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Abstract

We used the new process‐based, tracer‐aided ecohydrological model EcH2O‐iso to

assess the effects of vegetation cover on water balance partitioning and associated

flux ages under temperate deciduous beech forest (F) and grassland (G) at an inten-

sively monitored site in Northern Germany. Unique, multicriteria calibration, based

on measured components of energy balance, hydrological function and biomass accu-

mulation, resulted in good simulations reproducing measured soil surface tempera-

tures, soil water content, transpiration, and biomass production. Model results

showed the forest “used” more water than the grassland; of 620 mm average annual

precipitation, losses were higher through interception (29% under F, 16% for G) and

combined soil evaporation and transpiration (59% F, 47% G). Consequently, ground-

water (GW) recharge was enhanced under grassland at 37% (~225 mm) of precipita-

tion compared with 12% (~73 mm) for forest. The model tracked the ages of water in

different storage compartments and associated fluxes. In shallow soil horizons, the

average ages of soil water fluxes and evaporation were similar in both plots (~1.5

months), though transpiration and GW recharge were older under forest (~6 months

compared with ~3 months for transpiration, and ~12 months compared with ~10

months for GW). Flux tracking using measured chloride data as a conservative tracer

provided independent support for the modelling results, though highlighted effects of

uncertainties in forest partitioning of evaporation and transpiration. By tracking stor-

age—flux—age interactions under different land covers, EcH2O‐iso could quantify the

effects of vegetation on water partitioning and age distributions. Given the likelihood

of drier, warmer summers, such models can help assess the implications of land use

for water resource availability to inform debates over building landscape resilience

to climate change. Better conceptualization of soil water mixing processes and

improved calibration data on leaf area index and root distribution appear obvious

respective modelling and data needs for improved simulations.
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1 | INTRODUCTION

Vegetation exerts a strong control on land‐surface water and energy

partitioning, and the resulting ecohydrological fluxes of “green water”

as evaporation and transpiration (Baldocchi, Xu, & Kiang, 2004;

Llorens & Domingo, 2007; Villegas et al., 2015; Wang, Good, & Caylor,

2014), and the residual “blue water” fluxes to groundwater recharge

and run‐off (Jencso & McGlynn, 2011; Williams et al., 2012). Thus, it

is well established that forests generally “use” more water than grass

or short crops due to higher evapotranspiration (Fatichi, Pappas, &

Ivanov, 2016). However, there are strong codependencies between

plant growth, seasonal phenological change and life cycles, and the

physical processes that drive water movement that we poorly under-

stand (Jolly & Running, 2004; Porporato, Laio, Ridolfi, & Rodriguez‐

Iturbe, 2001; Wang, Tetzlaff, Dick, & Soulsby, 2017). Elucidating these

interactions is an essential prerequisite for modelling the hydrological

effects of land cover change and their ecological implications and for

mitigating the negative impacts that it may have, including effects on

climate at local, regional, and global scales. Thus, although it is well

known that conversion of natural forest to agriculture generally reap-

portions “green” and “blue” water fluxes, in the direction of increasing

run‐off, intensifying downstream flood risk and enhancing baseflows;

the effects are usually site specific depending on hydroclimate and

biogeography (Amogu et al., 2015; Archer, 2007; García‐Ruiz et al.,

2008). In addition, climate change predictions generally indicate higher

future atmospheric water demands in temperate regions, as well as

seasonal redistribution of rainfall with potentially drier summers

(Trenberth et al., 2007). Within this context of growing climatic stress,

the hydrological implications of land cover change on water

partitioning and water availability are of increasing concern (Frei,

Schöll, Fukutome, Schmidli, & Vidale, 2006; Nikulin, Kjellström, Hans-

son, Strandberg, & Ullerstig, 2011). Linked to this, in many areas, the

natural response of vegetation communities to climate change is

already being observed (Menzel et al., 2006), and this may also have

important hydrological impacts (Tetzlaff et al., 2013).

Yet despite the long history of research into land cover change

effects on hydrology, many details of the role of vegetation in regulat-

ing water partitioning are difficult to quantify (Zhang, Yang, Yang, &

Jayawardena, 2016). For example, the impacts of vegetation dynamics

on water fluxes—in terms of directional long‐term growth and sea-

sonal phenology—are rarely well constrained (Huisman et al., 2009).

Historically, most hydrological models conceptualize vegetation as a

static element with prescribed constants that parameterize the physi-

cal processes of evapotranspiration, disregarding the strong coupling

between evapotranspiration and the physiological processes that drive

plant phenology and water use (Fatichi et al., 2016; Speich, Lischke,

Scherstjanoi, & Zappa, 2016; Wegehenkel, 2009). Over the past 15

years, various ecohydrological models have explicitly included dynamic

vegetation parameterization to overcome such limitations (e.g.,

RheSYSS [Tague & Band, 2004], EcH2O [Maneta & Silverman, 2013;

Kuppel, Tetzlaff, Maneta, & Soulsby, 2018a; Simeone et al., 2019],

tRIBS‐VEGGIE [Ivanov, Bras, & Vivoni, 2008], Cathy [Niu et al.,

2014], Tethys‐Chloris [Fatichi, Ivanov, & Caporali, 2012], and
FLETCH2 [Mirfenderesgi et al., 2016]). However, the verification of

these models is often focused on short‐term to midterm hydrologic

(e.g., streamflows and soil moisture) and ecological dynamics (e.g., sea-

sonal phenology), and rarely are these models are compared with long‐

term direct metrics of vegetation dynamics (e.g., biomass production

and transpiration) that affect the water balance.

Along with advances in ecohydrological modelling, experimental

studies using water isotopes and other conservative tracers have

advanced our understanding of how water flows in catchments, and

helped improve how hydrological models represent the celerity of

hydrological fluxes, as well as the velocity of water particles and the

mixing relationships within soils (McGuire & McDonnell, 2006; Birkel,

Soulsby, & Teztlaff, 2011; Peters, Burns, & Aulenbach, 2014; Klaus,

Chun, McGuire, & McDonnell, 2015; Benettin, Kirchner, Rinaldo, &

Botter, 2015; Sprenger, Tetzlaff, Buttle, Carey, et al., 2018). Such

tracer‐aided models can also track the age distributions of water in dif-

ferent catchment storage compartments and “green” and “blue” water

fluxes (Soulsby et al., 2015; van Huijgevoort, Tetzlaff, Sutanudjaja, &

Soulsby, 2016; Remondi, Kirchner, Burlando, & Fatichi, 2018). Recent

work has shown that when integrated with explicit representation of

vegetation dynamics, these tracer‐aided modelling concepts are better

positioned to assess the interactions of plants and water partitioning

in response to hydroclimatic variability because they can help determine

the pools of water that plant use and how they affect water mixing,

hydrologic connectivity, and the establishment of flow paths (Kuppel,

Tetzlaff, Maneta, & Soulsby, 2018b). In conjunction with tracer data,

such models can provide insight into the fate of soil water and the pro-

cesses that determine the ecohydrological separation of “green” fluxes

that sustain biomass and “blue” water fluxes that sustain groundwater

recharge and stream flow generation (Evaristo, Jasechko, &McDonnell,

2015;McDonnell, 2014; Sprenger, Tetzlaff, Buttle, Laudon, et al., 2018).

In this study, we apply the process‐based, tracer‐aided

ecohydrological model, EcH2O‐iso (Kuppel et al., 2018b), to quantify

the contrasting effects of seminatural forest and grassland on water

partitioning and flux ages at an intensively studied site in Northern

Germany. The data‐rich nature of the site provided measurements of

energy balance components (through a fully automated weather sta-

tion), hydrological processes (precipitation, throughfall, transpiration,

soil moisture, and groundwater levels) and biomass production

(litterfall and forest growth metrics). The study site at Stechlin is

located in the German state of Brandenburg, which is drought‐

sensitive, and is an extensively forested area where there is concern

over land use effects on groundwater recharge; in particular, the role

of forest management for timber production in reducing recharge. This

is compounded by climate change predictions, which forecast warmer

and drier summers (Dorau, Gelhausen, Esplör, & Mansfeldt, 2015;

Lischeid & Nathkin, 2011; Riediger, Breckling, Svoboda, & Schröder,

2016). Thus, we aim to show how multiproxy data can be used to

improve the robustness of quantifying land use effects on the water

balance using an ecohydrological model. This is done with the antici-

pation that such advances will help inform land use strategies

designed to build landscape resilience to climate change and protect

water resource needs. The specific objectives are the following:



FIGURE 2 (a) Main hydroclimatic data plotted at monthly time steps:
Net solar radiation (yellow), monthly average of daily minimum,
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1. To conduct a multicriteria calibration of EcH2O‐iso for concurrent

energy balance, water balance, and biomass production

simulations.

2. To quantify, within an uncertainty framework, the role of forest

and grassland vegetation on the local water balance in terms of

water partitioning and ages of different vertical fluxes.

3. To use tracers to test the internal consistency of the model and

implications for interpreting the resulting age distributions of dif-

ferent fluxes.

4. To assess the implications of future land management, in the con-

text of climate change, for water partitioning and water availability.

The context of the modelling was also to use EcH2O‐iso in a learn-

ing framework to understand how to both improve the model and pri-

oritize data collection for future studies.

maximum and average temperature (red dashed and solid lines), and
monthly average of the air water deficit (blue cyan line); (b)
precipitation time series: number of prior days with less than 10 mm
precipitation (black line) and monthly and yearly accumulation (blue
hyetograms and grey polygons); daily soil water content (c) in the
forest and (d) grass plots
2 | STUDY SITE AND DATA

2.1 | Site description

Two long‐term study plots are located in the catchment of the exten-

sively monitored Lake Stechlin (Bergström et al., 2003; Casper, 2012;

Dieffenbach‐Fries, Hofmann, & Schleyer, 2003); a groundwater‐

sourced lake in the headwaters of the River Havel in Northern

Germany (53°08′N, 13°02′E; Figure 1). The region has a temperate,

continental climate with strong seasonality, and significant interannual

variability in net radiation and temperatures (Figure 2a). Average

annual precipitation is 620 mm, ranging between 400 and 820 mm
FIGURE 1 Study site location of the two monitoring plots in Northern Ge
view of the forest (c) and grassland plots (d), and schematic profile section o
are defined according to the USDA taxonomy: a–c are the surface, illuvial, a
refer to organic rich, clay translocation, and iron deposition, respectively), w
Brüning, Graf, & Nützmann, 2003
year−1 during the 2000–2014 period (Figure 2b). Precipitation is rela-

tively evenly distributed, with peaks when frontal rain dominates in

winter, and convectional rain falls in summer. Average annual potential

evapotranspiration (PET), estimated using the Thornthwaite equation

is 645 mm, ranging between 620 and 670 mm year−1 during the

2000–2014 period (Thornthwaite, 1948). The dominant land cover in

the area is >100‐year‐old seminatural mixed deciduous/conifer forest,

which is managed for conservation purposes. In the forest study plot,
rmany and aerial view of edge of Lake Stechlin (a), the topography (b),
f ground surface elevation, soil profile characteristics (the soil horizons
nd little‐altered substrate horizons, respectively; the suffixes h, t, and v
ater table depth and instrumentation depths (e). Photos (c) and (d) from
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this is mostly composed of deciduous beech (Fagus sylvatica, >80%)

trees and also some Scots pine (Pinus sylvestris; Table 1; Schulte‐

Bisping, Beese, & Dieffenbach‐Fries, 2012). The second plot is peren-

nial semidry grassland dominated by a dense sward of Calamagrostis

epigejos, Festuca ovina, and Koeleria glauca, which is cut (similar to a

cut or grazed meadow) to facilitate access to the instrumentation

(Figure 1). This is typical grassland vegetation after forest removal

and a grazing management regime.

The plots are in a lowland area (~65‐m elevation) with a gentle

slope (median = 4.5%). The lake and low‐lying topography were

formed at the end of the Weichselian glacial period, with extensive

drift deposits covering the solid geology (Merz & Pekdeger, 2011).

The upper unconfined aquifer (up to 50 m thick) consists of permeable

sandy glacial outwash sediments (hydraulic conductivity K ~10−4 m s
−1; Richter, 1997; Ginzel & Kaboth, 1999; Samek, 2000). At the plots,

the water table lies around 5–6 m below the soil surface with limited

seasonal variability (manifest as a small [<0.3 m] winter rise), probably

related to the boundary control of the lake's surface elevation.

The study plots overlie these drift deposits, with freely draining,

weakly podzolized sandy soils classified as haplic arenosols. These

are >1 m deep with a 30 cm deep organic‐rich A horizon overlying

the mineral B and C horizons in the subsoil (Figure 1e). In both soils,

rooting densities are the highest in the upper 30 cm, though in the for-

est deeper roots can reach down below 1 m. The soils are dominated

by vertical drainage due to the high hydraulic conductivity and flat

topography. In both plots, the soil moisture content (measured with

time‐domain reflectometry [TDR] probes—see below) exhibits season-

ality, which is particularly pronounced at the forest site (Figure 2c,d).

The upper 30 cm, with the highest organic content, is the wettest, with

the volumetric soil moisture content varying between ~22% when wet

and ~5% when dry. Wet periods are transient during and immediately

after high rainfall. Soil moisture content in the minerogenic subsoil (at

and below 50 cm) similarly varies between ~7% and ~20%. Here, at the

forest site, a strong, general pattern of winter wetting and summer dry-

ing mostly dominates shorter term variability, whereas in the grassland

plot, short‐term patterns of wetting and drying are stronger through-

out the profile. Soil moisture regimes can show marked interannual

variability, with large, prolonged deficits in dry years such as 2008,

and limited summer deficits in wet years such as 2007.
2.2 | Available data

The plots form part of long‐term environmental monitoring at Stechlin

(Bergström et al., 2003; Casper, 2012; Dieffenbach‐Fries et al., 2003;
TABLE 1 Vegetation properties of the forest plot (Schulte‐Bisping &
Beese, 2012): data are global or species‐specific beech (*) or pine (**)

characteristics

Stem density

(tree ha−1)

Sapwood
area

(m2 ha−1) Age (year)

Height

(m)

Albedo

(−)

Root
depth

(m)

296 20.5*/8.5** 100*/150** 29*/34** 0.1 >2
Pöschke, Nützmann, Engesgaard, & Lewandowski, 2018) and are

linked to a network of pan‐European sites for assessing the ecosys-

tems effects of acid deposition (Tørseth et al., 2012; Fagerli & Aas,

2008). Consequently, a wide range of data is available for

ecohydrological modelling (Figure 3). Long‐term hourly climate obser-

vations (precipitation, temperature, incoming short‐wave radiation,

outgoing long‐wave radiation, relative humidity, wind speed, etc.) have

been measured adjacent to the grassland plot since 1950. Soil proper-

ties have been characterized, and soil moisture has been monitored

since 2000 (Nützmann, Holzbecher, & Pekdeger, 2003). TDR probes

were installed in 2004 at four depths (three replicates) at both plots:

30, 50, 70, and 250 cm at the grassland and 30, 50, 120, and 350

cm at the forest. In the latter part of the study, soil temperatures (from

the TDR probes) have also been monitored. Technical problems

prevented data collection at the forest plot for a just over a year

between 2010 and 2011.

At the forest plot, biomass measurements related to seasonal and

long‐term tree growth dynamics are available. Litterfall was measured

between 2004 and 2009, allowing an annual assessment of leaf, nee-

dle, and fruit production. Stem diameters of 12 representative trees

were measured during the same period using dendrometer bands.

Using the tree volume equations of Bergel (1973), this provides a first

approximation of the above‐ground biomass accumulation. Unfortu-

nately, equivalent biomass data were not available for the grassland.

The minimum and maximum leaf area index (LAI) were estimated

through undercanopy transmittance measurements using the SunScan

Type SS1 from Delta‐T device, in January and August 2005 under

beech trees. In addition, hourly sap flow of six beech trees and five

pines was measured during the 2013 growing season with thermal dis-

sipation probes. These were weighted according to species cover and

upscaled to an estimate of plot transpiration after sampling trees to

assess the sapwood area in the study plot. In addition to the in situ

measurements, we used incoming short‐wave solar radiation and

down‐welling long‐wave radiation (required as model inputs) from

the online ERA‐Interim climate reanalysis source (Dee et al., 2011).

Finally, the overall rich and varied data set provides multidimen-

sional information related to water balance, energy distribution or veg-

etation dynamicms facilitati a multicriteria calibration and/or

validation of the EcH2O‐iso model similar to Kuppel et al. (2018a);

Figure 3).
FIGURE 3 Summary of the data sets available at the two plots: time
series periods and time step resolution. Climate inputs comprise daily
time series of incoming short‐wave solar radiation and down‐welling
long‐wave radiation; minimum, average and maximum temperature,
precipitation, air relative humidity, wind speed
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The chemical composition of rainfall, forest throughfall (15 rainfall

collectors arranged in a cruciform pattern in the forest plot) and soil

waters (using suction lysimeters at depths of 30, 50, 70, and 250 cm

at the grassland and 30, 50, 120, and 350 cm at the forest) has also

been monitored by sampling at approximately biweekly intervals. As

an independent check on how well EcH2O‐iso captures interactions

between water storage, flux dynamics, and associated mixing relation-

ships, we used the chloride data collected from precipitation,

throughfall and soil water as an assumed conservative tracer in the

model for the forest site (cf. Peters & Ratcliffe, 1998). This was not

possible at the grassland site as concentrations were too low and

uncertainties too high in the absence of monitoring of throughfall

and the effects of dry and occult deposition on the grass sward.
3 | ECH2O‐ ISO DESCRIPTION AND
PARAMETERIZATION

3.1 | Description of EcH2O‐iso 1.0

EcH2O is a spatially distributed, process‐based ecohydrological model

(Figure 4) that simulates: (a) the energy balance over a two‐layer (can-

opy and understorey) vegetation system; (b) vertical and lateral water

fluxes for the surface and subsurface (conceptualized in three soil

layers corresponding to the near‐surface, vadose, and saturated

zones); and (c) vegetation dynamics through a transpiration‐based sim-

ulator of carbon uptake and allocation for plant growth (Lozano‐Parra,

Maneta, & Schnabel, 2014; Maneta & Silverman, 2013). EcH2O‐iso

extends the original model with a component for tracking the isotopic

signature of the water storage compartments and computing the ages

of associated fluxes (Kuppel et al., 2018b). In this study, we further

adapt the model formulation to simulate other passive tracers, such

as chloride, which are not subject to evaporative fractionation but

evapoconcentration. This flux tracking assumes complete mixing in

each storage compartment such that they can be defined by a single

average concentration and age, with no preferential age or concentra-

tion selection by the water fluxes. Under these assumptions, the con-

centration and age of outgoing fluxes at each time step correspond to

those of the storage compartment at that time.

We used EcH2O‐iso to model the interlinkages between energy

balance, water cycling, and biomass production and quantify the

effects on water partitioning and water ages at the Stechlin site. Past

studies have successfully applied the model in different environments

at the watershed scale (Kuppel et al., 2018a; Lozano‐Parra et al.,

2014). This study provides an application of the model at the grid‐cell

scale to resolve and track the age of “green” and “blue” water fluxes.

For the forest plot, measurements of tree biomass production also

enabled us to explicitly include in the model calibration process met-

rics of daily, seasonal, and/or long‐term plant physiological dynamics

(stem and leaf growth, transpiration, canopy cover, etc.), along with

more commonly used observations pertinent to the energy (e.g., soil

temperatures) and water balance (e.g., soil moisture) components.

Additionally, we used the chloride time series in precipitation,
throughfall and soil water as independent (i.e., not used for calibration)

tracers of water fluxes for model verification.

At each time step (daily in this application), the model requires

meteorological information of incoming short‐wave radiation (RSW),

down‐welling long‐wave radiation (RLW), air temperature (maximum

Ta,max, minimumTa,min, and average Ta,mean), wind speed (Ws), and rel-

ative humidity (Hr). Canopy and surface temperatures are used to

resolve the balance between available radiative energy (net radiation)

and turbulent energy fluxes (sensible, latent, ground heat, and heat

into the snowpack) using the Newton–Raphson method. The canopy

layer can include different vegetation covers (including bare soil)

within each grid cell. Canopy dynamics and seasonal variations of

LAI feedback into the energy balance through its controls on canopy

conductance, aerodynamic conductance, vertical attenuation of

momentum, light interception, and variation in the maximum water

storage capacity.

The energy balance computes the energy expended in evaporation

and transpiration. Main components of the water balance in the verti-

cal soil‐vegetation column include canopy interception, snowpack,

surface ponding storage, and three soil layers (Figure 4b). Vertical

water fluxes are driven by gravitational gradients (diffusive effects

are assumed to be negligible). Water infiltration into the first soil layer

is simulated using the Green and Ampt equation (Mays, 2010). Evapo-

ration is limited to this upper layer. Drainage from the upper soil layers

to deeper layers occurs when field capacity is exceeded, the rate of

percolation increasing linearly with the water content of the source

layer. Leakance through the bottom boundary of the soil follows the

same approach, but the rate is further controlled by a leakance param-

eter to represent the condition range between free drainage and no

drainage (i.e., water tight bedrock).

The distribution of soil water losses from transpiration uptake is

determined from the fraction of roots present in each soil layer. Simu-

lation of carbon uptake and plant growth is adapted from the 3‐PG

(Landsberg & Waring, 1997) and TREEDYN3 models (Bossel, 1996;

Peng, Liu, Dang, Apps, & Jiang, 2002). Gross and net primary produc-

tion (GPP and NPP) are calculated using a multiplicative function of

the photosynthetically active radiation and the amount of transpired

water (Figure 4c). Carbon allocation and growth routines are different

for herbaceous vegetation and trees; the former having only two car-

bon pools (leaves and roots; Lozano‐Parra et al., 2014; Istanbulluoglu,

Wang, & Wedin, 2012), whereas trees have three (leaves, roots, and

stems). For the study site, we had direct measurements of annual leaf

production and stem biomass accumulation to help calibrate the

model (see above).
3.2 | Model set‐up

3.2.1 | Approach to calibration

In EcH2O‐iso, we used multicriteria calibration involving diagnostic

metrics of model performance in each of the energy, water, and vege-

tation dynamic modules (Kuppel et al., 2018a). At the data‐rich

Stechlin site, we adopted this approach to assess the model skill at



FIGURE 4 Schematic of the processes simulated in (a) the energy balance, (b) the hydrologic, and (c) the vegetation modules of the EcH2O model
(adapted from Kuppel et al., 2018a)
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reproducing the dynamics of different ecohydrological data sets using

long‐term, seasonal, and daily periods. We used a range of metrics to

determine which parameter sets are “acceptable” or “behavioural”

(Beven, 2006; Beven & Binley, 1992). The criteria of the calibration

are summarized inTable 2, and the time periods are used for each data
set in Figure 3. We used the multicriteria calibration to tune the model

at daily time steps using dynamics of soil water content (SWC) at sev-

eral soil depths and soil surface temperature for both plots. We chose

the Kling–Gupta efficiency (KGE) statistic (Gupta et al., 2009) as our

metric of “goodness of fit” for time series simulations. This equally



TABLE 2 Summary of the criteria used to calibrate the model over the multiinformation data set

Forest plot Grassland plot

1. Dynamic assessment Soil water content in the

three layers

KGE over normalized TS

Soil surface temperature KGE

Transpiration rate KGE over normalized TS

Leaf area index RMSE over the December–March and

June–September periods

No data

2. Thresholds as limit

of acceptability

Transpiration rate Transpiration rate < basal sapflow measurements No data

LAI Max (LAI) < 8 Max (LAI) < 5

Biomass production Stem growth, leaves production < 0.5 RMSE NPPGrass < 0.75 max (NPPforest)

Soil recharge > 200 mm over 10 years

Note. KGE, Kling‐Gupta efficiency (Gupta, Kling, Yilmaz, & Martinez, 2009); LAI, leaf area index; NPP, net primary production; RMSE, root mean square

error; TS, time series.
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considers bias (through assessment of the mean), correlation (assess-

ment of the timing), and variability (assessment of the range of varia-

tion). Additionally, measurements of LAI, stem growth, and

transpiration rates were used for calibrating the forest plot (Table 2).

We also used various known quantitative thresholds as

“observation‐driven and expert‐knowledge‐based constraints”

(Kelleher, McGlynn, & Wagener, 2017; Table 2). For example, previous

water balance studies of Lake Stechlin (e.g., Pöschke et al., 2018) have

estimated that the annual average groundwater recharge over the

catchment (15 km2) ranges between 65 and 150 mm year−1, which is

mainly covered by separate or mixed stands of beech and pine (97%;

CORINE Land Cover database CLC 2012). Therefore, a minimal

recharge threshold of 20 mm year−1 averaged over the 2004–2014

simulation period was used as a limit to “behavioural” simulations. Sim-

ilarly, a threshold on the maximum calibrated LAI for both plots was

used for consistency with measured values for the forest site and lit-

erature value for the grassland (see Supporting Information). Daily

transpiration rates in the forest plot were also limited by an upper

threshold of the highest pine and beech transpiration rates reported

in the literature. Finally, biomass production in the forest plot was

constrained by requiring simulated leaf losses and stem growth to be

within 50% of the observed values. In order, to maintain consistency

between the forest and grassland simulations, the NPP of the grass

plot was limited relative to the forest assuming an upper threshold

of 0.75 of the maximum NPP simulated in the forest plot (Chapin,

Matson, & Vitousek, 2011).

For the final multicriteria calibration, we used a Monte Carlo anal-

ysis with 30,000 runs. The quantitative assessment using thresholds

was used to reject implausible simulations, whereas the dynamic

assessment was used to rank the retained parameter sets according

to their likelihood. A global score for each simulation (GSi) was calcu-

lated as follows:

GSi ¼ ∑
v¼1:n

LSvi
σ LSvð Þ;

where LSi
v is the variable‐specific assessment or “local” score of simu-

lation i (KGE or RMSE; see Table 2) and σ (LSv) the standard deviation

of LSv over the 30,000 runs. The latter standardization aimed to derive
a simple weight balancing of the variable‐specific assessments when

calculating the GS. The GS was finally used to select the 15 best

simulations out of the likelihood simulations.
3.2.2 | Parameterization and sensitivity

As a preliminary step to model calibration, an analysis of parameter

sensitivity was conducted to reduce the number of free parameters:

any parameter, showing neither first nor second order sensitivity

related to one of the LS, was removed from calibration parameter

set and fixed to a value according to locally measured properties or

to literature values. Table S1 presents the constant values prescribed

to the parameters not included in the calibration set. The first and

the second order parameter sensitivities were assessed on the basis

of an ensemble of 30,000 Monte Carlo runs (Figures S2 and S3). A

parameter was considered to have 1st order sensitivity according to

an LS if the average parameter values of the 15,000 first runs, ranked

using the LS values, differs from the average parameter values of the

remaining 15,000 runs (t test with a significance of p < .01). A param-

eter was considered to have second order sensitivity according to an

LS if the parameter values of the 15,000 first runs are correlated with

any other parameter, similarly selected (p values < .001). The final cal-

ibration set contained 26 parameters in the forest plot model and 21

parameters in the grassland plot model. Tables S2 and S3 show the

calibrated soil and the vegetation parameters and their prior and pos-

terior range of values.
4 | MODEL RESULTS

4.1 | Overall model performance

The performance metrics indicated that the model captures the

dynamics of each target variable reasonably well (Figure 5). The RMSE

(MAE) is lower than 26% (21%) for all the local scores, except the tran-

spiration rate, though the Pearson correlation coefficient shows tran-

spiration dynamics are captured reasonably well. For other variables,

the Pearson coefficients of local calibrations were generally >0.75.



FIGURE 5 Overview of the performance metrics obtained after
calibration of the modelling results in the forest (a) and grass plot (b):
root mean square error (RMSE), mean absolute error (MAE), Pearson
coefficient, using (1) the specific score for local variables, (2) the final
multicriteria GS scores over the calibration period, or (3) over the
validation period (blue period; Figure 3); 50th percentile of the 15 best
simulations
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An exception is the SWC of the third layer of the grassland plot where

measured variability is low (see below and Figure 2).

When the model is calibrated against all data sets simultaneously

(global calibration), there is an expected overall decrease in the model

performance compared with the performance achieved by individual

outputs calibrated specifically using time series directly related to such

output (e.g., when modelled soil moisture is calibrated using soil mois-

ture observations; Figure 5). The decreased performance was gener-

ally greater in the forest site, though the performance depreciation

was small or nonsignificant (at 95% confidence) for SWC1, SWC2,

SWC3, temperature differences, and transpiration rate (in general
FIGURE 6 Simulated soil surface temperature (purple and green) plotted
plots. Soil surface temperature contrast between the plots (c)
ΔRMSE < 11%; ΔMAE < 8%; ΔPearson < 0.15). LAI and biomass pro-

duction (ΔMAE = 20% and 17%, respectively) clearly had a higher deg-

radation of performance during global calibration. Specifically, for

those variables, the individual calibrations led to a very different selec-

tion of different posterior range of values for allocation and turnover

parameters (not shown here) compared with the global calibration,

indicating that they had strong interactions with other parameters in

the water and energy modules. For the grassland, the depreciation in

the global calibration was most marked for SWC1 and SWC3. The val-

idation of the model against soil moisture measurements in 2013 pro-

duced similar performance measures to calibration; indeed, these were

sometimes better, probably because the validation period was shorter

and did not contain the more extreme wetter and drier spells of the

longer calibration time series (Figure 5). Exceptions were SWC1 in

the forest and SWC3 in the grassland.
4.2 | Simulation of energy, hydrological, and biomass
components

The short term and seasonal dynamics of soil surface temperatures

were generally represented with good accuracy for the forest and

grassland plots, though there was a slight overestimation at both plots

during the early growing season, and an underestimation at the forest

plot in late summer (Figure 6a,b). The high fidelity with which the

model represented surface temperatures also captured the nuanced

contrasts between the forest and grass plots (Figure 6c), reproducing

higher growing season surface temperatures in the grass plot at an

accuracy of <1°C.

Figure 7 shows the centred soil water dynamics of the simulations

(SWC* = SWC − mean [SWC]); plotting this way overcomes the het-

erogeneity in measured soil moisture and the difficulty comparing

the calibrated layer thickness to point measurements without any seri-

ous bias. In general, the simulations satisfactorily reproduce the sea-

sonal variability, though increased variation in the ensemble results is

evident with increasing depth in the forest. Also, the high frequency

dynamic is damped in the upper two layers especially for the forest

soils and the third layer at both sites. This relative damping is partly

associated with the different volumes over which the model and the

observations integrate soil moisture. The larger volume of the model
and observed soil surface temperature (black) at forest (a) and grass (b)



FIGURE 7 Imulation of the soil water content on the first, second, and third layer at both sites. Best simulated and confidence interval of the 15
best simulated SWCi* = SWCi – mean (SWCi), against the the observed unbiased SWCo* = SWCo – mean (SWCo; dashed line). Also simulated
groundwater (GW) recharge compared with the SWC observation in deep layer (250 and 350 cm in grassland and forest site). The depths of soil
layers are calibrated, so vary in simulations as follows: Layer 1 = 0 to 0.16–0.29 m (forest): 0 to 0.2–0.29 m (grassland). Layer 2 = 0.16–0.29 to

0.37–0.97 m (forest): 0.2–0.29 to 0.57–0.97 m (grassland). Layer 3 = 0.37–0.97 to 1.5 m (forest): 0.57–0.97 to 1.5 m (grassland)
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layer tends to damp high frequency dynamics related to local, rapid,

and preferential movement of a wetting front which may be captured

by point measurements. The soil parameters of saturated hydraulic

conductivity and leakance to groundwater were most sensitive in the

model, followed by the depth of the upper soil layer (L1) and the

Brooks and Corey porosity index (Table S2; Figures S2 and S3).

To further verify the modelled soil water dynamics, we compared

the groundwater recharge flux simulated at 150 cm in the model, with

the deepest soil moisture measurements (not used in the model) at

250 cm in the grassland and 350 cm in the forest (Figure 7d). In the

forest site, both modelled flux and measured soil moisture variability

showed good agreement and exhibited much more marked seasonality

than the grassland site. In the latter, recharge was higher and was sim-

ulated during the wet summer of 2007. There is a time lag of a few

weeks in the measured response at the forest (compared with the

modelled flux) which is consistent with the greater observation depth

(3.5 m compared with 1.5 m).

Calibrated LAI dynamics for the forest plot were within the range

broadly consistent with measured seasonal variations (Figure 8). The

ranges of LAI variations in the forest and grass plots are ~4 and

~1.0, respectively. Average LAI for the grassland site was about 4.4,
FIGURE 8 Leaf area index (LAI) simulations over the forest (a) and grass (
simulations (green interval); LAI benchmark based on measured maximum
which is slightly high for temperate grasslands and may overestimate

interception (Munier et al., 2018). In the forest plot, the high LAI

increase during the wet summer of 2007, and the unrealistic limited

decline during the winter seasons was also notable, which seems to

reflect excessive allocation to leaves when moisture is not limiting.

This is not consistent with the direct measurement of leaf and needle

fall (Table 3) nor with the observed seasonal LAI dynamic (Figure 8),

which are unrelated to the variable climatic conditions. This is likely

explained by the high sensitivity of biomass allocation in the model

to many parameters and may account for why there is a trade‐off in

the global calibration between biomass production and LAI dynamics.

The average modelled above‐ground forest biomass production

underestimates measured values by ~10–30% (Table 3). However,

results are broadly consistent between years, and the simulation con-

fidence interval brackets the observation values (Figure S1). Notice

that leaf allocation is very consistent between years; however, obser-

vation of fruit production shows high variability, suggesting that the

stem and fruit pool might be a buffer in the model or capture pheno-

logical interannual dynamics unrelated to climate (Lebourgeois et al.,

2018), and these detailed physiological aspects are not captured by

the model.
b) plot: best simulation (solid green line); range of values of the 15 best
and minimum values in the forest plot (purple dashed line)



TABLE 3 Annual biomass production in the different pools: leaves
and needles, fruits production, and stems: from Schulte‐Bisping et al.
(2012; OBS) and simulation results (SIM)

(gC·m−2·
year−1)

Leaves +
needles
losses
(OBS)

Leaves +
needles
losses
(SIM)

Fruits
production
(OBS)

Stem
growth
(OBS)

Stem
growth +
fruits
production
(SIM)

2004 193 134 ± 49 205 167 268 ± 83

2005 185 170 ± 63 83 301 ± 93

2006 202 145 ± 44 101 232 ± 81

2007 192 142 ± 81 170 401 ± 124

2008 195 166 ± 51 109 287 ± 98
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The modelled transpiration rates in the forest have a high range

but measured values in the year available are generally bracketed by

the spread of simulations, though slight overprediction in the early

season and underprediction in midsummer is evident (Figure 9). The

simulated grass transpiration rates are lower, especially in the growing

season, but the dynamic simulated is similar to the forest (correlation

coefficient = 0.85). The model also captures well the transpiration rate

decrease in July–August related to the general decrease on soil water

availability. For the vegetation parameters, water efficiency, stomatal

conductance, and stomatal sensitivity to air pressure and soil wetness

were all sensitive (Figures S2 and S3), along with the root and stem

allocation factors, and the associated sensitivity of LAI. As expected,

the root depth distribution parameters were sensitive for both sites

as well as the maximum leaf turnover for the forest plot.
FIGURE 10 Seasonal averages of the fluxes over the 2004–2014
years, with uncertainty related to model calibration (q5th and q95th
of the 15 best simulations)
4.3 | Water balance for forest and grass plots

Averaged over 11 years, the most marked modelled water balance dif-

ferences between the two sites were clearest in the higher intercep-

tion losses from the forest site (though the high LAI and often low

intensity rainfall still results in substantial grassland interception;

Table 4). Transpiration and evaporation losses were also higher,
FIGURE 9 Transpiration rates simulated over one growing season. Comp

TABLE 4 Modelled water balance from EcH2O‐iso

Interception Soil evaporation

mm % mm %

Forest 163 ± 31 29 ± 4.0 152 ± 21 25 ± 6.4

Grass 104 ± 7 16 ± 2.7 111 ± 14 19 ± 4.0

Note. Average yearly assessment with interannual variation (over the period 20

Abbreviation: GW, groundwater.
though the differences with the grassland were smaller. Consequently,

average groundwater recharge under the forest was roughly a third of

that under grassland (73 mm compared with 225 mm), mostly due to

the trade‐off with interception and higher transpiration. Figure 10

shows the seasonality of the main components of the mass balance,

with indication of the model uncertainty. The model simulations show

consistent higher forest interception losses (especially in summer and

autumn [June–October]), higher forest soil evaporation rate (mostly

from the spring months [March–May]), and higher groundwater

recharge under the grassland, which is especially concentrated during
arison in the forest plot to the sapflow measurements

Transpiration GW recharge

mm % mm %

210 ± 55 34 ± 3.5 73 ± 67 12 ± 8.3

172 ± 22 29 ± 4.6 225 ± 105 36 ± 10.4

04–2014).
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the winter months, but unlike in the forest plot, it can also be high in

the summer.

Although the model seems to be successfully partitioning overall

“green” and “blue” water fluxes, there is significant uncertainty regard-

ing the allocation of soil evaporation and transpiration in the forest. As

a result, forest soil evaporation seems too high, especially in the early

spring. Evaporation is sensitive to the trajectory of the modelled LAI,

as the slow increase in early growing season allows energy to reach

the forest floor and drive evaporative cooling, which is further exacer-

bated by the cooling effect of the soil temperature as a calibration

constraint.

In the grassland plot, groundwater recharge exhibits the greatest

interannual variability (standard deviation of +105 mm), with low var-

iation in modelled interception, transpiration, and soil evaporation

rates (Table 4). Although groundwater recharge also has the greatest

interannual variability in the forest plot (standard deviation +67 mm),

variability in transpiration (+55 mm) is similar and high, depending

upon the balance between soil moisture availability and atmospheric

demand.

FIGURE 11 Chloride tracing (15 best simulations) obtained
compared with the chloride concentration measured at 30 cm, 50
cm in depth (second and third panels), and chloride fluxes to
groundwater (last panel)
4.4 | Storage‐flux‐mixing interactions in EcH2O‐iso:

Insights from chloride tracing

Chloride fluxes were simulated using the calibrated model as an inde-

pendent check on the model's skill in capturing the internal hydrologi-

cal function of the forest plot. Chloride inputs were routed through the

three model layers assuming full mixing in each layer and allowing

evapoconcentration from evaporation and transpiration uptake.

Chloride inputs were greatest in the winter (typically between

November and February) when air masses are more likely to have an

oceanic origin, though this can vary between years (e.g., high inputs

in the winter of 2006/2007 and low inputs in the winter of

2005/2006; Figure 11). High winter chloride inputs propagate rapidly

through the soil profile advecting with the wetting fronts at 30 and

50 cm (Figure S4a). In spring and summer, concentrations decline in

precipitation and also in the soils, despite evapoconcentration. At

depth (120 cm), there was a usually slight lag of a few weeks in the

winter peak of Cl and more attenuation of the decrease in concentra-

tions (Figure S4a). However, in general, average concentrations

increased with depth as the effects of evaporation and transpiration

were apparent. This was difference was particularly marked in summer

(Figure S4b).

EcH2O‐iso simulates the Cl concentrations in Layer 1 quite well

(Figure 11), capturing winter increases and summer decreases and pro-

viding further evidence that flux partitioning is accurately captured by

the model (at least in terms of the concentration effects of evapora-

tion and transpiration on inputs) and with limited predictive disper-

sion. However, in Layer 2, although the model captures the seasonal

dynamic, the spread of simulated values increases substantially

(Figure 11). This likely reflects high uncertainty in the transpiration

losses, which have a compensatory effect on recharge, resulting in

some parameter sets giving high transpiration losses, which increases
Cl concentrations in soil water, whereas some parameters sets give

lower concentrations, but higher recharge concentrations through to

Layer 3. Consequently, modelled Cl fluxes from the bottom of profile

have high uncertainty, though the fluxes estimated from measured

data are reproduced quite well for the median parameter values. There

is a tendency for some parameter sets to overpredict, which may

suggest that Cl concentrations and/or water fluxes are being

overestimated in these cases. Despite these uncertainties in the sub-

soil, the dynamics in Layer 1 and the maintenance of a reasonable

mass balance between inputs and outputs adds confidence to overall

model results, though emphasizes the increased uncertainties at depth

and the need for improvements to the model to constrain this.
4.5 | Estimation of ages of fluxes

The dynamics of water flux ages were broadly similar for both plots

(Figure 12), though lower water fluxes beneath the tree canopy

resulted in greater ageing of water at depth in the forest (Table 5).

The age of evaporated water varied between 1 and 90 days with a

mean of around 45 days for both sites. Transpired water was oldest in

the forest site, with a mean of 176 days, compared with 87 days in

the grassland, reflecting the age of deeper water sources tapped by

the influence of greater rooting depths in the distribution calibrated

for the forest plot. Generally, ages in the different pools were more‐

or‐less strongly influenced by rainfall distribution at both plots. For

the top layer, there was a direct flushing effect on the modelled ages,

which declined during and after major rainfall episodes. In the second

and third layer, there was significant decrease in water age, mostly

when storm events storms were particularly large (e.g., in the summers



FIGURE 12 Age of the water fluxes/reservoirs. Confidence interval according to the 15 best simulations, in dashed lined the median age of the
15 simulations

TABLE 5 Water ages in fluxes: average over the 2004–2014 period

(Day) Evaporation Transpiration L1 L2 L3

Forest 45 ± 8 176 ± 35 48 ± 7 147 ± 29 358 ± 66

Grass 44 ± 7 87 ± 10 47 ± 7 150 ± 25 295 ± 9

Note. Mean and standard variation of the 15 best simulations.
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of 2010 and 2011). The ages in the second layer were surprisingly sim-

ilar, given that we would expect less water turnover in forest plot,

though the higher interception and transpiration losses cause slightly

greater seasonal variability (about 10 days) in the forest. This effect

was enhanced in Layer 3, where the mean ages of water fluxes

increased to 358 days in the forest compared with 295 days in the

grassland. The ages in L3 exhibited general seasonality, with a tendency

to be lower in winter when the main recharge pulses occurred, with

ageing during drier summer periods. Nevertheless, as noted above,

young water can penetrate to L3 in wet summers such as 2011. Again,

uncertainty in the estimated ages was higher in the forest site.
5 | DISCUSSION

5.1 | Using tracer‐aided ecohydrological models to
assess land use change impacts

Over the past two decades, ecohydrological models have increasingly

enabled us to explicitly consider the role of vegetation in water

partitioning and providing a process‐based understanding—and means

of projecting—the effects of land use change on water resources (e.g.,

Morán‐Tejeda et al., 2015). Tracer‐aided ecohydrological models such
as EcH2O‐iso have the potential to enhance this capability by provid-

ing a means of conceptualizing the mixing that occurs in water storage

—flux interactions, the effect on water ages, and to help constrain the

sources of evaporation and plant water use (Kuppel et al., 2018a). By

integrating energy exchanges, water fluxes and biomass dynamics,

such tracer‐aided models also have the potential to provide quantita-

tive insights in to how land cover regulates the interlinkages between

water storage—flux—age at different spatial and temporal scales.

Ecohydrologic models tend to be highly parameterized, and the

opportunity for insight only exists if a limited number of feasible and

consistent model configurations can be identified. Multicriteria calibra-

tion and verification of such models can increase the confidence that

the dominant ecohydrological processes are being appropriately repre-

sented in different landscape compartments and accurately quantified

(Kelleher et al., 2017; Kuppel et al., 2018a). Model failure to adequately

represent observed processes also provides an opportunity to learn

and improve conceptualization (Birkel, Soulsby, & Tetzlaff, 2014; Dunn

et al., 2008). The application of EcH2O‐iso to the monitoring site at

Lake Stechlin, followed on from a successful catchment‐scale applica-

tion of the model in a wet, boreal catchment in Scottish Highlands

(Kuppel et al., 2018a), and the present study provided an opportunity

to test the model in a comparative forest/grassland plot‐scale study

in a more water‐limited site and, more importantly, use direct
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measures of biomass accumulation and turnover for model calibration.

Overall, the model showed good performance in the representation of

the different observed components of the energy, water, and (for the

forest site) biomass dynamics. The value of including in the calibration

process observations pertaining to different components of the

ecohydrologic system (water balance, energy balance, and carbon

uptake) was very apparent. For instance, it was likely that the model

representation of the forest site, where more ecological data were

available as a calibration target, was better constrained. The value of

the ecological data for the forest site was especially useful given the

high sensitivity of most model outputs to vegetation parameters con-

trolling LAI and root distribution, which are not possible to determine

from hydrometric data alone, and deeply affect the energy and water

balances at seasonal and multiyear scales. For instance, Morales et al.

(2005) tested a wide range of hydrological and biogeochemical models

across a range of European biomes; the study highlighted the

difficulties associated with deciduous forests and the seasonal

variations in LAI, and the associated dynamics of interception,

throughfall and stem flow.
5.2 | Water balance implications

The model simulated a balance of “green” and “blue” water fluxes at

the forest site and groundwater recharge rates that were consistent

with other investigations at Stechlin (e.g., Pöschke et al., 2018).

Although soil moisture had a general seasonality related to winter

wetting and summer drying, the permeable nature of the soils along

with the occurrence of wet summers with occasionally heavy rainfall,

means that recharge can occur all‐year round, particularly in the grass-

land site, and this was well represented by the model.

The partitioning of “green” water fluxes showed wider uncertainty

in both the forest and grassland plots. Interception losses simulated

for the forest were broadly similar to the differences between mea-

sured precipitation and throughfall beneath the forest canopy. There

was, however, uncertainty regarding the partitioning of soil evapora-

tion and transpiration in the forest plot. As shown in the results, forest

soil evaporation exceeded the evaporation of grasslands between

March and May, when soil moisture is still high and the simulated

development of the maximum LAI is delayed. The energy not

intercepted by canopies due to delayed LAI growth reaches the forest

floor and explains the high soil evaporation and the lower transpiration

as the LAI increases slowly until August. Increased evaporation due to

delayed LAI did not affect the grassland site because LAI from the

grassland maintains the LAI relatively high even during periods when

grass is not actively growing (hence the high interception). However,

evaporation losses are high compared with other literature studies.

The higher evaporation may be reflected in the low T:ET ratios for

the forest and grassland plots which are only 40 and 44%, respec-

tively. This compares with literature values more typically ~70% (e.g.,

Fatichi & Pappas, 2017; Good, Noone, & Bowen, 2015; Schlesinger

& Jasechko, 2014), whereas 58% was reported by Soubie, Heinesch,

Granier, Aubinet, and Vincke (2016) for a similar mixed forest in
Belgium. Thus, despite the effective use of vegetation data to calibrate

the model in terms of biomass production and allocation, the data

were insufficiently detailed to avoid this uncertainty in the partitioning

of soil evaporation and transpiration. Further data may elucidate this;

for example, Benyon and Doody (2015) found direct measurement

could resolve the partitioning of interception, soil E and T for contrast-

ing forest plots, showing that the relative importance of interception

and soil E varied significantly depending on the canopy cover.

Lack of LAI measurements for the grass sward and additional com-

plications introduced by occasional mowing events make it difficult to

assess model performance for the grassland plot and how it affects the

partition of soil evaporation and transpiration. The upper range of the

calibrated grass LAI values in our study are high compared with those

usually quoted in the literature. For example, in a global synthesis by

Asner, Scurlock, and Hicke (2003), the average range for the mean

LAI for grasslands was 0.5–4.2. Nevertheless, LAI values are measure-

ment dependent (e.g., using remove sensing or destructive/non‐

destructive sampling), and studies on some European grasslands have

found values ranging between 3.7 and 7 in alpine pastures (Wohlfahrt

et al., 2000; Pasolli et al., 2015). So our model results are within the

feasible range and are informative. Regarding the effects of mowing

on transpiration, Rose, Coners, and Leuschner (2012) found that mow-

ing one to three times during the growing season had insignificant

effect on grassland water use in sites in central Germany, though of

course this will affect short‐term interception capacity.
5.3 | Water age distributions

The simulated differences and dynamics of water ages in the model

are comparable with what is reported in the literature. The young

water ages (approximately a few months) of water stored in the upper

profile of the soils at both plots, which is the main source of evapora-

tion, are similar to those quoted by Sprenger, Tetzlaff, Buttle, Laudon,

et al. (2018) for a range of boreal sites. Likewise, the increased age of

simulated transpired water from the forest plot, reflecting the greater

rooting depths and lower overall water fluxes which age waters

deeper in the profile, was also found by Sprenger, Tetzlaff, Buttle,

Carey, et al. (2018) and Kuppel et al. (2018a). The ages of deeper

recharge integrate these effects, with water draining to Layer 3 being

about 20% older in the forest plot, 358 days compared with 295 days

in the grassland. Again, these water ages from the bottom of the soil

profile are similar in magnitude to others recently reported from else-

where (e.g., Tetzlaff, Birkel, Dick, Geris, & Soulsby, 2014).

The spread of the modelled age distributions are highest in the

forest plot, mainly as a result of the variation in the transpiration esti-

mates. The propagation of the ensemble variation in transpiration to

age is also reflected in the simulations of the chloride concentration.

The performance of the chloride concentration simulations is best in

in the upper soil layer, indicating that evapotranspiration fluxes are

accurately quantified and that full mixing of the incoming tracer signal

is reasonably approximated. However, in L2, the uncertainty over the

volume and depth of transpiration explains why the model captures
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the general seasonality of the chloride signal reasonably well but does

not reproduce the concentrations accurately. However, it should be

noted that soil water was sampled by lysimeters under low tension

and may not reflect the evaporative signal in finer soil pore waters

(Geris, Tetzlaff, McDonnell, & Soulsby, 2017). In contrast, the concep-

tualization of mixing in EcH2O‐iso tracks the age and tracer concentra-

tion of bulk soil water, which includes the water held under higher soil

tensions. The effect of this difference may be smaller in the sandy soils

of the study site, but even when dry, the residual volumetric SWC in

these soils is still 5% and can contribute to the difference between

the concentrations in the pool of soil water that is sampled and the

concentrations in the bulk soil water represented by the model.

Although the celerity of wetting front moving through the soils was

evident in the observations and the simulations, the mixing appears

to attenuates this modelled signal too rapidly in the deeper soil layers

(L2 and L3). A better differentiation of faster and slower flowing water

in the model and partial mixing between them would likely improve the

chloride simulations (e.g., Sprenger, Tetzlaff, Buttle, Carey, et al., 2018).
5.4 | Implication for using tracer‐aided
ecohydrological models in land use change studies

Working towards enhancing ecohydrological models through the use

of tracers to improve the representation of subsurface mixing and

collecting informative data of different types to improve model cali-

bration and parameterization are important goals to refine our models

and assess the hydrological implications of land use change under

projected climate change scenarios. However, advancing these agenda

is predicated on the idea that we know what aspects of the model

need to be improved and what data collection efforts should be prior-

itized. Models can inform these aspects (Peters, Freer, & Beven, 2003).

For instance, the excessive damping of the chloride signal indicates

that our model needs to incorporate partial or differentiated mixing

of faster and slower zones of water movement in the soil (Sprenger,

Tetzlaff, Buttle, Carey, et al., 2018). This also provides a basis for bet-

ter apportioning of the pools of soil water that contribute to evapora-

tion and transpiration and permits a more meaningful comparison with

the water compositions sampled by lysimeters.

In addition to better tracer data, improved ecological data sets that

represent seasonal to longer term processes are critical to improve the

calibration of model components that simulate changes in plant bio-

mass with critical hydrological feedbacks at interannual to decadal

timescales. Acquisition of biomass data during measurement cam-

paigns has only recently become common in the hydrologic commu-

nity. Measurements of the forest LAI over the growing season are

probably one of the most important measurements and are relatively

common, but additional measurements on root distribution, stem

growth, or total biomass are also critical and less common.

As in many modelling studies, this investigation leverages data sets

collected for other purposes. Often these data sets provide key long‐

term historical information; however, they are often not optimal to

inform models because the campaigns were not been specifically
designed for this purpose. It is clear that as the fields of

ecohydrological and tracer‐aided modelling mature, careful planning

of data acquisition to best enhance model development and testing

is necessary. In the future, such coevolution may facilitate more rapid

advances in our understanding and ability to accurately predict the

hydrological impacts of land use change. This is a priority for work

planned in the drought‐sensitive study area of Brandenburg, where

the effects of climate change, and predicted warmer, drier summers,

may result in scarcity of water resources in future (Lischeid & Nathkin,

2011). More accurate ecohydrological modelling is needed to inform

decision making on how different land use scenarios, in terms of the

balance of forest and nonforest cover, will involve trade‐offs in terms

of water availability and other ecosystem services.
6 | SUMMARY AND CONCLUSION

We applied a process‐based ecohydrological model (EcH2O‐iso) to

compare the effects of land cover on water partitioning and associated

flux ages under temperate beech forest and grassland on podzolic,

sandy soils at Lake Stechlin in Germany. Multicriteria calibration,

based on measures of the energy balance, hydrological function, and

biomass accumulation, resulted in generally good simulations of sur-

face energy exchange, SWC, transpiration, and biomass production.

The model results showed that the forest used more water than the

grassland from the 620 mm of average annual precipitation. On

average, “green” water fluxes from interception, transpiration, and

evaporation were 88% of precipitation inputs under beech forest,

compared with 63% under grassland. As a result, groundwater

recharge was greatly enhanced under grassland at 37% of precipita-

tion compared with 12% for forest. The model also tracked the ages

of water in the different fluxes. In shallow soil horizons, the average

ages of soil water fluxes and evaporation were similar in both plots

(~1.5 months), though transpiration and groundwater recharge were

older under forest (~6 months compared with 3 months for transpira-

tion and ~12 months compared with ~10 months for groundwater).

Flux tracking with Cl tracers provided independent support for the

modelling results, though it also highlighted effects of uncertainties

in the model. To realize the potential for tracer‐aided ecohydrological

models in land use change studies, further improvements in the con-

ceptualization of soil water mixing and carefully planned data acquisi-

tion on biomass dynamics seems the highest priorities for more

reliable predictions.
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