF4 

separation and characterisation studies of SPIONs [42,43]. 

The recovery rates (Table S3) and elution times of the pristine IONPS recorded with various 

crossflow programmes (1 mL min
-1

, 2 mL min
-1

, 3 mL min
-1

) were compared (UV-MALS 

and ICP-MS signals) to ascertain the optimal crosslow programme for the separation of 

IONPs (Figure S2 and Figure S3). Gigault et al. [44] consider an elution programme with a 

recovery rate of 70% to be adequate in an AF4 separation. From assumptions of FFF theory, 

membrane-particle interactions are absent during an ideal NP crossflow fractionation. In 

reality however, particles may be attracted and become irreversibly  attached to the 

membrane leading to sub-optimal recovery rates. The 1 mL min
-1

 elution programme showed 

the highest NP recovery rate (79%) and elution time (10 min)  for the pristine IONPs and 

therefore was applied for the characterisation of the pristine IONPs as a standard (Figure 3). 

Elution time differences of the IONPs for the 2 mL min
-1

 and the 3 mL min
-1

 crossflows were 

subtle; however 2 mL min
-1

 (R=74%) showed a higher recovery than 3 mL min
-1

 (R=69.5%). 

Also, all the three crossflow programmes showed an intense MALS peak at t0, suggesting 

some pre-elution of unfractionated particles. A possible cause for suboptimal recoveries of 

the injected IONPs was speculated to be due to membrane-particle interactions, which was 

investigated by measuring a blank as a wash-out step without crossflow after each injection 

of pristine IONPs using the different crossflow programmes (Figure S4). From MALS and 

ICP-MS signals, sample carry-over was detected for the crossflow programmes, the mass of 

Fe released was inversely proportional to the crossflow rate (Figure S2 -S4). However, the 2 

ml crossflow recorded the least intense UV-VIS peak at t0 (Figure S2a) and showed better 

separation of the IONP into two distinct MALS fractions. Thus, with its higher field strength, 
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the 3 mL min
-1

 programme might be unsuitable to be used as an optimal crossflow rate in 

view of a higher possibility of membrane adhesion. Consequently, the 2 mL min
-1

 crossflow 

programme was considered as an optimal crossflow as a way to achieve a compromise 

between recovery rate and a gentle fractionation of the species. It was also considered it to be 

an optimal crossflow rate for the fractionation of any species that may be formed after the 

spiking of IONPs into blood fractions as it showed two well-resolved MALS peaks which 

may correspond to the iron and non-iron fraction respectively.  A random coil fit model was 

also applied for Rg computation because it showed an excellent fit across the 21 light 

scattering angles of the MALS detector.  

 

 

 

 

 

 

Figure 3 illustrates the detection of UV-VIS and ICP-MS signals at 10 min, confirming that 

the fraction was an Fe-containing particle. However, MALS signal showed the elution of two 

peaks which are not clearly resolved between 10-20 min and 20-30 min respectively. The 

broken line (Figure 3b) indicates the separation between the two fractions; the peak eluting 

between 20 – 30 min was a non-iron containing peak and may be suggested to be part of the 

PSC coat. The radius of gyration obtained from integration of the light scattering signals 

using a random coil fit model showed a size range of between 15 nm and 28 nm (Rg=23 nm) 

Figure 3. AF4-UV-MALS-ICP-MS/MS fractograms showing the detection of Fe-containing 

particle in a pristine IONP sample using a 1 mL min
-1

 crossflow elution programme. The 

radius of gyration (b) of the IONPS were computed from MALS signals based on a random 

coil fit model.  
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for the first fraction while the 2
nd

 fraction showed a radius of gyration distribution  between 

30 nm to 75 nm (Rg =47.5 nm). Thünemann et al. [42] reported the characterisation of another 

commercial brand of SPIONs (Resovist) with AF4 coupled with small angle x-ray scattering 

(SAXS).  99% Particles displayed a bimodal size distribution, with 99 % particles in a radius 

of 4 – 13 nm, while 1% of the particles extended up to 21 nm. A bimodal distribution was 

clearly observed in this study using the 2 mL
-1

 and 3 mL
-1

 crossflow programmes. The 

MALS signal at t0 showed a higher intensity than UV-VIS which is speculated to indicate the 

elution of unfractionated particles at the start of the run. However, in both studies two 

different commercial brands of SPIONs were studied (Ferumoxytol vs. Resovist) which were 

composed of particle cores of magnetite (Fe3O4) and maghemite (γ-Fe2O3) respectively. 

Therefore, in view of possible subtle differences  in NP chemistry, it is challenging to draw a 

valid  conclusion in terms of similarity of their particle size distributions. 

 

 

 

 

  

From Figure 4a, UV-VIS, MALS and ICP-MS signals were detected in the plasma sample 

spiked with Ferumoxytol at 6 min and at 10 min, suggesting that the IONP may have 

assumed a polydisperse form in the plasma sample matrix. A MALS peak at t0 (4.8 min) 

suggests the detection of a small number of unfractionated particles which have also been 

earlier observed in the fractionation of the pristine IONPs (Figure 3). The radius of gyration 

distribution between 6-10 min (Figure 4c) ranges between  40 nm-60 nm (average Rg = 

Figure 4. AF4-UV-MALS-ICP-MS/MS fractograms depicting the detection of IONPs spiked 

into rat blood plasma (a) and a non-spiked plasma sample (b). The radii of gyration 

distributions of NPs detected for IONPs spiked into plasma (c) and a non-spiked plasma 

sample (d) were computed from integration of MALS electronic signals based on a random 

coil fit model.  
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49 nm) which was likely composed of the original IONPs (detected at tr= 10 min). It can also 

be suggested that the IONPs have undergone some destabilisation resulting to a 

fragmentation of the IONPs. From 10 min to 30 min the MALS signal shows a broad peak, 

with an Rg of between 40 nm to 120 nm. The evidence from the MALS size distribution 

therefore suggests that the IONPs may have agglomerated after interaction with plasma 

proteins. Previous studies have reported that the abundant number of proteins in blood plasma 

bind to the surface of IONPs of different sizes [45]. The random coil fit model shows a good 

data fit which suggests that a non-spherical morphology for the IONPs when spiked into 

plasma thereby partially supporting the evidence provided with TEM images. However, the 

Rg values from MALS signals are far higher than the average diameters calculated from TEM 

images, which can be explained by the fact that TEM particle size determination from image 

treatment using Image J assumes a spherical morphology which yields an ‘equivalent circular 

diameter’, contrary to the actual visualisation of rod-like particles. Also, from a previous 

study [46] this discrepancy between TEM diameter and MALS Rg has been attributed to the 

influence of the encapsulating polymer coating (in this case polysorbitol carboxymethylether, 

PSC). However the low resolution of TEM in this study does not provide enough evidence 

for this assertion. 

In the non-spiked plasma sample (Figure 4d), intense UV-VIS, MALS and ICP-MS peaks 

were recorded at 6 min. ICP-MS signal suggests this to be small sized iron containing 

colloids in plasma (28-35 nm) , or erythrocytes which have been released from lysis during 

centrifugation of whole blood. In addition, the MALS signal between 20-30 min (Figure 4c) 

is elevated in the spiked sample compared to the non-spiked plasma sample (Figure 4d) 

showing a size  distribution of 50 nm – 120 nm, suggesting the detection of some non-iron 

containing background colloids or artefacts.  
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Figure 5. AF4-UV-MALS-ICP-MS fractograms showing the detection of IONPs into blood 

cells spiked into Ferumoxytol (a), and of non-spiked blood cells (b). Radii of distribution of 

IONPs spiked into blood cells (c) and of non-spiked blood cells which were computed from 

integration of MALS signals based on a random coil fit model.  

In the blood cells with spiked with Ferumoxytol (Figure 5a), ICP-MS and UV-VIS peaks 

were detected between 10 and 20 min with a peak maximum at 15 min, but a MALS signal 

was not detected. The UV-VIS peak was also of reduced intensity compared with the pristine 

IONPs.  Compared to the pristine IONPS (tr= 10 min), a slight shift in ICP-MS retention time 

(tr= 15 min) suggested that the IONPS may have interacted with the membrane in a different 

manner causing particle adhesion on the membrane. A low intensity MALS signal is an 

indication that the particles are below the detection limit of the MALS signal. Alternatively, 

this may also suggest that the core-shell structure of the IONP has become destabilised. In 

this manner, the carbohydrate coating appears to have disintegrated in the cellular matrix 

such that the exposed IONP core adheres to the membrane. Possible mechanism of adhesion 

could be related to electrostatic (attractive) forces, or magnetic effect. At t0 (5 min), intense 

UV-VIS, MALS and ICP-MS peaks were observed in the spiked blood cell sample which 

may be unfractionated particles or background iron-containing material.  

In the non-spiked cell sample, intense UV-VIS, MALS and ICP-MS peaks were also 

observed at t0, and are suggested to be cellular iron containing biomolecules in the blood cell 

matrix. However, MALS signal showed a broad peak dispersion between 20 min and 40 min 

with an Rg in the range 40 nm to 160 nm in both the non-spiked blood cell and spiked 

samples (Figures 5c and 5d). This can be attributed to the presence of background cellular 
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material which remains unchanged with the injection of the IONPs. It can be suggested that 

the surface charge of the IONPs is shielded by the surfactant hydration layer which causes 

repulsion between the IONP and the endogenous biomolecules in the cellular matrix.  

 

3.3 Single particle ICP-MS. In spICP-MS analysis, samples must be sufficiently diluted 

and measured in fast time resolved analyis (TRA) mode using a short dwell time. When a 

single NP enters the plasma, a packet of ions is generated which creates a pulse signal on 

reaching the detector. The detector pulse is correlated to the total mass per particle, and 

subsequently correlated to the particle size [47]. The nebulisation efficiency [48,49], a key 

parameter for the determination of particle size distribution was obtained from analysis of a 

50 ng kg
-1 

suspension of a AuNP standard (Figure S4).  

 

 

 

 

 

Figure 6. Time scan of Fe signal for 150 ng kg-1 IONPs (Ferumoxytol), detected with sp-

ICP-MS using a 0.1 ms dwell time (a); particle size distribution of pristine IONPs (b) 

obtained using the MassHunter software showing a indicating a median particle diameter of 

28±3.2 nm. 

 

Processing of signals with the MassHunter software resulted to a median particle diameter of 

28±3.2 nm, which represented  the diameter of the metallic core of the IONP with a narrow 

distribution suggesting monodispersity (Figure 6). This value is mathematically equivalent to 

a radius of 14± 1.6 nm, which is less than the average gyration radius of 23 nm determined 

with MALS detector for the Fe-containing fraction of Ferumoxytol; which difference can be 

attributed to the PSC carbohydrate coating . The frequency size distribution (Figure 5b) 

indicated that the particles were ˂ 50 nm  which appears valid considering the 10 nm limit of 

size detection (LOSD), or minimum diameter (Dmin) using the atomic weight of Fe (56 g mol
-
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1
).  Despite such impressive LOSD, the 10 – 15 nm particles cannot be visualised on the 

histogram and are assumed to be detected alongside background noise signals. The LOSD 

indicates an improvement in the Dmin  of 55 nm for iron (as 
56

Fe), and 102 nm (as Fe3O4) 

using a dwell time of 10 milliseconds reported in a study by Lee et al. [50]. Two factors were 

responsible for lowering of the LOSD; use of collision cell technology (CCT) which reduces 

background noise (and instrument sensitivity), and a shorter dwell time which increases 

particle counting frequency and reduces the detector’s chance of omitting a particle. In this 

study, the collision cell was flushed with 3.5 mL min
-1

 of H2 gas to completely remove 

potential interference from 
40

Ar
16

O species in ICP-MS argon plasma. Furthermore, a 

nebulizer gas flow rate of 0.79 L min
-1

 and a torch with 1.0 mm internal diameter were also 

used to minimise background noise. However, these measures were liable to cause a drop in 

instrumental sensitivity; but in the case of iron, a drop in sensitivity may be less impactful 

considering the high isotopic abundance of 
56

Fe (92%), and the overall high concentration of 

iron in the sample matrix. The use of a 0.1 millisecond dwell time in this study also causes a 

reduction of the LOSD and compensates for the drop in instrument sensitivity as shown in the 

timescan of a blank ultrapure deionised water sample (Figure 7) .  

 

 

 

 

 

 

 

Figure 7. Timescan of a blank sample (milli Q) measured at the start of the experiment to 

ascertain complete removal of interfering polyatomic species.  

 

The discrepancy between the particle radii of the pristine IONPs from spICP-MS (14 nm) 

and  MALS detector (23 nm) may be attributed to the presence of a hydration/corona layer 

around a particle in solution; however the Rg values may be over-estimated with the use of a 

surfactant based AF4 mobile phase. Considering that the pristine IONPs were engineered 

NPs and therefore monodisperse, a comparable particle diameter should be expected from 

spICP-MS and TEM analysis according to a previous study of engineered gold NPs by Pace 

et al. [33] which reported diameters of 37 nm and 42 nm using spICP-MS and TEM 

respectively. Therefore,  this study suggested a considerable discrepancy between the spICP-
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MS median diameter (28 nm) and TEM average diameter (21 nm). Interestingly, spICP-MS 

diameter of the pristine IONPs correlated with the manufacturer’s nominal diameter of 30 nm 

which can be attributed to the high sensitivity of the spICP-MS technique such that the fast 

NP acquisition time (dwell times) of 0.1 ms ensured an improved counting and sizing of the 

IONPs. 

 

 

 

Figure 8. Time scan of Fe signal for rat plasma sample spiked with Ferumoxytol detected 

with spICP-MS using a 0.1 ms dwell time(a); particle size distribution of rat plasma sample 

(b) spiked with IONPs (Ferumoxytol), obtained using the MassHunter software showing a 

indicating a median particle diameter of 52 ± 0.8 nm. 

 

 

Figure 9. Time scan of Fe signal for a non-spiked rat plasma sample detected with spICP-MS 

using a 0.1 ms dwell time (a); particle size distribution of non-spiked rat plasma sample (b). 

An average median diameter of 25.8 ± 1.7 nm was detected which suggested a release of 

colloidal iron into the plasma from lysis of erythrocytes during possibly sample 

centrifugation. 

 

From Figure 8, spICP-MS analysis of rat blood plasma spiked with Ferumoxytol showed a 

median particle diameter of 52 ± 0.8 nm compared with that of pristine Ferumoxytol (28±3.2 

nm), indicating the detection of more larger sized NPs compared thereby suggesting the 

formation of large aggregates of Fe-NPs. The LOSD was 18 nm, which suggests an elevated 

background signal compared to the timescan of the pristine IONPs, which appears to reflect 

the capture of both small and big sized particles. It can be further argued that haemolysis 

during processing (centrifugation) releases natural Fe-containing colloids from erythrocytes 

into plasma; because the plasma sample was red instead of the regular straw colour of non-

haemolysed plasma [51,52] (Figure 9). This is indicated by the timescan (Figure 9a) and size 

distribution (Figure 9b) which suggests the presence of colloidal iron in the non-spiked 

plasma, though 
56

Fe signal intensity is  less than that of the spiked plasma by one order of 
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magnitude (x10
8 

vs x10
7
). Comparison of the spICP-MS median diameter of 52 ± 0.8 

nm (mathematical radius of 26 ± 0.2 nm) with the average particle radius of 49 nm detected 

with MALS for IONPs spiked into plasma may suggest the presence of a corona or around 

the particle core estimated at 23nm. The average equivalent circular diameter (18 nm) of the 

IONPS spiked into plasma determined using TEM is lower than the spICP-MS value (52 

nm); a discrepancy attributed to the assumption of a spherical geometry for metallic NPs 

according to spICP-MS theory for the calculation of particle size. Contrarily, TEM images 

show the presence of non-spherical or rod-like particles thereby subjecting the spICP-MS 

value to bias.  

 

 

 

 

 Figure 10. Time scan of Fe signal for rat blood cells spiked with IONPs (Ferumoxytol) 

detected with spICP-MS using a 0.1 ms dwell time. (b) Particle size distribution of rat blood 

cell fraction spiked with Ferumoxytol, otained with the Masshunter software indicating a 

median particle diameter of 33 ± 2.0 nm. 

 

In Figure 10,  the cell fraction spiked with Ferumoxytol showed  the detection of a median 

particle diameter of 33 ±2.0 nm, with a monodisperse distribution profile similar to that of 

pristine IONPs. Though the particle diameter suggested a slight increase in diameter of the 

iron core, it does not provide conclusive evidence for aggregation of the IONP. The LOSD 

was11.5 nm, suggesting an increased background signal which may associated with the 

sample matrix. Also, while the spICP-MS distribution profile is monodisperse, the weak 

MALS signal for the IONPs spiked into blood cells within the iron containing fraction 

prevents a comparison with the spICP-MS particle diameter.  The spICP-MS frequency 

distribution profile (Figure 10b) also shows that the  particles were ˂ 50 nm which was 
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similar to the size distribution of the pristine IONPs; an evidence suggesting a minimal size 

alteration of the IONP in the blood cell fraction. Remarkably, the mean TEM average 

equivalent circular particle diameter 111± 14.5 nm obtained for IONPs spiked into cell 

fraction shows a discrepancy with the spICP-MS particle diameter. This may indicate that the 

equivalent circular diameters obtained from ImageJ data analysis  are incongruent with the 

actual shape of the particulate structures visualised in the TEM micrographs. Furthermore, 

TEM is a non-specific technique and endogenous natural NPs, colloids  and cellular debris 

may be mistaken for the IONP. Another possibility is that contrary to the theoretical 

assumptions of spICP-MS technique of a spherical geometry to calculate particle size, the 

geometry of the IONPs after their spiking into the blood cell are actually not spherical as seen 

from TEM images, hence calculated spICP-MS particle sizes may be subject to bias. Table 1 

summarises the particle sizes of the pristine IONPs and the sizes of the IONPs after spiking 

into rat blood plasma and cells using the different techniques applied in this study. 

 

 

Table 1. Summary of IONP particle sizes obtained with the different techniques 

 

Sample fraction TEM (Average particle 

diameter, nm) 

MALS (Average 

Radius of gyration, 

Rg, nm) 

spICP-MS 

(Median Particle 

diameter, nm) 

Pristine IONP 21  23 28 

IONP (plasma) 18 49 52 

IONP (cells) 110 - 33 

Manufacturer’s nominal diameter (TEM) for IONPs = 27 nm 

 

4. Conclusion 
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This study has shed some light on the physico-chemical behaviour and characterisation of 

IONPs such as Ferumoxytol when injected into blood matrix. The characterization and 

applications of IONPs with various analytical techniques have been studied extensively 

[43,53-55]. For instance, Lohrke et al. [43] synthesised pristine SPIONs which they 

characterised using AF4-UV-MALS, DLS and TEM. However, this in vitro model with 

spiking experiments using AF4-UV-MALS-ICP-MS/MS combined with TEM and spICP-MS 

yet to be reported from available literature. TEM images shows that the cluster structure of 

the IONPs is altered in blood plasma and the IONPs become polydisperse. Despite the 

reported 24 h clearance rates of IONPs from reticulo-endothelial circulation (RES), there is 

previous experimental evidence showing that they may persist in trace amounts for an 

extended duration [56]. Studies by Lacava et al. [57] using mice have reported that injected 

dextran coated IONPs are cleared and stored in the liver and spleen from 1h and up to 6 

months after administration. We have demonstrated that using spICP-MS analysis, the 

concentration of the IONPs is high enough to be detected after 24 h incubation of the IONPs 

and complexity of the matrix. This may have implications for potential iron overload and risk 

of the formation of reactive oxygen species (ROS) though the Fenton reaction [58]. However, 

the exact biochemical transformations of injected IONPs in vivo cannot be fully explained 

with a spiking experiment. The use of a surfactant-based mobile phase as applied in this study 

for AF4 separation is known to enhance NP recovery by shielding surface charge by reducing 

membrane adhesion and NP aggregation; however they are prone to cause an overestimation 

of particle sizes and micelle formation which are potential sources of measurement bias.  A 

low intensity MALS signal for the IONPs in blood cell suggested a possible dissolution of the 

NP carbohydrate coating which prevented size determination of the IONPs spiked into blood 

cell. Thus, it was not possible to understand the precise nature of the possible size and surface 

modification of the IONP, which is important in the light of reported cases of hypersensitivity 
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and toxicity arising from the intravenous administration of IONPs and other intravenous iron 

products in humans [15,59]. 
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Highlights 

 A monodisperse distribution was obtained for pristine iron oxide NPs. 

 TEM showed that IONPs were polydisperse when spiked into blood plasma. 

 A weak MALS signal for IONPs spiked in blood cell suggested NP loss. 

 IONPs sizes in plasma were affected by colloidal Fe release by cell lysis. 

 spICP-MS indicated that NP size changes was due to sample matrix effects. 
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