1 SUPPORTING INFORMATION

2 Nitrogen surplus benchmarks for controlling N pollution in the main 3 cropping systems of China

- 4 Chong Zhang¹, Xiaotang Ju^{1*}, David Powlson², Oene Oenema³, Pete Smith⁴
- ⁵ ¹ College of Resources and Environmental Sciences, China Agricultural University, Beijing

6 100193, China

7 ² Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, AL5

8 2JQ, UK

- ⁹ ³ Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen,
- 10 The Netherlands
- ⁴ Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen,

12 AB24 3UU, UK.

13

- 14 The Supporting Information contains:
- 15 Number of pages: 11
- 16 Number of tables: 4 (Table S1-S4)

18

Text S1 Calculating N surplus under farmers' conventional N management

Fertilizer N and grain yield (N harvest) for wheat, rice and maize were obtained from several 19 surveys (4552, 6611 and 5406 individual farmers for wheat, rice, and maize, respectively from 20 2008 to 2009) across different Chinese regions.¹⁻³ For rapeseed, fertilizer N and grain yield 21 were obtained from Xu⁴ who conducted 1848 farmer surveys in the upper, middle, lower 22 Yangtze River Basin from 2010 to 2011. Fertilizer N and yield for the SW region in the present 23 study were derived from the upper Yangtze River Basin of Xu.⁴ We calculated fertilizer N and 24 25 yield for the middle and lower Yangtze River Basin region in the present study based on cultivation area-weighted average method and the fertilizer N and yield in the middle, lower 26 Yangtze River Basin of Xu.⁴ Other N input (atmospheric deposition and biological N fixation) 27 28 and grain N content for calculating N surplus under farmers' conventional N management were the same as that for calculating the N surplus benchmarks. 29

30

Text S2 Calculating reactive N (Nr) losses 31

32 Nr losses for wheat, rice and maize under economic optimum and conventional N management were calculated by using regional N loss models directly cited from Cui et al.⁵ 33 (Table S2), based on the relationships between NH₃ volatilization, N₂O emission, N leaching, 34 N runoff and N application rates.⁵ NH₃ volatilization and N leaching for rapeseed under 35 economic optimum N management were obtained from the field data measured by Li et al.⁶ 36 Since there were no reliable data for NH₃ volatilization and N leaching under conventional N 37 38 management in Li et al.⁶ and other studies, we estimated the NH₃ volatilization and N leaching under conventional N management by multiplying fertilizer N application rate by NH₃
volatilization and N leaching per fertilizer N input from economic optimal N management in
Li et al.⁶ N₂O emissions under economic optimal and conventional management were estimated
by using the IPCC default emission factor⁷ for direct N₂O emissions of rapeseed.

43

44 Text S3 Merging the regional data from literatures to the present study

When a region in the present study was included in a region in literatures, we directly use the data or parameter in the literatures. When a region in the present study includes several regions in the literature, we averaged the data of the regions from literature by using the area-weighted average. For instance, when we collected the N rate and yield for wheat, rice and maize under optimum and farmer's conventional N management, each above crop included several subregions (1 to 4) of the previous studies.^{1-3, 5, 8}

51	Table S1. Models for calculating crop yields (N harvest) under simulated N rates (Derived from Wu, ¹ Wu et al. ^{2, 3} and Li et al. ⁹ by using respon	ise
52	curve of averaged yield to N rate)	

Crons	Regions in the	Regions in above published	n ^b	Recommend	Averaged	yield at diffe	erent N rate	- Viold response to N rates surves °	
Crops	present study ^a	studies	11	kg N ha ⁻¹)	0	50%RN	RN	150%RN	Tield response to in fales curves
	Northwest	Northwest China 1	101	171	4240	5000	5550	5220	Y=-0.0373x ² +13.643x+4206.5
		Northwest China 2	60	172	4560	6050	6720	6300	Y=-0.0646x ² +23.506x+4546.5
	North China Plain	North China Plain 1	1165	199	5250	6240	6950	6550	Y=-0.0351x ² +15.111x+5208.5
Wheat		North China Plain 2	50	196	4000	5950	6750	6310	$Y = -0.0622x^2 + 26.179x + 3995.5$
	Middle and lower Yangtze River	Middle and lower Yangtze River	112	182	3200	4920	6000	5550	Y=-0.0655x ² +26.819x+3155.5
	Southwest	Southwest	73	144	2810	3840	4630	4050	$Y = -0.0776x^2 + 23.035x + 2753.5$
	Northeast	Northeast China 1	132	153	6400	8070	8980	8390	Y=-0.0965x ² +31.15x+6363
		Northeast China 2	62	147	6820	8350	9050	8780	$Y = -0.0833x^2 + 27.32x + 6813$
		Northeast China 3	126	162	6500	8130	9480	8690	$Y = -0.0922x^2 + 32.185x + 6407$
		Northeast China 4	77	204	6920	8200	8930	8460	$Y = -0.0421x^2 + 18.113x + 6887.5$
	North China Plain	North China Plain 1	348	194	6580	7680	8230	7830	$Y = -0.0399 x^2 + 16.031 x + 6560$
Maiza		North China Plain 2	59	213	6910	6950	8670	7150	$Y = -0.0344x^2 + 13.277x + 6664$
Maize	Northwest	Northwest 1	100	190	6300	7550	8350	7910	$Y = -0.0468x^2 + 19.268x + 6260.5$
		Northwest 2	309	190	8120	9690	10530	9890	$Y{=}{-}0.0612x^2{+}23.921x{+}8082.5$
		Northwest 3	7	221	7230	8820	10330	9500	$Y = -0.0495x^2 + 23.955x + 7117$
	Southwest	Southwest 1	78	217	5700	6990	7630	7110	$Y = -0.0384x^2 + 17x + 5674.5$
		Southwest 2	368	195	5590	7090	7720	7300	$Y = -0.0505 x^2 + 20.677 x + 5581$
		Southwest 3	60	207	6000	7520	8290	7660	$Y = -0.0502x^2 + 21.135x + 5967.5$
Diag	Northeast (SR)	Northeast China 1 (SR)	47	102	4740	6750	7820	7510	Y=-0.223x ² +52.51x+4718
K1Ce		Northeast China 2 (SR)	89	153	6710	7960	9170	8270	$Y = -0.0918x^2 + 28.778x + 6606.5$

	Middle and lower	Middle Vangtze River (FR)	202	165	4500	6020	6840	6430	$V_{-0.0709v^2+25.558v+4473.5}$	
	Yangtze River (ER)	Windule Tangize River (ER)	202	105	1500	0020	0040	0430	1-0.0707X +25.550X +++75.5	
	Middle and lower	Middle Venetze Diver (ID)	177	174	4000	6410	7220	6600	$V = 0.0644x^2 + 23.603x + 4053.5$	
	Yangtze River (LR)	Wildule Taligize River (LR)	1//	1/4	4990	0410	/220	0090	10.0044x +23.003x+4733.3	
	Middle and lower	Middle Venster Dimer (CD)	51	100	6110	7250	7000	7510	V 0.0490-2+19.78-+ (0(0	
	Yangtze River (SR)	Whome Tangize River (SR)	51	162	0110		/990	/310	10.0489X +18.78X+0009	
		Lower Yangtze River (SR)	36	226	5950	7990	9100	8430	Y=-0.0531x ² +25.553x+5907.5	
	Southwest (SR)	Upper Yangtze River (SR)	77	162	6390	7660	8530	8050	Y=-0.0667x ² +23.426x+6342.5	
		Southwest China (SR)	164	165	5200	6540	7230	6880	Y=-0.0621x ² +22.309x+5180.5	
	Southeast (ER)	South China 1 (ER)	67	159	5170	6350	7110	6750	$Y = -0.0609x^2 + 21.447x + 5135$	
		South China 2 (ER)	61	171	5500	6210	6780	6300	$Y = -0.0407x^2 + 13.912x + 5454.5$	
	Southeast (LR)	South China 1 (LR)	82	160	5340	6370	7030	6760	$Y = -0.0508x^2 + 18.337x + 5312$	
		South China 2 (LR)	77	165	4990	6190	6750	6700	Y=-0.0459x ² +18.261x+4991.5	
	Southwest	Yangtze River	1457	180	1482	2088	2610	2478	$Y = -0.0228x^2 + 10.05x + 1453.5$	
Rapeseed	Middle and Yangtze	Van staa Dissar	1457	100	1400	2000	2610	2479	N. 0.0220 ² 10.05 11452 5	
	River	i angize kiver	1437	160	1482	2088	2010	2478	$I = -0.0228x^{-} + 10.05x + 1453.5$	

53 ^a ER, LR, SR denotes early rice, late rice and single rice, respectively.

^bn: number of observations

55 ° R^2 for the curve in North China Plain 2 is 0.43**, and R^2 values for the other curves are >0.90**

58

Figure S1. A yield response curve to illustrate the relationships among economic optimum N
 rate (for calculating N surplus benchmark), maximum yield N rate and the recommended N rate

61 (RN).Data was derived from the maize season in North China Plain².

Table S2. Models for calculating reactive nitrogen (Nr) losses under optimum and conventional N managements for wheat, maize and rice (Cited
 from Cui et al.⁵)^a

Crops	Regions ^b	NH ₃	N ₂ O	Leaching	Runoff
	Northwest	Y=3.21+0.068x (R ² =0.17 [*])	Y=0.26e ^{0.0045x} (R ² =0.19 [*])	Y=4.93 ^{0.0057x} (R ² =0.50 ^{**})	_ c
Wheet	North China Plain	Y=2.69+0.069x (R ² =0.24**)	$Y=0.50e^{0.0032x} (R^2=0.25^{**})$	Y=3.63e ^{0.0080x} (R ² =0.27 ^{**})	-
Wheat	Middle and lower Yangtze River	Y=-0.61+0.13x (R ² =0.68 ^{**})	$Y=0.59e^{0.0060x}(R^2=0.19^{**})$	$Y=1.64e^{0.0078x}(R^{2}=0.53^{**})$	-
	Southwest	Y=-0.61+0.13x (R ² =0.68 ^{**})	$Y=0.59e^{0.0060x}(R^{2}=0.19^{**})$	$Y=1.64e^{0.0078x}(R^{2}=0.53^{**})$	-
	Northeast	Y=2.53+0.058x (R ² =0.43**)	Y=0.68e ^{0.0035x} (R ² =0.38 ^{**})	Y=2.38e ^{0.0041x} (R ² =0.63 ^{**})	_
Maira	North China Plain	Y=7.98+0.099x (R ² =0.23**)	$Y{=}0.99e^{0.0047_{X}}(R^{2}{=}0.20^{**})$	$Y=10.7e^{0.0060x}(R^2=0.30^{**})$	-
Maize	Northwest	Y=2.53+0.058x (R ² =0.43**)	$Y=0.68e^{0.0035x}(R^{2}=0.38^{**})$	$Y=2.38e^{0.0041x}(R^2=0.63^{**})$	-
	Southwest	Y=1.93+0.071x (R ² =0.34**)	$Y=0.60e^{0.0045x}(R^{2}=0.39^{**})$	$Y=8.35e^{0.0059x}(R^2=0.27^{**})$	-
	Northeast (SR)	Y=3.83+0.10x (R ² =0.66 ^{**})	$Y=0.32e^{0.0029x}(R^2=0.14^{**})$	Y=2.25e ^{0.0033x} (R ² =0.20 ^{**})	Y=1.20e ^{0.0037x} (R ² =0.98 ^{**})
	Middle and lower Yangtze River (ER)	Y=-0.54+0.20x (R ² =0.40 ^{**})	$Y{=}0.65e^{0.0040x}(R^{2}{=}0.14^{**})$	$Y=2.25e^{0.0033x}(R^2=0.20^{**})$	$Y{=}3.05e^{0.0040x}(R^{2}{=}0.17^{**})$
	Middle and lower Yangtze River (LR)	Y=-0.54+0.20x (R ² =0.40 ^{**})	$Y{=}0.65e^{0.0040x}(R^{2}{=}0.14^{**})$	$Y=2.25e^{0.0033x}(R^2=0.20^{**})$	$Y{=}3.05e^{0.0040x}(R^{2}{=}0.17^{**})$
Rice	Middle and lower Yangtze River (SR)	Y=-0.54+0.20x (R ² =0.40 ^{**})	$Y{=}0.65e^{0.0040x}(R^{2}{=}0.14^{**})$	$Y=2.25e^{0.0033x}(R^2=0.20^{**})$	$Y{=}3.05e^{0.0040x}(R^{2}{=}0.17^{**})$
	Southwest (SR)	Y=4.95+0.17x (R ² =0.59**)	$Y{=}0.10e^{0.0094x}(R^{2}{=}0.20^{**})$	$Y=2.25e^{0.0033x}(R^2=0.20^{**})$	$Y=2.62e^{0.0033x}(R^2=0.83^{**})$
	Southeast (ER)	Y=4.95+0.17x (R ² =0.59**)	$Y{=}0.10e^{0.0094x}(R^{2}{=}0.20^{**})$	$Y=2.25e^{0.0033x}(R^2=0.20^{**})$	$Y=2.62e^{0.0033x}(R^2=0.83^{**})$
	Southeast (LR)	Y=4.95+0.17x (R ² =0.59**)	$Y=0.10e^{0.0094x}(R^2=0.20^{**})$	$Y=2.25e^{0.0033x}(R^2=0.20^{**})$	$Y=2.62e^{0.0033x}(R^2=0.83^{**})$

⁶⁴ ^a Y and x denote N loss (kg N ha⁻¹) and fertilizer N rate (kg N ha⁻¹), respectively. **P<0.01 and *P<0.05 indicate significance of the regression model.

65 ^b ER, LR, SR denotes early rice, late rice and single rice, respectively.

66 ° "–" denote no available data for upland crops.

68 Table S3. Fertilizer N, crop yield, N harvest and reactive nitrogen (Nr) losses of different crops in China under economic optimum and

69 conventional N managements

	Crop types ^{a)}	Economic optimum N management					Conventional N management								
р :		Fertilizer	Yield	N harvest	Nr losses (kg N ha ⁻¹ yr ⁻¹)			Fertilizer N Y	Yield	N harvest	Nr losses (kg N ha ⁻¹ yr ⁻¹)				
Regions		N ^b (kg N	(Mg ha ⁻¹	(kg N ha ⁻¹		N ₂ O	Leach-	Run-	(kg N ha ⁻¹	(Mg ha ⁻¹	(kg N ha ⁻¹		N ₂ O	Leach-	Run-
		ha ⁻¹ yr ⁻¹)	yr-1)	yr-1)	INH3		ing	off	yr-1)	yr-1)	yr-1)	NH3		ing	off
Northcost	Rice (S)	127	8.13	154	16.5	0.5	3.4	1.9	141	7.75	147	17.9	0.5	3.6	2.0
Northeast	Maize	160	9.02	126	11.8	1.2	4.6	_ c	199	8.86	124	14.1	1.4	5.4	_
NI - utheres at	Wheat	166	6.01	138	14.5	0.5	12.7	_	202	4.72	109	16.9	0.6	15.6	_
NorthWest	Maize	184	9.16	128	13.2	1.3	5.1	_	238	7.42	104	16.3	1.6	6.3	_
North China	Wheat	183	6.76	155	15.3	0.9	15.7	_	228	6.54	150	18.4	1.0	22.5	_
Plain	Maize	178	8.18	115	25.6	2.3	31.1	_	208	7.58	106	28.6	2.6	37.3	_
	Wheat	184	5.84	134	23.3	1.8	6.9	_	200	5.15	118	25.4	2.0	7.8	_
Middle and larva	Rapeseed	180	2.66	104	11.9	1.8	19.4	_	184	1.93	75	12.2	1.8	19.8	_
Var atra Diver	Rice (S)	197	8.40	160	38.9	1.4	4.3	6.7	258	7.32	139	51.1	1.8	5.3	8.6
rangize River	Rice (E)	167	6.75	128	32.9	1.3	3.9	5.9	197	6.66	127	38.9	1.4	4.3	6.7
_	Rice (L)	170	7.10	135	33.5	1.3	3.9	6.0	193	6.94	132	38.1	1.4	4.3	6.6
	Wheat	131	4.45	102	16.4	1.3	4.6	_	144	3.88	89	18.1	1.4	5.0	_
Southwood	Rapeseed	180	2.66	104	11.9	1.8	19.4	_	203	1.90	74	13.4	2.0	21.9	_
Southwest	Maize	182	7.80	109	14.9	1.4	24.4	_	251	5.45	76	19.8	1.9	36.7	_
	Rice (S)	163	7.79	148	32.7	0.5	3.9	4.5	201	7.08	135	39.1	0.7	4.4	5.1
	Rice (E)	162	6.90	131	32.5	0.5	3.8	4.5	210	6.82	130	40.7	0.7	4.5	5.2
Southeast	Rice (L)	163	6.86	130	32.7	0.5	3.9	4.5	224	6.71	127	43.0	0.8	4.7	5.5

70

^a Rice (S), Rice (E), Rice (L) denotes single rice, early rice and late rice, respectively.

71 ^b includes synthetic fertilizer and manure

72 c "—"denote no available data for upland crops.

	0						
		Fertilizer N	Other N	Grain N	Straw N	N Surplus	
Region	Cropping system	(kg N ha-1	(kg N ha ⁻¹	(kg N ha ⁻¹	(kg N ha ⁻¹	benchmark (kg	
_		yr-1)	yr-1)	yr-1)	yr-1) ^{a)}	N ha ⁻¹ yr ⁻¹) ^{b)}	
Northoast	Rice	127	65	154	81	11	
Normeast	Maize	160	45	126	67	57	
Northwest	Wheat	166	40	138	53	50	
Northwest	Maize	184	40	128	68	73	
North China Plain	Wheat-Maize	361	71	270	120	122	
	Wheat-Rice	381	74	294	135	116	
Middle and lower Yangtze River	Rice-Rice	337	94	263	138	122	
	Rapeseed-Rice	377	74	264	137	141	
	Wheat-Maize	313	45	211	97	115	
Conthrugat	Wheat-Rice	294	65	250	117	70	
Soumwest	Rapeseed-Rice	343	65	252	131	112	
	Rapeseed-Maize	362	45	213	111	157	
Southeast	Rice-Rice	325	83	261	137	101	

73	Table S4. N surplus benchmarks for the main cropping systems of China under one
74	thirds of straw removing situation.

75 a) Straw yield=Grain yield×(1/Harvest Index-1); Straw N=straw yield × straw N content; Grain

yield was obtained from Table S3, Harvest Index and straw N content were obtained from Gu
 et al.¹⁰

78 b) N surplus benchmark=Fertilizer N + $2/3 \times$ Straw N + Other N - Grain N - Straw N

79

81 **References**

- 82 (1) Wu, L. Nitrogen Fertilizer Demand and Greenhouse Gas Mitigation Potential under
- 83 Nitrogen Limiting Conditions for Chinese Agriculture Production (in Chinese). Doctor
- 84 Thesis, China Agricultural University, 2014.
- 85 (2) Wu, L.; Chen, X.; Cui, Z.; Zhang, W.; Zhang, F., Establishing a regional nitrogen
- 86 management approach to mitigate greenhouse gas emission intensity from intensive
- 87 smallholder maize production. *PLoS One* **2014**, *9* (5), e98481.
- 88 (3) Wu, L.; Chen, X. P.; Cui, Z. L.; Wang, G. L.; Zhang, W. F., Improving nitrogen
- management via a regional management plan for Chinese rice production. *Environ. Res. Lett.*2015, 10 (9), 11.
- 91 (4) Xu, H. L. Investigation on fertilization and effect of formulated fertilization of winter
- 92 rapeseed in yangtze river basin (in Chinese). Master Thesis, China Agricultural University,
 93 2012.
- 94 (5) Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao,
- 95 Y.; Li, X.; Gao, Q.; Yang, J.; Wang, Z.; Ye, Y.; Guo, S.; Lu, J.; Huang, J.; Lv, S.; Sun, Y.; Liu,
- 96 Y.; Peng, X.; Ren, J.; Li, S.; Deng, X.; Shi, X.; Zhang, Q.; Yang, Z.; Tang, L.; Wei, C.; Jia, L.;
- 97 Zhang, J.; He, M.; Tong, Y.; Tang, Q.; Zhong, X.; Liu, Z.; Cao, N.; Kou, C.; Ying, H.; Yin, Y.;
- Jiao, X.; Zhang, Q.; Fan, M.; Jiang, R.; Zhang, F.; Dou, Z., Pursuing sustainable productivity
- 99 with millions of smallholder farmers. *Nature* **2018**, *555* (7696), 363-366.
- 100 (6) Li, H.; Chen, Y.; Liang, X.; Lian, Y.; Li, W., Mineral-nitrogen leaching and ammonia
- 101 volatilization from a rice-rapeseed system as affected by 3,4-dimethylpyrazole phosphate. J.
- 102 Environ. Qual. 2009, 38 (5), 2131-2137.
- 103 (7) De Klein, C.; Novoa, R. S.; Ogle, S.; Smith, K. A.; Rochette, P.; Wirth, T. C.;
- 104 McConkey, B.; Mosier, A.; Rypdal, K.; Walsh, M., N2O emissions from managed soils, and
- 105 CO2 emissions from lime and urea application. *IPCC Guidelines for National Greenhouse*
- 106 Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme 2006, 4,
- 107 1-54.
- 108 (8) Xu, W.; Luo, X. S.; Pan, Y. P.; Zhang, L.; Tang, A. H.; Shen, J. L.; Zhang, Y.; Li, K. H.;

- 109 Wu, Q. H.; Yang, D. W.; Zhang, Y. Y.; Xue, J.; Li, W. Q.; Li, Q. Q.; Tang, L.; Lu, S. H.; Liang,
- 110 T.; Tong, Y. A.; Liu, P.; Zhang, Q.; Xiong, Z. Q.; Shi, X. J.; Wu, L. H.; Shi, W. Q.; Tian, K.;
- 111 Zhong, X. H.; Shi, K.; Tang, Q. Y.; Zhang, L. J.; Huang, J. L.; He, C. E.; Kuang, F. H.; Zhu,
- 112 B.; Liu, H.; Jin, X.; Xin, Y. J.; Shi, X. K.; Du, E. Z.; Dore, A. J.; Tang, S.; Collett, J. L.;
- 113 Goulding, K.; Sun, Y. X.; Ren, J.; Zhang, F. S.; Liu, X. J., Quantifying atmospheric nitrogen
- 114 deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 2015,
- 115 *15* (21), 12345-12360.
- 116 (9) Li, H.; Cong, R. H.; Ren, T.; Li, X. K.; Ma, C. B.; Zheng, L.; Zhang, Z.; Lu, J. W., Yield
- 117 response to N fertilizer and optimum N rate of winter oilseed rape under different soil
- 118 indigenous N supplies. *Field Crops Research* 2015, *181*, 52-59.
- 119 (10) Gu, B.; Ju, X.; Chang, J.; Ge, Y.; Vitousek, P. M., Integrated reactive nitrogen budgets
- 120 and future trends in China. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (28), 8792-8797.